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Abstract

Successful plan generation for autonomous systems is necessary but not suffi-
cient to guarantee reaching a goal state by an execution of a plan. Various discrep-
ancies between an expected state and the observed state may occur during the plan
execution (e.g., due to failure of robot parts) and these discrepancies may lead to
plan failures. For that reason, autonomous systems should be equipped with ex-
ecution monitoring algorithms so that they can autonomously recover from such
discrepancies.

We introduce a plan execution monitoring algorithm that operates under partial
observability. This algorithm relies on novel formal methods for hybrid predic-
tion, diagnosis and explanation generation, and planning. The prediction module
generates an expected state after the execution of a part of the plan from an incom-
plete state, to check for discrepancies. The diagnostic reasoning module generates
meaningful hypotheses to explain failures of robot parts. Unlike the existing di-
agnosis methods, the previous hypotheses can be revised, based on new partial
observations, increasing the accuracy of explanations as further information be-
comes available. The replanning module considers these explanations while com-
puting a new plan that would avoid such failures. All these reasoning modules
are hybrid in that they combine high-level logical reasoning with low-level feasi-
bility checks based on probabilistic methods. We experimentally show that these
hybrid reasoning modules improve the performance of plan execution monitoring
in service robotics applications with multiple bimanual mobile robots.

To evaluate the performance and to understand the applicability of the pro-
posed execution monitoring algorithm, we introduce an execution simulation al-
gorithm. This algorithm is based on a formal method that allows generation of
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dynamic and relevant discrepancies, and simulation of all possible plan execution
scenarios considering potential failures. This simulation algorithm can be used
not only for testing execution monitoring algorithms subject to different condi-
tions, but also to evaluate the robustness of plans. We illustrate these applications
of our simulation algorithm in service robotics and cognitive factory settings with
multiple mobile robots.
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Kısmi Gözlemlenebilir Ortamlarda Açıklanabilir Robotik Plan
Yürütme

Gökay Çoruhlu

Mekatronik Mühendisliği, Doktora, 2021

Doktora Tez Danışmanları: Prof. Volkan Patoğlu, Prof. Esra Erdem

Anahtar Kelimeler: Plan yürütme, hata tanısı, açıklama oluşturma,
yönlendirilmiş yeniden planlama, hibrit planlama, uyuşmazlık oluşturma, plan

yürütmesinin simülasyonu.

Özet

Otonom bir sistemin hedefine ulaşabilmesi için başarılı bir plan oluşturulması
gereklidir ancak bu çoğu zaman yeterli değildir. Planın yürütülmesi sırasında bek-
lenen ve gözlenen durumlar arasında çeşitli uyuşmazlıklar (örneğin, beklenmeyen
harici olaylar, hedefte meydana gelen değişiklikler ya da robot parçalarının bozul-
masından oluşabilecek farklılıklar) meydana gelebilir ve bu uyuşmazlıklar plan
yürütmesinin başarısız olmasına sebep olabilir. Bu nedenle, otonom sistemler, bu
tür uyuşmazlıklarla baş edebilmek için plan gözlemleme, hata tanısı ve yeniden
planlama algoritmaları ile donatılmalıdır.

Bu doktora tezinde, kısmi gözlemlenebilir ortamlarda da uygulanabilen genel
bir plan yürütme algoritması öneriyoruz. Bu algoritma, durum tahmini, hata
tanısı, açıklama oluşturma ve yönlendirilmiş yeniden planlama gibi özgün hib-
rit modüllere dayanmaktadır. Tahmin modülü, uyuşmazlık kontrolü için, kısmi
gözlemlenen bir durumda yürütülen bir planın sonunda beklenen durumu tahmin
eder. Hata tanısı modülü uyuşmazlıkları robot parçalarının bozuklukları ile açık-
layabilen anlamlı hipotezler oluşturur. Literatürdeki metotlardan farklı olarak,
önerilen hata tanısı modülü, daha önce oluşturduğu hipotezleri yeni gerçekleşti-
rilen gözlemler ışığında gözden geçirebilmekte ve bu sayede yeni bilgiler elde
edildikçe daha doğru açıklamalar oluşturabilmektedir. Yeniden planlama modülü,
oluşturulan açıklamaları göz önünde bulundurarak, var olan bozuk parçaların kul-
lanımından kaçınan yeni planlar oluşturur. Tüm otomatik akıl yürütme modül-
leri hibrit yapıda olup yüksek-seviye mantıksal akıl yürütme ile düşük-seviye
olasılık tabanlı fizibilite kontrollerinin birleşmesinden oluşmaktadır. Deneysel
değerlendirmelerde hibrit akıl yürütme modüllerinin plan yürütmesinin başarımını
arttırdığı, çoklu mobil manipülatörlerin yer aldığı servis robotiği uygulamalarında
gösterilmiştir.
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Ayrıca, önerilen plan yürütme algoritmasının başarımının ve uygulanabilir-
liğinin sistematik bir şekilde değerlendirilebilmesi için bir plan yürütmesi simü-
lasyon algoritması öneriyoruz. Bu algoritma, dinamik olarak ilgili uyuşmazlık-
ların oluşturulmasına ve olası arızalar dikkate alınarak tüm plan yürütme senaryo-
larının simülasyonuna izin veren formal bir yönteme dayanmaktadır. Simülasyon
algoritması, sadece farklı koşullara tabi plan yürütme algoritmalarını test etmek
için değil, aynı zamanda farklı planların gürbüzlüğünü değerlendirmek için de
kullanılabilir. Simülasyon algoritmamızın uygulamaları, servis robotiği ve biliş-
sel fabrika ortamlarında çoklu mobil robotlar kullanılarak gösterilmiştir.
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Chapter 1

Introduction

Successful deployment of robotic assistants in real world environments necessi-

tates these systems to be endowed with high-level cognitive functions that allow

them to robustly deal with high complexity and wide variability of their surround-

ings. For that reason, autonomous robot systems are equipped with the ability to

plan their actions to reach their goals. Independent of the underlying planning

paradigm and/or algorithm, planning requires models of the environment and the

robot to produce a valid plan. However, due to uncertainties and surprises, the

world may evolve differently from the expected (as described by the model) dur-

ing the execution of a plan. Therefore, robust execution of plans requires 1) detect-

ing discrepancies between the expected and the observed states that affect validity

of the rest of the plan (such discrepancies are called relevant), 2) diagnosing the

cause of and generating explanations for these discrepancies, and 3) implementing

a means of rational recovery. The process of verification of the continued valid-

ity of an executed plan, and implementation of a means of recovery, is known as

execution monitoring [1, 2].

Three main reasoning tasks take place during plan execution monitoring: pre-
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diction, diagnosis/explanation generation and replanning. In particular, to be able

to detect discrepancies, the expected state after the execution of the relevant part

of the plan needs to be predicted, such that it can be compared with the current

observed state. Once a discrepancy is detected, diagnostic reasoning is required to

determine its cause, as it may have occurred early in the plan execution and may

not have been easily detected by sensors. Finally, once the cause of the discrep-

ancy is determined, a new plan needs to be generated by taking its explanation

into account. Note that diagnostic reasoning not only to guide replanning but also

to enable explanation generation.

Plan execution monitoring is commonly studied under the assumption of the

full observability of the current state. However, privacy concerns, high cost of sen-

sors, unreliability of sensors, or demanding environmental conditions (i.e., tight

spaces, high temperatures, or corrosive environments) may render full observabil-

ity infeasible for certain applications. In such cases, plan execution monitoring

needs to be performed under partial observability, as only a portion of the current

state can be monitored at any given time.

Plan execution monitoring under partial observability is challenging, as all

three reasoning tasks of prediction, diagnosis and replanning need to be signif-

icantly extended to accommodate for unobservable states. In particular, for dis-

crepancy detection under partial observability, it is not possible to compare the

expected and the observed states, since full state observations are not available.

Therefore, a discrepancy check is required to be performed based on the mon-

itored fluents. Similarly, during diagnostic reasoning, one should generate ex-

planations due to the discrepancies related to the monitored fluents. Finally, for

replanning, the unobservable part of current state needs to be predicted, taking the

diagnosis into account and ensuring consistency with the monitored fluents, such

2



Figure 1.1.1: Plan Execution Loop

that a new plan can be computed.

In this dissertation, we present a formal method that extends model-based di-
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agnostic reasoning to perform under partial observability and considers multiple

observations, such that a possible hypothesis that explains observed discrepan-

cies can be revised as new observations become available. These extensions not

only enable the applicability of model-based plan execution monitoring to more

realistic scenarios, but also improve the autonomy and robust plan execution of

the robots, since it allows for the system to recover from incorrectly diagnosed

failures without any external intervention. Figure 1.1.1 presents a flow chart of a

planning and execution monitoring framework.

We formulate all the reasoning tasks required for plan execution using the ex-

pressive logic-based language of Answer Set Programming (ASP)—a knowledge

representation and reasoning paradigm based on answer set semantics [3–5]—and

solve them utilizing efficient ASP solvers. ASP has been used in various appli-

cations [6], including robotics [7]. We experimentally evaluate our methods over

large sets of scenarios, to show the effectiveness of our novel diagnostic reasoning

approach and usefulness of plan execution monitoring algorithm.

Before execution monitoring algorithms are deployed on autonomous systems,

comprehensive testing is needed to evaluate their performances and to understand

their applicability. With this motivation, we introduce a formal method for dis-

crepancy generation with respect to the plan being executed to evaluate perfor-

mance of execution monitoring algorithms through simulations. Discrepancies

are introduced dynamically during the execution of a plan to simulate all possible

plan execution scenarios with possible failures. This simulation algorithm also

allows evaluation of the robustness of various plans. We present experimentally

evaluation of the robustness of several plans under various execution monitoring

algorithms.
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1.1 Contributions

We present a novel plan execution monitoring algorithm that operates under partial

observability. In particular, we introduce formal methods for the reasoning tasks

of prediction, diagnosis and replanning required during execution monitoring. We

also introduce a formal method for dynamic relevant discrepancy generation with

respect to the plan being executed and we propose a novel simulation algorithm

that enables systematic testing of execution monitoring algorithms.

The contributions of this dissertation can be summarized as follows.

(i) We present a formal method to predict states under partial observability.

Our method integrates low-level feasibility checks (i.e., existence of collision-

free trajectories) into high-level action descriptions, and thus can eliminate

incorrect predictions of states reached by these actions. It also takes into

account previous observations and diagnoses. We use hybrid prediction for

three purposes: to detect discrepancies, to check their relevancies, and to

infer a full current state for replanning. In the first case, hybrid prediction is

utilized to compute the full expected state after executing some part of the

plan from the initial state. In the second case, hybrid prediction is utilized to

compute the full expected state after executing the rest of the plan from the

partially observed current state. In this case, our method infers a full valid

state from the current observations, that is closest to the expected state. In

the third case, hybrid prediction is utilized to compute the full expected state

after executing some part of the plan from the initial state, considering the

current observations and current diagnosis.

(ii) We propose a formal method for diagnostic reasoning under partial observ-

ability to generate meaningful explanations for the relevant discrepancies.
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Our method not only integrates low-level feasibility checks into high-level

diagnostic reasoning, but also enables revisions of previous diagnoses such

that more relevant explanations can be generated as further observations

become available. We use hybrid diagnostic reasoning to identify the min-

imum number of robotic components that are most likely to cause the de-

tected relevant discrepancy when they are broken. Our method also provides

further explanations as to which actions of the plan fail and when, due to

the inferred diagnosis.

(iii) We present a formal method for replanning under partial observability that

generates new plans starting from the current state (with predicted unob-

servable part) and leading to the goal state, guided by the diagnosis with

explanations. Our replanning method also integrates low-level feasibility

checks into high-level task planning to ensure that the computed plans are

executable in the real-world. Our replanning method also considers repair-

ing a minimum number of broken parts, if needed.

(iv) Based on these ASP-based formal methods to detect discrepancies, generate

diagnoses with explanations, and compute (re)plans, we introduce a novel

plan execution monitoring algorithm that can be used under partial observ-

ability. Our algorithm can be used autonomously as well as interactively to

involve the user in decisions and get their feedback (e.g., which diagnosis

is more likely or which repairs are more preferable during replanning).

(v) We experimentally evaluate our plan execution monitoring algorithm over

large sets of problem instances in a service robotics domain that involves

multiple mobile manipulators, to investigate its scalability and effective-

ness, with respect to different variations of diagnostic reasoning (i.e., with
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or without considering former observations and diagnoses) and replanning

(i.e., with or without guidance by diagnosis).

(vi) We present a formal method for relevant discrepancy generation that might

have occurred due to a failure of a robotic actuation action, after execution

of some part of a plan. Our discrepancy generation is a generic method

and applicable to robotic domains where the robotic actions may fail due to

failures of robot components.

(vii) Based on this ASP-based formal method to generate discrepancies, we in-

troduce a novel simulation algorithm that evaluates the performance of var-

ious execution monitoring algorithms by simulating all possible scenarios

with relevant discrepancies. This algorithm is applicable to a variety of ex-

ecution monitoring algorithms with/without diagnosis and/or replanning.

(viii) We introduce the notion of plan robustness and experimentally evaluate

the robustness of different plans for a given planning problem in service

robotics and cognitive factory settings with multiple mobile robots.
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1.2 Outline

The rest of the dissertation is organized as follows:

Chapter 2 provides a comparative review of the related work on plan execution

monitoring.

Chapter 3 overviews the representation of a transition system in ASP and

presents the necessary tools to implement feasibility checks of robotic actions.

Chapter 4 introduces a formal definition of the planning problem in ASP, a for-

mal definition of diagnosis problem using ASP, and presents novel formal meth-

ods to compute a most-probable minimum-cardinality diagnosis and to generate

explanations for this diagnosis. Chapter 4 introduces a formal definition of predic-

tion problem using ASP, and presents formal methods to detect a discrepancy and

to determine its relevancy. Chapter 4 also introduces a formal definition of guided

replanning, and presents formal methods to compute replans guided by the most

recent diagnosis, and possibly by repairing a minimum set of robot components.

Chapter 5 overviews the proposed plan execution monitoring approach and

presents the pseudo-code and details of the proposed algorithm. This section also

presents a service robotics case study and provides evaluations of our methods

over a comprehensive set of benchmark scenarios to show the effectiveness of our

novel diagnostic reasoning approach and usefulness of plan execution monitoring

algorithm.

Chapter 6 introduces novel methods to systematically evaluate various execu-

tion monitoring algorithms, presents a service robotics case study to demonstrate

systematical generation of discrepancies and provides a case study for systemati-

cal evaluation of a cognitive factory.

Chapter 7 introduces a novel method to evaluate robustness of plans, and com-
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pare different execution monitoring algorithms in terms of their robustness.

Chapter 8 concludes the dissertation and discusses future research directions.
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Chapter 2

Related Work

We are concerned about execution monitoring that not only detects failures/dis-

crepancies but also finds out the reasons/diagnosis of these failures/discrepancies

for a better-guided replanning. We are also concerned about evaluation of such

execution monitoring algorithms. Therefore, let us examine the related work in

three parts: studies about execution monitoring that utilize some sort of useful

information for replanning, studies about diagnostic reasoning, and studies about

testing of such algorithms.

Before the detailed discussions, let us clarify some terminology. We consider

dynamic domains where the world states change over time due to direct or indirect

effects of actions of the robots.

We understand discrepancies in the spirit of [8] as differences between an

observed state and an expected state of the world (e.g., the table is empty while a

glass was expected to be on it); discrepancies may lead to a failure of a plan. In

that sense, our understanding of a discrepancy is different from “faults” [9], which

are abnormal conditions or defects of physical components (e.g., deformation of

a robot wheel); faults of a component may lead to the failure of the functionality
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of that component.

We consider a special type of faults, “broken components of robots”, as the

cause of a discrepancy that lead to a plan failure. In that sense, our understanding

of diagnostic reasoning is similar to fault diagnosis. Different from many vari-

ous exiting approaches for fault diagnosis [9], we utilize model-based methods of

automated reasoning.

As for plan failures, we consider failures that are caused by broken compo-

nents. Other types of failures, such as failures due to human intervention [10],

failures due to collisions with movable obstacles whose presence and location are

not known in advance [11], and failures due to heavy objects that cannot be lifted

alone [11], are investigated in complementary studies. Also, we do not consider

action failures due to unreliable/incomplete execution of actions, which are usu-

ally handled at the low-level utilizing behaviour trees [12] or finite state machines

via temporal logic [13, 14].

2.1 Execution Monitoring with More Informative Fail-

ures/Discrepancies

There are various related work (starting with SHAKEY [15]) on execution mon-

itoring that utilize replanning upon detection of action failures; for a comprehen-

sive summary of these approaches, we refer the reader to the thesis by Fritz [16]

from the perspective of AI, and to [17] from the perspective of robotics and con-

trol.

Some execution monitoring approaches understand a failure as the failure of

the current action’s execution in a plan, identify the reasons for the failure in terms

of the unsupported preconditions and/or effects, and then utilize this knowledge
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while replanning [18,19]. For instance, Ambros-Ingerson and Steel [18] use a pro-

duction system architecture where IF-THEN rules are used to map “flaws” (e.g.,

unsupported preconditions of a failed action) to “fixes” while replanning. Ficht-

ner et al. [19] specify preconditions and effects of actions under the assumption

that some properties are not “abnormal”, and thus identify reasons of an action

failure in terms of these abnormalities and utilize this information during replan-

ning. Similarly, Winkler et al. [20] describe possible error cases and how to react

to them, by high-level macros in goal definitions.

Some execution monitoring approaches consider discrepancies between the

expected state and the observed state [8, 21, 22]. Discrepancies involve action

failures, and more information; therefore, they can be useful in various ways de-

pending on how they are defined and utilized. For instance, in addition to action

failures, Lemai and Ingrand [21] consider temporal/resource conflicts (e.g., when

an action takes longer time than planned), and perform plan repairs (e.g., postpon-

ing the remaining of the actions). De Giacomo et al. [8] understand a discrepancy

as a failure of the remaining part of the plan, and perform replanning only when a

discrepancy is relevant. In another work [23], where the goal is to compute a pol-

icy “in the now”, the authors do not consider discrepancies but “reconsiderations”

(e.g., when the precondition of an action is not achievable) to re-plan. In another

study [24], the authors compute all the expected states during the execution of

a plan in advance by a stochastic prediction function, and utilize them to detect

discrepancies between the observed ones during plan execution; if a relevant dis-

crepancy is detected then the prediction function is updated.

Some execution monitoring approaches further try to find explanations for dis-

crepancies [22, 25, 26]. Zhang et al. [22] define failures (e.g., states where a cup

is not observed to be in the main container), and utilize plan recovery methods
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using defaults (e.g., if the cup is not in the main container then by default it is

in the auxiliary container). In another study [25], due to lack of support for de-

faults, the notion of “assumptive actions” is introduced to allow the system to

generate assumptions about the initial state, that might cause the detected discrep-

ancy between the observed state and the expected state. Eiter et al. [26] define a

diagnosis of discrepancy as a “point of failure”, where execution of a sequence

of actions evolves differently than expected. This additional knowledge explains

the detected discrepancy and allows the agent to reverse its plan until the point of

failure and re-execute or repair the rest of the plan.

