
IEEE TRANSACTIONS ON ROBOTICS 1

Riemannian Optimization for Distance-Geometric Inverse Kinematics

Filip Marića,b,†, Matthew Giamoua,†, Adam W. Halla,c,
Soroush Khoubyariana, Ivan Petrovića,b, and Jonathan Kellya

Solving the inverse kinematics problem is a fundamental
challenge in motion planning, control, and calibration for ar-
ticulated robots. Kinematic models for these robots are typically
parametrized by joint angles, generating a complicated mapping
between the robot configuration and the end-effector pose.
Alternatively, the kinematic model and task constraints can be
represented using invariant distances between points attached to
the robot. In this paper, we formalize the equivalence of distance-
based inverse kinematics and the distance geometry problem
for a large class of articulated robots and task constraints.
Unlike previous approaches, we use the connection between
distance geometry and low-rank matrix completion to find inverse
kinematics solutions by completing a partial Euclidean distance
matrix through local optimization. Furthermore, we parametrize
the space of Euclidean distance matrices with the Riemannian
manifold of fixed-rank Gram matrices, allowing us to leverage a
variety of mature Riemannian optimization methods. Finally, we
show that bound smoothing can be used to generate informed
initializations without significant computational overhead, im-
proving convergence. We demonstrate that our inverse kinematics
solver achieves higher success rates than traditional techniques,
and substantially outperforms them on problems that involve
many workspace constraints.

Index Terms—Kinematics, Computational Geometry, Rieman-
nian Optimization, Motion and Path Planning

I. INTRODUCTION

Articulated robots consist of actuated revolute joints con-
nected by rigid links. A significant portion of the difficulty as-
sociated with performing a specific task involves finding joint
angles that achieve a desired end-effector pose. Identifying a
set of joint angles or a configuration that reaches the desired
goal pose(s) of one or more end-effectors is known as the
inverse kinematics (IK) problem [1]. In general, this problem
cannot be solved analytically and admits an infinite number of
solutions for robots with redundant degrees of freedom (DOF).
Therefore, most approaches resort to numerical methods that
solve constrained local optimization problems over joint an-
gles. This leads to constraints on end-effector and link poses
that manifest as nonlinear expressions involving joint angles
and kinematic parameters such as link lengths. Without an
informed or lucky initial guess, local search algorithms may

†Denotes equal contribution.
aFilip Marić, Matthew Giamou, Adam W. Hall, Soroush Khoubyarian,

Ivan Petrović and Jonathan Kelly are with the Space and Terrestrial
Autonomous Robotic Systems Laboratory, University of Toronto, Insti-
tute for Aerospace Studies, Toronto, Canada. {<first name>.<last
name>@robotics.utias.utoronto.ca}

bFilip Marić and Ivan Petrović are with the Laboratory for Autonomous
Systems and Mobile Robotics, University of Zagreb, Faculty of Electrical
Engineering and Computing, Zagreb, Croatia. {<first name>.<last
name>@fer.hr}

cAdam W. Hall is jointly with the Dynamic Systems Laboratory, University
of Toronto, Institute for Aerospace Studies, Toronto, Canada.}

Fig. 1: Overview of the proposed algorithm. A goal end-effector
position p6 is defined for a 3-DOF robotic manipulator (top); the
inverse kinematics problem is to find the corresponding joint angles
Θ. Our method uses the matrix D̃ of distances between points
P common to all feasible IK solutions to define an incomplete
graph whose edges are weighted by known distances. Then, we
apply Euclidean distance matrix completion with the known distance
selection matrix Ω to recover the weights corresponding to the
unknown edges, solving the IK problem.

converge to local minima, leading to inefficient performance
or failure to find a sufficiently accurate solution.

Many problems can be expressed using points and their
relative distances [2]. In the case of IK, a geometrically-
intuitive alternative to joint angle parameters is obtained by
considering points attached to the body of the robot [3].
The positions of these points on the robot and their rela-
tive distances can be used to describe the kinematic model
and end-effector goal poses within an IK formulation [4],
[5]. This approach unifies the domain and codomain (i.e.,
the configuration and task spaces) of the kinematic model,
eliminating trigonometric constraints that appear when using
joint angles. In contrast to an angle-based parametrization, the
search space is not restricted to feasible configurations, but
to arbitrary point “conformations” in Euclidean space. The
convergence of such approaches is hindered by a large and
highly redundant search space, in part because the point set
can be rotated and translated without affecting the distance
constraints. A more compact representation is obtained by
modelling the robot using distances as variables [6], [7]. While
this avoids the redundancy induced by the invariance of the
points to rigid transformations, the search space also includes
points in higher dimensions, as there is no guarantee that a
given set of distances can be realized as a collection of points
in two- or three-dimensional Euclidean space.

ar
X

iv
:2

10
8.

13
72

0v
4

 [
cs

.R
O

]
 1

0
D

ec
 2

02
3

IEEE TRANSACTIONS ON ROBOTICS 2

In this paper, we explore IK from a distance geometry
perspective, revealing an equivalence between IK and the
general distance geometry problem (DGP) [8]. By formalizing
this equivalence for a large class of robots comprised of planar
(i.e., two-dimensional), spherical, and revolute joints, we are
able to connect IK to a rich literature of DGP solutions based
on low-rank matrix completion [9]. We find solutions using the
method introduced by Mishra et. al. [10], where a Euclidean
distance matrix [2] is parametrized with the manifold of fixed-
rank Gram matrices [11], maintaining the advantages of a
relaxed search space with fixed dimensionality and reduced
redundancy. Additionally, we show that bound smoothing [12]
can be used to generate informed initializations, further im-
proving convergence. Our main contributions are as follows:

1) we present a distance-geometric formulation of IK for
a variety of robot types and prove its equivalence to
traditional angle-based IK;

2) we extend this formulation by systematically incorporat-
ing common configuration and workspace constraints;

3) we show that our IK formulation can be solved using
generic Riemannian optimization methods for low-rank
matrix completion; and

4) we demonstrate that informed initializations can be gen-
erated using the bound smoothing method from distance
geometry.

Finally, we provide a free and open-source Python implemen-
tation of our algorithms and simulation experiments, which
empirically show the effectiveness of our approach on a variety
of robot models.

Section II briefly reviews existing IK literature and the
application of distance geometry to practical problems. Sec-
tion III covers the relevant background material on distance
geometry, elucidating the connection between Euclidean dis-
tance matrices, low-rank matrix completion, and Riemannian
optimization. Section IV begins with an introduction to the IK
problem and its relevant terminology. Sections IV-A to IV-C
introduce distance-geometric IK formulations for a variety
of robots and constraints (e.g., end-effector poses and joint
limits), while Section IV-D formally proves their equivalence
to the DGP. Section V gives a detailed description of our
IK algorithm and the bound smoothing procedure that can
be used to find an informed initialization. Section VI con-
tains extensive experimental results for several commercial
manipulators and a variety of complex high-DOF mechanisms.
Finally, Section VII provides a summary of our findings and a
discussion of limitations and potential future work. Compared
to typical IK formulations based on joint angles, experimental
results indicate that our method often achieves higher success
rates and faster convergence, and outperforms benchmark
algorithms when many workspace constraints are present.

II. RELATED WORK

We begin with a discussion of existing theory and algo-
rithms for characterizing and solving inverse kinematics prob-
lems. Since our main contribution is a principled application
of distance geometry to IK, we proceed with a review of
the distance geometry literature, with a particular focus on
its (previously) limited intersection with IK.

A. Inverse Kinematics

Due to its widespread use in areas such as robotics [13] and
computer graphics [14], inverse kinematics remains an active
research area with an abundance of relevant literature that we
can only briefly summarize here. IK is typically formulated
with a set of trigonometric equations and inequalities that
constrain the kinematic model configuration to achieve a
desired end-effector position or pose [1]. It is well established
that kinematic chains with up to six DOF admit a finite number
of configurations that satisfy these constraints for feasible end-
effector poses [15]. Moreover, the entire solution set can be
determined analytically [16], [17], and even generated in an
automated manner using the IKFast algorithm [18]. Unfortu-
nately, in many cases of interest there exist redundant DOF
or multiple end-effectors, rendering an analytical approach
infeasible.

Heuristic methods can be used to efficiently solve IK
problems for a limited class of robots. The cyclic coordinate
descent (CCD) algorithm [19] iteratively adjusts joint angles
using simple geometric expressions, resulting in very low
computational overhead and making it useful in real-time
applications. Similarly, the triangulation algorithm from [20]
incurs an even lower computational overhead than CCD, pro-
viding global convergence guarantees within a predetermined
number of calculations for robots comprised of joints with
unconstrained axes of rotation. While highly efficient, both
methods require additional modifications and engineering in
order to be adapted to robots with multiple end-effectors
or with joint limits. The algorithms developed by Han and
Rudolph apply unique parametrizations to IK problems over
spherical linkages [7], [21]. These parametrizations reveal a
piecewise-convex structure that simplifies the solution, but
the approach does not apply to generic revolute manipulators
and cannot readily incorporate simple constraints like joint
limits. Recently, Aristidou et al. introduced FABRIK [22],
[23], a heuristic solution to the IK problem which uses iter-
ative forward-backward passes over joint positions to quickly
produce high-quality solutions for a variety of robot models.
Because of its speed and general applicability, we implement
FABRIK as a benchmark for comparison with our algorithm
in Section VI.

IK is often formulated as a local optimization problem
over joint angles and solved using unconstrained or bounded
nonlinear programming methods such as L-BFGS-B [24] or
SQP [25]. These methods have robust theoretical underpin-
nings [26] and can approximately support a wide range of
constraints through the addition of penalties to the cost func-
tion [27]. However, the highly nonlinear nature of the problem
makes them susceptible to local minima, often requiring
multiple initial guesses before returning a global minimum,
if at all. In robotics, many such methods belong to the family
of closed-loop IK (CLIK) techniques [1], where the kinematic
Jacobian (pseudo)inverse is used to apply differential kine-
matics in a closed-loop fashion, emulating a feedback control
problem [28]. Major advantages of CLIK methods include
their ease of implementation and a variety of extensions pro-
viding numerical robustness [29] and efficient incorporation

IEEE TRANSACTIONS ON ROBOTICS 3

of secondary objectives through redundancy resolution [30].
However, alongside the convergence issues commonly encoun-
tered with first-order local optimization, CLIK methods often
have problems with singularities [31] due to their reliance
on the kinematic Jacobian. In Section VI, we compare our
algorithm to the IK solver recently introduced by Erleben
et. al. [32], who show that second-order methods with exact
Hessian matrices have improved convergence properties.

Recently, several optimization approaches have been in-
troduced that forgo the standard joint angle parametrization
in favour of models based on Cartesian coordinates (also
known as natural coordinates [3]). The authors of [33] use
a piecewise-convex relaxation of the SO(3) group together
with a set of points on the robot to formulate the constrained
IK problem as a mixed-integer linear program (MILP). Their
formulation can detect infeasible problems and provide ap-
proximate solutions to feasible problems, at the cost of a com-
putationally intensive solution method. Yenamandra et al. [34]
use a similar relaxation to formulate IK as a semidefinite
program. Blanchini et al. [35], [4] treat points on a rigid
manipulator as virtual masses in a potential field, leading to
“minimum energy” solutions to convex formulations of planar
and spherical inverse kinematics. Naour et al. [5] formulate
IK as a nonlinear program over inter-point distances, showing
that solutions can be recovered for unconstrained articulated
bodies. While our kinematic model is based on inter-point
distances, our approach differs from previous work by encom-
passing a larger class of robots and allowing for constraints
such as symmetric joint limits and spherical obstacle avoid-
ance. Moreover, we provide a comparison with both heuristic
and nonlinear optimization approaches, demonstrating that
our proposed solution method provides a benchmark for IK
problems.

B. Distance Geometry

The theory of distance geometry plays an important role
in the development of computational methods for analyzing
problems defined using inter-point distances [8]. This elegant
theoretical framework is often applied to solve a diverse set
of problems spanning computational chemistry [12], signal
processing [36], and acoustics [2]. Liberti et al. [8] present a
detailed taxonomy of distance geometry problems, which can
be collectively described as completing a partially-connected
graph of inter-point distances. When a high degree of con-
nectivity is present (i.e., most distances are known), the
classical multidimensional scaling (MDS) algorithm [37] is
often used. The EMBED algorithm models the problem of
molecular conformation using distances, providing bounds on
unknown distances using bound smoothing [12] and itera-
tively finding solutions for smaller problem instances. Larger
problem instances that satisfy some additional assumptions
can be solved with a branch-and-prune strategy [38]. Convex
relaxations of the DGP have been coupled with semidefinite
programming methods in both chemistry and sensor network
localization [39], [40].

