
IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, MONTH 2021 100

Handling Concurrency in Behavior Trees
Michele Colledanchise and Lorenzo Natale

Abstract—This paper addresses the concurrency issues affect-
ing Behavior Trees (BTs), a popular tool to model the behaviors of
autonomous agents in the video game and the robotics industry.

BT designers can easily build complex behaviors compos-
ing simpler ones, which represents a key advantage of BTs.
The parallel composition of BTs expresses a way to combine
concurrent behaviors that has high potential, since composing
pre-existing BTs in parallel results easier than composing in
parallel classical control architectures, as finite state machines or
teleo-reactive programs. However, BT designers rarely use such
composition due to the underlying concurrency problems similar
to the ones faced in concurrent programming. As a result, the
parallel composition, despite its potential, finds application only
in the composition of simple behaviors or where the designer can
guarantee the absence of conflicts by design.

In this paper, we define two new BT nodes to tackle the
concurrency problems in BTs and we show how to exploit them to
create predictable behaviors. In addition, we introduce measures
to assess execution performance and show how different design
choices affect them. We validate our approach in both simulations
and the real world. Simulated experiments provide statistically-
significant data, whereas real-world experiments show the ap-
plicability of our method on real robots. We provide an open-
source implementation of the novel BT formulation and published
all the source code to reproduce the numerical examples and
experiments.

I. INTRODUCTION

WE study concurrent robot behaviors encoded as Behav-
ior Trees (BTs) [1]. Robotics applications of BTs span

from manipulation [2]–[4] to non-expert programming [5]–[7].
Other works include task planning [8], human-robot interac-
tion [9]–[11], learning [12]–[15], UAV [16]–[21], multi-robot
systems [22]–[25], and system analysis [26]–[28]. The Boston
Dynamics’s Spot uses BTs to model the robot’s mission [29],
the Navigation Stack and the task planner of ROS2 uses BTs
to encode the high level robot’s behavior [30], [31].

The particular syntax and semantic of BTs, which we will
describe in the paper, allows creating easily complex behav-
iors composing simpler ones. A BT designer can compose
behaviors in different ways, each with its own semantic.
The Parallel composition allows a designer to describe the
concurrent execution of several sub-behaviors. In BTs, this
composition scales better as the complexity of the behavior
increases, compared to other control architectures where the
system’s complexity results from the product of its sub-
systems’ complexities [1]. However, the Parallel composition
still entails concurrency issues (e.g., race conditions, starva-
tion, deadlocks, etc.), like any other control architecture. As a
result, such composition gets applied only to orthogonal tasks.

The authors are with the Humanoids Sensing and Perception Laboratory,
Center for Robotics and Intelligent Systems (CRIS), Istituto Italiano di
Tecnologia. Genoa, Italy. e-mail: michele.colledanchise@iit.it,
lorenzo.natale@iit.it

In the BT literature, the Parallel composition finds applica-
tions only to the composition of orthogonal tasks, where the
designer guarantees the absence of conflicts. In this paper,
we show how we can extend the use of BTs to address
the concurrency issues above. In particular, we show how
to obtain synchronized concurrent BTs execution, exclusive
access to resources, and predictable execution times. We define
performance measures and analyze how they are affected
by different design choices. We also provide reproducible
experimental validation by publishing the implementation of
our BT library, code, and data related to our experiments.

Software developers from the video game industry con-
ceived BTs to model the behaviors of Non-Player Characters
(NPCs) [32], [33]. Controlled Hybrid Systems (CHSs) [34],
which combine continuous and discrete dynamics, were a
natural formulation of NPCs’ execution and control. However,
it turned out that CHSs were not fit to program an NPC, as
CHSs implement the discrete dynamics in the form of Finite
State Machines (FSMs). The developers realized that FSMs
scale poorly, hamper modification and reuse, and have proved
inadequate to represent complex deliberation [35], [36]. In this
context, the issues lie in the transitions of FSMs, which imple-
ment a one-way control transfer, similar to a GOTO statement
of computer programming. In 1968, Edsger Dijkstra observed
that “the GOTO statement as it stands is just too primitive; it
is too much an invitation to make a mess of one’s program [...]
the GOTO statement should be abolished from all higher-level
programming languages” [37]. In the computer programming
community, Dijksta’s observation started a controvert debate
against the expressivity power of GOTO statements [38]–[40].
Finally, the community followed Dijksta’s advice, and modern
software no longer contains GOTO statements. However, we
still can find GOTO statements everywhere in the form of
transitions in FSMs and therefore CHSs.