In our execution monitoring framework, similar to [8, 21, 22, 25, 26], we con-

sider discrepancies between the expected state and the observed state, but with

respect to a set of monitored fluents (under partial observability) so the observed

state may be incomplete. Also, instead of continuous monitoring, we check for

discrepancies from time to time; so the failure of a condition may not be observed

at all until a discrepancy is detected.

Similar to [8], we check for the relevancy of a discrepancy for the execution

of the rest of the plan, and perform replanning when the discrepancy is relevant.

Different from the studies above, we identify possible causes of discrepancies by

means of sets of broken components of robots and points of failures. We perform

a novel method of diagnostic reasoning to find such possible causes under partial

observability. Furthermore, we generate explanations based on such diagnoses

about which actions could not be executed succesfully due to these diagnoses.

The additional information due to the computed diagnoses and explanations is

utilized to guide replanning.
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2.2 Diagnosis of Discrepancies

Diagnoses of discrepancies are defined in various ways in the literature. For in-

stance, according to Reiter and de Kleer [27, 28], a diagnosis of a discrepancy is

described by a set of system components that are broken. As mentioned above,

Eiter et al. [26] define a diagnosis of discrepancy as a point of failure. Roos

and Witteveen [29] define a diagnosis of a discrepancy as a combination of some

actions executed so far such that if these actions are qualified as abnormal, the

observed plan state is compatible with predicted plan state. In this dissertation,

we define diagnoses of discrepancies by means of sets of broken components of

robots, and points of failures. Different from the studies [27, 28], we consider

dynamic domains where the world states change over time, instead of a static

system.

Concerning dynamic domains, diagnosis of failures or discrepancies by means

of broken components is studied in the literature [30–32]. Let us examine these

studies more in detail.

McIlraith et al. [30] consider hybrid systems modeled using automata and

temporal casual graphs; their goal is to identify a most-probable diagnosis for a

detected discrepancy. Different from this study, we do not model a robot as a

hybrid system; instead, we model the robotic domain as a dynamic environment,

where continuous variables regarding the robot are not represented explicitly but

embedded in the high-level description of the domain. Our goal in execution

monitoring is to find a most-probable diagnosis among the ones with minimum

cardinality.

Balduccini and Gelfond [31], and Baral et al. [32] model dynamic domains

using nonmonotonic formalisms, A-Prolog (based on answer set semantics [3,4])

and Action Language L [33]. They introduce exogenous actions (e.g., a “break”
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action that causes parts to malfunction) in the domain descriptions to identify bro-

ken components that might cause discrepancies. Our approach is similar in that

we use the nonmonotonic formalism of Answer Set Programming (ASP) [34–36],

also called A-Prolog, to model a dynamic domain. Different from these studies,

our approach does not need to introduce such a dummy action, since we can rep-

resent changes that do not involve a robotic action. Furthermore, unlike these

approaches, our domain description is hybrid where the feasibility checks are em-

bedded.

For replanning purposes, Balduccini and Gelfond [31], and Baral et al. [32]

introduce exogenous “repair” actions in the domain descriptions to allow repairs

of broken components. Different from these studies, our approach does not need

to introduce such a dummy action, since we can allow repairs using weak con-

straints. To deal with replanning from a partially observable state, Baral et al. [32]

consider sensing actions (i.e., to gather the missing knowledge about all the unob-

served fluents via sensors) and conditional planning. In this dissertation, we do not

consider sensing actions as the world is assumed to be partially observable even

with the sensors, and thus present a method based on sequential planning. Though

our replanning method can be extended to conditional planning (if the world can

be observed via additional sensors), as discussed in our earlier studies [37–39].

In this dissertation, we are also concerned about generating explanations for

relevant discrepancies, that not only provide information about which action in the

plan being executed has failed and when, but also what might have caused such a

failure in terms of broken parts. As the cause of a discrepancy may have occurred

early in the plan execution and may not have been easily detected by sensors, we

utilize diagnostic reasoning for explanation generation. In that sense, it is more

general than the recent studies [40] in robotics that identify the cause of a robotic
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failure with respect to a taxonomy of failures, in terms of the current failed action,

previous successful action, and current captured environmental context only. Note

that we do not study explainability of plans [41,42] but explanation generation for

relevant discrepancies in plan execution.

The study presented in this dissertation builds on and significantly extends the

work in [43] in the following ways: (i) we assume that by default components

are not broken initially, which allows the possibility of having components being

broken at the very initial state, (ii) we enable the diagnostic reasoning method

to revise its previous explanations whenever new observations become available,

and (iii) most importantly, we significantly extend all the formal reasoning tasks

in [43] to function under partial observability.

The most distinctive features of our method in comparison with the related

work can be summarized as follows:

- works under partial observability and, furthermore, allows the monitored

fluents to be partially observed,

- is integrated with low-level feasibility checks,

- generates meaningful hypotheses (i.e., the most-probable ones among the

minimum cardinality diagnoses) about possibly broken robotic components,

- can generate explanations about which action has failed and when due to

these broken parts,

- can determine which broken parts need to be repaired such that goal can be

reached,

- can revise its previous hypotheses based on new observations, and

- does not require a dummy “break” action or a dummy “repair” action.
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2.3 Testing of Execution Monitoring Algorithms

To develop fault-aware and reliable robot systems, simulation studies are essential

for testing and benchmarking various execution monitoring approaches. However,

to the best of our knowledge, there does not exist a generic simulation algorithm

for execution monitoring where discrepancies are generated formally.

Livingstone [44] is a model based diagnosis engine which generates candidate

diagnoses for the detected discrepancies, then suggest recovery actions to elimi-

nate these discrepancies. Livingstone is used at NASA’s demonstration spacecraft

Deep Space 1 during various space missions. Lindsey and Pecheur [45] intro-

duces Livingstone PathFinder (LPF) to test performance of Livingstone diagno-

sis engine. LPF accepts user-provided scenario scripts which consist of system

commands and faults, then evaluates the performance of Livingstone in terms of

successfully finding correct diagnoses by simulating the given scenarios.

Kurtoglu et al. [46] have introduced a fault catalog for Advanced Diagnostic

and Prognostic Testbed (ADAPT) of NASA, which depends on a failure modes

and effects analysis (FMEA). They have utilized user defined scenarios to test

diagnostic systems which are generated by considering the results of FMEA anal-

ysis. During the execution, faults are injected to the testbed according to cor-

responding scenario and diagnostic system is tested in terms of the metrics they

have defined.

In addition to using predefined scripts for evaluation, there are several other

studies that utilize different methods to generate testing scenarios. For instance,

in [8], the authors assume that the discrepancies can only be generated by exoge-

nous actions and these exogenous actions are entered by the user after execution

of a primitive action or a test evaluation. In [47], the user identifies “succeed, fail

or yield no information” rates of each action or condition test. Another way of
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generating discrepancies in the literature is directly changing the world state by

introducing/deleting information at any time during execution [48, 49].

We introduce a formal method for relevant discrepancy generation that might

have occurred due to a failure of a robotic actuation action, after execution of

some part of a plan. We also propose a novel algorithm for simulation of execu-

tion monitoring algorithms, that enables their systematic testing in simulation. In

addition we introduce several metrics to evaluate performance of these algorithms.
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Chapter 3

Preliminaries

Our contributions emerge from logic-based knowledge representation and auto-

mated reasoning, and thus utilize expressive logical formalisms and efficient au-

tomated reasoners to develop a general formal framework that not only can solve a

variety of reasoning problems, including prediction, planning, guided re-planning,

and diagnostic reasoning but also can orchestrate these reasoning modules by pro-

viding feedback in terms of constraints and preferences. For instance, thanks to

the expressive formalism of ASP, we can utilize nonmonotonic constructs to ex-

press “defaults” (e.g., that every robotic part is assumed to be not broken by de-

fault, but it may get broken at any time). We can modularly express state/transition

constraints, preferences, multi-objective optimizations, and ramifications. Here,

elaboration tolerance [50] of the representation aids the synergy between differ-

ent reasoning modules. Furthermore, we can integrate feasibility checks (and

motion planning) into planning and other reasoning tasks by utilizing “external

atoms” [51], which are more general than “semantic attachments” [52] used for

classical planning, as the latter do not allow predicate extensions but only terms

as arguments to attachments. This feature of external atoms is in particular useful
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for domains that include multiple movable obstacles.

Therefore, special languages for planning (e.g., PDDL) and the classical plan-

ners that support “semantic attachments” can be used for hybrid planning and

guided re-planning in our framework but only in some cases, and necessitating

substantial “surgeries” on operator definitions (e.g., ramifications and concurrency

may require introduction of new operators [53], and adding a global constraint

may require updating the preconditions and effects of every operator). However,

even under these restrictions, the use of classical planners for diagnostic reasoning

is not possible as our approach to diagnostic reasoning heavily relies on defaults.

3.1 Reasoning about Actions in ASP

Dynamic domains can be modeled as transition systems—directed graphs where

nodes denote the world states of the domain and edges denote the transitions be-

tween these states caused by occurrences or nonoccurrences of actions in that

domain.

We can represent the states and transitions denoted by a transition system in

Answer Set Programming (ASP) [54] by means of formulas, called rules, of the

form Head← Body, where Head and Body are propositional formulas where each

literal (i.e., a propositional atom q or its negation ¬q) is possibly preceded by

default negation not. There are two sorts of negation in ASP [3]: ¬ is classical

negation (as used in propositional logic) and not is default negation (as used in

logic programming). The formula ¬p intuitively expresses that we know that p

does not hold; whereas not p expresses that we do not know that p holds.

If Head is ⊥ then the rule is called a constraint. A finite set of rules is called

a program. The models of a program are called answer sets, and they can be
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computed by special solvers, like CLINGO [55].

The idea is to solve planning, prediction and diagnosis problems over a transi-

tion system using the formal framework of ASP: Once the transition system mod-

eling a dynamic domain is represented by a program, we combine this program

with further constraints to solve a reasoning problem (e.g., planning). For in-

stance, for a planning problem, the constraints describe the initial and goal states.

Then the answer sets computed for the combined program characterize solutions

(e.g., plans for the planning problems).

Before we formally define any reasoning problem in ASP, let us summarize

how a transition system can be represented in ASP.

A planning domain description Dk of a dynamic domain as a transition system

is formulated in ASP over a set F of fluent constants and a set A of action

constants, with respect to a given upper bound k on time steps. This description

relies on different forms of rules [7, Section 2]. Let us briefly go over some

important types of rules relevant to our study.

For a formula H and an index i (for time step), let us denote by H(i) the

formula obtained from H by replacing every atom q by q(i). Intuitively, H(i)

expresses that the formula H holds at time step 0≤i≤k.

Effect rules: Direct outcomes of actions are expressed with effect rules of the form

E(i+1)← A(i),F(i) (3.1)

where A is a conjunction of action atoms, E is a fluent literal, and F is a con-

junction of fluent literals. This rule indicates that if the actions in A are executed

at time step i where F holds then at the next state E holds. For instance, the

following effect rule describes an effect of a “move” action of a mobile robot r

navigating to a location l at time step i:
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at(r, l, i+1)← move(r, l, i).

It expresses that, as a direct effect of this action, the location of robot r changes to

l at the next time step i+1.

Precondition rules: Preconditions of actions are expressed with precondition rules

of the form

← A(i),F(i),not G(i). (3.2)

where A is a conjunction of action atoms, and F and G are conjunctions of fluent

literals. The precondition rule above expresses that, to execute an action A at

time step i at a state where F holds, the action’s preconditions G must hold. For

instance, according to the following precondition rule

← move(r, l, i),at(r, l, i)

action move(r, l) is possible if the robot is not already at the destination location l.

Hybrid rules: A hybrid rule is a rule where the right hand side of ← includes

external atoms. External atoms [51] are not fluent or action constants; their truth

values are computed externally (out of ASP).

These rules are important for robotics applications since low-level feasibility

checks for each action can be computed externally and then integrated into tran-

sition system description by means of external atoms. For instance, the following

hybrid precondition rule ensures that, at time step i, a robot r can move from its

current location x to its destination location l if there is a collision-free trajectory

between them:
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← at(r,x, i),move(r, l, i),not &moveIsFeasible[r, l,x](). (3.3)

The external atom &moveIsFeasible[r, l,x]() passes r, l, x as inputs to the external

computation (e.g., a Python program) that calls a motion planner to check the

existence of a collision-free trajectory for r from x to l, and then returns the result

of the computation to the precondition rule.

Weak constraints: The ASP programs can be augmented with “weak constraints” [56]—

expressions of the following form:

:∼ Body(t1, ..., tn)[w@p, t1, ..., tn].

Here, Body(t1, ..., tn) is a formula with the terms t1, ..., tn. Intuitively, whenever

an answer set for an ASP program satisfies Body(t1, ..., tn), the tuple 〈t1, ..., tn〉

contributes a cost of w to the total cost function of priority p. The ASP solver tries

to find an answer set with the minimum total cost. For instance, the following

weak constraint

:∼ move(r, l, i),broken(r,base, i)[1@2]

instructs CLINGO to compute an answer set that does not include both move(r, l, i)

and broken(r,base, i), if possible, with the assumption that robot base is broken,

therefore cannot perform move action properly. However, if CLINGO cannot find

such an answer set, it is allowed to compute an answer set with these atoms

move(r, l, i) and broken(r,base, i) but with an additional cost of 1. Weak con-

straints are considered by CLINGO according to their priorities.

Nondeterministic choices: Transition systems rely on the possibility of nondeter-

ministic choices about the occurrences of actions, and initial values of fluents. For
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instance, the following choice rule

{move(r, l, i)}←

expresses that a robot r can choose to move to a location l at time step i. The

possibility of this choice is subject to the action’s preconditions. Similarly, the

following choice rule expresses that initial locations l of objects o can be arbitrary

at time 0:

{at(o, l,0)}← .

State constraints: The nodes of a transition system characterize valid states de-

scribed with state constraints. For instance, the following state constraint ensures

the existence of a location for every object o at every time i:

←{at(o, l, i):loc(l)}0

whereas the following state constraint ensures the uniqueness of a location for

every object o:

← 2{at(o, l, i):loc(l)}.

Here, the numbers 0 and 2 denote the upper and the lower bounds on the cardinal-

ity of subsets of {at(o, l, i):loc(l)}.
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3.2 Feasibility Checks

We have utilized several feasibility checks for implementing the external atoms

as in (3.3) to ensure the feasibility of robotic actions in dynamic domains. For

each action these checks are implemented using OPENRAVE 0.9 [57] utilizing the

following tools.

3.2.1 Convex Decomposition

Convex decomposition [58] converts an complex concave triangle mesh (i.e., robot)

by approximating it with a collection of convex objects. This database is useful

since using convex shapes ease dynamic collision checks by making them faster

and more stable. An example of generated convex decomposition database for

one of the robots used in simulations is given in Figure 3.2.1 where each link is

approximated with a set of convex hulls.

Figure 3.2.1: Convex decomposition of PR2 robot
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3.2.2 Graspability

The grasp database [59] contains all possible force closure valid grasps for a spe-

cific gripper and a target object. Content of the database can be used during grasp

planning procedure to determine kinematically-feasible collision-free trajectories.

The grasp database is generated as follows:

• Bounding box of the target object surface is uniformly sampled to identify

possible approach directions.

• Uniformly sampled points on the surface of the bounding box are used as

starting points of rays that trace inwards and intersect with the surface of the

object. The normal vectors of the objects surface at those intersection points

are used as possible approach directions to grasp the object. An example is

given in Figure 3.2.2 where possible approach directions are generated for

a coffee pot.

Figure 3.2.2: Possible approach directions for a coffee pot

• After initial pose of the gripper, preshape, and approach direction are cho-
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sen, the grasp planner module examines the contact points of the grasp and

checks them for force closure. Figure 3.2.3 illustrates several candidate

grasps.

Figure 3.2.3: Examination of possible grasp

• Each successful grasp for the given gripper object pairs is recorded into the

corresponding database. Figure 3.2.4 illustrates several successful grasps.
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Figure 3.2.4: Some of the qualified graps

3.2.3 Inverse Kinematics

The Inverse kinematics [60] module generates analytical closed-form inverse-

kinematic (IK) models for manipulators of robots. Generated models are used

during motion planning where more than thousand of configurations are processed

in each second. Therefore having an analytical solution rather than a numerical

solution accelerates the motion planning procedure.

Furthermore, OPENRAVE’s inverse kinematic module allow us to integrate

following feasibility checks into inverse kinematic calculations:

• Environment Collisions - to check whether IK solution collides with the
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environment or not by utilizing OPEN DYNAMICS ENGINE (ODE).

• Self Collisions - to check whether robot collides with itself for the given IK

solution or not by utilizing OPEN DYNAMICS ENGINE (ODE).

Figure 3.2.5 illustrates several feasible IK solutions for different end effector

positions.

Figure 3.2.5: IK solution examples

3.2.4 Kinematic Reachability

The kinematic reachability database [61] contains IK solutions as quaternians and

translation coordinates as well as number and density of these IK solutions for
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each point in the space. Basically, kinematic reachability database defines the

workspace of a manipulator. It is generated by preprocessing the reachable vol-

ume and caching this information as a look-up data. This preprocessing stage is

computationally intensive, but needs to be performed only once for each manipu-

lator. The reachability database is useful since it can help robots to eliminate bad

grasps quickly and position themselves wisely with the highest reachability (i.e.,

having multiple IK solutions) before performing any manipulation tasks.

Figure 3.2.6 illustrates generated kinematic reachability database for left arm

of the robot CoCoA.

Figure 3.2.6: Kinematic reachability database for the robot CoCoA
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3.2.5 Inverse Reachability

The inverse reachability database [62] is utilized to compute feasible configura-

tions of the robot base such that the robot can perform a specific grasping action.

The inverse reachability database uses the reachability space to sample for base

locations and caches feasibility of such reaches for later use.

Figure 3.2.7 illustrates five different base locations for the left arm of CoCoA

to reach the target object. The red square represents the target object.

Figure 3.2.7: Inverse reachability database for robot CoCoA
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Figure 3.2.8 illustrates relations and dependencies between OPENRAVE 0.9

databases/modules.

Figure 3.2.8: Database relations
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3.2.6 Using Feasibility Tools to Check Feasibility of Actions

Combination of modules and databases defined in Section 3.2.1 can be used to

implement feasibility checks for different robotic actions [63, 64]. Following ex-

amples illustrate usage of these tools to check feasibility of actions move, pickUp

and placeOn respectively.

move action feasibility checks: The move action describes navigation of a robot

from its current location to another location among obstacles and other robots.

Therefore, it is essential to check whether there is a feasible (i.e., collision-free)

path between these two locations. For this feasibility check, we use a rapidly

exploring random tree (RRT) based motion planner, considering the presence of

multiple robots in the environment.

pickUp action feasibility checks: For a robot to pick up an object with one of

its manipulator, several feasibility checks are required (Algorithm 1). First, it is

required to check whether there is a feasible grasping pose for the target object.