Known distances can be arranged in an incomplete Eu-
clidean distance matrix (EDM) [2] of rank at most K + 2,

where K is the dimension of the Euclidean space. In many
applications, the DGP can be solved by determining the
unknown EDM entries using a low-rank matrix completion
approach [9]. Recently, numerical optimization methods based
on results from Riemannian geometry have been utilized to
efficiently perform EDM completion [41]. Mishra et al. solve
the EDM completion problem using a Riemannian trust-region
method by parametrizing the EDM with elements of a quotient
manifold invariant to orthogonal transformations [10]. Nguyen
et al. present a similar approach in [42] that finds solutions to
the problem of sensor network localization using a Riemannian
conjugate gradient method on a manifold representation of
EDMs.

Many problems pertaining to active structures such as robots
also admit purely distance-based descriptions [43]. Porta et
al. relate the IK problem to EDM completion [6] for several
common classes of manipulators and leverage an algebraic
approach to find configurations reaching a desired end-effector
pose. For general systems of kinematic and geometric con-
straints, Porta et al. apply a complete but computationally
expensive branch-and-prune solver that iteratively eliminates
regions of the solution space using geometric techniques [44].
Our recent work [45] applies a convex sum-of-squares (SOS)
relaxation [46], [47] to a distance-geometric formulation of
inverse kinematics, exploiting theoretical properties that guar-
antee a globally optimal solution for many problem instances.
Moreover, we previously showed that kinematic constraints
induce an inherently sparse structure that can be used to sig-
nificantly reduce the computational burden usually associated
with the SOS approach (and other convex relaxation-based
methods).

In this paper, we use the Riemannian optimization method
in [10] to solve distance-geometric formulations of the IK
problem. We model the motion constraints of individual joint-
link pairs by defining distances between key points in the
structure of the robot in a manner similar to [6], which allows
us to set constraints on end-effector poses and joint angles
by limiting the associated distances to a predetermined range.
In contrast to [6], the numerical optimization approach makes
our algorithm suitable for a more general class of robots with
redundant DOF. Crucially, we use the DGP as a mathematical
basis for our approach and derive simple and inclusive criteria
for the compatibility of a robot mechanism with our method.
Finally, we show that bound smoothing [12] can be used as
an effective initialization method that significantly improves
convergence.

III. BACKGROUND

In this section, we state the core distance geometry problems
that serve as a theoretical foundation for the proposed inverse
kinematics formulation. By analyzing well-known identities
for representing collections of points in the form of Euclidean
distance matrices [2], we arrive at a DGP formulation that
is based on low-rank matrix completion [48]. Finally, we
summarize the optimization-based EDM completion approach
introduced in [10], which we use to solve the problems
presented herein.

IEEE TRANSACTIONS ON ROBOTICS 4

A. Distance Geometry

The fundamental problem of distance geometry, as stated
in [8], is as follows:

Problem 1 (Distance Geometry Problem). Given an integer
K > 0, a set of vertices V , and a simple undirected graph
G = (V,E) whose edges {u, v} ∈ E (where u, v ∈ V) are
assigned non-negative weights

{u, v} 7→ du,v ∈ R+ ,

find a function p : V → RK such that the Euclidean distances
between pairs match the assigned weights

∀ {u, v} ∈ E , ∥p(u)− p(v)∥ = du,v. (1)

The function p : V → RK is also known as a realization of
the graph G. Any realization p of G maps all the vertices in
V to a collection of points P ∈ R|V |×K , where each row is
the position pu = p(u) ∈ RK of the point corresponding to
vertex u ∈ V .

In some cases, we may wish to reduce the number of
possible realizations by constraining a subset of inter-point
distances (i.e., edge weights) to some interval. Consequently,
we can extend Problem 1 such that the edges in E are weighted
by positive intervals, resulting in the more general interval
distance geometry problem [8]:

Problem 2 (Interval Distance Geometry Problem). Given an
integer K > 0 and a simple undirected graph G = (V,E)
whose edges {u, v} ∈ E are weighted by intervals

{u, v} 7→ [d−u,v, d
+
u,v] ⊆ R+,

find a realization in RK such that Euclidean distances between
pairs belong to the edge intervals

∀ {u, v} ∈ E , ∥p(u)− p(v)∥ ∈ [d−u,v, d
+
u,v]. (2)

Note that for all e = {u, v} ∈ E, the notation for Problem 2
supports unconstrained or missing distances (d−e = 0, d+e →
∞), as well as the equality constraints found in Problem 1
(d−e = d+e).

In this paper, we refer to both Problem 1 and 2 as the
DGP, where the specific formulation can be inferred from
the presence or absence of distance intervals on the edge
weights of G. If a realization that satisfies an instance of
the DGP exists, the corresponding collection of points P can
be arbitrarily translated, rotated, and reflected such that the
distance constraints still hold [2]. This defines the equivalence
class [P] of Eq. (14). Additionally, there may be multiple
equivalence classes [P] that correspond to distinct solutions
to Problem 1 or 2. We will make use of this distinction in
Section IV-D.

B. Euclidean Distance Matrices

Consider a realization of a graph G, obtained by solving
Problem 1. By arranging the resulting points in a matrix
P = [p0,p1, . . . ,pN−1]

T ∈ RN×K , all inter-point distances
du,v can be determined via the Euclidean norm:

du,v = ∥pu − pv∥ .

The product X ≜ PPT is known as the Gram matrix, and
belongs to SN+ , the set of N ×N symmetric positive semidef-
inite matrices. Elements of the Gram matrix can conveniently
express squared inter-point distances

d2u,v = Xu,u − 2Xu,v +Xv,v , (3)

and the full set of squared inter-point distances in Eq. (3) can
be efficiently calculated using the matrix identity

D = diag (X)1T + 1diag (X)
T − 2X, (4)

where diag (X) is the vector formed by the main diagonal of
the Gram matrix [2], and 1 is a column vector of ones. The
resulting matrix D is known as a Euclidean Distance Matrix
(EDM). We use K (X) to denote the linear operator mapping
X to D as defined by Eq. (4).

Consider the problem of recovering the original collection
of points P from squared inter-point distances in the matrix
D. Necessary and sufficient conditions for a matrix to be an
EDM can be found in [49]. If D is an EDM, a Gram matrix
that satisfies Eq. (4) can be recovered by taking

X = −1

2
JDJ, (5)

where J = I − 1
N 11T is the so-called geometric centering

matrix [2]. Once X has been recovered, a collection of
points P̂ ∈ RN×K can be obtained through the eigenvalue
decomposition X = UΛUT by taking the first K eigenvalues
λi

1:

P̂T =
[
diag

(√
λ0,

√
λ1, . . . ,

√
λK−1

)
,0K×N−K

]
UT.

(6)
While the squared distances of points in P̂ recovered using this
procedure match those defined in D exactly, they are in general
not equal to the original P. This is due to the fact that inter-
point distances are preserved under rigid transformations. In
order to recover the absolute positions of the points, at least K
points, known as anchors, need to have their positions defined
a priori. These anchors are used to formulate the orthogonal
Procrustes problem [2], whose solution is the rotation (or
reflection) R ∈ O(K) and translation t ∈ RK that transform
the positions of anchors in P̂ to their predefined positions.
This transformation can then be applied to all the points in P̂
to yield the desired set of points P.

C. Euclidean Distance Matrix Completion

As discussed in Section III-A, a collection of points can
be described using a graph G = (V,E) that is weighted by
inter-point distances. If all inter-point distances are known,
the graph is complete, meaning that all of its edges and
corresponding weights are prescribed. This graph can be
compactly represented by the EDM whose elements are

∀ {u, v} ∈ E, Du,v ≜ d2u,v , (7)

and a realization of the graph can be obtained simply by taking
the collection of points recovered via Eq. (5) and Eq. (6). It

1Assuming the recovered realization is K-dimensional, only the first K
eigenvalues are nonzero.

IEEE TRANSACTIONS ON ROBOTICS 5

follows that the recovered collection of points is in fact a
solution of the DGP defined by Problem 1. Conversely, many
DGP instances are represented by graphs that only have a
subset of edges defined a priori, resulting in an EDM with
missing elements.

The problem of finding the missing elements in a partially
defined EDM is known as the EDM completion problem [2],
which is strongly NP-hard in general [8]. By defining the
symmetric binary matrix Ω with elements

Ωu,v ≜

{
1 if {u, v} ∈ E,

0 otherwise,
(8)

we arrive at a common statement of the EDM completion
problem as low-rank matrix completion:

min
X∈X

f(X) ≜
1

2

∥∥∥Ω⊙ (D̃−K (X))
∥∥∥2
F
, (9)

where ⊙ is the Hadamard (element-wise) matrix product,
the subscript F denotes the Frobenius norm, and D̃ is the
incomplete distance matrix. Since the workspace dimension K
of the robot is known, the Gram matrix X defined in Eq. (3)
is constrained to the manifold

X =
{
PPT : P ∈ RN×K

∗

}
, (10)

which is exactly the manifold of rank-K positive-semidefinite
matrices. The NP-hardness of this problem originates from
the non-convex constraint on the rank of X, which can be
relaxed in order to obtain a solution using Euclidean local
search or semidefinite programming [50]. From Eq. (10), we
see that relaxing the rank constraint expands the search space
to collections of points with dimension greater than K. This is
fundamentally incompatible with physical problems, for which
the dimension of points is fixed. In fact, many interior point
methods that solve the resulting convex semidefinite program
tend to return a max-rank (and therefore potentially non-
physical) solution [51].

We can avoid explicit rank constraints in Eq. (9) by using the
Burer-Monteiro factorization [52] to define the cost function
directly in terms of the points P ∈ RN×K . This results in a
non-convex optimization problem

f∗ = min
P∈RN×K

f(PPT), (11)

which reduces the number of variables without changing the
global minimum [53]. Following the derivation in [10], the
gradient of Eq. (9) with respect to P is defined as

∇Pf = 4
(
S− diag (S1)

)
P, (12)

where S = Ω ⊙ (D̃ − K (X)) and diag (S1) is a diagonal
matrix formed by the vector S1.

Second-order optimization methods benefit from an exact
analytical expression of the Hessian ∇P(∇Pf) = ∇2

Pf .
In [54], an analytic expression for the full Hessian of Eq. (11)
is obtained in an element-wise fashion. However, this expen-
sive computation can be avoided by observing that many opti-
mization methods only require the Hessian-vector product [55]

and by making use of the identity

DZ(∇Pf) ≜ ∇2
Pf · Z ,

where DZ(∇Pf) =
d∇f((P+tZ)(P+tZ)T)

dt is the Frechét (di-
rectional) derivative of the gradient in the direction Z. We then
obtain

∇2
Pf · Z =4DZ

(
S− diag (S1)

)
P

+4
(
S− diag (S1)

)
Z .

(13)

Unlike gradient descent, second-order optimization methods
feature a superlinear convergence rate, which is useful when
highly accurate solutions of Eq. (11) are required.

D. Optimization on the Manifold

As stated in Section III-B, inter-point distances are invariant
to rigid transformations of the underlying point set. It follows
that the problem in Eq. (11) is invariant to right-multiplication
of the variable P with orthogonal matrices Q ∈ O(K). This
results in non-isolated minima, which have been shown to
cause step evaluation issues for second-order methods [56],
[11] when close to a solution, rendering the classical result
of superlinear convergence void. This issue is circumvented
in [11] by considering the set of all equivalence classes of the
form

[P] =
{
PQ|Q ∈ RK×K ,QTQ = I

}
. (14)

Elements of this set constitute a manifold M which is the
quotient of the set of full-rank N × K matrices by the
orthogonal group O(K):

M ≜ RN×K
∗ /O(K). (15)

It follows that the overall search space is reduced by reformu-
lating Eq. (11) on the manifold M as

ϕ∗ = min
[P]∈M

ϕ([P]), (16)

where ϕ([P]) = f(PPT). Further, it can be shown that
the quotient manifold M has the structure of a Riemannian
manifold [56].