The robotics community identified similarities in the desired
behaviors for NPCs and robots. In particular, both NPCs and
robots act in an unpredictable and dynamic environment; both
need to encode different behaviors in a hierarchy, both need a
compact representation for their behaviors. Quickly, BTs be-
came a modular, flexible, and reusable alternative over FSM to
model robot behaviors [41]. Moreover, the robotic community
showed how BTs generalize successful robot control archi-
tectures such as the Subsumption Architecture and the Teleo-
Reactive Paradigm [1]. Using BTs, the designer can compose
simple robot behaviors using the so-called control flow nodes:
Sequence, Fallback, Decorator, and Parallel. As mentioned,
the Parallel composition of independent behaviors can arise
several concurrency problems in any modeling language, and
BTs are no exception. However, the parallel composition of
BTs remains less sensitive to dimensionality problems than
classical FSMs [1].

ar
X

iv
:2

11
0.

11
81

3v
1

 [
cs

.R
O

]
 2

2
O

ct
 2

02
1

IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, MONTH 2021 101

⇒

→

?

Localized Look for
Landmarks

Follow
Person

?

Person in
Field of View

Look for
Person

Navigation Behavior Gaze Behavior

(a) Flawed BT execution. The conflicting ac-
tions Look for Person and Look for Landmarks
may be executed concurrently.

⇒

→

?

Localized ?

Head Busy Look for
Landmarks

Follow
Person

?

Person in
Field of View

?

Head Busy Look for
Person

Navigation Behavior Gaze Behavior

(b) Correct BT execution using the classical BT nodes.

⇒

→

?

Localized δR

Look for
Landmarks

Follow
Person

?

Person in
Field of View

δR

Look for
Person

Navigation Behavior Gaze Behavior

(c) Correct BT execution using the proposed
BT nodes.

Fig. 1. Example of flawed and correct concurrent BT execution. The gaze and navigation behaviors are executed in parallel.

Another similarity between computer programming and
robot behavior design lies in the concurrent execution of mul-
tiple tasks. A computer programmer adopts synchronization
techniques to achieve execution synchronization, where a pro-
cess has to wait until another process provides the necessary
data, or data synchronization, where multiple processes have to
use or access a critical resource and a correct synchronization
strategy ensures that only one process at a time can access
them [42]. The solutions adopted in concurrent programming
made a tremendous impact on software development. Another
desired quality of a process, particularly in real-time systems,
is the predictability, that is, the ability to ensure the execution
of a process regardless of outside factors that will jeopardize
it. In other words, the application will behave as intended in
terms of functionality, performance, and response time.

Nowadays, robot software follows a modular approach,
in which computation and control use concurrent execution
of interconnected modules. This philosophy is promoted by
middlewares like ROS and has become a defacto standard
in robotics. The presence of concurrent behaviors requires
facing the same issues affecting concurrent programming,
which deals with the execution of several concurrent processes
that need to be synchronized to achieve a task or simply to
avoid being in conflict with one another. In this context, proper
synchronization and resource management become beneficial
to achieve faster and reproducible behaviors, especially at the
developing stage, where actions may run at a different speed
in the real world and in a simulation environment. Increasing
predictability reduces the difference between simulated and
real-world robot executions and increases the likelihood of
task completion within a given time constraint. We believe
that proper parallel task executions will bring benefits in terms
of efficiency and multitasking to BTs in a similar way as in
computer programming.

The requirement of concurrent or predictable behaviors may
also come from non-technical specifications. For example, the
Human-Robot Interaction (HRI) community stressed the im-
portance of synchronized robots’ behaviors in several contexts.
The literature shows evidence of more “believable” robots
behaviors when they exhibit contingent movements [43] (e.g.,
gaze and arm movement when giving directions), coordinated
robots and human movements [44] (e.g., a rehabilitation robot
moves at the patient’s speed), and coordinated gestures and
dialogues [45] (e.g., the robot’s gesture synchronized during
dialogues).