For that, grasping database for specified target object and manipulator pair is gen-

erated (line 2). Second, it is required to find a base position that has an inverse

kinematic solution for the selected grasp pose. For that, we utilize inverse reach-

ability database to identify possible base positions for given grasp pose. This

procedure continues until a possible base pose is found or all the possible grasp

poses are exhausted (line 7). Third, we check if a collision-free trajectories exist

for the manipulator to reach the object location, using the RRT-Connect motion

planner of OPENRAVE and the collision checker of ODE (line 11).
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Algorithm 1 PICKUP CHECK
Input: A target object to be picked up by a robot using manipulator manip.
Output: If action is feasible returns True; False otherwise.

1: Feasible=False;
//Generate a possible grasp pose set (grasping database).

2: GraspSet← GraspGenerator(Object);
3: NumGrasps← Length(GraspSet);
4: i=0;
5: while NumGrasps > i and Feasible == False do
6: TestGrasp← GraspSet[i];

// Generate a base pose for a grasp (inversereachability, convexdecomposition, in-
versekinematic databases)

7: BasePose← BasePoseGenerator(TestGrasp, Robot, Manip);
8: if BasePose not exist then
9: i=i+1;

10: else
11: Path← PathGenerator(TestGrasp, BasePose);
12: if Path not exist then
13: i=i+1;
14: else
15: Feasible=True
16:

return Feasible

placeOn action feasibility checks: For a robot to place an object that it holds

with one of its manipulator to a target location requires some feasibility checks

(Algorithm 2). First, the specified target area is uniformly discretized to obtain

possible target object locations (line 2). After that, the algorithm picks a possible

target object location, and tries to find a proper base position such that the object

at hand can be placed on the target object location (line 7). If there exists such

a base position, then an RRT-based motion planner is utilized to check whether

there is a feasible path between the initial and final manipulator configurations by

utilizing collision checker of ODE (line 11).
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Algorithm 2 PLACEON CHECK
Input: A target location area to place the object TargetArea, end-effector pose

GraspPose.
Output: If action is feasible returns True; False otherwise.

1: Feasible=False;
//Sample the target area

2: TargetLocations← Sampler(TargetArea);
3: NumLocations← Length(TargetLocations);
4: i=0;
5: while NumLocations > i and Feasible == False do
6: TargetLocation← TargetLocations[i]

//Find a proper base position (inversereachability, convexdecomposition, in-
versekinematic databases)

7: BasePose← BasePoseGenerator(TargetLocation, GraspPose);
8: if BasePose not exist then
9: i=i+1

10: else
11: Path← PathGenerator(TargetLocation, GraspPose, BasePose)
12: if Path not exist then
13: i=i+1
14: else
15: Feasible = True
16:

return Feasible
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Chapter 4

Reasoning Problems for Execution

Monitoring

A reliable execution monitoring algorithm requires detecting discrepancies be-

tween the expected and the observed states, diagnosing the cause of and gener-

ating explanations for these discrepancies, and implementing a means of rational

recovery when the discrepancies affect the validity of the rest of the plan. In this

chapter, we have formulated all the reasoning tasks required for plan execution

using ASP in details.

For convenience, the notation used in this chapter and the rest of the disserta-

tion is presented in Table 4.
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Table 4.1.1: Notation used in the dissertation

Notation Description

Dk planning domain description in ASP

D t
diag diagnosis domain description in ASP

Dstate ASP description of valid states of a robotic domain

Dk−t
R replanning domain description in ASP

P<t sequence of actions executed at the initial state s0 until time step t

M set of monitored fluents

OM
t set of earlier and current observed states oM

i of monitored fluents in M at

time step i≤t

k maximum length of a plan

R set of pairs of all robots and their components that may get broken

disables relation 2R×A ×F that describes which actions are affected when a set

of robotic parts are broken

X<t set of triples (r, p, i) (i < t − 1) that describes the parts of p of robots r

((r, p)∈R) that are earlier diagnosed as broken

s0 initial state

sg goal state

se expected state

sv valid full state with respect to st and oM
t
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4.1 Defining Planning Problems

Intuitively, a planning problem in a dynamic domain, characterized by an initial

state s0, a goal state sg, and a maximum length k of a plan, asks for a path P in

the transition system modeling that domain such that the path starts at a node that

denotes s0, ends at a node that denotes sg, and the length of the path is less than

k. The following provides a formal definition of a plan when the transition system

of a dynamic domain is formalized in ASP by a set Dk of rules as described in

Chapter 3, over a set F of fluent constants and a set A of action constants, where

the time steps range over 0..k.

Let us characterize a state s ⊆ F by a conjunction Fs of fluent atoms that

hold at that state and the negations of fluent atoms that do not hold at that state.

For every action A⊆A , let us denote by EA the conjunction of action atoms in A

and negations of action atoms in A −A; EA will be used to express that only the

elementary actions in A are executed.

Definition 1. A planning problem, P is characterized by a tuple 〈Dk,s0,sg,k〉

where

• Dk is a planning domain description in ASP,

• s0 is an initial state,

• sg is a goal state,

• k is the maximum length of a plan.

A solution of P (called a plan) is a sequence 〈A0, . . . ,An−1〉 (n<k) of actions

such that Dk when combined with the following rules (called a planning query)
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has an answer set:
← not Fs0(0)

← not Fsg(k)

← not EAi(i) (0≤ i≤ n−1)

(4.1)

The first and second constraints in (4.1) ensure that the plan starts at the given

initial state and reaches the given goal state. The third constraint ensures that only

the actions of the plan are executed.

Based on the definition above, plans of actions can be computed using the

answer set solver CLINGO.

4.2 Diagnostic Reasoning and Explanations

During the plan execution, various discrepancies may occur between the expected

state and the observed state and these discrepancies may result in plan failures.

In the absence of knowledge of what went wrong, the execution of the newly

computed plan is also likely to fail in some cases and the overall plan executed

to reach the goal is expected to be longer. Diagnostic reasoning is required to

identify and recover from such failures as early as possible.

In this dissertation, we assume that discrepancies may only occur due to mal-

functioning of robot components. Then, a discrepancy can be diagnosed by a set

of broken robot components. This assumption is reasonable in human-free envi-

ronments where robots are highly involved.

To be able to perform diagnostic reasoning, the action domain description Dk

used for planning has to be updated, since it formalizes states and transitions under

the assumption that no anomalies occur.
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4.2.1 Modifying the Action Domain Description into Diagnosis

Domain Description

An action domain description Dk does not describe what will happen if a compo-

nent of a robot is broken: if a robot part is broken then some precondition of an

action in the plan may not hold anymore, and thus the plan simply fails without

providing further knowledge. Therefore, for the purpose of diagnosing the reasons

of such failures, we systematically transform the planning domain description Dk

into a diagnosis domain description. Our method is based on the transformation

suggested by [43] with some modifications.

Let F be a set of fluent constants, (that describe properties of the robotic do-

main that change over time), A be a set of action constants, (that describe robotic

actuation actions), M be a set of fluent constants (M ⊆F ) that are monitored.

Let R denote the set of pairs of all robots and their components that may get

broken. For instance, R = {(robot1,base),(robot2,arm)} describes that the base

of Robot 1 and the arm of the Robot 2 may be broken.

Let disables be a relation 2R ×A ×F that describes which actions are af-

fected when a set of robotic parts are broken. For instance, disables(X ,a,F) rep-

resents that the effect of action a (of robot X) on F is disabled, if X are broken.

Suppose that a relevant discrepancy is detected at time step t ≤ k, and we want

to find a diagnosis for it. We transform Dk to a new description D t
diag as follows,

subject to the constraint that the time steps range over 0..t.

Stage 1: A fluent constant of the form broken(r, p) is introduced for each pair

(r, p) ∈R, and the following rules are added to Dk.
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¬broken(r, p, i)← not broken(r, p, i)

broken(r, p, i+1)← not ¬broken(r, p, i+1),¬broken(r, p, i)

broken(r, p, i+1)← broken(r, p, i)

{broken(r, p,0)}.

These rules express that every robotic part (r, p) is assumed to be not broken by

default, but may get broken at any time step i. If a robotic part gets broken, it

remains broken. Moreover, different from [43], a robotic part may be broken

initially.

Stage 2: A fluent constant pre(A) is introduced for each action A⊆A to identify

preconditions of A. By default, the value of pre(A) is true for every action A; so

the following rule is added to Dk:

pre(A, i)← not ¬pre(A, i).

Every precondition rule (3.2) of A in Dk is replaced by

¬pre(A, i)← F(i),not G(i).

Every effect rule of A (3.1) in Dk is replaced by

E(i+1)← A(i),F(i), pre(A, i).

These rules express that, if the preconditions of an action A holds, then its effects

are observed as expected.

Stage 3: Let AR denote the robots that take place in the execution of action A ∈A

which may get broken (i.e., for every r ∈ AR there is a pair (r, p) in R). The
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following rule is introduced to D t
diag for each effect rule (3.1) in Dk such that

disables(AR,A,F) holds:

E(i+1)← A(i),F(i),,r∈AR,(r,p)∈R¬broken(r, p, i).

These rules express that direct effect of actions are observed only if the rele-

vant robotic parts are not broken.

4.2.2 Min-Cardinality Diagnosis

Once a relevant discrepancy is detected at time step t after executing the part

P<t=〈A0, . . . ,At−1〉 of the plan at the initial state s0, diagnostic reasoning can be

performed as follows:

Definition 2. A diagnosis problem, DP, is characterized by a tuple 〈D t
diag,R,s0,P<t ,OM

t ,X<t〉

where

• D t
diag is the diagnosis domain description in ASP,

• R is the set of pairs of all robots and their components that may get broken,

• s0 is an initial state,

• P<t=〈A0, . . . ,At−1〉 is the sequence of actions executed at the initial state s0

until time step t,

• OM
t is a set of earlier and current observed states oM

i of monitored fluents

in M at time step i≤t,

• X<t is a set of triples (r, p, i) (i < t−1) that describes the parts p of robots

r ((r, p)∈R) that are earlier diagnosed as broken.
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A solution of DP is a set Xt of triples (r, p, j) that describe robotic components

(r, p)∈R that are assumed to be broken at time step j<t such that D t
diag when

combined with the following rules (called a diagnostic query) has an answer set:

← not Fs0(0)

← not EAi(i) (0≤ i≤ t−1)

← not FoM
i
(i) (oM

i ∈OM
t )

← not broken(r, p, i) ((r, p, i)∈(Xt ∪X<t))

← not ¬broken(r, p, l)

((r, p)∈R, l<t,(r, p, l) 6∈ (Xt ∪X<t)).

(4.2)

If DP has a solution Xt , then we say that Xt ∪X<t is a diagnosis for the relevant

discrepancy detected at time step t after executing P<t .

The diagnostic query (4.2) checks if every observed state in OM
t can be reached

from the initial state s0 by executing the plan P<t if the parts of the robots in Xt

and X<t were broken at specified times. If the program D t
diag combined with

rules (4.2) has an answer set, then Xt ∪X<t is a potential cause for the detected

discrepancy.

Definition 2 can be used to implement three different approaches to diagnostic

reasoning.

• Augmented Diagnosis: A diagnosis is generated about the broken parts

based on the current observation, while imposing the validity of all of the

previous hypotheses. This approach can be implemented by the following

settings: X<t is set to the previously diagnosed broken parts before time step

t and OM
t contains only the last observation oM

t .

• Reset Diagnosis: A diagnosis is generated about the broken parts based on
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the current observation, without considering any of the previous hypotheses.

This approach can be implemented by the following settings: X<t = /0 and

OM
t contains only the last observation oM

t (i.e., OM
t = {oM

t }).

• Revised Diagnosis: A diagnosis is generated about the broken parts based

on the current observation and the previous observations, while updating

the previous hypothesis as necessary. This approach can be implemented

by the following settings: X<t = /0 and OM
t contains the last observation oM

t

as well as the previous observations oM
i (i < t).

In general, more than one diagnosis can be generated for a discrepancy. In

practice, focusing on diagnoses that include the minimum number of broken parts

may be more reasonable, since malfunctioning of multiple robot parts at the same

time is unlikely. We can find a min-cardinality diagnosis by adding the following

weak constraints to the diagnostic query (4.2).

:∼ broken(r, p, i) (i<t,(r, p) ∈ R).[1@2,r, p] (4.3)

The rules (4.2)∪ (4.3) define a min-cardinality diagnostic query.

4.2.3 Most-Probable Min-Cardinality Diagnosis

For a plan utilizing several robots, where each of them has several components,

there may be more than one (min-cardinality) diagnosis for a detected relevant

discrepancy. In such cases, our execution monitoring algorithm can utilize a pri-

ori knowledge about the likelihood of each robotic component getting broken to

identify the most-probable diagnosis out of all (min-cardinality) diagnoses.

We express such a priori knowledge by atoms of the form probb(r, p,w) where

w is a positive integer that describes the likelihood of a component p of a robot
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r getting broken. Then, we add the following weak constraints to the min-card

diagnostic query (4.2)∪ (4.3) to find a most-probable min-cardinality diagnosis:

:∼ broken(r, p, i),probb(r, p,w) (i<t,(r, p) ∈ R). [−w@1,r, p]

Note that the priority of the weak constraint above is less than that of (4.3) to en-

sure that a most-probable diagnosis is found among the min-cardinality diagnoses.

4.2.4 Explanation Generation

While diagnoses explain the reasons of relevant discrepancies in terms of broken

robotic components, further explanations can be generated to include the actions

whose effects have not been observed as expected due to these diagnoses. For that

purpose, we can extend the diagnostic reasoning problem as follows.

For every action constant A∈A , let AR ⊆ R be the set of all pairs (r, p) of

robots r and their parts p such that r takes part in executing the action A and that

disables(AR,A,F) holds for some fluent constant F∈F .

Definition 3. Let DP = 〈D t
diag,R,s0,P<t ,OM

t ,X<t〉 be a diagnosis problem. A

diagnosis with an explanation for DP is a set XE of tuples (r, p,A, i) where (r, p)∈

AR and i<t, such that D t
diag when combined with the diagnostic query (4.2) where

Xt ∪X<t={(r, p, i)|(r, p,A, i) ∈ XE}, and the following rules has an answer set:

explains(r, p,A, i)← A(i),broken(r, p, i)

((r, p,A, i) ∈ XE , i<t).
(4.4)

The atoms of the form explains(r, p,A, i) that appear in an answer set for

D t
diag∪ (4.2)∪ (4.4) express which actions have failed because of which broken

components.
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4.3 Discrepancies and Relevancy

Diagnostic reasoning is applied if a discrepancy is detected between the expected

and the observed states and found relevant for the rest of the plan. Let us define

these concepts more formally.

4.3.1 Predicting the Expected State

A discrepancy (if there exists one) can be detected by comparing the expected state

and the observed state after the execution of some part of a plan. We can predict an

expected state by simulation of the part of the plan considering “believed-to-be-

broken” robot components, while an observed state can be obtained by monitoring

fluents with the help of sensors during the execution of the plan.

Definition 4. A prediction problem, PP, is characterized by a tuple 〈D t
diag,s0,P<t ,OM

t ,X<t〉

where

• D t
diag is the diagnosis domain description in ASP,

• s0 is an initial state,

• P<t = 〈A0, . . . ,At−1〉 is the sequence of actions executed at the initial state

s0 until time step t,

• OM
t is a set of earlier and current observations oM

i of monitored fluents in

M at time step i≤t,

• X<t is a set of triples (r, p, i) (i < t−1) that describes the parts p of robots

r ((r, p)∈R) that are earlier diagnosed as broken.
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A solution of PP (called an expected state) is a state st , such that D t
diag when

combined with the following rules has an answer set:

← not Fs0(0)

← not Fst (t)

← not EAi(i) (0≤ i≤ t−1)

← not FoM
i
(i) (oM

i ∈OM
t )

← not broken(r, p, i) ((r, p, i)∈X<t)

← not ¬broken(r, p, i)

((r, p)∈R, i < t−1,(r, p, i) 6∈ X<t)

(4.5)

The first and second constraints of (4.5) ensure that the plan starts at the given

initial state and reaches the expected state. The third constraint ensures that only

the actions of the plan are executed. The fourth constraint takes into account the

earlier and current observations. The fifth and sixth constraints indicate that only

the (r, p) pairs in X<t are assumed to be broken and the rest of the (r, p) pairs are

functioning properly.

Since the sequence P<t = 〈A0, . . . ,At−1〉 of actions executed at the initial state

s0 until time step t is given, it is known that actions in P<t are already executed.

Note that the planning domain description Dk is not suitable for prediction since

there are precondition rules that are implemented as constraints. However, the

diagnosis domain description, D t
diag, allows actions to be executed even when

the effects of actions are not observed. Therefore, diagnostic domain description

D t
diag is used for state prediction.
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4.3.2 Discrepancies

A discrepancy (if there exists one) is detected by comparing the expected state

with the current observations.

Let Dstate be the union of the state constraints and the nondeterministic choice

rules for initial values of fluents in D0 for time step 0. The answer sets for Dstate

characterize the states of the transition diagram defined by Dk.

Definition 5. Let se be the expected state, and oM be a set of observations of

monitored fluents in M. There is a discrepancy between se and oM if the program

Dstate when combined with the following rules does not have an answer set:

← not Fse(0)

← not FoM(0).

4.3.3 Inferring the Current State from Partial Observations

To check the relevancy of a discrepancy for the rest of the plan execution, and then

to be able to replan if needed, we need to infer a valid full state from the partially

observed current state, while respecting the state constraints of the robotic domain.

Meanwhile, among all possible current states, we prefer the ones that are closest

to the expected state.

For every state s, let us denote by l(s) the set of fluent literals that hold at state s.

Definition 6. A valid state generation problem, V SG, is characterized by a tuple

〈Dstate,se,oM〉 where

• Dstate is an ASP description of valid states of a robotic domain,

• se is an expected state,
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• oM is an observed state of monitored fluents in M.

A solution of V SG is a valid full state sv with respect to se and oM, such that

Dstate when combined with the following rules has an answer set:

← not Fsv(0)

← not FoM(0)

:∼ le(0). [−1@1] (le∈ l(se)).

(4.6)

The first two constraints of (4.6) ensure that the state sv is an inferred valid

state where the current observations oM hold. The weak constraints maximize the

number of common fluent literals between the expected state se and the inferred

valid state sv, by minimizing their differences.

4.3.4 Determining the Relevancy of a Discrepancy

Sometimes observed discrepancies may be irrelevant to the rest of the plan, i.e.,

they may not prevent the rest of the plan from reaching a goal state. Therefore,

when a discrepancy is detected, the monitoring agent takes the relevancy of a dis-

crepancy into consideration before performing any diagnosis or replanning tasks.

Definition 7. A discrepancy relevancy check problem, RC, is a decision problem

characterized by a tuple 〈D t
diag,st ,oM

t ,sv,P≥t ,sg,X<t〉 where

• D t
diag is the diagnosis domain description in ASP,

• st is the expected current state at time step t (i.e., a solution for the predic-

tion problem 〈D t
diag,s0,P<t ,OM

t ,X<t〉),

• oM
t is a set of current observations of monitored fluents in M at time step t

such that there is a discrepancy between st and oM
t ,
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• sv is a valid full state with respect to st and oM
t ,

• sg is a goal state,

• P≥t = 〈At , . . . ,An−1〉 is the rest of the plan to be executed,

• X<t is a set of triples (r, p, i) (i < t−1) that describes the parts p of robots

r ((r, p)∈R) that are earlier diagnosed as broken.