Definition 1 (Riemannian Manifold). A Riemannian manifold
M is a smooth manifold equipped with a positive-definite
inner product gP : TPM× TPM→ R on the tangent space
TPM at each point P ∈ M that varies smoothly from point
to point.

Next, we provide an overview of how the EDM completion
problem in Eq. (16) can be adapted to the Riemannian setting,
as described by Mishra et. al. [10]. We refer the reader
to [56] for a detailed treatment of quotient manifolds and their
geometry.

Formally, the tangent space TPM of a point P in M is
the space of all tangent vectors γ′(0) to curves γ : R →M,
where γ(0) = P. The tangent space TPM is endowed with
the inner product, also known as the Riemannian metric

gP(Z1,Z2) = Tr(ZT
1Z2), Z1,Z2 ∈ TPM, (17)

IEEE TRANSACTIONS ON ROBOTICS 6

which is the usual metric on RN×K . We can divide the tangent
space into two orthogonal subspaces [11]

TPM = VPM⊕HPM ,

where the tangent space to the equivalence classes in Eq. (14)
is known as the vertical subspace

VPM =
{
PQ|Q ∈ RK×K ,QT +Q = 0

}
, (18)

and the orthogonal complement of VPM in TPM is known
as the horizontal subspace

HPM =
{
Z ∈ TPRN×K

∗ |ZTP = PTZ
}
. (19)

Given a tangent vector Z ∈ TPM at a point P ∈ M, we
can recover the horizontal component from Eq. (19) using the
horizontal projection operator.

Definition 2 (Horizontal projection). The horizontal projection
PHPM : TPM → HPM, that recovers the horizontal lift
ZH of the tangent vector Z ∈ TPM corresponding to the
horizontal subspace in Eq. (19) is defined as

PHPM(Z) = Z−PC , (20)

where C is a skew-symmetric matrix solving the Sylvester
equation:

CPTP+PTPC = PTZ− ZTP.

Using the projection operator PHPM, derivatives of the func-
tion ϕ (defined on the manifold) are computed from the
derivatives of the function f (defined in Euclidean space) [56]
by producing the horizontal lift of the Euclidean gradient of
f at point P:

gradPϕ = PHPM(∇Pf). (21)

Similarly, by projecting the directional derivative of the gradi-
ent defined in Eq. (13), we compute the Hessian-vector product
of ϕ from that of f as

HessPϕ [Z] = PHPM(DZ(gradPϕ)). (22)

Once the geometrically-correct derivatives have been pro-
duced, the step size is calculated and the point is moved along
a descent direction on the manifold. To ensure the resulting
point remains on the manifold, we use the retraction operator.

Definition 3 (Retraction). In order to apply a direction of
movement in HPM while staying on the manifoldM, we use
the retraction operator, which is defined as

RP(W) = P+W. (23)

The projection and retraction operators allow for the adaptation
of classic local optimization algorithms to the Riemannian
setting [57], [58].

IV. DISTANCE-GEOMETRIC INVERSE KINEMATICS

Articulated bodies, such as the robotic manipulator shown
in Fig. 1, are composed of revolute joints connected by rigid
links. Joint angles can be arranged in a vector Θ ∈ C, where
C ⊆ Rn is known as the configuration space. Analogously, the

poses of one or multiple end-effectors constitute the task space
T . The mapping F : C → T , relating joint variables to task
space coordinates (e.g., end-effector poses) is known as the
forward kinematics of a robot. This leads to the accompanying
notion of inverse kinematics, which is simply the inverse
mapping F−1 : T → C. Since the mapping F−1 is generally
not injective (i.e., there are multiple solutions for a single
target pose) and cannot be determined analytically, numerical
methods are instead used to find a single solution. This leads
us to the definition of the central problem in this paper:

Problem 3 (Inverse Kinematics). Given a task space goal
w ∈ T , find a configuration Θ ∈ C such that the forward
kinematic mapping F (Θ) = w holds.

Note that the IK problem extends to cases where various
constraints on the position of the robot are present. For
example, it is often necessary to avoid collision with obstacles
in the environment, as well as to respect limits on joint angles.
Therefore, while the core problem is relatively simple, it can
be extended to include challenging instances that commonly
occur in practice. Unlike most approaches that attempt to di-
rectly solve Problem 3 in terms of joint variables Θ, we adopt
an alternative formulation based on inter-point distances [45],
[6], [59]. Our approach, which allows us to trivially recover
Θ from our distance-based solution, is developed in detail
in Sections IV-A to IV-C and summarized in Fig. 1. In
Section IV-D, we prove that our formulation of Problem 3
is equivalent to the distance geometry problem [8] for a broad
class of manipulators. Finally, in Section IV-E we show how
robots with planar and spherical joints constitute special cases
for which our formulation can be trivially simplified.

A. Kinematic Model

Articulated robots are comprised of a series of single-axis
revolute joints oriented to provide a useful range of poses in
their task spaces. Our goal in this section is to construct a
graph representation of such mechanisms that is compatible
with the DGP formulation of Problem 2. We achieve this by
rigidly attaching a pair of points to the rotation axis of each
joint in a manner similar to [6]. As the example in Fig. 2
illustrates, the distances between points corresponding to
neighbouring joints are invariant to changes in their angles
during movement. These distances are key to describing the
degrees of freedom of the robot.

Consider the points attached to the rotation axes of neigh-
bouring joints, shown in Fig. 2 and labelled u and v. We
denote the positions of these points and the orientations of
their respective coordinate frames as pu, pv , Ru, and Rv ,
respectively. Further, pu,v and Ru,v denote the position and
orientation of the fixed coordinate frame at v in the rotating
coordinate frame at u. The matrix Rz(θu) rotates pv and its
child joints about the axis ẑ by the joint angle θu. Given
the joint angles Θ, these positions and orientations can be
computed recursively as:

Rv = Ru Rz(θu)Ru,v ,

pv = pu +Ru Rz(θu)pu,v

∀ (u, v) : v ≻ u, (24)

IEEE TRANSACTIONS ON ROBOTICS 7

Tr
an

sf
or

m
s

P
oi
nt
s

G
ra
ph

Fig. 2: Visualization of the point placement used to describe a generic
linkage of revolute joints and the corresponding graph representation.
The top graphic shows the transformations used to obtain the poses
of the joint coordinate frames. The middle graphic shows how pairs
of points indexed by (u, ũ), (v, ṽ), and (w, w̃) are placed along the
rotation axis of their respective joints. The bottom graphic shows
how the corresponding vertex representations form a graph whose
edges are weighted by the known inter-point distances defined by
link geometry in Eq. (26).

where ≻ indicates that the joint indexed by u is the parent
of the joint indexed by v in the directed graph describing the
robot structure.2 For neighbouring joints, pu,v and Ru,v are
determined by the robot model parametrization (e.g., the DH
convention [60] or Lie groups [61]). The second pair of points,
labelled by ũ and ṽ, are obtained by translation along axis of
rotation of each joint:

pũ = pu +Ruẑ ,

pṽ = pv +Rvẑ .
(25)

Together, these four points describe the relative position and
orientation of the joints’ rotation axes. For a given robot, we
index the points obtained using Eq. (24) and Eq. (25) with the
set of vertices Vs ⊂ V of an incomplete graph G = (V,E),
where the set of edges E is weighted by inter-point distances
that are known a priori. These distances describe the overall
geometry and degrees of freedom of the robot, and they are
invariant to the feasible motions of the robot (i.e., they remain

2We assume that the graph is a tree whose root is the fixed robot base and
whose leaves are the end-effectors; we leave extensions of our formulation to
parallel manipulators, which contain loops, for future work.

constant in spite of changes to the configuration Θ):

du,ũ = dv,ṽ = 1,

du,v = ∥pu,v∥,
du,ṽ = ∥pu,v +Ru,vẑ∥,
dũ,v = ∥pu,v − ẑ∥,
dũ,ṽ = ∥pu,v − ẑ+Ru,vẑ∥ .

∀ (u, v) ∈ Vs . (26)

Depending on the specific link geometry, some identities in
Eq. (26) may vanish, allowing us to merge identical points
and reduce the overall size of the graph.

B. Constraints

In addition to describing the rigid structure of a robot using
the distances in Eq. (26), we also need to introduce distance
constraints that encode features of specific IK problem in-
stances. To that end, this section describes how additional
vertices and distances may be used to constrain the end-
effector(s) of a robot, implement obstacle avoidance, and
enforce joint limits.

1) Base structure
In order to uniquely specify points with known positions

(i.e., end-effectors) in terms of distances, we define the “base
vertices” of a robot as Vb = {o, x, y, z} ⊂ V , where o is
the root or base joint. The elements of Vb are used to form
a coordinate frame with vertex o at the origin, as shown
in Fig. 3a. We achieve this by defining the following edge
weights:

do,x = do,y = do,z = 1,

dx,y = dx,z = dy,z =
√
2.

(27)

This base structure is used in the remainder of the section to
specify, in terms of distance constraints, end-effector poses and
joint limit constraints for links starting at the root. Note that
the vertices x and y may be dropped in cases where the root
joint angle is not limited to some interval, as this makes the
solution set depend only on the distances from the goal points
to the root o and to each other. Moreover, we may trivially
reduce the graph size by using the points po and põ attached
to the base joint axis instead of the vertices o and z [6].

2) End-effector pose
We consider two types of task space goals for an end-

effector:
1) a 3-DOF position goal (Tp = R3), and
2) a 5-DOF “direction goal” defined by the position of two

distinct points (Td = Tp × Tp).3

In both cases, w ∈ T is encoded as a set of points fixed to
the end-effector. These points are indexed by vertices Ve ⊂ V ,
and their positions are completely determined by the goal w.
Thus, an end-effector goal can be enforced by weighting the
relevant edges with distances

du,v = ∥pu − pv∥ , u ∈ Ve , v ∈ Vb . (28)

3A full 6-DOF pose goal is not supported, as purely distance-geometric
constraints cannot prevent reflections of the tool frame: this is equivalent to
the assumption that the final joint has no angle limits when that axis is aligned
with the final joint (e.g., for a common spherical wrist).

IEEE TRANSACTIONS ON ROBOTICS 8

(a) (b) (c) (d)

Fig. 3: Visualization of the procedure in Section IV for a 3-DOF revolute manipulator with joint limits. a) The solid black lines represent
fixed distances between neighbouring joints and between base vertices. b) The dashed lines correspond to the distances constrained to some
interval [d−, d+] determined by symmetric limits on the joint angle θv . c) The solid black lines represent the distances fixed by setting a
desired end-effector pose. d) Spherical obstacles are represented as vertices in the graph whose position is fixed by defining the distances to
the base nodes. The lines drawn in red represent some distances whose lower bounds can be set in order to achieve obstacle avoidance.

3) Joint limits

Depending on the kinematic structure of the robot, symmet-
ric joint limits can be represented by using distance intervals.
In Fig. 3b, we see that a given joint angle can be represented
(up to sign) using up to four distinct distances:

d−u,w =
√
d2u,v + d2v,w − 2du,vdv,w cos(θlimv) ,

d+u,w = du,v + dv,w .

It follows that joint values can be restricted to symmetric
intervals by constraining the distances between vertices as-
signed to the parent and child of a particular joint. Generally,
limiting one of the aforementioned distances to an interval
results in a distinct set of joint angle limits, depending on the
particular distance chosen. However, it is important to note
that the nature of the distance-based representation may make
it difficult to implement arbitrary joint limits, as undesired
symmetries may occur in certain ranges.

4) Obstacle avoidance

We extend our model to incorporate spherical obstacles
whose centers are indexed with the set of vertices Vo ⊂ V . The
radius of each obstacle is given by the function ρ : Vo → R+.
Much like the elementary basis vectors in Vb, we can fix each
center pc, ∀ c ∈ Vo, in the global reference frame and augment
G to include the constant inter-point distances for edges in
Vo × Vo and Vo × Vb:

∥pi − pj∥ = di,j ∀ (i, j) ∈ Vo × Vo ∪ Vo × Vb. (29)

Finally, points attached to the joints of a robot (i.e., those
indexed by Vs) can be constrained to lie outside of each
obstacle:

∥pu − pc∥ ≥ ρ(c) ∀(u, c) ∈ Vs × Vo. (30)

The radii given by ρ can be inflated to account for the shape
and size of the robot’s joints or as a conservative safety
measure. For robots with long links, auxiliary points indexed
by Vs′ can be easily added between points in Vs for higher
precision collision avoidance.

