Abstract:
Lumbar spine injuries caused by repetitive lifting rank as the most prevalent workplace injury in the United States. While these injuries are caused by both symmetric and...Show MoreMetadata
Abstract:
Lumbar spine injuries caused by repetitive lifting rank as the most prevalent workplace injury in the United States. While these injuries are caused by both symmetric and asymmetric lifting, asymmetric is often more damaging. Many back devices do not address asymmetry, so we present a new system called the Asymmetric Back Exosuit (ABX). The ABX addresses this important gap through unique design geometry and active cable-driven actuation. The suit allows the user to move in a wide range of lumbar trajectories while the “X” pattern cable routing allows variable assistance application for these trajectories. We also conducted a biomechanical analysis in OpenSim to map assistive cable force to effective lumbar torque assistance for a given trajectory, allowing for intuitive controller design in the lumbar joint space over the complex kinematic chain for varying lifting techniques. Human subject experiments illustrated that the ABX reduced lumbar erector spinae muscle activation during symmetric and asymmetric lifting by an average of 37.8% and 16.0%, respectively, compared to lifting without the exosuit. This result indicates the potential for our device to reduce lumbar injury risk.
Published in: IEEE Transactions on Robotics ( Volume: 38, Issue: 3, June 2022)