The discrepancy relevancy check problem RC returns True (i.e., the discrep-

ancy between st and oM
t is relevant for the execution of P≥t at sv, subject to X<t) if

the goal state sg is not the expected state for the prediction problem

〈Dn−t
diag,sv,P≥t ,{},{(r, p,0)|(r, p, i)∈X<t}〉.

Otherwise, RC returns False.

4.4 Guided Replanning and Repairs

After a relevant discrepancy is detected (Definition 7) at time step t ≤ n and a

possible diagnosis X is generated for it (Definition 2), we can perform replanning

to reach the goal respecting the upper bound k on the total plan length. Replanning

can be guided by the generated diagnosis leading to more meaningful plans by

ensuring that robots do not perform any actions using parts that are diagnosed as

broken.

4.4.1 Guided Replanning

To guide replanning by diagnostic reasoning, we obtain a replanning domain de-

scription from the planning domain description as follows.
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For every action constant A∈A , let AR ⊆ R be the set of all pairs (r, p) of

robots r and their parts p such that r takes part in executing the action A and that

disables(AR,A,F) holds for some fluent constant F∈F . The replanning domain

description Dk−t
R is obtained from Dk−t by adding the following constraints for

every time step i≤ k− t−1:

← A(i),broken(r, p, i) ((r, p)∈AR). (4.7)

Definition 8. A replanning problem, RP, is characterized by a tuple 〈Dk−t
R ,st ,sg,Xt ,k−

t〉 where

• Dk−t
R is the replanning domain description in ASP,

• Xt is a diagnosis for the current detected relevant discrepancy,

• st is the current expected state (i.e., a solution for the prediction problem

〈D t
diag,s0,P<t ,OM

t ,Xt〉),

• sg is a goal state,

• k− t is the maximum length of a plan to reach sg from st .

A solution of RP is a sequence 〈A0, . . . ,Am−1〉 of actions (m≤k− t−1) (called

a replan) such that Dk−t
R when combined with the following rules has an answer

set:

broken(r, p,0)← ((r, p, i)∈Xt)

← not Fst (0)

← not Fsg(m)

← not EAi(i) (i≤m−1).

(4.8)
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4.4.2 Repairs

If there does not exist a solution to the replanning problem RP, then we can con-

sider repairing some of the broken components of the robots before we replan.

To find a solution to the replanning problem RP while repairing a set Y of min-

imum number of broken parts, we replace the constraints (4.7) in Dk−t
R with the

following weak constraints

:∼ A(i),broken(r, p, i).[1@3,r, p] ((r, p) ∈R)

Let us denote the updated description by Dk−t
R f ix.

Definition 9. Let RP=〈Dk−t
R ,set ,sg,Xt ,k− t)〉 be a replanning problem. A replan

with repairs consists of a sequence P=〈A0, . . . ,Am−1〉 of actions (m≤k− t − 1)

such that Dk−t
R f ix when combined with (4.8) has an answer set Z, and a set Y ⊂

R of parts to be repaired such that Y = {(r, p) ∈ R : A(i) ∈ Z,broken(r, p, i) ∈

Z,0≤i≤m−1}.

Some broken parts can be repaired more easily or on time, considering the

available resources (e.g., consider a planetary rover). Such a priori knowledge can

be useful to identify which parts are more preferable to repair while replanning.

Suppose that atoms of the form pref x(r, p,w) where w is a positive integer, express

the user’s preference of repairing a component p of a robot r considering the

available resources. Then, the description Dk−t
R f ix can be obtained from Dk−t

R by

replacing the constraints (4.7) with the following weak constraints

:∼ A(i),broken(r, p, i),pref x(r, p,w).[−w@3,r, p] ((r, p) ∈R)

Replanning with this weak constraint will involve repairing a most-preferable

min-cardinality set of broken components.
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Chapter 5

Plan Execution Monitoring with

Diagnostic Reasoning

Our plan execution monitoring framework is based on formally representing a

dynamic robotic domain, by means of logical formulas using the nonmonotonic

formalism of Answer Set Programming (ASP) [54] embedded with external fea-

sibility checks. Utilizing the reasoning mechanisms of ASP, it is capable of a rich

set of hybrid reasoning tasks. Let us briefly give the overall idea of our framework

by underlining these capabilities.

Given an initial state and goal conditions, the planning agent starts with com-

puting a hybrid plan of actions taking into account the logical descriptions as well

as the feasibility checks of actions. Robots start executing the actions in this plan,

and occasionally perform (partial) observations about the environment from time

to time.

Whenever a new observation is received, the monitoring agent verifies that

the plan has evolved as expected, by first predicting the expected state and then

checking the consistency of the partially observed current state against the ex-
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pected state.

If a discrepancy is detected, then the monitoring agent checks the relevancy of

this discrepancy to the rest of the plan, by first inferring a valid full state descrip-

tion for the partially observed current state, and then checking the validity of the

rest of the plan from the current observed state. If no discrepancy is detected or

the detected discrepancy is not relevant, the execution of the plan continues.

If the detected discrepancy is relevant, then the diagnosis agent identifies pos-

sible causes of this discrepancy by diagnosing broken parts of the robots, and

generating further explanations for the discrepancy in terms of failed actions.

For an observed discrepancy, there can be more than one diagnoses or expla-

nations obtained by such hypothetical reasoning, so the diagnosis agent finds a

min-cardinality diagnosis with more likelihood of failure and an explanation for

it.

Once such a diagnosis and explanation are computed, the replanning agent

finds a new hybrid plan from the current state (inferred from the partially observed

state) to the goal, guided by the constraints (obtained from inferred diagnoses).

If there exists no such plan, the replanning agent infers a repair by identifying the

minimum number of broken parts that can be repaired such that the goal can be

achieved by guided replanning.

Our plan execution monitoring framework is autonomous, yet it can be used in

an interactive mode as well. When the diagnosing agent computes a set of most-

probable min-cardinality diagnoses with explanations, the monitoring agent may

consult an expert to pick one of them.

All of the reasoning tasks are performed over a hybrid formulation of the

robotic domain, that combines high-level logical reasoning with low-level fea-

sibility checks, possibly based on probabilistic methods.
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Based on the methods (Chapter 4) for hybrid planning, diagnostic reasoning

and explanation generation, discrepancy detection under uncertainty and check-

ing for their relevancy, and guided replanning and repairs, we propose a generic

execution monitoring framework that is presented in Algorithm 3.

5.1 Autonomous Execution Monitoring

Our autonomous execution monitoring algorithm takes as input a robotic domain

description Dk, an initial state s0, a goal state sg, an upper bound k on time steps,

a set R of pairs of robots and their components that may get broken, a relation

disables that describes which effects of actions are affected if some robots and

their components in R are broken, and a set M of monitored fluents (denoting

what is being observed). The algorithm returns success if a goal state is reached,

and returns a failure report otherwise.

First, Algorithm 3 tries to find a plan P that leads to the goal state (line 1); if

such a plan does not exist, P is null, and the algorithm returns failure. Suppose that

a plan P exists. Then the algorithm starts running the plan and makes observations

over the monitored fluents in M from time to time.

Whenever a new observation becomes available, the algorithm obtains the cur-

rent values oM
t of the monitored fluents in M (line 9), and updates the set of ob-

servations OM
t made so far. Then the algorithm infers the full expected state se

reached from s0 by the part P<t of the plan executed so far (line 11), and checks

whether there is a discrepancy between the expected state se and the partially ob-

served current state oM
t (line 12).

If there exists a discrepancy, then Algorithm 3 generates a full valid state sv

that is consistent with the observations oM
t and that utilizes knowledge from ex-
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Algorithm 3 Autonomous Execution Monitoring with Diagnostic Reasoning and Repair
Input: Dk, R, disables, s0, sg, k, M, probb, pref x.
Output: Return success if the goal state sg is achieved, return a failure report otherwise.

// Find a plan P = 〈A0, . . . ,An−1〉 (n < k) (Definition 1).
1: P← Plan(Dk,s0,sg,k);
2: if P is not null then
3: makespan = |P|;

// Monitor the execution of P.
// Initially, the set OM

0 of observations and the diagnosis X0 are empty.
4: t = 0, OM

t = {}, Xt = {};
5: while t < makespan do
6: Execute At ;
7: t = t +1;

// Observe the monitored fluents M from time to time.
8: if a new observation is made at step t then
9: oM

t ← Obtain the set of current values of M;
10: OM

t ← Add oM
t to the set of earlier observations OM

t−1;
// Infer the expected state se at step t, considering the plan P<t=〈A0, . . . ,At−1〉 exe-
cuted so far and the set X<t = ∪i<tXi of earlier diagnoses (Definition 4).

11: se← Predict(D t
diag,s0,P<t ,OM

t ,X<t);
// Check whether there is a discrepancy between the expected state se and the current
observations oM

t (Definition 5).
12: discrepancy← Discrepancy(Dstate,se,oM

t );
13: if discrepancy then

// Infer a valid full state sv from the partially observed current state oM
t , that is closest

to the expected state se (Definition 6).
14: sv← ValidState(Dstate,se,oM

t );
// Check whether the detected discrepancy is relevant to the rest P≥t =
〈At , . . . ,Amakespan−1〉 of the plan (Definition 7).

15: relevant← Relevancy(D t
diag,se,oM

t ,sv,P≥t ,sg,X<t);
16: if relevant then

// Find a most-probable min-cardinality diagnosis XE with an explanation, for the
detected relevant discrepancy (Definition 3), with respect to probb.

17: XE ← Diagnose(D t
diag,R,s0,P<t ,OM

t ,X<t ,probb);
18: Xt={(r, p, i)|(r, p,A, i) ∈ XE};

// Infer the expected state st at step t, considering the plan P<t executed so far and the
current diagnosis Xt .

19: st ← Predict(D t
diag,s0,P<t ,OM

t ,Xt);
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// Replan with a most-preferable min-cardinality set Y⊂{(r, p)|(r, p, i) ∈ Xt}
of repairs with respect to pref x: take st as the initial state and k−t as the upper
bound on makespan (Definition 9).

20: P, Y ← RePlan(Dk−t
R ,st ,sg,Xt ,k− t,pref x);

21: if P is not null then
22: makespan = t + |P|;

// Shift time indices of each action Ai in P by t.
// Generate a report with explanations and repair requests.

23: Repair the broken parts in Y ;
24: else
25: return Failure;
26: return Success;
27: else
28: return Failure;

pected state se as much as possible (line 14), and then checks the relevancy of the

detected discrepancy by checking whether the rest of the plan P≥t reaches the goal

state sg from sv (line 15).

If the discrepancy is found relevant, then Algorithm 3 generates a most-probable

min-cardinality diagnosis with explanations XE (line 17) utilizing the given knowl-

edge probb about the likelihood of components getting broken. Next, the algo-

rithm infers the current state by computing an expected state st at step t reached

by the plan P<t executed so far and considering the current diagnosis Xt included

in XE . Then, the algorithm continues by replanning at st guided by this diagnosis,

and possibly repairing a min-cardinality set Y of components (line 20) utilizing

the user’s preferences and experiences pref x.

Once all the actions in the plan are executed, the goal is reached with a success.
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5.2 Interactive Execution Monitoring

Interactive execution monitoring is important to involve the expertise of the user

in the loop. Thanks to the modular and formal aspects of our execution monitoring

framework, we can revise Algorithm 3 easily to make it more interactive.

For instance, instead of generating a diagnosis with explanations and automat-

ically replanning with respect to this diagnosis, the algorithm can generate a set

of most-probable min-cardinality diagnoses with explanations, and then consult

the user as to which one to consider. Meanwhile, the likelihood of each robotic

component getting broken is updated based on the selected diagnoses, utilizing

the user’s expertise and experiences.

Instead of generating a single replan P with repairs Y , the algorithm can gen-

erate a set of replans with the minimum number of preferable repairs, and then

consult the user as to which replan to consider to reach the goal. Providing such

alternatives is important as the repairs may require different amounts of time and

energy, depending on the available resources.

5.3 Case Study with a Collaborative Service Robotics

Domain

Let us demonstrate the use of our execution monitoring algorithm (Algorithm 3)

with a service robotics application, where two bi-manual mobile service robots

collaborate to set up a dinner table in a kitchen.

This robotic domain is interesting since i) it involves both manipulation tasks

(e.g., via pick and place actions) and navigation tasks (e.g., via move actions),

ii) the executability of manipulation and navigation actions requires feasibility
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checks (e.g., via the reachability checks and motion planning queries), and iii)

the locations of the objects and the robots in the kitchen may be unobservable

depending on their whereabouts.

5.3.1 ASP Representation of the Kitchen Domain

We consider the following set of atoms to describe the domains of variables used

in our ASP formulation:

• rob(r): r is a robot,

• obj(o): o is an object that the robots can manipulate in the environment,

• thg(th): th is a thing (i.e., robots and objects),

• manip(m): m is a (e.g., left or right) manipulator of a robot,

• robloc(l): l is a location that a robot can be at,

• objloc(l): l is a possible location for an object,

• comloc(l): l is a possible location both for an object and for a robot,

• loc(l): l is a possible location for a thing,

• time(i): i ∈ {0, . . . ,k} where k is a given upper bound on the makespan,

• atime(i): i∈ {0, . . . ,k−1}where k is a given upper bound on the makespan.

We also denote by man(m,r) a manipulator m of a robot r.

We consider the following set of fluents and actions:

• at(th, l, i): thing th is located at l at time step i,
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• move(r, l, i): the robot r moves to location l at time step i,

• pickUp(r,m,o, i): the robot r picks up the object o with its manipulator m at

time step i,

• placeOn(r,m, l, i): the robot r places the object at its manipulator m onto a

location l at time step i.

First, we define the states (i.e., nodes) of the transition system. Initially, things

can be places arbitrarily:

{at(th, l,0)}← thg(th), loc(l).

At every time step, a thing should be located at some location (existence), but

cannot be located at two different locations (uniqueness).

←{at(th, l, i):loc(l)}0, thg(th), time(i).

← 2{at(th, l, i):loc(l)}, thg(th), time(i).

Moreover, the things should be at their relevant locations:

← at(o, l, i),obj(o), loc(l),not objloc(l), time(i).

← at(r, l, i),rob(r), loc(l),not robloc(l), time(i).

We should also ensure that a robot cannot hold more than one object in its manip-

ulator:

← 2{at(o,man(r,m), i):obj(o)},rob(r),manip(m), time(i).

We define the transitions (i.e., edges) of the transition system. Consider the edges
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that describe nonoccurrences of actions. We express that a thing remains to be

where it is, unless some action causes a change of its location as follows:

{at(th, l, i+1)}← at(th, l, i), thg(th), loc(l),atime(i).

The other edges describe occurrences of actions. Actions may occur at any time:

{move(r, l, t)}← rob(r),robloc(l),atime(i).

{pickUp(r,m,o, i)}← rob(r),manip(m),obj(o),atime(i).

{placeOn(r,m, l, i)}← rob(r),manip(m),objloc(l),atime(i).

However, an action cannot occur at a state that does not satisfy its preconditions.

For instance, a robot r cannot move to a location l if it is already there:

← move(r, l, i),at(r, l, i),rob(r),robloc(l),atime(i).

A robot r cannot pick up an object o if they are at different locations, if another

robot r1 is holding o but the robot is at a different location, or if the object o is on

the table but r is not around the table:

← pickUp(r,m,o, i),at(o, l, i),at(r, l1, i),rob(r),obj(o),

manip(m),robloc(l1),comloc(l),atime(i) (l 6= l1).

← pickUp(r,m,o, i),at(o,man(r1,m1), i),at(r, l, i),at(r1, l1, i),

rob(r),rob(r1),manip(m),manip(m1),obj(o),

robloc(l),robloc(l1),atime(i) (l 6= l1).

← pickUp(r,m,o, i),{at(r,TableLeft, i);at(r,TableRight, i)}0,

at(o,Table, i),rob(r),manip(m),obj(o),atime(i).
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Similarly, a robot r cannot place an object onto some location l with its manip-

ulator m if the manipulator is not holding any object, if the robot r is not at l, if

l=man(r1,m1) and the robots r and r1 are not at the same location, or if l=Table

but the robot r is not around the table:

← placeOn(r,m, l, i),{at(o,man(r,m), i):obj(o)}0,rob(r),

manip(m),objloc(l),atime(i).

← placeOn(r,m, l, i),at(r, l1, i),rob(r),manip(m),

comloc(l),robloc(l1),atime(i) (l 6= l1).

← placeOn(r,m,man(r1,m1), i),at(r1, l1, t),at(r, l, t),

rob(r),rob(r1),manip(m),manip(m1),robloc(l),

robloc(l1),atime(i) (l 6= l1).

← placeOn(r,m,Table, i),rob(r),manip(m),atime(i),

{at(r,TableLeft, i);at(r,TableRight, i)}0.

Furthermore, we consider some noconcurreny constraints to ensure that naviga-

tion and manipulation actions do not occur at the same time:

← move(r, l, i),pickUp(r,m,o, i),rob(r),robloc(l),

manip(m),obj(o),atime(i).

← move(r, l, i),placeOn(r,m, l1, i),rob(r),manip(m),

robloc(l),objloc(l1),atime(i).

Since robots are operating in a continuous space, for the feasibility of actions, we

embed the relevant low-level feasibility checks into the domain description. For

instance, a robot r cannot move from a location l to another location l1 if there is

no collision-free trajectory that it can follow. A robot r cannot pick up an object o

if the robot cannot reach and grasp the object without any collisions. Similarly, a
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robot r cannot place an object onto a location if the robot cannot reach the location

or place the object without any collisions.

← at(r, l1, i),move(r, l, i),not &moveIsFeasible[r, l, l1](),

rob(r),robloc(l),robloc(l1),atime(i).

← at(r, l, i),pickUp(r,m,o, i),rob(r),objloc(l),manip(m),

obj(o),not &pickUpIsFeasible[r, l,o,m](),atime(i).

← at(r, l, i),placeOn(r,m, l, i),rob(r),objloc(l),manip(m),

not &placeOnIsFeasible[r, l,m](),atime(i).

(5.1)

Let us now define what changes after execution of an action. For instance,

when a robot r moves to a location l at step i, its location becomes l at the next

time step:

at(r, l, i+1)← move(r, l, i),rob(r),robloc(l),atime(i).

When a robot r picks up an object o with its manipulator, the location of object

becomes the manipulator at the next time step:

at(o,man(r,m), i+1)← pickUp(r,m,o, i),rob(r),manip(m),

obj(o),atime(i).

When a robot r places the object o that it is holding with its manipulator to a

location l, the location of the object becomes l at the next time step:

at(o, l, i+1)← placeOn(r,m, l, i),at(o,man(r,m), i),

rob(r),objloc(l),manip(m),atime(i).
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5.3.2 Importance of Feasibility Checks

As described in Chapter 4, our methods for generating (re)plans, predictions, di-

agnoses, explanations and repairs utilize the robotic domain descriptions (D and

Ddiag), which embed low-level feasibility checks described in Chapter 3 into ac-

tion descriptions. In this section, we present a scenario (Figure 5.3.1) to show the

importance of employing such hybrid reasoning that integrates low-level feasibil-

ity checks into high-level reasoning.