C. Solution Recovery
The remaining edge weights can be determined by complet-

ing the resulting partial EDM and a canonical realization P∗

can be recovered. This result is achieved by identifying the
points indexed by Vb with the origin and K elementary basis
vectors in RK , which act as anchors in the solution of the Pro-
crustes procedure [2] discussed in Section III-B. For K = 3,
since the anchors form a right-handed frame that fully specifies
a 6-DOF pose, P∗ is unique. In Proposition 1, we prove that
P∗ will correspond to a unique feasible configuration Θ ∈ C
if the successive joint axes of our robot are coplanar. Once
P∗ is obtained, we can iteratively recover all the joint values
by solving

θu = min
θ
∥RuRz(θ)pu,v − (pv − pu)∥2

+∥RuRz(θ)pu,v +Rvẑ− (pṽ − pu)∥2 .
(31)

This problem can be reduced to finding the roots of a quartic
polynomial and therefore admits a fast closed-form solution.
Alternatively, Θ can be recovered from Eq. (24) and Eq. (25)
with inverse trigonometric functions. Notably, the optimization
formulation of Eq. (31) is robust to numerical errors in the
calculation of P∗ by Algorithm 1.

D. Equivalence to Distance Geometry
In this section, we prove that the robot models (i.e., the

proposed graph descriptions) discussed thus far allow us to
solve inverse kinematics (Problem 3) by means of the DGP
(Problem 1). The main result is as follows:

Proposition 1 (IK ≡ DGP). Suppose that the kinematic model
of Section IV-A describes a robot whose successive joint axes
are coplanar. Then, the solutions to Problem 1 correspond
one-to-one with the solutions to Problem 3. More precisely, if
pu,pũ,pv , and pṽ are coplanar for all v ≻ u, then for any
end-effector target w ∈ T , we have a corresponding DGP
encoded in G and there exists a bijection

Q : Cw → G, (32)

where Cw ⊂ C is the set of configurations achieving w, and G
is the space of all realizations (up to an arbitrary Euclidean
transformation) of G.

IEEE TRANSACTIONS ON ROBOTICS 9

Proof. We begin by recalling that the presence of base struc-
ture constraints (Eq. (27)) in our model allows us to identify
“equivalent” realizations of a completion G with a canonical
point assignment P∗. We will assume K = 3 for the entire
proof: K = 2 is a special case which can be simplified by
noting that all joints share the same axis of rotation and by
removing the “auxiliary” points defined by Eq. (25).

For a given robot and w ∈ T , the preceding sections
described a set of DGP constraints which we write as the
incomplete graph G = (V,E). We will now proceed to prove
that there is a bijection between Cw and the equivalence classes
representing distinct solutions to G (each equivalence class
is represented by its canonical solution P∗). It suffices to
construct a map Q that is injective and surjective, where Q
is simply the iterative procedure described by Eq. (24) and
Eq. (25).

Injective: We will use a proof by contradiction. Suppose
∃Θ1 ̸= Θ2 ∈ Cw such that Q(Θ1) = P∗ = Q(Θ2). Let
u be the vertex label for a joint whose corresponding angle
Θu

1 = θu1
̸= θu2

= Θu
2 , but has θs1 = θs2 for all ancestors

s of u. At least one such u is guaranteed to exist because
Eq. (24) and Eq. (25) tell us that the axis points pv and pṽ

of joint v ≻ u only depend on θu and the positions of all its
ancestor joints’ points. This gives us:

pu +RuRz(θu1)pu,v = pu +RuRz(θu2)pu,v, (33)

=⇒ Rz(θu1
)TRz(θu2

) = I,

=⇒ θu1
= θu2

,

where we have assumed without loss of generality that pu,v ̸=
c ẑ for some c ∈ R.4 This contradicts our premise that θu1

̸=
θu2

and proves that the mapping is injective.
Surjective: We will show that for each P∗ ∈ G there exists

Θ ∈ Cw such that Q(Θ) = P∗ ∈ G. By the definition of G,
∥P∗

v − P∗
u∥ = ∥pu,v∥ and ∥P∗

v − P∗
ũ∥ = ∥pu,v − ẑ∥ for all

v ≻ u, therefore we can always find θu such that

P∗
v = P∗

u +Ru Rz(θu)pu,v, (34)

as required by Eq. (24). Since we have assumed that the points
pu,pũ,pv , and pṽ are coplanar, the position of P∗

ṽ is uniquely
determined by the other three points and therefore must take
the form specified by Q and given by θu in Eq. (25):

P∗
ṽ = P∗

v +Rvẑ = P∗
u +Ru Rz(θu)pu,v +Rvẑ. (35)

If the points were not coplanar, the six distance constraints
in Eq. (26) would only specify their relative positions up
to a reflection ambiguity (i.e., there would be two feasible
tetrahedra with opposite “chirality” or “handedness”). This
situation is illustrated in Fig. 4.

Finally, we address the interval constraints in G which
correspond to joint angle limits of C and obstacle avoidance in
T . We have established the desired bijection Q : Cw → G for
IK problems defined only by equality constraints. Including
interval constraints simply limits the space of DGP solutions

4In the special case where pu,v = c ẑ, injectivity can be proved with pṽ
instead of pv . If pṽ is collinear with pv , pu, and pũ, then joint v is a
rotation around the same axis as joint u and they can be effectively combined
into a single joint.

Fig. 4: Illustration of the chirality or handedness issue that arises for
non-coplanar pairs of joint axes v ≻ u. If pu,pũ,pv , and pṽ are
coplanar, our distance-geometric approach cannot introduce spurious
solutions based on reflections of the true robot geometry. If pṽ were
replaced with pṽ1

as shown, the spurious point pṽ2
would also satisfy

the distance constraints in Eq. (24) because it is a reflection of pṽ1
across the plane containing pu,pũ and pv .

to G′ ⊂ G. Since the inverse of a bijection is a bijection, and
a subset of the domain of a bijection induces a bijection, we
have the desired Q′ : Cw → G′ and the proof is complete.

Proposition 1 establishes that the IK problem for a large
class of robots can be formulated as a DGP. Our experiments
in Section VI demonstrate that the requirement of coplanar
neighbouring axes is satisfied by many popular commercial
manipulators. Additionally, it is worth noting that planar and
spherical manipulators satisfy this requirement by definition.

E. Special Cases

In many cases, the generic DGP formulation of the IK
problem presented in this section will result in kinematically
redundant points in Vs. One example is points pu, pv that
can be selected to coincide (i.e., pu = pv for all values of
Θ) because they lie on joint axes u ≻ v that intersect. While
finding a generic strategy for generating DGP representations
with minimal graph sizes is beyond the scope of this paper,
we can identify two cases of practical importance where this
reduction is both trivial and significant.

By reducing the point dimensionality to K = 2, we
can represent planar mechanisms using a single point per
joint, as shown in Fig. 5a. Without loss of generality, this
significantly reduces both the number of points and distances
used to describe the IK problem, resulting in lower overall

(a) (b)

Fig. 5: Visualization of planar and spherical mechanisms. These are
two common examples of models for which our IK formulation uses
a reduced number of variables.

IEEE TRANSACTIONS ON ROBOTICS 10

computation times. For a detailed derivation of this simplified
planar problem formulation, see [45].

A similar simplification can be obtained for a class of
robots with joints allowing full or partial spherical motion,
such as those of the human shoulder and hip. In addition
to humanoids, these spherical joints can be found in highly
redundant snake-like robots used in applications that include
pipe inspection and surgery [62]. As shown in Fig. 5b, the
joints can be represented as two orthogonal revolute joints in
the same position, which again allows us to drop the points
used to define the rotation axes, while still allowing us to
limit the elevation angle and thereby restricting link motions
to a spherical cone. The remaining constraints can be trivially
derived from those presented for the general case.

V. ALGORITHM

To summarize so far, in Section IV-A we derived distance
geometric IK formulations for a variety of different robot
types. In Section III-C and Section III-D we showed how a
Riemannian optimization approach to low-rank matrix com-
pletion can be used to efficiently solve instances of the DGP.
In this section, we propose an extension to the optimization
problem in Section III-D, making it compatible with the
distance-geometric IK formulation.

Modifying the matrix Ω from Eq. (8) to select only those
EDM elements corresponding to known invariant distances
in D̃, we introduce the matrices Ψ− and Ψ+ that select
inter-point distances with lower or upper bounds defined by
joint limits or obstacle avoidance constraints (i.e., the known
elements of D̃− and D̃+). We can now formulate the DGP as
the Riemannian optimization problem

min
[P]∈M

ϕ([P]) ≜
1

2

∥∥∥Ω⊙ (D̃−K
(
PPT

)
)
∥∥∥2
F

+
1

2

∥∥∥max
{
Ψ± ⊙ (±D̃± ∓K(PPT)), 0

}∥∥∥2
F
.

(36)

The first term in this cost serves to enforce equality constraints
on the distance matrix K(X), representing the constant set
of distances defined by robot and task geometry. The second
term enforces joint limits and obstacle avoidance constraints
by setting either a lower or upper bound on a set of distances
related to the joint rotation angle or distances from the obstacle
center, with the element-wise max operator producing a non-
zero value when these bounds are violated. Assuming that
the joint limits are symmetric, the lower or upper bound on
the distances will be implicitly enforced by the link length
constraints, meaning that only one bound needs to be explicitly
included in Eq. (36).

A. The Riemannian Trust-Region Algorithm

The quality of the configuration recovered by the reconstruc-
tion step outlined in Section IV-C depends on highly accurate
solutions to Eq. (36). As mentioned in Section III-C, the su-
perlinear convergence guarantee of second-order optimization
methods helps to quickly obtain accurate solutions. To main-
tain this guarantee for the non-isolated minima of Eq. (36), we
use the second-order Riemannian trust region (RTR) algorithm

Algorithm 1: Riemannian Trust-Region (RTR)
Input: Initial point P0

Data: Cost function ϕ
Parameters: ∆̄ > 0, ∆0 ∈ [0, ∆̄], ρ′ ∈ [0, 1

4)
Result: Solution PN

for k = 0, 1, . . . N do
Zk ← Eq. (37) and Eq. (38) ▷ Compute step
ρ← Eq. (39)
if ρ < 1

4 then ▷ Update TR radius
∆k+1 ← 1

4∆k

else if ρ > 3
4 and ∥Zk∥ = ∆k then

∆k+1 ← min(2∆k, ∆̄)
else

∆k+1 ← ∆k

end
if ρ > ρ′ then ▷ Accept or reject step

Pk+1 ← RP(Zk) ▷ Retraction (Eq. (23))
else

Pk+1 ← Pk

end
end

introduced in [63]. Briefly, the trust region algorithm focuses
on sequentially solving the problem

min
Z∈HPM

mP(Z) ,

s.t. gP(Z,Z) ≤ ∆2 ,
(37)

where

mP(Z) ≜ ϕ(P) + gP(Z, gradPϕ) +
1

2
gP(Z,HessPϕ [Z]).

(38)
In other words, a quadratic approximation of the model
constructed at point P informs a search for the optimal descent
direction Z within a trust region of radius ∆. Accepting or
rejecting a candidate descent direction and updating the trust
region radius is based on the quotient

ρ =
ϕ(P)− ϕ(RP(Z))

mP(0)−mP(Z)
. (39)

A basic variant of this procedure is formalized in Algorithm 1,
where the subproblem in Eq. (37) is approximately solved
using the truncated conjugate gradient method introduced in
[63]. The numerical cost per iteration of this approach was
shown in [10] to be O(dK + NK + NK2 + K3), where d
is the number of known entries in the EDM. Since K ∈ [2, 3]
for IK problems, the complexity of Algorithm 1 is linear with
respect to the number of points and known distances. Similarly
to conventional trust region methods, the dominant computa-
tional bottleneck of RTR is the Hessian calculation, making
the additional overhead added by the horizontal projection
in Eq. (20) comparatively insignificant.