In this paper, we extend our previous works [46], [47], we
define Concurrent BTs (CBTs), where nodes expose informa-
tion regarding progress and resource used, we also define and
implement two new control flow nodes that allow progress
and data synchronization techniques and show how to improve
behavior predictability. In addition, we introduce measures to
assess execution performance and show how design choices
affect them. To clarify what we mean by these concepts, we
consider the following task: A robot has to follow a person.
The robot’s behavior can be encoded as the concurrent exe-
cution of two sub-behaviors: navigation and gazing. However,
the navigation behavior is such that, whenever the robot gets
lost, it moves the head, looking for visual landmarks to localize
itself. Figure 1(a) encodes the BT of this behavior. At this
stage, the semantic of BT is not required to understand the
problem. Note how, whenever the robot gets lost, two actions
require the use of the head: the actions Look for Landmarks
and Look for Person. To avoid conflicts, we have to modify
to be as in Figure 1(b). However, such BT goes against
the separation of roles as the BT designer needs to know
beforehand the actions’ resources. In this paper, we propose
two control flow nodes that allow the synchronization of such
BT in a less invasive fashion, as in Figure 1(c).

The concurrent execution of legacy BTs represents another
example of such a synchronization mechanism. Clearly, the
design of a single action that performs both tasks represents
a “better” synchronized solution. However, creating the single
action for composite behaviors jeopardizes the advantages of
BTs in terms of modular and reusable behavior.

To summarize, in this paper, we provide an extension of our
previous work [46] and [47], where the new results are:
• We moved the synchronization logic from the parallel

node to the decorator nodes. This enables a higher
expressiveness of the synchronization.

• We provide reproducible experimental validation on sim-
ulated data.

• We provide experimental validation on three real robots.
• We compared our approach with two alternative task

synchronization techniques.
• We provide the code to extend an existing software library

of BTs, and its related GUI, to encode the proposed
synchronization nodes.

• We provide a theoretical discussion of our approach and
identify the assumptions under which the property on BTs
are not jeopardized by the synchronization.

IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, MONTH 2021 102

The outline of this paper is as follows: We present the
related work and compare it with our approach in Section II.
We overview the background in BTs in Section III. We present
the first contribution of this paper on BT synchronization
in Section IV. Then we present the second contribution on
performance measures in Section V. In Section VI we provide
experimental validation with numerical experiments to gather
statistically significant data and compare our approach with
existing ones. We made these experiments reproducible. We
also validated our approach on real robots in three different
setups to show the applicability of the approach to real
problems. We describe the software library we developed, and
we refer to the online repository in Section VII. We study
the new control nodes from a theoretical standpoint and study
how design choices affect the performances in Section VIII.
We conclude the paper in Section IX.

II. RELATED WORK

This section shows how BT designers in the community ex-
ploit the parallel composition, and we highlight the differences
with the proposed approach. We do not compare our approach
with generic scheduling algorithms [48], as our interest lies in
the concurrent behaviors encoded as BTs.

The parallel composition has found relatively little use,
compared to the other compositions, due to the intrinsic con-
currency issues similar to the ones of computer programming,
such as race conditions and deadlocks. Current applications
that make use of the parallel composition work under the
assumption that sub-BTs lie on orthogonal state spaces [2],
[49] or that sub-BTs executed in parallel have a predefined
priority assigned [50] where, in conflicting situations, the sub-
BTs with the lower priority stops. Other applications impose
a mutual exclusion of actions in sub-BTs whenever they
have potential conflicts (e.g., sending commands to the same
actuator) [1] or they assume that sub-BTs that are executed in
parallel are not in conflict by design.

The parallel composition found large use in the BT-based
task planner A Behavior Language (ABL) [51] and in its
further developments. ABL was originally designed for the
game Façade, and it has received attention for its ability to
handle planning and acting at different deliberation layers, in
particular, in Real-Time Strategy games [50]. ABL executes
sub-BTs in parallel and resolves conflicts between multiple
concurrent actions by defining a fixed priority order. This
solution threatens the reusability and modularity of BTs and
introduces a latent hierarchy in the BT.

The parallel composition found use also in multi-robot
applications, both with centralized [52] and distributed fash-
ions [53], [54], resulting in improved fault tolerance and other
performances. The parallel node involves multiple robots, each
assigned to a specific task using a task-assignment algorithm.
A task-assignment algorithm ensures the absence of conflicts.