Consider the kitchen domain described above, with two robots R1 and R2.

Suppose that the base of R2 is diagnosed as broken. Currently, at time step t, R1

is in Room1, R2 is in Room2, and there is a Spoon on Table1 in Room2. The goal

is placing Spoon on Table2 in Room2. The rest of the plan will be executed as

follows: R1 moves to Table1, picks up the Spoon, moves to Table2 (i.e., the other

table in Room2), places Spoon on Table2, and moves to Room1.

Suppose that the first observation oM
t is done at time step t + 4: Spoon is on

Table1. To check for a discrepancy, the expected state at t + 4 needs to be pre-

dicted. Since the feasibility checks are embedded in the preconditions of actions

in the domain description as described above, the expected state se at t +4 is pre-

dicted as follows: R1 is in Room1, R2 is in Room2, and Spoon is on Table1. Then

there is no discrepancy between se and oM
t .

If the feasibility checks were not embedded in the preconditions of actions in

the domain description as described above, the expected state se at t +4 would be

predicted as follows: R1 is in Room2, R2 is in Room2, and Spoon is on Table2.

Then there is a discrepancy between se and oM
t .
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placeOn(R1,Left_Arm,table2),broken(R2,Base)
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Figure 5.3.1: Plan execution with/without hybrid domain. Each sub-figure repre-

sents world state at different time steps.
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The left column of Figure 5.3.1 shows how the world states change over time

steps t = 0,1,2,3,4 during the execution of this plan, when hybrid representation

and reasoning are utilized. Since the collision checks are performed for the first

move action, R1 will move closer to R2, but cannot go any further because there

is no feasible path from its current location to Table1. Therefore, at the end of

execution of the plan, the Spoon will still be on the Table1.

The right column of Figure 5.3.1 shows the world states during the execution

of the given plan when hybrid representation and reasoning are not utilized (i.e.,

none of the feasibility checks are embedded in the robot domain description).

Since no collision check is performed, the first move action of R1 to reach the

Table1 at time step 0 seems feasible. Then, at the end of execution of the plan, the

Spoon will be on the Table2.

These two predicted states generated by with/without hybrid reasoning demon-

strate that not using feasibility checks may lead to incorrect predictions, as false

positives cannot be eliminated.

5.3.3 Execution Monitoring of a Plan – A Sample Scenario

We introduce an illustrative example in the kitchen domain, to show how our

execution monitoring algorithm (Algorithm 3) can be used autonomously or in-

teractively, emphasizing the differences among the three diagnostic reasoning ap-

proaches explained in Section 4.2.2.

Consider the kitchen domain with two robots (R1 and R2), two distinct objects

(Knife and Spoon), and three distinct locations (ShelfA, ShelfB, and Table). As-

sume that the world is partial observable: only the objects located on the table can

be observed. Let’s also assume that the bases of R1 and R2 are more likely to get

broken compared to other components. Initially, at s0, Table is empty, Knife is on
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ShelfA, and R1 is near ShelfA, while Spoon is on ShelfB and R2 is near ShelfB. At

the goal state sg, both Knife and Spoon are on Table.

The algorithm solves this planning problem instances by utilizing the kitchen

domain description above:

P=〈pickUp(R1,LeftArm,Knife,0), pickUp(R2,LeftArm,Spoon,0),

move(R1,TableLeft,1), move(R2,TableRight,1),

placeOn(R1,LeftArm,Table,2), placeOn(R2,LeftArm,Table,2)〉.

Then, the robots start executing the plan P. The left column of Figure 5.3.3 illus-

trates the expected world states during a successful execution of the plan P, while

the right column shows the observations made during a real execution of P. Fig-

ure 5.3.3 shows the dynamic simulations for both the expected and real executions

of the plan P, for better understandability.

While P is being executed, suppose that an observation oM
t has been per-

formed at time step t = 3: only Spoon is on Table. The expected state se at t = 3

is predicted as follows: at(R1,TableLeft), at(R2,TableRight), at(Knife,Table),

at(Spoon,Table). Since Knife is not observed to be on Table as expected, there is

a discrepancy between se and oM
3 .

Note that once a full valid state sv is estimated (where Spoon is on Table but

Knife is not on Table), this discrepancy is found relevant for the rest P≥ = /0 of the

plan: executing P≥ at sv does not lead the plan to the goal state sg.
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Expected Execution Real Execution

pickUp(R1, LeftArm, Knife)
pickUp(R2, LeftArm, Spoon)

move(R1, TableLeft)
move(R2, TableRight)

placeOn(R1, LeftArm, Table)
placeOn(R2, LeftArm, Table)

t=0

t=1

t=2

t=3

t=0

t=1

t=2

t=3

Spoon

Knife

Spoon

Knife

Spoon

Knife

Spoon
Knife

Spoon

Knife

Spoon

Knife

Spoon

Knife

Spoon

Knife

Figure 5.3.3: The dynamic simulations for the expected and the real executions of

the initial plan P at time step t = 0 presented in Figure 5.3.3.
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Then, according to the autonomous mode of the algorithm, considering that

the bases are more likely to get broken, the following most-probable min-cardinality

diagnosis is computed for the relevant discrepancy detected at time step t = 3

X3 = {(R1,Base,1)}

with an explanation: “Base of R1 got broken at time step t = 1, so R1 could not

move to TableLeft at time step t = 1 as expected.” Note that since this is the

first diagnosis, all three diagnostic reasoning approaches (i.e., augmented, reset,

revised) generate the same hypothesis.

In the interactive mode of this algorithm, the following set of 3 min-cardinality

diagnoses is presented to the user

{{(R1,Base,1)},{(R1,LeftArm,0)},{(R1,LeftArm,2)}}

with explanations:

• The base of R1 got broken at time step t = 1, so R1 could not move to

TableLeft at time step t = 1 as expected.

• The left arm of R1 got broken at time step t = 0, so R1 could not pick up

Knife at time step t = 0 as expected.

• The left arm of R1 got broken at time step t = 2, so R1 could not place Knife

on Table at time step t = 2 as expected.

Then, the user picks one of them for the algorithm to proceed with replanning.

For instance, considering that the bases are more likely to get broken, the user

might pick the first diagnosis to proceed: X3 = {(R1,Base,1)}; or considering
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that the left arm of R1 often breaks down early in a plan, the user may pick the

second diagnosis: X3 = {(R1,LeftArm,0)}.

Suppose that the user picks X3 = {(R1,Base,1)}. With this diagnosis with ex-

planation, the execution monitoring algorithm predicts the current expected state

st as follows: at(R1,ShelfA), at(R2,TableRight), at(Knife,R1Hand), at(Spoon,Table).

After that, the algorithm replans to reach the goal state sg from s3 as follows:

P=〈move(R2,ShelfA,3), pickUp(R2,LeftArm,Knife,4),

move(R2,TableLeft,5), placeOn(R2,LeftArm,Table,6)〉.

Then, the robots start executing the new plan P at time step t = 3. The expected

execution and a real execution of P are shown in the left and right columns of

Figure 5.3.3, respectively, while Figure 5.3.5 illustrates their dynamic simulations.

Assume that the next observation oM
t takes place at time step t = 7: only Spoon

is on Table. The expected state se at t = 7 is predicted as follows: at(R1,ShelfA),

at(R2,TableLeft), at(Knife,Table), at(Spoon,Table). Since Knife is not observed

to be on Table as expected, there is a discrepancy between se and oM
7 . Furthermore,

this discrepancy is relevant as the goal state is not reached by the execution of the

rest of the plan.

Then, according to the interactive mode of the algorithm, a set of min-cardinality

diagnoses is computed so that the user can pick the most probable one.
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Figure 5.3.5: The dynamic simulations for the expected and the real executions of

the replan P at time step t = 3 presented in Figure 5.3.3.
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Augmented diagnoses: For instance, a set of 4 min-cardinality augmented di-

agnoses can be generated based on the current observation oM
7 , while imposing

the previous diagnoses X<7 = X3 = {(R1,Base,1)}:

{{(R1,Base,1),(R2,Base,3)},{(R1,Base,1),(R2,Base,5)},

{(R1,Base,1),(R2,LeftArm,4)},{(R1,Base,1),(R2,LeftArm,6)}}.

Once these augmented diagnoses with their explanations are presented to the user,

assume that X7 = {(R1,Base,1),(R2,Base,3)} is selected by the user as the min-

cardinality diagnosis with the following explanation: “Base of R1 got broken at

time step t = 1, so R1 could not move to TableLeft at time step t = 1 as expected;

and since Base of R2 got broken at time step t = 3, R2 could not move to ShelfA

at time step t = 3 as expected.”

However, since the bases of both robots are diagnosed as broken, the robots

cannot move around, and thus replanning fails. This example shows that although

augmented diagnoses generously maintain the previous diagnoses, they put more

constraints on replanning (as more number of parts are assumed to be broken)

making it harder to find a replan.

Reset diagnoses: Alternatively, a set of 4 min-cardinality reset diagnoses can

be generated based on the current observation oM
7 , but without considering any of

the previous diagnoses:

{{(R2,Base,3)},{(R2,Base,5)},{(R2,LeftArm,4)},

{(R2,LeftArm,6)}}.

Suppose that the user selects the first min-cardinality diagnosis X7 = {(R2,Base,3)}

with explanation: “Base of R2 is broken, so R2 could not move to ShelfA at time

step 3 as expected.”
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Considering this diagnosis, the algorithm predicts the expected current state st

for time step t = 7, and replans to reach the goal state sg from s7 as follows:

P=〈move(R1,TableLeft,7), placeOn(R1,LeftArm,Table,8)〉.

The expected execution and a real execution of the new plan P are shown in Fig-

ure 5.3.3, respectively.

Suppose that, at time step t = 9, another observation oM
t is made: only Spoon is

on Table. The expected state se at t = 9 is predicted as follows: at(R1,TableLeft),

at(R2,TableRight), at(Knife,Table), at(Spoon,Table). There is a discrepancy be-

tween se and oM
9 , and it is relevant for the rest of the plan.

The following set of 2 min-cardinality reset diagnoses can be generated based

on the current observation o9
t :

{{(R1,Base,7)},{(R1,LeftArm,8)}}.

Assume that the user picks the reset diagnosis X9 = {(R1,Base,7)}. Note that the

diagnosed broken component is identical with that of the first diagnosis X3. This

example shows that reset diagnoses may unnecessarily repeat themselves in terms

of broken components, as they forget the previous diagnoses and the observations.

As a result, replanning guided with a reset diagnosis may keep generating the same

plan that may not reach the goal.
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Revised diagnosis: Alternatively, a set of 2 min-cardinality revised diagnoses

can be generated for the detected relevant discrepancy at time step t = 7, con-

sidering both the current observation oM
7 and the previous observation oM

3 (i.e.,

OM
7 = {oM

3 ,oM
7 }) while updating the previous diagnoses as follows:

{{(R1,LeftArm,0)},{(R1,LeftArm,2)}}.

Assume that the user selects the revised diagnosis X7 = {(R1,LeftArm,0)} with

its explanation: “LeftArm of R1 got broken at time step t = 0, so R1 could not pick

up Knife at time step t = 0 as expected.”

Once the algorithm predicts the expected current state s7 with respect to this

diagnosis, it proceeds with replanning:

P = 〈move(R2,ShelfA,7), pickUp(R2,LeftArm,Knife,8),

move(R2,TableLeft,9), placeOn(R2,LeftArm,Table,10)〉.

The expected execution and a successful real execution of this new plan P at

time step t = 7 are shown in the left and right columns of Figure 5.3.3, respec-

tively. Figure 5.3.8 illustrates their dynamic simulations.
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Figure 5.3.8: The dynamic simulations for the expected and the real executions of

the replan presented in Figure 5.3.3.
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Repairs: Sometimes the generated diagnoses prevent the algorithm find a re-

plan, as we have observed with the augmented diagnosis computed for the relevant

discrepancy detected at time step t = 7: since the bases of both robots are diag-

nosed as broken, the robots cannot move around, and thus replanning fails. In

such cases, the algorithm may repair a minimum number of broken parts while

replanning.

Suppose that the algorithm computes the following set of all min-cardinality

diagnoses, and none of them leads to a replan:

{{(R1,Base,1),(R1,LeftArm,3)},{(R1,Base,1),(R2,Base,3)},

{(R1,LeftArm,3),(R2,RightArm,5)},{(R1,LeftArm,3),

(R2,Base,3)},{(R2,RightArm,5),(R1,Base,1)}}.

The algorithm may consult the user about the preference over repairing these

parts. Suppose that the user knows that the parts of robot R2 take usually more

time to repair since it is an old model. Alternatively, the user may check all the

computed diagnoses above and identify the parts that more often appear in di-

agnoses. Then this information (pref x) can be utilized while replanning as ex-

plained in Section 4.4.2. For instance, the following replan is computed with

repairs {(R1,Base),(R1,LeftArm)}:

P=〈move(R1,ShelfA,5), pickUp(R1,LeftArm,Knife,6),

move(R1,TableLeft,7), placeOn(R1,LeftArm,Table,8)〉.

Since the parts (R1,Base) and (R1,LeftArm) are repaired, they are utilized in

the new plan.
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5.4 Experimental Evaluation

We have performed two groups of experiments. First, we have evaluated the com-

putational performance of our execution monitoring algorithm (Algorithm 3) with

different replanning approaches.

• No guidance, full observability: Whenever a relevant discrepancy is de-

tected, the execution monitoring algorithm does not perform diagnostic rea-

soning, and replans from the current state under the full observability as-

sumption, considering the low-level feasibility checks.

• Guidance via diagnosis, partial observability: Whenever a relevant discrep-

ancy is detected, the execution monitoring algorithm computes a diagnosis

for it (e.g., which broken components may cause this discrepancy). Then,

the algorithm replans guided by this diagnosis. For instance, if a robotic

component is diagnosed to be broken, then the algorithm does not allow the

use of this broken part while replanning.

Second, we have experimented with three different approaches to diagnostic rea-

soning to better understand their usefulness within the execution monitoring algo-

rithm.

• Augmented diagnosis: A diagnosis is generated about the broken parts based

on the current observation, while imposing the validity of all of the previous

hypotheses.

• Reset diagnosis: A diagnosis is generated about the broken parts based on

the current observation, without considering any of the previous hypotheses.
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• Revised diagnosis: A diagnosis is generated about the broken parts based

on the current and the previous observations, while updating the previous

hypothesis as necessary.

In these experiments, we have evaluated the validity of the following state-

ments:

S1 Utilizing diagnostic reasoning in the execution monitoring algorithm in-

creases the success of reaching the goal state while decreasing the number

of replannings.

S2 Utilizing revised diagnosis (instead of reset or augmented diagnosis) in the

execution monitoring algorithm increases the success of reaching the goal

state while decreasing the number of replannings.

S3 The execution monitoring algorithm equipped with revised diagnosis (in-

stead of reset or augmented diagnosis) is more scalable in terms of compu-

tation time as the size of a diagnosis increases.

5.4.1 Experimental Setup

We have considered the kitchen domain (Section 5.3.1) for our experimental eval-

uations. Recall that, in this domain, multiple bimanual mobile service robots col-

laboratively set-up a dinner table in a kitchen. The goal for the robots is to place

all objects initially scattered around the kitchen on the table.

Each benchmark instance I=〈s0,sg,n,B〉 is described by an initial state s0, a

goal state sg, a makespan n (n <k), and a set B of pairs (b, i) of a number b of

broken robotic parts and a time step i. Each pair describes how many parts get
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broken and at what time step. No physical plan execution takes place during the

evaluations. Instead, for each benchmark instance I=〈s0,sg,n,B〉,

• an initial plan PI=〈A0, . . . ,An−1〉 (n < k) is computed to reach sg from s0 in

k steps, and

• a set XI of tuples (r, p, i) are randomly generated respecting B (i.e., for each

(b, i) in B, the number of tuples (r, p, i) in XI is exactly b) such that every

component (r, p) plays a role in the actions Ai of the plan P (i.e., for every

(r, p, i) in XI , disables(X ,Ai,F) where (r, p, i) ∈ X).

Then, the “real world” states expected during the execution this plan PI are

computed by a dynamic simulation considering XI . Along these lines, the obser-

vations over the monitored fluents are extracted from these “real world” states.

For instance, Table 5.4.1 shows the instances that are used to compare different

diagnosis approaches when two robotic components are broken. The first line in-

dicates that in the “real world” dynamic simulation rightArm of rob1 and leftArm

of rob2 are broken at time steps 4 and 2, respectively. The upper bound k on the

total plan length is set to 60.

All experiments have been performed on a Windows server with six 3.5 GHz

Intel® Xeon® E5-1650 v3 CPU cores and 8 GB memory. Reasoning problems

have been solved using CLINGO 4.5.4. We have used multi-threading (limited to

4 threads) in these computations. We have considered a timeout of 100 seconds

per planning instance, with the anytime option of CLINGO.
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Table 5.4.1: 2 Broken Part Instance Set
Experiment

Number Broken Part Set

1 broken(rob1,right,4) broken(rob2,left,2)
2 broken(rob1,base,6) broken(rob3,left,6)
3 broken(rob4,left,7) broken(rob4,right,0)
4 broken(rob2,right,8) broken(rob3,left,8)
5 broken(rob4,base,7) broken(rob4,right,4)
6 broken(rob1,left,2) broken(rob4,left,4)
7 broken(rob2,right,3) broken(rob3,right,3)
8 broken(rob1,base,0) broken(rob2,right,5)
9 broken(rob1,left,3) broken(rob3,left,8)

10 broken(rob4,base,0) broken(rob4,left,8)
11 broken(rob3,right,8) broken(rob4,base,4)
12 broken(rob1,base,6) broken(rob3,right,3)
13 broken(rob1,base,2) broken(rob3,left,7)
14 broken(rob2,left,5) broken(rob3,left,6)
15 broken(rob3,left,4) broken(rob4,right,0)
16 broken(rob1,left,8) broken(rob2,base,6)
17 broken(rob3,left,0) broken(rob3,right,2)
18 broken(rob3,left,0) broken(rob3,right,0)
19 broken(rob4,left,5) broken(rob4,right,0)
20 broken(rob4,base,4) broken(rob4,right,7)
21 broken(rob2,base,7) broken(rob2,right,1)
22 broken(rob1,left,1) broken(rob1,right,5)
23 broken(rob2,base,4) broken(rob4,right,1)
24 broken(rob1,left,0) broken(rob2,left,8)
25 broken(rob1,base,1) broken(rob3,right,6)

5.4.2 Evaluation Criteria

We have evaluated statements S1, S2, and S3 from the following perspectives:

success rate and computational efficiency.