B. Bound Smoothing

It is well established that the convergence of local opti-
mization methods depends on the choice of starting point.
The distance-based parametrization of the IK problem has

IEEE TRANSACTIONS ON ROBOTICS 11

Algorithm 2: Inverse Kinematics
Input: Incomplete graph G, Initial point P0

Result: Configuration Θ
Define ϕ from G via Eq. (36)
if not P0 then

Get P0 using bound smoothing (Section V-B)
end
P∗ ← RTR(P0;ϕ)
P← OrthogonalProcrustes(P∗)
Obtain Θ from P using Eq. (31)

the unique advantage of admitting informed initializations
generated via a procedure known as bound smoothing [12].
First, we take the known set of distance bounds generated by
the robot structure and problem constraints as described in
Section IV and form the graph G. Next, a bipartite graph
is formed with two copies of G, with the vertices of the
two graphs connected by edges weighted by their negative
respective distance. Finally, the resulting all-pairs shortest
path problem is solved using the Floyd-Warshall algorithm
in O(|V |3) time. For the IK problems analyzed in this paper,
the computation time of this search is on the order of 1 ms
for a simple Python implementation on a laptop computer. The
lower bounds on the distances between vertices can now be
obtained by taking the shortest path between their represen-
tations in different subgraphs, with the upper bounds being
the shortest path within one subgraph. An initial guess for the
distance matrix, known as a pre-EDM, can then be generated
by sampling individual elements within these bounds. Note
that this procedure can be applied iteratively to produce even
better approximations. Moreover, the computation time can be
further reduced through the use of parallelization.

The full algorithm is described in Algorithm 2. We assume
that an incomplete graph G describing the IK problem and an
initializing conformation P0 are provided as input. Alterna-
tively, we may also generate an initialization using the bound
smoothing procedure described in the previous section. Next,
we solve the local optimization problem using Algorithm 1
and transform the resulting configuration back to the canonical
coordinate system. Finally, we recover the joint angle variables
using Eq. (31).

VI. EXPERIMENTS

In this section, we present an analysis of the performance
of our method relative to multiple benchmark algorithms
in a series of simulation studies. A variety of 2D and 3D
kinematic models, including commercial manipulators and
hyper-redundant kinematic chains and trees, were tested with
and without joint angle limits and spherical obstacles. All
Python code used in our experiments is freely available in
our Git repository.5

A. Experimental Methodology

The results for each experiment were obtained with the
following procedure:

5https://github.com/utiasSTARS/GraphIK

1) generate a kinematic model (e.g., a planar robot with
links arranged in a perfect binary tree with randomly
generated symmetric joint angle limits);

2) randomly sample an angle configuration Θg ∈ C for this
model from a uniform distribution over the joint angle
limits;

3) determine the target position(s) or pose(s) w ∈ T of
the end-effector(s) using Θg and the model’s forward
kinematics (i.e., w = F (Θg));

4) run each IK algorithm on the problem instance defined
by the kinematic model and the goal w using Θ0 = 0
as the initial configuration;

5) record statistics for each algorithm, including the num-
ber of iterations required until convergence, runtime,
end-effector error(s), and joint angle limit violations;

6) repeat steps 2-5 above N times and summarize the
statistics.

In all tables and figures, the success rate of an algorithm for
a particular experiment was determined as the portion of runs
where the solution satisfied all of the following criteria:

• joint angle limits were obeyed to within a tolerance of
1% of the bound magnitude;

• obstacle avoidance constraints were obeyed to within a
tolerance of 0.01 m;

• the sum of the position errors of the end-effectors was
less than 0.01 m; and

• the sum of the rotation errors of the end-effectors was
less than 0.01 rad.

The success rates of experiments reported in the tables and
waterfall curves correspond to 95% Jeffreys confidence inter-
vals [64]. The statistics on solution error, runtime, and the
number of iterations required for convergence that appear in
various tables and figures are computed using the entire set
of N runs (not just the successful portions). We denote joint
angle-limited variants of experiments with a + symbol (e.g.,
results labelled “6-DOF+” use the same robot as those labelled
“6-DOF” but additionally enforce randomly generated joint
angle limits).

In all relevant figures, the results from our algorithm are
labelled RTR for “Riemannian Trust Region.” When the bound
smoothing procedure of Section V-B is used, -B is appended
to the label (i.e., RTR-B). For each experiment, we compare
our approach with a variety of benchmark algorithms from
the optimization and IK literature. While we report runtime
statistics for many of our experiments, we stress that our
selection of baseline algorithms is designed to illustrate a va-
riety of techniques and highlight the unique advantages of our
novel distance-geometric formulation. Therefore, we did not
choose particularly fast or industrially-proven implementations
and opted for Python variants of all algorithms. Finally, all
experiments were performed on a laptop computer with a 2.9
GHz Dual-Core Intel Core i5 processor.

B. Benchmark Algorithms

As discussed in Section III, generalized approaches to solv-
ing the IK problem most often resort to numerical methods that
search for a joint configuration Θ ∈ C satisfying the defined

https://github.com/utiasSTARS/GraphIK

IEEE TRANSACTIONS ON ROBOTICS 12

constraints. Among the large variety of such approaches, local
nonlinear programming is perhaps the most common and
versatile. Therefore, we primarily compare our algorithm to
the formulation

min
Θ∈C

∥e (F (Θ),w)∥2 (40)

s.t. ∥pi(Θ)− cj∥2 ≥ l2j ∀ i ∈ Vs, ∀ j ∈ Vo,

Θmin ≤ Θ ≤ Θmax,

where F (Θ) is the forward kinematic mapping and w is the
goal, as defined in Problem 3. The vector-valued function e in
the objective represents an appropriate error for the task space.
The inequality constraints serve to enforce obstacle avoidance
and joint limits. Note that while the error e can also be driven
to zero with an equality constraint, we have empirically found
that incorporating the error in an objective function results in
higher success rates—this phenomenon is also reported in [27].

C. Hyper-redundant and Tree-like Robots

We begin by analyzing the performance of our algorithm
for hyper-redundant and tree-like planar robots. This approach
helps to avoid introducing confounding factors in the analysis,
as the choice of any particular revolute manipulator opaquely
affects the difficulty of IK problems. More importantly, these
mechanisms allow us to systematically scale the size and num-
ber of constraints of the IK problem by adding joints and intro-
ducing multiple end-effectors, while minimizing the number of
redundant points and fixed distances as noted in Section IV-E.
Since the full pose of a planar end-effector is determined
by its position and the position of its parent joint, the error
e in the cost function of the joint angle-based approach in
Eq. (40) can simply be defined as the difference between
the end-effectors’ and their parent joints’ positions and their
goal positions in w. We solve Eq. (40) using second-order
trust region methods with similar convergence guarantees to
those provided by our algorithm, referring to the unconstrained
method as trust-exact and the joint angle-constrained
method as trust-constr. Our open source code provides
an interface for testing this problem formulation with other
solvers provided by scipy.optimize. In addition to the
formulation in Eq. (40), we implemented the FABRIK [22]
heuristic IK solver in Python as an additional benchmark
for our experiments. In contrast to generic nonlinear solvers,
this is an IK-specific heuristic method tailored to planar and
spherical robots.

For the experiments in this section, all algorithms were
allowed a total of 2,000 iterations and used a numerical
tolerance of 10−9 for all stopping criteria. Where applica-
ble, the magnitude of the gradient of the cost function or
Lagrangian was used as the stopping criterion. Otherwise, the
magnitude of the cost function or norm of the variable change
in one iteration was used. All other parameters were assigned
their default values as provided by the pymanopt [65] and
scipy.optimize libraries [66]. Since the implementations
of these benchmark algorithms were not extensively tuned
for performance, we place greater emphasis on the number
of iterations taken by each algorithm as a more meaningful

statistic than runtime in the results to follow. FABRIK was
allowed a maximum of 2,000 full forward and backward
iterations per problem instance.

Table I summarizes our results for 6- and 10-DOF planar
manipulators of the type shown in Fig. 5a, with and without
joint angle limits. Unsurprisingly, all four algorithms achieve
a 100% success rate when no joint angle limits are present.
When joint angle limits are introduced, FABRIK performs
far worse, while the RTR algorithm performs similarly to
trust-constr in terms of success rate and iterations
required. Initializing the problem using bound smoothing
reduces the number of iterations needed while increasing the
success rate of our RTR-B algorithm compared to a naive ini-
tialization. Curiously, both trust-constr and FABRIK’s
performance improve as the number of DOF increases. We
suspect that the additional DOF give the heuristic approach
of FABRIK more time to “steer” away from a difficult initial
configuration induced by pose goals. The trust-constr
algorithm may benefit from more DOF that can be used to
“escape” from local minima or extremely flat regions of the
cost function landscape. While we only report on experiments
involving pose goals in this paper, we found that when joint
angle limits were introduced, FABRIK was much better suited
to position goals (i.e., without a specified orientation) for the
robot end-effector(s).

Table II contains results for experiments involving binary
tree-like robots, such as the 6-DOF example with a height of
two shown in Fig. 8. The 14- and 30-DOF results correspond
to robots with a perfect binary tree kinematic structure of
height three and four, respectively. While not as practical as
chain-like robots or the revolute manipulators of Section VI-D,
these experiments serve to showcase the performance of
IK methods on highly kinematically-constrained mechanisms,
while also scaling naturally to a higher number of DOF. In all
cases, the RTR and RTR-B algorithms outperform the three
benchmark approaches in terms of success rate. When no
joint limits are present, the overall difference in success rates
is relatively small, with RTR and trust-exact having a
similar number of outer iterations. When joint limits are intro-
duced, the experimental procedure in Section VI-A generates
problems within a tighter range around a naive initialization,
resulting in higher success rates for all approaches. Due to a
high number of constraints, the number of outer iterations for
trust-constr increases more than ten-fold, significantly
degrading performance. In contrast, this effect does not occur
for RTR and RTR-B, where the number of iterations remains
considerably lower while a similar increase in success rate is
observed. The box-and-whiskers plots in Fig. 6 summarize the
position error statistics for each algorithm over all runs in the
constrained case, including those runs that did not qualify as
a success. The waterfall curves in Fig. 7 display the success
rate as a function of an increasing position error tolerance,
demonstrating that the higher success rate of our algorithm is
maintained for different accuracy requirements.

Mean runtimes of both RTR and RTR-B across all planar
experiments remain below 0.1 s, with the 30-DOF tree-like
robot unsurprisingly resulting in the most computationally-
intensive problems. The runtime for FABRIK across all planar

IEEE TRANSACTIONS ON ROBOTICS 13

Method trust-exact/constr FABRIK RTR RTR-B

Success (%) Iter. µ (σ) Success (%) Iter. µ (σ) Success (%) Iter. µ (σ) Runtime [ms] µ (σ) Success (%) Iter. µ (σ) Runtime [ms] µ (σ)

6-DOF 100.0± 0.1 26 (5) 100.0± 0.1 10 (19) 100.0± 0.1 16 (2) 2.28 (0.39) 100.0± 0.1 9 (2) 1.54 (0.37)
6-DOF+ 72.0± 2.8 35 (14) 36.0± 3.0 1333 (916) 91.0± 1.7 32 (22) 5.24 (2.83) 98.0± 0.9 24 (17) 5.02 (3.01)
10-DOF 100.0± 0.1 28 (2) 100.0± 0.1 9 (13) 100.0± 0.1 20 (2) 3.27 (0.53) 100.0± 0.1 10 (2) 2.25 (0.43)
10-DOF+ 97.0± 1.0 43 (54) 59.0± 3.0 856 (971) 88.0± 2.0 74 (101) 14.6 (1.15) 98.0± 0.8 23 (46) 5.47 (3.85)

TABLE I: Results for planar chain manipulators over 1,000 random experiments with pose goals. The + indicates joint angle limits.

Method trust-exact/constr FABRIK RTR RTR-B

Success (%) Iter. µ (σ) Success (%) Iter. µ (σ) Success (%) Iter. µ (σ) Runtime [ms] µ (σ) Success (%) Iter. µ (σ) Runtime [ms] µ (σ)

14-DOF 54.0± 3.1 14 (4) 56.0± 3.1 949 (964) 64.0± 3.0 20 (4) 4.39 (1.00) 67.0± 2.9 9 (3) 4.12 (1.11)
14-DOF+ 90.0± 1.9 189 (423) 85.0± 2.2 463 (716) 96.0± 1.2 18 (4) 4.98 (1.40) 96.0± 1.2 8 (2) 4.79 (1.76)
30-DOF 16.0± 2.3 23 (7) 12.0± 2.0 1848 (479) 20.0± 2.5 34 (10) 20.75 (8.52) 18.0± 2.4 18 (10) 45.25 (32.38)
30-DOF+ 49.0± 3.1 818 (830) 0.0± 0.3 2000 (0) 85.0± 2.2 36 (19) 31.64 (17.95) 85.0± 2.2 20 (15) 43.98 (32.62)

TABLE II: Results for planar tree manipulators over 1,000 random experiments with pose goals. The + indicates joint angle limits.