For every instance I=〈s0,sg,n,B〉 and an initial plan PI , we say that I is suc-

cessful if the goal state sg is reached by execution monitoring of PI by our algo-

rithm without exceeding the total plan length k. Accordingly, the success rate is

defined as follows:

Success Rate =
# successful instances

# all instances
×100.

For every instance I=〈s0,sg,n,B〉, with an initial plan PI and a set XI of broken
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components, we quantify the computational efficiency of our algorithm by means

of the following measures:

• # replannings: the number of replannings performed during execution mon-

itoring,

• total plan length: the total length of the final plan,

• diagnosis time: CPU time in seconds, to perform all required diagnostic

reasoning during execution monitoring,

• replanning time: CPU time in seconds, to perform all required replannings

during execution monitoring, and

• diagnosis accuracy: the accuracy of the generated diagnosis Xt with respect

to XI .

Note that, during plan execution monitoring, replanning guided by a diagnosis

may lead to the goal state even though the diagnosis is incorrect with respect

to what is broken. However, proper identification of the broken robotic parts

is desirable such that they can be repaired before the next plan execution. To

evaluate the accuracy of the diagnoses generated by different diagnostic reasoning

approaches, we have introduced a metric called diagnosis accuracy.

The diagnosis accuracy for Revised diagnosis is defined relative to the last

revised diagnosis Xt made by the execution monitoring algorithm:

AccuracyRevised =
|Xt
⋂

XI|
max(|XI|, |Xt |)

×100. (5.2)

Here, the last diagnosis is considered since it utilizes all of the previous observa-
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tions as well as the current observations. For instance, assume that

XI = {(R1,LeftArm,3),(R2,RightArm,5),(R3,Base,9)},

X3 = {(R1,LeftArm,3),(R1,RightArm,2),(R3,Base,9)}.

Then the diagnosis accuracy is 66.67%.

The diagnosis accuracy for Augmented diagnosis is defined in the same way:

AccuracyAugmented = AccuracyRevised.

The diagnosis accuracy for Reset diagnosis is defined relative to the all reset

diagnoses Xi made by the execution monitoring algorithm:

AccuracyReset =
|XI ∩

⋃
Xi|

max(|XI|, |
⋃

Xi|)
×100 (5.3)

Here, all reset diagnoses are considered since they are computed independent from

each other. For instance, assume that

XI = {(R1,LeftArm,3),(R2,RightArm,5),(R3,Base,9)},

X1 = {(R1,LeftArm,3)},

X2 = {(R2,LeftArm,4)},

X3 = {(R1,LeftArm,3),(R2,RightArm,5),(R2,Base,8)}.

Then, since ⋃
Xi={(R1,LeftArm,3),(R2,LeftArm,4),

(R2,RightArm,5),(R2,Base,8)}

the diagnosis accuracy is 50%.
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5.4.3 Evaluating Replanning Approaches

Whenever a relevant discrepancy is detected, replanning is required since the rest

of the plan cannot reach the goal state. In general, there are two different ap-

proaches addressing replanning, with and without guidance. Guided replanning

considers the generated explanation for the cause of the failure such that if some

parts are diagnosed as broken, the newly generated plan does not rely on the com-

ponents that are diagnosed as broken.

Algorithms that do not have such explanations for the cause of failure simply

perform replanning from the current state, without considering the reason of the

failure. Replanning to reach the goal state requires the full state information at the

current time step. However, a typical replanning algorithm has no means to pre-

dict full current state under partial observability. On the other hand, our proposal

to guided replanning with diagnosis generates the full state information by per-

forming predictions considering the hypothetically broken parts as (Definition 4).

Therefore, for testing purposes the full state information is provided to the re-

planning method, whenever required. Note that guided replanning is not provided

with the full state and relies on prediction to estimate current state.

To test the validity of S1, we have investigated the usefulness of two ap-

proaches to replanning, No guidance with full observability and Guidance via

diagnosis with partial observability, by performing a set of experiments in the

kitchen domain with 2 robots and 10 objects. We have generated 25 instances

where 2 robotic parts are broken at different times. Similarly, another 25 instances

have been generated where 3 robotic parts are broken. We have run our algorithm

for each instance, as described in Section 5.4.1, and reported in Table 5.4.2 the

average and the standard deviation (in parenthesis, over 25 instances) of the eval-

uation metrics described in Section 5.4.2.

87



Several interesting observations about these two replanning approaches can be

made over these results:

• In terms of Success Rate, replanning guided by diagnosis outperforms re-

planning with no guidance.

• For each number of broken parts, the average number of replannings with

guided replanning is much lower.

• The total plan length decreases when replanning is guided by diagnosis.

This decrease becomes more significant as the number of broken parts in-

creases.

These results are expected since replanning with no guidance does not con-

sider causes of discrepancies and may try to use the broken robotic components in

replans, resulting in new discrepancies. Therefore, with no guidance, the number

of replannings and the total plan length increase with a large margin.

We need to emphasize that even though replanning with no guidance is pro-

vided with full observability while guided replanning is performed under partial

observability, the guided replanning performs significantly better than replanning

with no guidance in terms of the success rate, the number of replannings, and the

total plan length.

These results also confirm our statement S1: diagnosis is useful for execution

monitoring.
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5.4.4 Evaluating Diagnostic Reasoning Approaches

To test the validity of S2 and S3, we have evaluated three diagnostic reasoning ap-

proaches, Augmented diagnosis, Reset diagnosis and Revised diagnosis, in terms

of number of replannings, total plan length, and CPU time.

Scalability analysis with respect to the number of broken robot components

We have performed a set of experiments in the kitchen domain with 4 robots and

20 objects. We have generated 25 instances where 2 (resp. 3, 4, 5, 6) robotic parts

are broken at different times. We have run our algorithm 3 times for each instance,

as described in Section 5.4.1, and reported in Table 5.4.3 the average numbers

(over 25 instances, 3 runs) for the evaluation metrics described in Section 5.4.2.

The results of these experiments are also presented in Figure 5.4.1.

Figure 5.4.1 presents Success Rate of different diagnostic reasoning approaches,

for each number of broken parts in terms of reaching the goal state. According to

these results,

• Increasing the number of broken parts reduces Success Rate in general.

• The success Rate of Augmented diagnosis is quite low compared to the other

two diagnostic reasoning approaches. For instance, with 6 broken parts,

Augmented diagnosis can solve only 4% of the 25 instances, whereas Reset

diagnosis can solve 20% of the instances and Revised diagnosis can solve

almost 68% of the instances.
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Figure 5.4.1: (Effect of number of broken parts on success rates of different diag-

nosis approaches.

The first observation above can be explained as follows: increasing the number

of broken parts increases the number of possible most-probable min-cardinality

diagnoses, and thus decreases the likelihood of selecting a correct diagnosis.

The second observation above can be explained as follows. When a relevant

discrepancy is detected, Augmented diagnosis generates a hypothesis about the

broken parts based on the current observations, while imposing the validity of the

previous diagnoses even though they might not be correct. Therefore, an aug-

mented diagnosis grows each time a relevant discrepancy is detected during plan

execution monitoring: larger diagnosis puts more constraints on replanning, and

thus reduces Success Rate. Reset diagnosis generates a hypothesis for a detected
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relevant discrepancy based on the current observations, but without relying on the

previous assumptions or observations. Therefore, sometimes incorrect diagnoses

can be made repeatedly, leading to incorrect replans; reducing Success Rate but

not as much as Augmented diagnosis.

Revised diagnosis, on the other hand, considers the current observation and all

of the previous observations such that the new hypothesis about the broken robot

components is consistent with them, alleviating the disadvantages of the other

diagnostic reasoning approaches.

Since the number of successful instances with Augmented diagnosis is very

low, Table 5.4.3 compares Reset diagnosis and Revised diagnosis in terms of the

number of replannings, the total plan length, and the diagnosis accuracy. The

results can be summarized as follows:

• With Revised diagnosis, generally, the average number of replannings per-

formed by the algorithm is significantly lower (e.g., 40% lower for instances

with 5 broken parts).

• The scalability of the algorithm in terms of diagnosis time is better with

Revised diagnosis (e.g., 30% lower for instances with 5 broken parts).

• The diagnosis accuracy is always higher for Revised diagnosis (e.g., 25%

higher for instances with 2 broken parts).

Table 5.4.3 indicates that Reset diagnosis outperforms Revised diagnosis, when

the number of broken parts is 6. However, this result might be misleading since

the number of common successful instances is only 4. Therefore, in Table 5.4.4

we present the results for all instances even if the runs could not reach the goal

state. The results confirm the conclusions from Table 5.4.3
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• Revised Diagnosis can reduce the number of replannings up to 60% with

respect to Reset Diagnosis.

• Revised Diagnosis can save up to 75% CPU time with respect to Reset Di-

agnosis.

• The diagnosis accuracy is higher for Revised Diagnosis (up to 40%) with

respect to Reset Diagnosis.
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Total plan length and diagnosis accuracy have been analyzed by two-way

ANOVA (between-subjects) to determine any significant differences. Two-way

ANOVA is applied as while the broken part sets are matched, the total execu-

tion of each scenario differs in each experiment. Levene’s test of homogeneity of

variances is implemented for two independent variables (i.e., diagnosis type and

number of broken parts) to validate sphericity assumption of two-way ANOVA.

For both total plan length and diagnosis accuracy sphericity assumption has not

been violated.

The results of the two-way ANOVA for total plan length are presented in

Table 5.4.5. These results indicate that different diagnosis types are not sig-

nificantly different from each other (F(1,112) = 0.023, p = 0.879 and η2 = 0)

while different broken part numbers are significantly different from each other

(F(4,112) = 38.455, p < 0.001 and η2 = 0.579).

Table 5.4.5: Tests of between-subjects effects for dependent variable total plan

length

Source
Type III Sum of

Squares
df Mean Square F Sig.

Partial Eta

Squared

Diagnosis Type 0.796 1 0.796 0.023 0.879 0.000

Broken Part Number 5303.111 4 1325.778 38.455 <0.001 0.579

Diagnosis Type*Broken Part Number 313.046 4 78.262 2.270 0.066 0.075

Error 3861.318 112 34.476

We have performed pairwise comparison of different number of broken parts

utilizing Tukey HSP post-hoc test. The result of this test have shown that each

different number of broken part is significantly different from the others.

The results of the two-way ANOVA for diagnosis accuracy are presented

in Table 5.4.6. These results indicate that different diagnosis types are signifi-

cantly different from each other (F(1,112) = 30.513, p < 0.001 and η2 = 0.214)
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while different broken part numbers are not significantly different from each other

(F(4,112) = 0.931, p = 0.931 and η2 = 0.032).

Table 5.4.6: Tests of between-subjects effects for dependent variable diagnosis

accuracy

Source
Type III Sum of

Squares
df Mean Square F Sig.

Partial Eta

Squared

Diagnosis Type 1.018 1 1.018 30.513 <0.001 0.214

Broken Part Number 0.124 4 0.931 0.931 0.449 0.032

Diagnosis Type * Broken Part Number 0.027 4 0.204 0.204 0.935 0.007

Error 3.737 112 0.033

Figure 5.4.2 presents the CPU time for the diagnostic reasoning of Revised

diagnosis. As expected,

• Increasing the number of broken parts exponentially increases the diagnosis

time.
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Figure 5.4.2: Average CPU time consumption for different number of broken parts

during revised diagnosis.
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Scalability analysis with respect to the number of objects in the environment

We have performed a set of experiments in the kitchen domain with 4 robots, and

15, 20, 25 objects. We have generated 25 instances where 4 robotic parts are

broken at different times. We have run our algorithm 3 times for each instance, as

described in Section 5.4.1, and reported in Table 5.4.7 the average numbers (over

25 instances, 3 runs) for the evaluation metrics described in Section 5.4.2. The

results of these experiments are also presented in Figure 5.4.3.
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Figure 5.4.3: Effect of number of objects on success rate of different diagnosis

approaches.

Figure 5.4.3 presents Success Rates of different diagnostic reasoning approaches.

According to these results:
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• The execution monitoring algorithm with Revised Diagnosis outperforms

all other approaches by large margin in terms of Success Rate.

Table 5.4.7 compares Reset diagnosis and Revised diagnosis in terms of the

number of replannings, the total plan length, and the diagnosis accuracy. The

results can be summarized as follows:

• With Revised diagnosis, generally, the average number of replannings per-

formed by the algorithm is significantly lower (e.g., 30% lower for instances

with 25 objects).

• The scalability of the algorithm in terms of diagnosis time is better with

Revised diagnosis (e.g., 55% lower for instances with 25 objects).

• The diagnosis accuracy is always higher for Revised diagnosis (e.g., 30%

higher for instances with 25 objects).
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Replanning number and diagnosis accuracy have been analyzed by two-way

ANOVA (between-subjects) to determine any significant differences. Two-way

ANOVA is applied as while the broken part sets are matched, the total execution

of each scenario differs in each experiment. Levene’s test of homogeneity of

variances is implemented for two independent variables (i.e., diagnosis type and

number of objects) to validate sphericity assumption of two-way ANOVA. For

both replanning number and diagnosis accuracy sphericity assumption has not

been violated.

The results of the two-way ANOVA for replanning are presented in Table 5.4.8.

These results indicate that different diagnosis types (F(1,72) = 11.647, p = 0.001

and η2 = 0.139) and object numbers (F(2,72) = 11.312, p < 0.001 and η2 =

0.239) are significantly different from each other.

Table 5.4.8: Tests of between-subjects effects for dependent variable replanning

number
Source

Type III Sum of

Squares
df Mean Square F Sig.

Partial Eta

Squared

Diagnosis Type 46.811 1 46.811 11.647 <0.001 0.139

Object Number 90.931 2 45.465 11.312 0.001 0.239

Diagnosis Type * Object Number 13.795 2 6.898 1.716 <0.001 0.046

Error 289.377 72 4.019

This results also revealed that there is a statistically significant interaction be-

tween the effects of diagnosis type and object number (F(2,72) = 1.716, p <

0.001 and η2 = 0.046).

Tukey HSD post-hoc comparison of different objects numbers is presented in

Table 5.4.9 which indicates that there are significant differences between 15−20

objects and 15−25 objects.
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Table 5.4.9: Pairwise comparison of different object numbers for dependent vari-

able of replanning number wrt Tukey

(Object Number Object Number Mean Difference Std. Error Sig.
95% Confidence Interval

Lower Bound Upper Bound

15
20 -1.5928* 0.522 0.009 -2.84 -0.34

25 -2.6569* 0.584 <0.001 -4.05 -1.25

20
15 1.5928* 0.522 0.009 0.34 2.84

25 -1.0641 0.614 0.201 -2.55 0.40

25
15 2.6569* 0.584 <0.001 1.25 4.05

20 1.0641 0.614 0.201 -0.40 2.53

The results of the two-way ANOVA for diagnosis accuracy are presented

in Table 5.4.10. These results indicate that different diagnosis types are signif-

icantly different from each other (F(1,72) = 50.831, p < 0.001 and η2 = 0.414)

while different object numbers are not significantly different from each other

(F(2,72) = 1.523, p = 0.225 and η2 = 0.041).

Table 5.4.10: Tests of between-subjects effects for dependent variable diagnosis

accuracy

Source
Type III Sum of

Squares
df Mean Square F Sig.

Partial Eta

Squared

Diagnosis Type 1.198 1 1.198 50.831 <0.001 0.414

Object Number 0.072 2 0.036 1.523 0.225 0.041

Diagnosis Type * Object Number 0.045 2 0.022 0.0945 0.394 0.026

Error 1.696 72 0.024
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Chapter 6

Systematic Evaluation of Execution

Monitoring Algorithms

Before execution monitoring algorithms are deployed on autonomous systems,

comprehensive testing and simulation is needed to evaluate their performance and

to understand their applicability. In general, three major components are required

to implement a generic testing framework for execution monitoring: generation

of discrepancies between the expected states and the observed states of the world,

identification of the causes of relevant discrepancies, and replanning to reach the

goals.

Major sources of discrepancies during plan execution can be loosely catego-

rized as unexpected exogenous events, changes in the goals, or failure of robot

parts. In general, unexpected exogenous events and changes in the goals may be

detected directly by sensors used to monitor the world states, while determination

of the broken parts that result in a discrepancy typically requires deeper reasoning.

With this motivation, we introduce a formal method for relevant discrepancy

generation with respect to the plan being executed to evaluate performance of an
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execution monitoring algorithm. Discrepancies are introduced dynamically dur-

ing the execution of a plan whenever execution monitoring algorithm successfully

identifies the reasons of the observed discrepancies. Our formal method for dis-

crepancy generation is designed to work under partial observability since it only

generates discrepancies in terms of the monitored fluents.

6.1 The Discrepancy Generation Problem

We formally define the problem of generating a relevant discrepancy that might

have occurred due to a failure of a robotic component, after execution of some

part of a plan.

Definition 10. A discrepancy generation problem, DGP, is characterized by a

tuple 〈D t
diag,s0,P<t ,R,X<t

real,∑X<t
real,se,OM

t ,N〉 where

• D t
diag is the diagnosis domain description in ASP,

• s0 is an initial state,

• P<t=〈A0, . . . ,At−1〉 is the sequence of actions executed at the initial state s0

until time step t,

• R is the set of pairs of all robots and their components that may get broken,

• X<t
real is a set of triples 〈r, p, i〉 that describes the parts p of robots r ((r, p)∈R)

broken at an earlier time step i (i<t),

• ∑X<t
real the set of all sets X<i

real of broken parts from previous executions of

the plan (i<t),

• se is the expected state at time step t,
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• OM
t is a set of all previous and current observed states oM

i of monitored

fluents in M (i≤t),

• N is a positive integer.

A solution of DGP is a set Xnew of (r, p, j) that describe robotic components

(r, p) broken at time step j ( j ≤ t), such that |X<t
real|+ |Xnew| ≤ N and that D t

diag

when combined with the following rules has an answer set:

← not Fs0(0).

← not EAi(i) (0≤ i≤ t−1).

← Fse(t).

← not FoM
i
(i) (oM

i ∈OM
t , i≤t).

← not broken(r, p, i)
(
(r, p, i)∈(X<t

real ∪Xnew)
)
.

← not ¬broken(r, p, l)
(
(r, p)∈R, l ≤ t,(r, p, l) 6∈ (X<t

real ∪Xnew)
)
.

← ,(r,p,i)∈X<i
real

broken(r, p, i)
(
X<i

real∈ ∑X<t
real

)
.

(6.1)

The first constraint in (6.1) ensures that the simulation starts at the given ini-

tial state. The second constraint ensures that only the actions 〈A0,A1 . . . ,At−1〉 of

the plan are executed. The third constraint ensures that the expected state is not

observed. The fourth constraint takes into account the earlier and current obser-

vations. The fifth and sixth constraints ensures that only the parts of the robots in

X<t
real and Xnew were broken at specified times. The seventh constraint ensures that

introduced broken parts (Xnew) are different from the previous executions (∑X<t
real).
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6.2 The Simulation Algorithm

To evaluate the performance of an execution monitoring algorithm, possibly equipped

with a diagnostic reasoning module that identifies discrepancies in terms of broken

robotic components, a reasonable number of relevant scenarios should be tested.

We propose a novel generic algorithm for systematic testing of such execution

monitoring algorithms in simulation by dynamically generating discrepancies.

Our algorithm (Algorithm 4) takes as input the following:

• Dk is a planning domain description in ASP,

• s0 is an initial state,

• sg is a goal state,

• R is a set of pairs of robots and their components that may get broken,

• disables is a relation that describes which effects of actions are affected if

some robots and their components in R are broken,

• M is a set of monitored fluents,

• P is a plan,

• T is a diagnosis type: Revised, Reset, Augmented, or None,

• k is an upper bound on the total makespan,

• N is an upper bound on the number of broken parts.

Algorithm 4 returns all possible scenarios (i.e., execution histories of plans)

of length less than or equal to k, with at most N broken parts. It also returns the

following:
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• #goalReached: the number of scenarios that reach the goal.

• #totalReplannings: the total number of replannings for scenarios that reach

the goal.

• totalPlanLength: the sum of final plan lengths for all scenarios that reach

the goal.

According to Algorithm 4, initially the set Xhyp of “believed-to-be-broken”

robotic parts, the set X<t
real of “really-broken” robotic parts, and the set OM

t of

observations are empty (line 5). Algorithm 4 generates a full expected state se

(line 10) by solving a prediction problem. Then Algorithm 4 introduces broken

robotic parts into X<t
real , if possible, by solving a discrepancy generation prob-

lem (lines 11-13). Then X<t
real is used to generate an observed state at time step t

(line 14). The expected state se and the observed state so are compared to each

other in terms of the monitored fluents in M, to detect any discrepancies (line 17).

If the detected discrepancy is relevant (line 20) then a diagnosis Xhyp is gener-

ated with respect to a diagnosis type T (line 22). Then, Algoirthm 4 finds a new

plan, considering the diagnosis Xhyp, from the predicted state st , if possible, and

continues the execution of this plan.

When plan execution finishes, if X<t
real is not empty, then X<t

real is added into

∑X<t
real (line 32) to generate a different scenario with broken parts different from

every X<i
real in ∑X<t

real .

The goal state is compared with the last predicted expected state to check

whether the goal is reached or not (line 33). If the goal is reached, the relevant

metrics are updated (lines 34 and 35). If X<t
real is empty at the end of the execution,

then it means that all possible scenarios have been simulated (line 37).
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Algorithm 4 Simulation Algorithm
Input: Dk, s0, sg, R, disables, M, k, P, T , N.
Output: All possible ExecutionHistories , #executions, #goalReached,

#totalReplannings.
1: Execute = True;
2: #goalReached = 0, #totalReplannings = 0, #executions = 0.
3: while Execute do
4: t = 0;

//Initially, the sets Xhyp, X<t
real and OM

t are empty.
5: Xhyp = /0; X<t

real = /0; OM
t = /0;

6: #replannings = 0;
7: while t < k and P is not null do
8: Execute At ;
9: t += 1;

//Predict a full expected state se at step t considering Xhyp updated before t−1.
10: se← Predict(D t

diag,s0,P<t ,OM
t ,Xhyp);

11: Xnew← GenerateDiscrepancy(D t
diag,s0,P<t ,R,X<t

real,∑X<t
real,se,OM

t ,N);
12: if Xnew is not null then
13: X<t

real ← Xnew ∪ X<t
real;

//Predict a full observed state so at step t considering X<t
real .

14: so← Predict(D t
diag,s0,P<t ,OM

t ,X<t
real);

// Extract the monitored fluents from full observed state.
15: oM

t ← Extract(so,M)
16: OM

t ← Add oM
t into OM

t ;
// Check whether there is a discrepancy between the expected state se and the current
observations oM

t
17: discrepancy← Discrepancy(Dstate,se,oM

t );
18: if discrepancy then
19: sv = ValidState(Dstate,se,oM

t );
//If there is a discrepancy, check whether it is relevant to the rest of the plan.

20: relevant = RelevancyCheck(D t
diag,sv,sg,P>t ,Xhyp);

21: if relevant then
//Find the cause of the detected discrepancy and update Xhyp with possible broken
robotic components.

22: Xhyp← Diagnose(D t
diag,R,s0,P<t ,OM

t ,Xhyp,T );
//Replan from the expected state st at step t, considering the current diagnosis Xhyp.

23: st ← Predict(D t
diag,s0,P<t ,OM

t ,Xhyp);
24: Pnew← RePlan(Dk−t

R ,st ,sg,Xhyp,k− t);
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25: #replannings += 1;
26: if Pnew is not null then
27: P← Append Pnew to the end of 〈A0, ...,At−1〉;
28: else
29: P← null
30: if Xreal 6= /0 then
31: #executions += 1;

//Add X<t
real into ∑X<t

real such that algorithm generates different scenarios in the later
executions

32: ∑X<t
real.Add(X<t

real);
//Compare the final expected state with the goal state to check whether the goal is
reached or not.

33: if se == sg then
34: #goalReached += 1;
35: #totalReplannings += #replannings;
36: else

//If a discrepancy cannot be generated, terminate simulation.
37: Execute = False;
38: return ExecutionHistories, #executions, #goalReached, #totalReplannings

Figure 6.2.1 illustrates how Algorithm 4 generates scenarios. Consider a suc-

cessful execution of a plan P1 = 〈A10,A11, . . . ,A1n〉 highlighted in blue:

〈S0,A10,S1,A11, . . . ,A19,S10〉. At time step 1, suppose that Algorithm 4 intro-

duces the robotic component (R1,P1) as broken: Xnew = X<t
real = {(R1,P1)}. As

a result, the plan execution ends up at state S′2 (highlighted red). After a diag-

nosis of this failure, suppose that Algorithm 4 can not find a feasible plan, and

thus the execution terminates. Note that X<t
real = {(R1,P1)} is added into ∑X<t

real:

∑X<t
real = {{(R1,P1)}}.

In the next iteration of Algorithm 4, another robotic component (R2,P2) is

introduced as broken at time step 3: Xnew = X<t
real = {(R2,P2)}. Suppose that

a discrepancy is observed at time step 5 due to this broken part. The execution

monitoring algorithm successfully identifies the reason of this discrepancy and

performs replanning to generate a plan P2 = 〈A20,A21, . . . ,A2m〉 that reaches the
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goal state (highlighted orange). Then X<t
real = {(R2,P2)} is added into ∑X<t

real:

∑X<t
real = {{(R1,P1)},{(R2,P2)}}.

In the next iteration while Algorithm 4 is executing P2, Algorithm 4 introduces

a new component (R3,P3) as broken at time step 6: Xnew = {(R3,P3)}. Then

X<t
real = {(R2,P2),(R3,P3)}. As a result, the plan execution ends up at the state

S7
′′, where a discrepancy is observed. Suppose that the execution monitoring

algorithm can not generate a new plan and thus the execution terminates. Then

∑X<t
real = {{(R1,P1)},{(R2,P2)},{(R2,P2),(R3,P3)}}.

In the next iteration while Algorithm 4 is executing P2, Algorithm 4 introduces

a new component (R4,P4) as broken at time step 8: X<t
new = {(R4,P4)}). Then

X<t
real = {(R2,P2),(R4,P4)}. Suppose that the execution monitoring algorithm de-

tects a discrepancy at time step 10 and generates a new plan which reaches the goal

state S′′10 (highlighted purple). Then ∑X<t
real = {{(R1,P1)},{(R2,P2)},{(R2,P2),

(R3,P3)},{(R2,P2),(R4,P4)}}.

In the rest of the simulation, Algorithm 4 introduces different robotic parts as

broken to generate different scenarios

We have implemented Algorithm 4 in Python to report also the following met-

rics:

• totalReplanningTime: total CPU time spent during replanning for scenarios

that reach the goal.

• totalDiagnosisTime: total CPU time spend during diagnosis for scenarios

that reach the goal.

110



Initial State
s0

s1

s2

s3

A10

A11

A12

t=0

t=1

t=2

t=3

s2
'

Discrepancy Observed

Replanning Failed

Xnew = Xreal = {(R1,P1)}

A11

s4
'

s5
'

Discrepancy Observed

Replanning Performed

A14

s6
'

A20

s7
''

Discrepancy Observed

Replanning Failed

t=4

t=5

t=6

t=7

t=9

s4

s5

s6

s7

s8

s9

s10

t=8

t=10

A13

A14

A15

A16

A17

A18

A19

Xnew = Xreal = {(R2,P2)}

A13

s7
'

s8
'

s9
'

s10
'

A21

A22

A23

A24

Xnew = {(R3,P3)}, Xreal = {(R2,P2),(R3,P3)}

s9
''

Xnew = {(R4,P4)}, Xreal = {(R2,P2),(R4,P4)}

A23

sg (Goal State)

A24

s10
''

Discrepancy Observed

Replanning Performed

Figure 6.2.1: Possible scenarios generated by Algorithm 4.
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6.3 Evaluation Criteria

We say that an execution of a plan P is successful if the goal state sg is reached

from the initial state s0 by Algorithm 4, which simulates an execution monitoring

algorithm that utilizes a diagnosis of type T , without exceeding the maximum

makespan k. Accordingly, the success rate is defined as follows:

success(P,T) =
#goalReached(P,T)

#generatedScenarios(P,T)
×100

where #goalReached is defined as the number of scenarios that reaches the goal

and #generatedScenarios represents the number of different scenarios generated

by Algorithm 4.

We quantify the efficiency of an execution monitoring algorithm (simulated

by Algorithm 4) by means of the average number of replannings, the average plan

length, the CPU time spent for replannings and diagnoses.

#averageReplannings =
#totalReplannings(P,T)

#goalReached(P,T)

averagePlanLength =
totalPlanLength(P,T)
#goalReached(P,T)

averageReplanningTime =
totalReplanningTime(P,T)

#goalReached(P,T)

averageDiagnosisTime =
totalDiagnosisTime(P,T)

#goalReached(P,T)
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6.4 Case Studies: Collaborative Service Robotics Do-

main

Let us demonstrate applications of Algorithm 4 with a service robotics setting, the

kitchen domain, described in Section 5.3.1.

6.4.1 Case Study 1: Discrepancy generation without replan-

ning

Suppose that no replanning algorithm is implemented within the execution moni-

toring. That is, the execution of the initial plan continues even after a discrepancy

is detected.

Consider the kitchen domain with two mobile manipulators, two distinct ob-

jects and a table as shown in Figure 6.4.1. Assume that there is partial observabil-

ity of the domain, such that only the objects located on the table and the robots

around the table can be observed. Suppose that initially, the table top is empty,

while the blue robot R1 and the yellow robot R2 hold a knife and a fork at their

right hands, respectively. The goal is to have the knife at the yellow robot’s left

hand and the fork on the table.

Assume that for this planning problem instance, the following plan is calcu-

lated:

P1=〈move(R1,TableLeft,0),placeOn(R1,RightArm,Table,1),move(R2,TableLeft,2),
move(R1,Corner,2),pickUp(R2,Knife,LeftArm,3),placeOn(R2,RightArm,Table,4)〉.

The left column of Figure 6.4.1 presents the world states during the execution

of this plan through a dynamic simulation, for which all feasibility checks are

implemented.
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Figure 6.4.1: Left: World states at each time step. Right: Observed states gener-

ated at each time step for Case Study 1.
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The right column of Figure 6.4.1 presents observed states generated by Algo-

rithm 4. At time step 0, move action is performed by the blue robot R1. If R1

places the knife in its right hand on the table at time step 1, no discrepancy will be

observed at time step 2. To ensure that a discrepancy is observed at time step 2,

Algorithm 4 introduces (R1,RightArm) to the set X<t
real , so that placeOn action can-

not be executed at time step 1. As a result, a discrepancy can be detected at time

step 2, since the knife is expected to be on the table according to the world state

(left column), while it has not been placed there (right column).

Since the utilized execution monitoring algorithm does not employ replan-

ning, the execution of the initial plan continues as follows. At time step 2, the

blue robot R1 moves away from the table, while the yellow robot R2 moves to

the table. At time step 3, R2 executes pickUp action with its left arm to grab the

knife from the table. The execution of this action cannot succeed since the knife

is not at the table. Note that the execution takes place at the world state and the

table becomes empty (left column), causing the previously introduced discrep-

ancy to become undetectable. At this point, unless a new relevant broken part

is introduced, no discrepancy will be detected during the execution of the rest of

the plan. Therefore, at time step 4, Algorithm 4 introduces (R2,RightArm) to the

set X<t
real . With the addition of this new broken part, R2 cannot place the fork on

the table at time step 4 and a discrepancy can be detected at time step 5. Robots

perform the rest of the plan and cannot reach the goal state. For this scenario,

X<t
real = {(R1,RightArm), (R2,RightArm)}. Then X<t

real is added into ∑X<t
real so that

Algorithm 4 can generate different scenarios with different broken part pairs.
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6.4.2 Case Study 2: Discrepancy generation with replanning

We present another case study in Figure 6.4.2 to demonstrate the use of the dis-

crepancy generation within an execution monitoring algorithm, where diagnostic

reasoning and guided replanning algorithms are implemented.

We consider the same scenario as in Case Study 1. These two scenarios are

identical until the first discrepancy is detected at time step 2. However, when the

discrepancy is detected, the execution monitoring algorithm identifies the cause

of the failure as the right arm of blue robot R1 being broken and generates a new

plan to reach the goal without using the broken robot component as:

P2=〈move(R1,Corner,2), move(R2,Corner,2), pickUp(R2,Knie,LeftArm,3),
move(R2,TableLeft,4), placeOn(R2,RightArm,Table,5)〉.

The right column of Figure 6.4.2 presents the observed states generated by Al-

gorithm 4. Once again in this case, Algorithm 4 requires the right hand of the

blue robot R1 to be broken at time step 1. Also the base of the yellow robot R2 is

considered as broken at time step 4.

According to P2, the robots navigate to the corner at time step 2, and R2 picks

up the knife with its left hand from the right hand of R1 at time step 3. At this

point, Algorithm 4 introduces (R2,base) to the set X<t
real . Consequently, R2 cannot

perform move action at time step 4, so the yellow robot will not be around the table

at time step 5 (right column of Figure 6.4.2); this results in a discrepancy detected

by the algorithm. Afterwards, the execution monitoring algorithm successfully

identifies the broken components as the cause of this discrepancy, and generates a

new plan which reaches the goal state. Then {(R1,RightArm), (R2,base)} is added

into ∑X<t
real such that Algorithm 4 can generate different scenarios with different

broken part pairs in later executions.
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Figure 6.4.2: Left: World states at each time step. Right: Observed states gener-

ated at each time step for Case Study 2.
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6.5 Case Studies: Cognitive Factory Domain

Let us also demonstrate applications of Algorithm 4 with a cognitive factory set-

ting. We consider an execution monitoring algorithm that utilizes revised diagno-

sis.

6.5.1 A Representation of the Cognitive Factory Domain in ASP

We consider a cognitive factory where multiple robots collaboratively paint boxes

by performing painting, waxing and stamping processes, in this order.

There are two types of robots in the domain workers and chargers. The worker

robots have reconfigurable end-effectors which can perform different actions by

changing its end-effector at pit stop location. The charger robots charge worker

robots whenever their batteries are depleted. The battery levels of worker robots

decreases as they move: 1 level decrease for 1 unit of movement. They also

decreases by workCons amount as they work on boxes.

The cognitive factory domain is partially observable meaning that only boxes

at the delivery position (i.e., at the end of production line) can be observed. There-

fore, any defects (i.e., discrepancies) related to these boxes can only be detected

at this position.

We represent this cognitive factory in ASP. Our factory domain representation

mainly builds on and extends the one introduced in [65] [66]. This factory is

depicted as a grid where holonomic robots can move from one grid to another in

straight lines.

We consider the following set of atoms to describe the domains of variables used

in our ASP formulation:

• worker(w): w is a worker robot,
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• batteryLvl(bl): bl is possible battery level of workers,

• effector(e): e is a possible end effector that a worker robot can use,

• charger(c): c is a charger robot,

• robot(r): r is a robot which can be both worker or charger,

• xCoord(x): x is a possible coordinate in x direction,

• yCoord(t): y is a possible coordinate in y direction,

• dir(d): d is a possible direction where robots can move (e.g., up, left),

• unit(u): u is a possible amount of movement in any direction,

• box(b): b is a box that robots can work on,

• workstages(ws): ws is a possible operation (e.g., 0:paint, 1:wax, 2:stamp),

• time(i): i ∈ {0, . . . ,k} where k is a given upper bound on the makespan,

• atime(i): i∈ {0, . . . ,k−1}where k is a given upper bound on the makespan.

We consider the following set of fluents:

• posX(r,x), posY(r,y): robot r is located at coordinate x and y,

• battery(w,bl): battery level of worker robot w is bl,

• endEffector(w,e): end effector type of worker w is e,

• docked(c,w,n): charger c is docked to worker w (n=1 if they are docked 0

otherwise),

• linePos(b,x): position of box b is x on the production line,
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• wetPaint(b): box b is painted recently and it is still wet,

• workDone(b,ws): workstage ws is performed on box b.

We consider the following set of actions:

• move(r,d,u): robot r moves in direction d by u units,

• workOn(w,b): worker w works on the box b,

• swapEndEffector(w,e): worker w changes its current end effector with e,

• dock(c,w): charger c docks to worker w,

• undock(c): charger c undocks from the worker it is docked,

• charge(c): charger c chargers the worker it is docked,

• lineShift: shifts box positions on the conveyor belt.

Since the cognitive factory domain is partially observable and defects of the

boxes can only be observed at the end of the production line, we have introduced

some additional actions in addition to actions given in [65] [66]:

• feed(b): feeder places the box b on the production line.

• feedBack(b): if the box b has any defects, another feeder moves box b to

beginning of the production line.

Direct Effects and Preconditions of Actions: Following rules describes direct

effects and preconditions of move, workOn and charge actions.

Action move: When a robot r at position x moves u amount of units in the right
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direction at time step i, then at the next time step i+1 its position in the x coordi-

nates becomes x+u.

posX(r,x+u, i+1)← move(r,right,u, i),posX(x, i),rob(r),unit(u),xCoord(x),

atime(i).

After a worker robot w with battery level bl moves u amount of units in any di-

rection at time step i, then at the next time step i+ 1 its battery level becomes

bl−u.

battery(w,bl−u, i+1)← move(w,d,u, i),battery(w,bl, i),dir(d),worker(w),

batteryLvl(bl),unit(u),atime(i).

A worker robot w cannot move u amount of units if its battery level is not enough.

← move(w,d,u, i),battery(w,bl, i),bl < u,worker(w),dir(d),unit(u),

batteryLvl(bl),atime(i).

A worker robot w cannot move if it is docked to a charger robot c.

← move(w,d,u, i),docked(c,w,1, i),worker(w),dir(d),unit(u),atime(i).

Robots cannot move outside of the predefined grid borders. For instance, follow-

ing precondition prevents robots from moving outside of the right border.

← move(r,right,u, i),posX(r,x, i),x > maxX-u,robot(r),unit(u),xCoord(x),

atime(i).

Action workOn: After a worker robot w works on a box b whose current work

stage is ws−1 at time step i, then at the next time step i+1 the work stage of the
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box becomes ws.

workDone(b,ws, i+1)← workOn(w,b, i),workDone(b,ws−1, i),box(b),

workstages(ws),worker(w),atime(i).