−14
−12
−10
−8
−6
−4
−2
0

2

lo
g
1
0

Po
s.

E
rr

or

trust-constr

FABRIK

RTR

RTR-B

(a) 14-DOF+

−14
−12
−10
−8
−6
−4
−2
0

2

lo
g
1
0

Po
s.

E
rr

or

(b) 30-DOF+

Fig. 6: Box-and-whiskers plots summarizing end-effector position error over 1,000 experiments with planar binary tree robots with joint
angle limits.

−6 −5 −4 −3 −2 −1 0 1

0

0.5

1

log10 Pos. Error Tolerance (m)

Su
cc

es
s

R
at

e

trust-constr
FABRIK
RTR
RTR-B

(a) 14-DOF+

−6 −5 −4 −3 −2 −1 0 1

0

0.5

1

log10 Pos. Error Tolerance (m)

Su
cc

es
s

R
at

e

(b) 30-DOF+

Fig. 7: Waterfall curves of success rate versus position error tolerance for 1,000 experiments with planar tree robots with joint angle limits.
The shaded regions are 95% Jeffreys confidence intervals centered on the solid lines. The rotation error tolerance is fixed at 0.01 rad.

experiments was 3.4 s, while the local solvers had a mean
runtime of 10.2 s. Both of these sets of runtime statistics
are influenced by the large proportion of unsuccessful runs
that required all 2,000 allowed iterations before terminating.
However, since we cannot guarantee that the local algorithms
were provided with equally well-tuned implementations of
core subroutines (e.g., Hessian computations for the second-
order trust region solvers), we urge our readers to treat the
statistics on iterations reported in Table I and Table II as more
qualitative indicators of performance.

To illustrate the optimization procedure and help eluci-
date the relatively superior performance of our method on
branching tree-like robots, we conducted a simple empirical

analysis on one of the many problem instances where RTR
outperformed the benchmark algorithms. Fig. 8 shows the
convergence of four solvers with the same initial condition
on a sample low-dimensional IK problem involving a 6-DOF
binary planar tree robot with symmetric joint angle limits and
end-effector position goals. Only our algorithm, RTR, is able to
find the global minimum. The algorithms all perform similarly
for the first eight iterations, but the three competitors are
unable to escape from the same local minimum. The difference
in behaviour is explained by Fig. 9, which compares contour
maps of different cost function terms used by the algorithms,
overlaid with the progress of each algorithm across iterations.
Fig. 9a illustrates the Euclidean distance of the end-effector

IEEE TRANSACTIONS ON ROBOTICS 14

−2 0 2

0

1

2

L
-
B
F
G
S
-
B

y
(m

)

−2 0 2

0

1

2

−2 0 2

0

1

2

−2 0 2

0

1

2

−2 0 2

0

1

2

−2 0 2

0

1

2

t
r
u
s
t
-
c
o
n
s
t
r

y
(m

)

−2 0 2

0

1

2

−2 0 2

0

1

2

−2 0 2

0

1

2

−2 0 2

0

1

2

−2 0 2

0

1

2

F
A
B
R
I
K

y
(m

)

−2 0 2

0

1

2

−2 0 2

0

1

2

−2 0 2

0

1

2

−2 0 2

0

1

2

−2 0 2

x (m)
0 Iterations

0

1

2

R
i
e
m
.

T
R

y
(m

)

−2 0 2

x (m)
2 Iterations

0

1

2

−2 0 2

x (m)
4 Iterations

0

1

2

−2 0 2

x (m)
8 Iterations

0

1

2

−2 0 2

x (m)
32 Iterations

0

1

2

Fig. 8: Convergence of various algorithms on a 6-DOF binary tree robots with joint angle limits. FABRIK and the angle-parametrized
L-BFGS-B and trust-constr all converge to a local minimum, whereas Riem. TR is able to converge to the the global minimum
from the same initial condition (Θ = 0). Note that FABRIK quickly converges but is unable to accurately reach any of the four end-effector
targets. The red link in the RTR solution after four iterations indicates that the link’s parent joint is violating its joint angle limits.

controlled by θ1 and θ3 and its goal position, which is used
in the cost function of L-BFGS-B and trust-constr. In
contrast, the contour map in Fig. 9b is the logarithm of the
quartic function containing the terms in the distance-geometric
cost function of Eq. (9) involving the position of the joint
actuated by θ1. The angular cost function is ill-conditioned,
leading the algorithms that minimize it to converge to the local
minimum of Fig. 8, whereas RTR minimizes the distance-
geometric cost of Fig. 9b and quickly converges to the
global minimum, which has a large and well-conditioned basin
of convergence. In spite of its simplicity, this toy problem
illustrates the behavioural differences of the algorithms in a
state space with low enough dimension to visualize clearly.

D. Revolute Manipulators

Next, Table III compares the performance of our algorithm
and the trust region benchmark algorithms on 3D robots
with revolute joints and within an unconstrained workspace.
These problems are of greater practical interest than the planar
results in Section VI-C and showcase the expressiveness of
our problem formulation. All experiments are conducted for
the Universal Robots UR10, KUKA IIWA, Schunk LWA4D,
and Schunk LWA4P manipulators shown in Fig. 10. For these
robots, the distance-geometric IK formulation derived using
the procedure described in Section IV-A results in points that
always overlap (i.e., have a fixed distance of zero). While these
points could be “merged” to reduce the graph size—thereby

improving overall performance—we used the generic models
for transparency.

In terms of success rate, our algorithm outperforms
trust-exact and trust-constr on the UR10 and
KUKA IIWA manipulators with and without joint angle limits,
as well as on the Schunk LWA4P with joint limits. The bound
smoothing procedure used to initialize RTR-B reduces the
overall number of iterations in all cases, but has a variable
effect on the success rate. Both RTR and RTR-B require a
significantly larger number of iterations to converge compared
to the planar case, while trust-* remains in a similar range
to that observed in Table I. We can partially attribute this
to the iteration complexity discussed in Section V, which is
increased by the unfavourably high ratio of points to DOF in
the kinematic models of these mechanisms. Again, this effect
could be mitigated in future work by removing overlapping
points from the kinematic models, reducing the overall number
of variables.

The box-and-whiskers plots in Fig. 11 summarize the po-
sition error statistics for each algorithm over all runs with
the UR10 manipulator, with and without joint limits. In both
cases the trust-* algorithms converge to significantly lower
cost function values. This suggests that the highly variable
magnitudes of known distances may cause numerical issues
in the gradient for our algorithms, causing early termination.
We suspect this issue can be avoided by using a weighting
matrix to regularize elements of the cost function, as shown

IEEE TRANSACTIONS ON ROBOTICS 15

(a) L2 error for the end-effector actuated by θ1 and θ3. (b) Base-10 logarithm of distance-geometric cost involving the joint
position which is actuated by θ1.

Fig. 9: Contour maps of different cost function components overlaid with solver trajectories for the IK problem instance depicted in Fig. 8.
The angle θ1 is the angle of the joint connected to the root and pointing towards the top left of corner of the plot of Riem. TR after
32 iterations in Fig. 8. Angles θ3 and θ4 are the angles of the two child links of the link actuated by θ1. In Fig. 9b, x1 = cos θ1 and
y1 = sin θ1 are the coordinates of the point actuated by θ1, and the cost function is the quartic terms of Eq. (9) involving x1 and y1. This
distance-geometric cost function is very well posed, and the Riemannian solver follows its contours to the global minimum. The other three
methods attempt to minimize the ill-conditioned cost function in Fig. 9a and return a suboptimal solution.

(a) UR10 (b) KUKA-IIWA (c) Schunk-LWA4D (d) Schunk-LWA4P

Fig. 10: Points in the distance-based models of the commercial manipulators used in our experiments. Note that the distances between pairs
of points on individual rotation axes have been reduced for clarity.

in [42]. The waterfall curves in Fig. 12 corroborate these
findings, showing that the success rate of our algorithm
drops as the position error tolerance decreases, and suggesting
that decreasing the gradient termination criteria may increase
accuracy at the cost of increased computation time.

The mean runtime of both RTR and RTR-B remains below
1.0 s for all robot models, reaching the lowest mean runtimes
of less than 0.2 s on the UR10. In the same instance, the
trust-* algorithms have a slightly higher mean runtime
of 0.3 s. We observe the highest computation times for
our algorithms with the 7-DOF Schunk LWA4D, with mean
runtimes slightly below 1.0 s. While the trust-* methods
exhibit similarly worse performance with a mean runtime of
0.5 s, the overall increase in runtime is smaller due to the
number of variables only increasing from six to seven.

E. Obstacle Avoidance

Finally, we analyze the performance of our algorithm on
revolute manipulators in environments with a varying number
of spherical obstacles, as shown in Fig. 13. For each envi-
ronment and robot pair, 3,000 IK problems were randomly
generated, some of which may not be solvable (i.e., no
collision-free solutions exist). For experiments performed in

this section we chose e = log(T(Θ)−1Tgoal) as the error
in Eq. (40), which is the vector of exponential coordinates
describing the screw motion between the current pose and
goal pose of the end-effector. Further, the FK and Jacobian
computations are carried out using the popular product of
exponentials approach [61], avoiding trigonometric identities
inherent to the DH parametrization. We solve the problem
in Eq. (40) using sequential quadratic programming, namely
the SLSQP solver implemented in the scipy library. Due to
its speed and accuracy, this method is a popular choice for
nonlinear programming solutions to IK [27]. We empirically
determined that a maximum of 200 iterations and an objective
function value of 10−7 were effective stopping criteria for our
experiments.

The results of our evaluation are shown in Fig. 14. Each
column represents a different fixed set of obstacles in the
manipulators’ environment. The first column contains results
for obstacle-free problems, while the remaining columns use
spherical obstacles placed on the vertices of an octahedron,
cube, and icosahedron, respectively. The top row compares
the success rate of RTR-B and SLSQP, with dashed lines
indicating the portion of problems that are known to be
feasible (i.e., the configuration used to generate the problem is

IEEE TRANSACTIONS ON ROBOTICS 16

Method trust-exact/constr RTR RTR-B

Success (%) Iter. µ (σ) Success (%) Iter. µ (σ) Runtime [ms] µ (σ) Success (%) Iter. µ (σ) Runtime [ms] µ (σ)

UR10 90.0± 1.3 12 (7) 87± 1.0 364 (523) 205.8 (264.1) 95.0± 1.0 319 (493) 198.4 (239.3)
UR10+ 63.0± 2.1 36 (19) 77.0± 1.8 364 (523) 206.6 (264.2) 66.0± 2.0 251 (457) 138.2 (193.0)
KUKA 100.0± 0.1 20 (6) 100.0± 0.2 317 (373) 242.8 (211.1) 100.0± 0.1 315 (386) 268.3 (220.0)
KUKA+ 87.0± 1.5 48 (18) 82.0± 1.7 734 (771) 432.4 (395.1) 89± 1.3 506 (660) 386.8 (374.8)
LWA4P 100.0± 0.2 20 (17) 89.0± 1.4 513 (624) 416.6 (542.4) 90.0± 1.3 503 (614) 290.0 (330.1)
LWA4P+ 77.0± 1.8 46 (25) 87.0± 1.5 435 (569) 246.7 (282.2) 81± 1.7 324 (482) 201.1 (219.7)
LWA4D 100.0± 0.1 24 (17) 99.0± 0.5 868 (747) 969.9 (878.0) 97.0± 0.7 713 (699) 895.6 (897.1)
LWA4D+ 96.0± 0.8 47 (17) 91.0± 1.3 867 (769) 900.2 (874.1) 90.0± 1.3 825 (758) 991.2 (943.8)

TABLE III: Results for revolute chain manipulators over 2,000 random experiments with pose goals. The + indicates joint angle limits.

−16
−14
−12
−10
−8
−6
−4
−2

lo
g
1
0

Po
s.

E
rr

or

trust-exact/constr

RTR

RTR-B

(a) UR10

−10

−8

−6

−4

−2

0

lo
g
1
0

Po
s.

E
rr

or
(b) UR10+

Fig. 11: Box-and-whiskers plots summarizing end-effector position error over 2,000 experiments with the UR10 manipulator, (a) without
and (b) with joint angle limits.