A worker robot’s battery level bl decreases by a predefined amount workCons

after the robot works on a box.

battery(w,bl−workCons, i+1)← workOn(w,b, i),battery(w,bl, i),batteryLvl(bl),

worker(w),box(b),atime(i).

If the performed work stage is painting then condition of box b becomes wet paint.

wetpaint(b, i+1)← workOn(w,b, i),workDone(b,0, i),box(b),worker(w),

atime(i).

A worker robot w cannot work on a box if its end effector is not appropriate for

the work stage.

← workOn(w,b, i),workDone(b,ws−1, i),endEffector(w,e, i),e6=ws,box(b),

worker(w),workstages(ws),atime(i).

A worker robot w cannot work on a box if its battery level is not sufficient.

← workOn(w,b, i),battery(w,bl, i),bl<workCons,worker(w),box(b),

batteryLvl(bl),atime(i).

Action charge: The battery level of a worker robot w is set to predefined value
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maxLvl after a charger robot c charges the worker.

battery(w,maxLvl, i+1)← charge(c, i),docked(c,w,1, i),worker(w),charger(c),

atime(i).

However, charging is not possible if the worker w and the charger c are not docked

together.

← charge(c, i),docked(c,w,0, i),charger(c),worker(w),atime(i).

Ramification Rules: We express that a box with wet paint dries at the next time

step by the following ramification rule.

¬wetpaint(b, i+1)← wetpaint(b, i),box(b),atime(i).

State Constraints: We ensure that at any state, two worker robots cannot occupy

the same grid cell by the following constraint:

← posX(w1,x1, i),posY(w1,y1, i),posX(w2,x2, i),posY(w2,y2, i),x1 = x2,

y1 = y2,w1 6=w2,worker(w1),worker(w2),xCoord(x1),xCoord(x2),yCoord(y1),

yCoord(y2), time(i).

Two boxes cannot occupy the same position on the production line unless they are

at the starting position (i.e., minLine) or the delivery position (i.e., maxLine).

← linePos(b1,x, i), linePos(b2,x, i),x < maxLine,x > minLine,box(b1),box(b2),

b1 6=b2,xcoord(x), time(i).

Noconcurrency Constraints: There exist several concurrency constraints to en-
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sure some actions do not occur at the same time. For instance, a worker robot w

cannot work on a box while the line is shifting or the robot is moving.

← workOn(w,b, i), lineShift(i),worker(w),box(b),atime(i).

← workOn(w,b, i),move(w,d,u, i),worker(w),box(b),dir(d),unit(u),atime(i).

The worker and charger robots cannot move while they are docking.

← dock(c,w,1, i),move(c,d,u, i),charger(c),worker(w),dir(d),unit(u),atime(i).

External Atoms: Since robots are operating in a continuous space, for the fea-

sibility of actions, we embed the relevant low-level feasibility checks into the

domain description. For instance, a robot r cannot move in directions d1 and d2

with u1 and u2 units if there is no collision-free trajectory that it can follow.

← move(r,d1,u1, i),move(r,d2,u2, i),posX(r,x, i),posY(r,y, i),robot(r),

not &checkCollision[x,y,d1,d2,u1,u2](),dir(d1),dir(d2),unit(u1),unit(u2),

xCoord(x),yCoord(y),atime(i).

6.5.2 Systematic Evaluation of an Execution Monitoring Algo-

rithm Guided with Revised Diagnosis

We have systematically evaluated the performance of an execution monitoring al-

gorithm, equipped with revised diagnosis, for a case study in the cognitive factory

domain by using Algorithm 4. In this case study, we consider 3 worker robots and

2 charger robots, and 3 boxes to be painted.

We have performed two sets of experiments where the upper bound on the
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number of broken parts are set to 1 and 2, respectively. The results of these exper-

iments are shown in Table 6.5.2. In the first part of the evaluation, the upper bound

on the number of broken parts is set to 1; Algorithm 4 has generated all possible

29 scenarios. In this experiment, the execution monitoring algorithm displayed a

76% success rate.

In the second part of the evaluation, the upper bound on the number of broken

parts is set to 2. This time, Algorithm 4 has generated 369 scenarios; the execution

monitoring algorithm displayed a 65% success rate.

Table 6.5.1: Systematic evaluation of execution monitoring algorithm with revised

diagnosis

Number of Broken

Parts

AverageNumber

Replannings

Number of Generated

Scenarios
Success (%)

1 1.23 29 76

2 2.4 369 65

Please note that Algorithm 4 could not generate all possible scenarios for the

case where the upper bound on the number of broken parts is set to 2. Let us

explain this by some examples shown in Figure 6.5.1.

The black trace indicates a successful execution of the initial plan where robot

r moves to shelfA, picks up the knife, moves to shelfB and places knife on the

shelfB.

The blue trace indicates the scenario where Algorithm 4 introduces (leftarm,1)

at time step 1 as broken. The execution monitoring algorithm generates a new

plan considering the correct diagnosis: robot moves back to shelfA, picks up the

knife with its rightarm, moves to shelfB and places the knife on the shelfB. Let

us assume that the maximum makespan for this example is specified as 6. Then
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this newly generated plan exceeds this upper bound, and no shorter plan can be

generated. Therefore, Algorithm 4 cannot introduce any further scenarios.

The purple trace indicates the scenario where Algorithm 4 introduces (base,0)

at time step 0 as broken. Since the base of the robot is diagnosed as broken,

Algorithm 4 cannot generate a new plan and introduce any further scenarios.

The orange trace shows an example where Algorithm 4 introduces (leftarm,3)

at time step 3 as broken. Algorithm 4 performs replanning considering the correct

diagnosis so that robot picks up the knife with its rightarm and places it on the

shelfB. For this trace, Algorithm 4 can introduce further robotic parts as broken

to generate additional scenarios. Note that if the utilized execution monitoring al-

gorithm generates an incorrect diagnosis (e.g., broken(rightarm,2)), the observed

relevant discrepancy will not be resolved and Algorithm 4 will not introduce any

additional broken components to generate additional scenarios.

As discussed with the cases above, Algorithm 4 cannot generate all scenarios

but 369 different and relevant scenarios. Generating 369 scenarios is sufficient to

comprehensively evaluate the performance of an execution monitoring algorithm.
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Figure 6.5.1: Examples where additional scenarios cannot be generated
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Chapter 7

Robustness of Plans

For a given planning problem, multiple initial plans can be generated to reach the

goal, possibly subject to different optimizations. We introduce a method (based

on Algorithm 4) to analyze the “robustness” of these plans with respect to possible

failures due to broken robotic components.

7.1 Robustness of Plans with respect to Possible Fail-

ures

We define the robustness of a plan as the ratio between the number of success-

ful scenarios where the goal state is reached and the total number of scenarios

generated by Algorithm 4 with respect to a diagnostic reasoning of type T .

Definition 11. A plan P1 is more robust than a plan P2 with respect to a diagnosis
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type T if

(
success(P1,T), -#averageReplannings(P1,T)

)
>T(

success(P2,T), -#averageReplannings(P2,T)
)

where >T denotes lexicographic ordering.

If the success rate of the execution monitoring algorithm for plan P1 is greater

than plan P2, then we can conclude that P1 is more robust than P2. If the success

rates of the execution monitoring algorithm for plans P1 and P2 are equal, than

we compare these plans in terms of their average number of replannings. The one

with the lower average number of replannings is considered to be more robust.

Definition 12. A plan P1 is equally robust with a plan P2 with respect to a diag-

nosis type T if

(
success(P1,T), -#averageReplannings(P1,T)

)
=T(

success(P2,T), -#averageReplannings(P2,T)
)
.

Instead of comparing robustness of plans with respect to a single type of diag-

nosis type T , we can compare them with respect to a set T = {T1,T2, . . . ,Tn} of

diagnosis types.

Definition 13. A plan P1 is more robust than a plan P2 with respect to

T = {T1,T2, . . . ,Tn} if

(
∑

n
i=1 success(P1,Ti)

n
,−∑

n
i=1 #averageReplannings(P1,Ti)

n

)
>T(

∑
n
i=1 success(P2,Ti)

n
,−∑

n
i=1 #averageReplannings(P2,Ti)

n

)
.

where >T denotes denotes lexicographic ordering.
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Definition 14. A plan P1 is equally robust with a plan P2 with respect to

T = {T1,T2, . . . ,Tn} if

(
∑

n
i=1 success(P1,Ti)

n
,−∑

n
i=1 #averageReplannings(P1,Ti)

n

)
=T(

∑
n
i=1 success(P2,Ti)

n
,−∑

n
i=1 #averageReplannings(P2,Ti)

n

)
.

Let us illustrate plan robustness evaluation on the same experimental setup as

in Section 5.4.1.

We consider a cognitive factory domain setting with 3 worker and 2 charger

robots to paint 3 boxes. We consider three different initial plans, P1, P2 and P3,

which reach the goal state with different optimizations: P1 minimizes the number

of charge actions, P2 minimizes the number of move actions, and P3 minimizes

the amount of time between the first and the last lineshift actions.

First, suppose that at most a single component is broken to generate discrepan-

cies in each scenario. Table 7.1.1 illustrates the robustness results for these plans

with respect to an execution monitoring algorithm that utilizes revised diagnosis.

Table 7.1.2 illustrates the robustness results for an execution monitoring algorithm

that utilizes reset diagnosis. According to Table 7.1.1, P2 is more robust than P1,

and P1 is more robust than P3 with respect to the revised diagnosis:

P2 >revised P1 >revised P3.

Table 7.1.2 illustrates that P1 is more robust than P2, and P2 is more robust than

P3 with respect to the reset diagnosis:

P1 >reset P2 >reset P3.
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Let us now suppose that at most two robotic components can be broken in

each scenario.

Table 7.1.1: Robustness results with respect to revised diagnosis (single broken

component)

Plan P1 P2 P3

success (%) 74 76 42

#averageReplannings 1.18 1.23 1.14

averageReplanningTime 116.8 217.1 85.8

averageDiagnosisTime 0.88 1.55 0.64

averagePlanLength 39.4 51.6 34.8

#generatedScenarios 23 29 33

Table 7.1.2: Robustness results with respect to reset diagnosis (single broken com-

ponent)

Plan P1 P2 P3

success (%) 74 69 42

#averageReplannings 1.12 1.15 1.14

averageReplanningTime 110 178 99

averageDiagnosisTime 0.73 0.80 0.80

averagePlanLength 38.9 39.5 34.8

#generatedScenarios 23 29 33

Table 7.1.3 illustrates the robustness results for the plans with respect to an

execution monitoring algorithm that utilizes revised diagnosis. According to these

results, P2 is more robust than P3, and P3 is more robust than P1:
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P2 >revised P3 >revised P1.

Table 7.1.4 shows that P2 is more robust than P1, and P1 is more robust than P3

with respect to an execution monitoring algorithm that utilizes reset diagnosis:

P2 >reset P1 >reset P3.

Table 7.1.3: Robustness results with respect to revised diagnosis (up to two broken
components)

Plan P1 P2 P3
success (%) 59 65 60

#averageReplannings 2.2 2.4 2.3
averageReplanningTime 101.6 168.8 136.1
averageDiagnosisTime 2.03 2.48 2.05

averagePlanLength 52.2 55.7 49.4
#generatedScenarios 257 369 224

Table 7.1.4: Robustness results with respect to reset diagnosis (up to two broken
components)

Plan P1 P2 P3
success (%) 46 57 40

#averageReplannings 2.9 2.2 2.8
averageReplanningTime 224 144 128
averageDiagnosisTime 3.73 2.56 2.83

averagePlanLength 58 45 53
#generatedScenarios 263 416 216

Table 7.1.5 illustrates the robustness results for the plans with respect to T =

{reset,revised}: P2 is more robust than P1, and P1 is more robust than P3.

P2 >T P1 >T P3.
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Table 7.1.5: Robustness results (up to two broken components)

Plan P1 P2 P3

success (%) 52 61 50

#averageReplannings 2.5 2.3 2.5

averageReplanningTime 163 156 131

averageDiagnosisTime 2.89 2.52 2.44

averagePlanLength 55 50 51

#generatedScenarios 520 785 440

In light of these experiments, we have made the following observations:

• Regardless of the diagnostic reasoning type, plan P2 is more robust for the

execution.

• Minimizing the amount of time between the first and the last lineshift ac-

tions may result in observing several discrepancies at the same time step,

since before detecting any broken components of worker robots, they might

work one multiple boxes. Therefore, robustness of this plan (P3) is low.

• If the base of a robot is broken, it cannot navigate and perform its duties.

Since plan P2 minimizes number of move actions, it reduces the possibility

of such failures. Therefore, P2 has the highest robustness.

• A plan’s execution is more robust with respect to an execution monitoring

algorithm that utilizes revised diagnosis compared to reset diagnosis.
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7.2 Reliability of Robotic Components

After identifying the most robust plan, we can further improve the robustness

of the plan by examining the reliability of robotic components. Let us consider

the scenarios generated for plan robustness evaluation. For each robotic part

(r, p)∈R, suppose that #scenarios(r,p) denotes the number of scenarios where

the robotic component (r,p) is introduced as broken by Algorithm 4. Similarly,

# f ailedScenarios(r,p) denotes the number of scenarios that an execution monitor-

ing algorithm could not reach the goal state when the robotic component (r,p) is

broken. Then we define occuranceRate(r,p), failureRate(r,p) and severityRate(r,p)

as follows:

occuranceRate(r,p) =
#scenarios(r,p)

#generatedScenarios
×100

f ailureRate(r,p) =
# f ailedScenarios(r,p)

#scenarios(r,p)
×100

severityRate(r,p) = occuranceRate(r,p)× f ailureRate(r,p)÷100

Table 7.2.1 illustrates the reliability of robotic components during an execution

of plan P1. According to these results, (Worker3, Arm) is the cause of a discrep-

ancy for 15% of the generated scenarios and 39% of these scenarios have failed to

reach the goal. As a result this component has the highest severity rate of 5.8%.
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Table 7.2.1: Reliability of robotic components during execution of P1

(r, p) occuranceRate (%) failureRate (%) severityRate (%)

(Charger1, Charge Port) 7.0 51 3.6

(Charger1, Base) 9.9 47 4.7

(Charger2, Charge Port) 7.0 70 4.9

(Charger2, Base) 4.2 83 3.5

(Worker1, Arm) 11.9 38 4.5

(Worker1, Base) 11.5 47 5.4

(Worker2, Arm) 12.9 39 5.1

(Worker2, Base) 10.5 54 5.7

(Worker3, Arm) 15.1 39 5.8

(Worker3, Base) 9.6 55 5.2

Table 7.2.2 illustrates the reliability of robotic components during an execu-

tion of plan P3. According to these results, (Worker1, Base) is the cause of a

discrepancy for 17% of the generated scenarios and 54% of these scenarios have

failed to reach the goal. As a result this component has the highest severity rate of

9.3%.
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Table 7.2.2: Reliability of robotic components during execution of P3

(r, p) occuranceRate (%) failureRate (%) severityRate (%)

(Charger1, Charge Port) 7.8 58 4.5

(Charger1, Base) 8.8 55 4.9

(Charger2, Charge Port) 5.7 48 2.8

(Charger2, Base) 7.8 42 3.3

(Worker1, Arm) 11.0 40 4.4

(Worker1, Base) 17.1 54 9.3

(Worker2, Arm) 8.9 38 3.4

(Worker2, Base) 9.9 25 2.6

(Worker3, Arm) 6.9 47 3.2

(Worker3, Base) 15.6 46 7.1

Table 7.2.3: Reliability of robotic components during execution of P2

(r, p) occuranceRate (%) failureRate (%) severityRate (%)

(Charger1, Charge Port) 7.5 57 4.3

(Charger1, Base) 5.4 56 3.1

(Charger2, Charge Port) 9.5 65 6.3

(Charger2, Base) 4.3 74 3.2

(Worker1, Arm) 10.8 56 6.0

(Worker1, Base) 12.3 43 5.3

(Worker2, Arm) 17.0 48 8.2

(Worker2, Base) 13.8 35 4.8

(Worker3, Arm) 15.6 42 6.5

(Worker3, Base) 3.5 35 1.2
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Table 7.2.3 illustrates the reliability of robotic components during an execution

of plan P2. According to these results, (Worker2,Arm) is the cause of a discrepancy

for 17% of the generated scenarios and 48% of these scenarios have failed to reach

the goal. As a result this component has the highest severity rate of 8.2%. Results

of robustness evaluation suggest that user should pick plan P2 since it is the most

robust plan for given execution monitoring algorithm. Furthermore, reliability

evaluation indicates that user may consider replacing (Worker2, Arm) with a more

reliable component to further increase performance of an execution.
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Chapter 8

Conclusion and Future Work

We have introduced a formal method to predict states under partial observability

which takes into account the previous observations and diagnoses. We have used

this method for three purposes: to detect discrepancies, to check their relevancies,

and to infer a full current state for replanning.

We have introduced a formal method for diagnostic reasoning under partial

observability to generate meaningful explanations for the relevant discrepancies.

This method provides not only the most likely causes for relevant discrepancies,

but also informative explanations regarding action failures. Our method is general

in that it can be utilized in three different modes taking into account the previous

observations, previous diagnosis, current observation and/or earlier observations.

We have introduced a formal method for replanning under partial observabil-

ity that generates new plans, guided by the diagnosis with explanations. This

method also considers repairing minimum number of broken robotic components,

if needed.

Based on formal methods for various reasoning tasks; hybrid planning, diag-

nostic reasoning and explanation generation, discrepancy detection and checking
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for their relevancy, and guided replanning with repairs, we have introduced a plan

execution monitoring algorithm that works under partial observability and can be

used autonomously or interactively. The introduced execution monitoring is flex-

ible and modular such that it can be used with different diagnostic reasoning and

(guided) replannig approaches.

The experimental evaluation of the proposed execution monitoring algorithm

over large sets of problem instances has shown the usefulness of diagnostic rea-

soning with explanations and guided replanning with repairs. We have also ob-

served that utilizing the current and the previous observations and being able to

revise the previous diagnose improve the effectiveness of the execution monitor-

ing algorithm.

We have introduced a formal method to dynamically and systematically gener-

ate relevant discrepancies that occur due to broken robotic components. Based on

this method, we have introduced a simulation algorithm to evaluate performance

of various execution monitoring algorithms and the robustness of plans. This

simulation algorithm is applicable to variety of execution monitoring algorithms

with/without diagnostic reasoning and/or replanning.

Future Work

In this dissertation, we consider a special type of faults, “broken components of

robots”, as the cause of a discrepancy that lead to a plan failure. We plan to extend

causes of discrepancies with different type of faults, such as discrepancies caused

by exogenous actions or unreliable action executions.

Our diagnostic reasoning method assumes broken components can only affect

execution of actuation actions. As part of our future work, we plan to extend our

method to conditional planning, where in addition to actuation actions, sensing
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action failures need to be considered.

Given that conditional planning necessitates representation of non-deterministic

effect for sensing actions, this extension will also help us to generalize our ap-

proach to system with non-deterministic affects.
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