−6 −5 −4 −3 −2 −1 0 1

0

0.5

1

log10 Pos. Error Tolerance (m)

Su
cc

es
s

R
at

e

trust-exact/constr
RTR
RTR-B

(a) UR10

−6 −5 −4 −3 −2 −1 0 1

0

0.5

1

log10 Pos. Error Tolerance (m)

Su
cc

es
s

R
at

e

(b) UR10+

Fig. 12: Waterfall curves of success rate versus position error tolerance for 2,000 experiments with the UR10 manipulator, without (a) and
with (b) joint angle limits. The shaded regions are 95% Jeffreys confidence intervals centered on the solid lines. The rotation error tolerance
is fixed at 0.01 rad.

(a) Universal Robotics UR10 (octahedron) (b) Schunk LWA4D (cube) (c) KUKA-IIWA (icosahedron)

Fig. 13: A selection of robot and environment combinations used to generate IK problems in Section VI-E.

IEEE TRANSACTIONS ON ROBOTICS 17

not in collision). The box-and-whiskers plots in the middle two
rows describe the distribution of position and rotation errors,
with the thresholds for success (0.01 m and 0.01 rad) drawn as
dashed lines. Finally, the bottom row compares the distribution
of solution times.

In terms of success rate, our algorithm outperforms SLSQP
in all experiments. The position and rotation error distributions
displayed in the box-and-whiskers plots reveal that this is due
to RTR-B providing solutions with lower position and rotation
error on average. The performance gap is particularly large for
the UR10, which both algorithms struggled most with in all
environments. Finally, the runtime for our Riemannian solver
is expectedly higher than for SLSQP in the obstacle-free case,
as seen in previous experiments. However, the addition of
obstacles leads to significantly faster relative performance for
RTR-B on all the manipulators tested. More importantly, we
note that the runtime of SLSQP exhibits a more significant
relative increase than RTR-B when obstacles are introduced.
We suspect that this is due to the nonlinear mapping between
joint angles and obstacle locations that makes the problem
significantly more difficult to solve in configuration space. In
contrast, the effect is avoided by our distance-based approach
because collision avoidance constraints are treated in the same
way as structural and joint limit constrains.

VII. CONCLUSION

In this paper, we have presented a novel and elegant
procedure for formulating many inverse kinematics problems
in the language of distance geometry. This distance-geometric
perspective on IK allows us to leverage powerful low-rank
matrix completion methods, resulting in an algorithm (RTR-*)
that can efficiently compute IK solutions for a variety of robots
using Riemannian optimization. Our experiments show that
that RTR-* outperforms competing algorithms in terms of
success rate and number of iterations on IK problems for
robots with multiple end-effectors, both with and without
the inclusion of joint limits. We have also demonstrated
the feasibility of this approach to solve IK for commercial
manipulators, achieving success rates competitive with both
comparable [32] and conventional [61] angle-based methods.
Notably, we observe that our algorithm performs significantly
better than a conventional method, both in terms of success
rate and runtime, when the IK problem requires finding con-
figurations that are not in collision with obstacles (modelled
as spheres). Overall, these experimental results indicate that
a distance-geometric approach is particularly advantageous
when a large number of workspace constraints are present.
We believe our algorithm provides a valuable benchmark for
IK solvers, as well as a good starting point for future research
into distance-geometric formulations of this problem.

A. Limitations

Avoiding reflections in the solution set of certain problems
remains a core challenge when using a purely distance-based
IK approach. As noted in Proposition 1, this spells out an
important limitation of our formulation: its inability to handle
revolute manipulators with non-coplanar consecutive axes of

rotation. This also restricts the capacity of our formulation
to represent joint angle limits to those that are symmetrical
about Θ0 = 0 (i.e., of the form [−θlim, θlim]). At the cost of
some of the theoretical foundations laid out in Section III and
Section IV-D, it is possible to address these ambiguities by
extending our formulation to include cross products (allowing
“handedness” to be expressed). For example, solutions that
include reflections for non-coplanar joints u and v in Fig. 2
could be removed by taking c = (pũ − pu)× (pṽ − pv) and
constraining the sign of the dot product c · (pv − pu), thereby
only allowing one of the two possible relative orientations sat-
isfying distance constraints. Similarly, a non-symmetric joint
limit on v can be obtained by taking a = (pv−pu)×(pṽ−pv),
b = (pw−pu)× (pṽ−pv) and constraining the sign of a ·b.
Since adding these constraints would require a lengthy and
detailed deviation from the purely distance-geometric view of
IK developed herein, we leave their characterization as future
work.

B. Future Work

We have identified several exciting research directions for
the distance-geometric IK formulation presented in this paper.
Our algorithm utilizes a Riemannian optimization-based solu-
tion because it is fast, can easily be extended (e.g., to include
obstacles or other cost terms), and avoids problems associated
with redundant degrees of freedom. However, we believe a
thorough exploration of the vast body of literature on distance
geometry may yield other effective approaches or insights into
our particular problem structure. Our hope is that further study
of approaches such as semidefinite programming relaxations
for EDM completion will help to yield deep theoretical insight
into the geometric structure of IK and its relationship with
other problems in distance geometry. This will permit us to
compare the runtime of our algorithm against a greater variety
of IK solvers, including complex algorithms like TRAC-IK
that utilize multiple methods in parallel [27]. Additionally, we
are eager to develop an optimized version of our algorithm
in a fast compiled language such as C++. We believe that the
distance-geometric IK formulation described herein provides
a strong mathematical basis for future research in kinematics,
motion planning, and control.

ACKNOWLEDGMENT

This work was supported in part by the European Re-
gional Development Fund under the grant KK.01.1.1.01.0009
(DATACROSS) and by the Natural Sciences and Engineering
Research Council of Canada (NSERC). Jonathan Kelly grate-
fully acknowledges support from the Canada Research Chairs
program. Matthew Giamou is a Vector Institute Postgraduate
Affiliate and RBC Fellow. Jonathan Kelly is a Vector Institute
Faculty Affiliate.

REFERENCES

[1] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-
elling, Planning and Control. Springer Science & Business Media,
2010.

IEEE TRANSACTIONS ON ROBOTICS 18

UR10 KUKA-IIWA Schunk-LWA4D
0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Environment = Free

j-SLSQP
RTR-B

UR10 KUKA-IIWA Schunk-LWA4D

Environment = Octahedron

UR10 KUKA-IIWA Schunk-LWA4D

Environment = Cube

UR10 KUKA-IIWA Schunk-LWA4D

Environment = Icosahedron

UR10 KUKA-IIWA Schunk-LWA4D

10−7

10−5

10−3

10−1

Po
s.

E
rr

or
[m

]

UR10 KUKA-IIWA Schunk-LWA4D UR10 KUKA-IIWA Schunk-LWA4D UR10 KUKA-IIWA Schunk-LWA4D

UR10 KUKA-IIWA Schunk-LWA4D
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

R
ot

.E
rr

or
[r

ad
]

UR10 KUKA-IIWA Schunk-LWA4D UR10 KUKA-IIWA Schunk-LWA4D UR10 KUKA-IIWA Schunk-LWA4D

UR10 KUKA-IIWA Schunk-LWA4D

0

1

2

3

So
l.

Ti
m

e
[s

]

UR10 KUKA-IIWA Schunk-LWA4D UR10 KUKA-IIWA Schunk-LWA4D UR10 KUKA-IIWA Schunk-LWA4D

Fig. 14: Experimental results comparing our method with local optimization. Each column contains the success rates, position errors, rotation
errors, and solution times for 3,000 randomly generated problems in the titular environment. The success rate in the top row is measured
relative to the total number of generated problems, many of which are infeasible. The upper bound defining success in each box-and-whiskers
plot is shown as a dashed line. The dashed lines in the top row indicate the lower bound on the number of feasible problems for each
robot-environment pair.

[2] I. Dokmanic, R. Parhizkar, J. Ranieri, and M. Vetterli, “Euclidean
Distance Matrices: Essential Theory, Algorithms and Applications,”
IEEE Signal Process. Mag., vol. 32, no. 6, pp. 12–30, Nov. 2015.

[3] J. G. de Jalón, “Twenty-five years of natural coordinates,” Multibody
Sys. Dyn., vol. 18, no. 1, pp. 15–33, Aug. 2007.

[4] F. Blanchini, G. Fenu, G. Giordano, and F. A. Pellegrino, “A convex pro-
gramming approach to the inverse kinematics problem for manipulators
under constraints,” Eur. J. Control, vol. 33, pp. 11–23, Jan. 2017.

[5] T. Le Naour, N. Courty, and S. Gibet, “Kinematics in the metric space,”
Comput. Graph., vol. 84, pp. 13–23, 2019.

[6] J. M. Porta, L. Ros, and F. Thomas, “Inverse kinematics by distance
matrix completion,” in Proc. 12th Int. Workshop Computational Kine-
matics. Elsevier, 2005.

[7] L. Han and L. Rudolph, “Inverse kinematics for a serial chain with joints
under distance constraints.” in Robotics: Science and Systems (RSS),
2006.

[8] L. Liberti, C. Lavor, N. Maculan, and A. Mucherino, “Euclidean
Distance Geometry and Applications,” SIAM Rev., vol. 56, no. 1, pp.
3–69, Jan. 2014.

[9] L. T. Nguyen, J. Kim, and B. Shim, “Low-rank matrix completion: A
contemporary survey,” IEEE Access, vol. 7, pp. 94 215–94 237, 2019.

[10] B. Mishra, G. Meyer, and R. Sepulchre, “Low-rank optimization for
distance matrix completion,” in Proc. IEEE Conf. Decision and Control
and Eur. Control Conf., Dec 2011, pp. 4455–4460.

[11] M. Journée, F. Bach, P.-A. Absil, and R. Sepulchre, “Low-rank opti-
mization on the cone of positive semidefinite matrices,” SIAM J. Optim.,
vol. 20, no. 5, p. 2327–2351, Jan. 2010.

[12] T. F. Havel, “Distance Geometry: Theory, Algorithms, and Chemical
Applications,” in Encyclopedia of Computational Chemistry. John
Wiley & Sons, Ltd, Apr. 2002, pp. 723–742.

[13] J. Angeles, G. Hommel, and P. Kovács, Computational Kinematics.
Springer Science & Business Media, 2013, vol. 28.

[14] A. Aristidou, J. Lasenby, Y. Chrysanthou, and A. Shamir, “Inverse
Kinematics Techniques in Computer Graphics: A Survey,” Comput.
Graph. Forum., vol. 37, no. 6, pp. 35–58, Sep. 2018.

[15] H.-Y. Lee and C.-G. Liang, “A new vector theory for the analysis of
spatial mechanisms,” Mech. Mach. Theory, vol. 23, no. 3, pp. 209–217,
1988.

IEEE TRANSACTIONS ON ROBOTICS 19

[16] D. Manocha and J. F. Canny, “Efficient inverse kinematics for general
6r manipulators,” IEEE Trans. Robot.

[17] M. L. Husty, M. Pfurner, and H.-P. Schröcker, “A new and efficient
algorithm for the inverse kinematics of a general serial 6r manipulator,”
Mech. Mach. Theory, vol. 42, no. 1, pp. 66–81, 2007.

[18] R. Diankov, “Automated construction of robotic manipulation pro-
grams,” Ph.D. dissertation, Carnegie Mellon University, Pittsburgh, PA,
September 2010.

[19] B. Kenwright, “Inverse kinematics–cyclic coordinate descent (CCD),” J.
Graphics Tools, vol. 16, no. 4, pp. 177–217, 2012.

[20] R. Muller-Cajar and R. Mukundan, “Triangulation - a new algorithm
for inverse kinematics,” in Int. Conf. Image and Vision Computing New
Zealand, Dec 2007, pp. 181–186.

[21] “A unified geometric approach for inverse kinematics.”
[22] A. Aristidou and J. Lasenby, “FABRIK: A fast, iterative solver for the

inverse kinematics problem,” Graph. Models, vol. 73, no. 5, p. 243–260,
Sep. 2011.

[23] A. Aristidou, Y. Chrysanthou, and J. Lasenby, “Extending FABRIK with
model constraints,” Comput. Animat. Virtual Worlds, vol. 27, no. 1, pp.
35–57, Jan. 2016.

[24] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-BFGS-
B: Fortran subroutines for large-scale bound-constrained optimization,”
ACM Trans. Math. Softw., vol. 23, no. 4, pp. 550–560, Dec. 1997.

[25] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” Int. J. Rob. Res.,
2014.

[26] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[27] P. Beeson and B. Ames, “TRAC-IK: An open-source library for im-
proved solving of generic inverse kinematics,” in Proc. IEEE Int. Conf.
Humanoid Robots (Humanoids), 2015, pp. 928–935.

[28] L. Sciavicco and B. Siciliano, “Coordinate transformation: A solution
algorithm for one class of robots,” IEEE Trans. Syst., Man, Cybern.,
vol. 16, no. 4, pp. 550–559, 1986.

[29] S. R. Buss and J.-S. Kim, “Selectively damped least squares for inverse
kinematics,” J. Graphics Tools, vol. 10, pp. 37–49, 2005.

[30] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-priority based
redundancy control of robot manipulators,” Int. J. Rob. Res., vol. 6,
no. 2, pp. 3–15, 1987.

[31] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and
Control. John Wiley & Sons, 2005.

[32] K. Erleben and S. Andrews, “Solving inverse kinematics using exact
Hessian matrices,” Comput. Graph., vol. 78, pp. 1–11, Feb. 2019.

[33] H. Dai, G. Izatt, and R. Tedrake, “Global inverse kinematics via mixed-
integer convex optimization,” Int. J. Rob. Res., vol. 38, no. 12-13, pp.
1420–1441, Oct. 2019.

[34] T. Yenamandra, F. Bernard, J. Wang, F. Mueller, and C. Theobalt,
“Convex Optimisation for Inverse Kinematics,” Proc. Int. Conf. 3D
Vision (3DV), pp. 318–327, Sep. 2019.

[35] F. Blanchini, G. Fenu, G. Giordano, and F. A. Pellegrino, “Inverse
kinematics by means of convex programming: Some developments,” in
IEEE Int. Conf. Autom. Sci. Eng. (CASE), Aug. 2015, pp. 515–520.

[36] Y. Ding, N. Krislock, J. Qian, and H. Wolkowicz, “Sensor network local-
ization, Euclidean distance matrix completions, and graph realization,”
Optim. Eng., vol. 11, no. 1, pp. 45–66, Feb. 2010.

[37] M. A. Cox and T. F. Cox, “Multidimensional scaling,” in Handbook of
Data Visualization. Springer, 2008, pp. 315–347.

[38] L. Liberti, C. Lavor, and N. Maculan, “A branch-and-prune algorithm
for the molecular distance geometry problem,” Int. Trans. Oper. Res.

[39] P. Biswas, T.-C. Lian, T.-C. Wang, and Y. Ye, “Semidefinite program-
ming based algorithms for sensor network localization,” ACM Trans.
Sensor Networks (TOSN), vol. 2, no. 2, pp. 188–220, 2006.

[40] N.-H. Z. Leung and K.-C. Toh, “An SDP-based divide-and-conquer
algorithm for large-scale noisy anchor-free graph realization,” SIAM J.
Scientific Comput., vol. 31, no. 6, pp. 4351–4372, 2010.

[41] B. Vandereycken, “Low-rank matrix completion by Riemannian opti-
mization—extended version,” SIAM J. Optim., vol. 23, no. 2, pp. 1214–
1236, Sep. 2012.

[42] L. T. Nguyen, J. Kim, S. Kim, and B. Shim, “Localization of IoT
Networks via Low-Rank Matrix Completion,” IEEE Trans. Commun.,
vol. 67, no. 8, pp. 5833–5847, Aug. 2019.

[43] J. M. Porta, N. Rojas, and F. Thomas, “Distance Geometry in Active
Structures,” in Mechatronics for Cultural Heritage and Civil Engineer-
ing, 2018, vol. 92, pp. 115–136.

[44] J. Porta, L. Ros, F. Thomas, and C. Torras, “A branch-and-prune solver
for distance constraints,” IEEE Trans. Robot., vol. 21, pp. 176–187, Apr.
2005.

[45] F. Marić, M. Giamou, S. Khoubyarian, I. Petrović, and J. Kelly, “Inverse
kinematics for serial kinematic chains via sum of squares optimization,”
in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Aug. 2020, pp. 7101–
7107.

[46] P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic
problems,” Math. Program., vol. 96, no. 2, pp. 293–320, May 2003.

[47] J. B. Lasserre, “Global Optimization with Polynomials and the Problem
of Moments,” SIAM J. Optim., vol. 11, no. 3, pp. 796–817, Jan. 2001.

[48] B. Hendrickson, “Conditions for unique graph realizations,” SIAM J.
Comput., vol. 21, no. 1, p. 65–84, Feb. 1992.

[49] M. J. Sippl and H. A. Scheraga, “Cayley-menger coordinates.” Proc.
Natl. Acad. Sci., vol. 83, no. 8, p. 2283–2287, Apr. 1986.

[50] A. Y. Alfakih, A. Khandani, and H. Wolkowicz, “Solving euclidean
distance matrix completion problems via semidefinite programming,”
Comput. Optim. Appl., vol. 12, no. 1-3, pp. 13–30, 1999.

[51] A. M.-C. So and Y. Ye, “Theory of semidefinite programming for Sensor
Network Localization,” Math. Program., vol. 109, no. 2-3, pp. 367–384,
Jan. 2007.

[52] S. Burer and R. D. Monteiro, “Local minima and convergence in low-
rank semidefinite programming,” Mathematical Programming, vol. 103,
no. 3, p. 427–444, Dec. 2004.

[53] H. Fang and D. P. O’Leary, “Euclidean distance matrix completion
problems,” Optim. Methods Softw., vol. 27, no. 4-5, pp. 695–717, Oct.
2012.

[54] D. I. Chu, H. C. Brown, and M. T. Chu, “On Least Squares Euclidean
Distance Matrix Approximation and Completion,” Department of Math-
ematics, North Carolina State University, Tech. Rep., 2003.

[55] B. A. Pearlmutter, “Fast exact multiplication by the Hessian,” Neural
Comput., vol. 6, no. 1, p. 147–160, Jan. 1994.

[56] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on
Matrix Manifolds. Princeton University Press, 2009.

[57] N. Boumal and P.-A. Absil, “Low-rank matrix completion via precondi-
tioned optimization on the Grassmann manifold,” Linear Algebra Appl.,
vol. 475, pp. 200–239, 2015.

[58] K. Wei, J.-F. Cai, T. F. Chan, and S. Leung, “Guarantees of Riemannian
Optimization for Low Rank Matrix Recovery,” SIAM J. Matrix Anal.
Appl., vol. 37, no. 3, Apr. 2016.

[59] T. Le Naour, N. Courty, and S. Gibet, “Kinematics in the metric space,”
Comput. Graph., vol. 84, p. 13–23, Nov. 2019.

[60] R. S. Hartenberg and J. Denavit, “A kinematic notation for lower pair
mechanisms based on matrices,” J. Appl. Mech., vol. 77, no. 2, pp. 215–
221, 1955.

[61] K. M. Lynch and F. C. Park, Modern Robotics. Cambridge University
Press, 2017.

[62] H. Ananthanarayanan and R. Ordóñez, “Real-time inverse kinematics of
(2n+1) DOF hyper-redundant manipulator arm via a combined numerical
and analytical approach,” Mech. Mach. Theory, vol. 91, pp. 209–226,
Sep. 2015.

[63] P.-A. Absil, C. G. Baker, and K. A. Gallivan, “Trust-region methods
on Riemannian manifolds,” Found. Comput. Math., vol. 7, no. 3, pp.
303–330, 2007.

[64] T. Tony Cai, “One-sided confidence intervals in discrete distributions,”
J. Stat. Plan. Inference, vol. 131, no. 1, pp. 63–88, Apr. 2005.

[65] J. Townsend, N. Koep, and S. Weichwald, “Pymanopt: A Python toolbox
for optimization on manifolds using automatic differentiation,” J. Mach.
Learn. Res., vol. 17, no. 1, pp. 4755–4759, 2016.

[66] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright et al.,
“Scipy 1.0: fundamental algorithms for scientific computing in Python,”
Nat. Methods, vol. 17, no. 3, pp. 261–272, 2020.

IEEE TRANSACTIONS ON ROBOTICS 20

Filip Marić received his B.Sc. and M.Sc. Degrees
in electrical engineering and information technology
from the University of Zagreb, Faculty of Electrical
Engineering and Computing in 2015 and 2017, re-
spectively. He is currently pursuing a Ph.D. degree
at the Space and Terrestrial Autonomous Robotic
Systems (STARS) laboratory at the University of
Toronto, jointly with the Laboratory for Autonomous
Systems and Mobile Robotics (LAMOR) at the
University of Zagreb. His research is focused on
applying concepts from differential geometry to

kinematics and motion planning in robotics.

Matthew Giamou received his B.A.Sc. from the
University of Toronto in 2015 and his M.Sc. from
MIT In 2017. He is currently a Ph.D. candidate
at the Space and Terrestrial Autonomous Robotic
Systems (STARS) laboratory at the University of
Toronto, where he is investigating convex relaxations
for various challenging state estimation and planning
problems. His research interests also include multi-
robot systems and the integration of learned and
classical models for robot perception.

Adam W. Hall received a B.Sc.Eng. in engineering
physics and a B.Sc. in chemistry from Queen’s
University in 2014. Upon graduating, he worked
in the space robotics industry before starting his
Ph.D. at the University of Toronto. Currently, as
a member of both the Space and Terrestrial Au-
tonomous Robotic Systems (STARS) laboratory and
the Dynamic Systems Laboratory (DSL), Adam is
exploring how to apply classical notions of safety to
learning-based control problems.

Soroush Khoubyarian is a third year Engineering
Science student at the University of Toronto. He was
a student at the Space and Terrestrial Autonomous
Robotic Systems (STARS) laboratory at the Univer-
sity of Toronto Institute for Aerospace Studies in the
summers of 2019 and 2020, where he worked on
convex optimization methods for sensor calibration
and manipulation. He specializes in Engineering
Physics and is expected to receive his B.A.Sc in
2023.

Ivan Petrović received the Master of Science and
the Ph.D. degrees from FER Zagreb, Zagreb, Croa-
tia, in 1990 and 1998, respectively. He is a Professor
and the Head of the Laboratory for Autonomous
Systems and Mobile Robotics, Faculty of Electrical
Engineering and Computing, University of Zagreb,
Zagreb, Croatia. He has published about 60 journal
and 200 conference papers. His current research
interest includes advanced control and estimation
techniques and their application in autonomous sys-
tems and robotics. Prof. Petrović is a Full Member

of the Croatian Academy of Engineering, and the Chair of the IFAC Technical
Committee on Robotics.

Jonathan Kelly received his Ph.D. degree from
the University of Southern California, Los Angeles,
USA, in 2011. From 2011 to 2013 he was a post-
doctoral fellow in the Computer Science and Arti-
ficial Intelligence Laboratory at the Massachusetts
Institute of Technology, Cambridge, USA. He is
currently Dean’s Catalyst Professor and Director
of the Space and Terrestrial Autonomous Robotic
Systems Laboratory, University of Toronto Institute
for Aerospace Studies, Toronto, Canada. Prof. Kelly
holds the Tier II Canada Research Chair in Col-

laborative Robotics. His research interests include perception, planning, and
learning for interactive robotic systems.

	I Introduction
	II Related Work
	II-A Inverse Kinematics
	II-B Distance Geometry

	III Background
	III-A Distance Geometry
	III-B Euclidean Distance Matrices
	III-C Euclidean Distance Matrix Completion
	III-D Optimization on the Manifold

	IV Distance-Geometric Inverse Kinematics
	IV-A Kinematic Model
	IV-B Constraints
	IV-B1 Base structure
	IV-B2 End-effector pose
	IV-B3 Joint limits
	IV-B4 Obstacle avoidance

	IV-C Solution Recovery
	IV-D Equivalence to Distance Geometry
	IV-E Special Cases

	V Algorithm
	V-A The Riemannian Trust-Region Algorithm
	V-B Bound Smoothing

	VI Experiments
	VI-A Experimental Methodology
	VI-B Benchmark Algorithms
	VI-C Hyper-redundant and Tree-like Robots
	VI-D Revolute Manipulators
	VI-E Obstacle Avoidance

	VII Conclusion
	VII-A Limitations
	VII-B Future Work

	References
	Biographies
	Filip Marić
	Matthew Giamou
	Adam W. Hall
	Soroush Khoubyarian
	Ivan Petrović
	Jonathan Kelly