None of the existing work in the BT literature adequately
addressed the synchronization issues that arise when using a
parallel BT node. They assume or impose strict constraints
on the actions executed and often introduce undesired latent
hierarchies difficult to debug.

A recent work [55] proposed BTs for executing actions in
parallel, even when they lie on the same state space (e.g.,
they use the same robot arm). The authors implement the
coordination mechanism with a BT that activates and deac-
tivates motion primitives based on their pre-conditions. Such
a framework avoids that more actions access a critical resource
concurrently. In our work, we are interested in synchronizing
the progress of actions that a BT can execute concurrently.

We address the issues above by defining BT nodes that
expose information regarding progress and resource uses. We
define an absolute and relative synchronized parallel BT node
execution and a resource handling mechanism. We provide
a set of statistically meaningful experiments and real-robot
executions. We also provide an extension to the software li-
brary to obtain such synchronizations and real-robot examples.
This makes our paper fundamentally different than the ones
presented above and the BT literature.

In our previous work [46], [47], we extend the semantic of
the parallel node to allow synchronization. Figure 2(a) shows
an example of a synchronized BT using our such approach.
In this paper, we go beyond our previous work by moving the
synchronization logic inside a decorator node, as Figure 2(b).
That allows the synchronization to deeper branches of the
BT, as in Figure 3, and multiple cross synchronization. In
Section VI, we will also show a synchronization experiment
possible only with the new semantic.

⇒R

Follow
Path

Hold
Cart

(a) BTs synchronization using
the previous formulation.

⇒

δPB

Follow
Path

δPB

Hold
Cart

(b) BTs synchronization using the
proposed formulation.

Fig. 2. BT synchronization using the previous [46] (left) and the proposed
formulation (right).

⇒

→

?

Handle
Grasped

Grasp
Handle

δPB

Pull
Door

→

Door
Open

δPB

Move Away
from Door

Fig. 3. A more complex version of the BT for Example 1 allowed by the
new formulation only.

IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, MONTH 2021 103

III. BACKGROUND

This section briefly presents the classical and the state-space
formulation of BTs. A detailed description of BTs is available
in the literature [1].

A. Classical Formulation of Behavior Trees

A BT is a graphical modeling language that represents
actions orchestration. It is a directed rooted tree where the
internal nodes represent behavior compositions and leaf nodes
represent actuation or sensing operations. We follow the
canonical nomenclature for root, parent, and child nodes.

The children of a BT node are placed below it, as in
Figure 3, and they are executed in the order from left to right.
The execution of a BT begins from the root node. It sends
ticks, which are activation signals, with a given frequency to
its child. A node in the tree is executed if and only if it receives
ticks. When the node no longer receives ticks, its execution
stops. The child returns to the parent a status, which can be
either Success, Running, or Failure according to the node’s
logic. Below we present the most common BT nodes and their
logic.

In the classical representation, there are four operator nodes
(Fallback, Sequence, Parallel, and Decorator) and two exe-
cution nodes (Action and Condition). There exist additional
operators, but we will not use them in this paper.

Sequence: When a Sequence node receives ticks, it routes
them to its children in order from the left. It returns Failure
or Running whenever a child returns Failure or Running,
respectively. It returns Success whenever all the children
return Success. When child i returns Running or Failure, the
Sequence node does not send ticks to the next child (if any) but
keeps ticking all the children up to child i. The Sequence node
is graphically represented by a square with the label “→”, as
in Figure 3, and its pseudocode is described in Algorithm 1.

Algorithm 1: Pseudocode of a Sequence operator with
N children

1 Function Tick()
2 for i← 1 to N do
3 childStatus ← child(i).Tick()
4 if childStatus = Running then
5 return Running
6 else if childStatus = Failure then
7 return Failure

8 return Success

Fallback: When a Fallback node receives ticks, it routes
them to its children in order from the left. It returns a status
of Success or Running whenever a child returns Success
or Running respectively. It returns Failure whenever all the
children return Failure. When child i returns Running or
Success, the Fallback node does not send ticks to the next child
(if any) but keeps ticking all the children up to the child i. The
Fallback node is represented by a square with the label “?”, as
in Figure 3, and its pseudocode is described in Algorithm 2.

Algorithm 2: Pseudocode of a Fallback operator with
N children

1 Function Tick()
2 for i← 1 to N do
3 childStatus ← child(i).Tick()
4 if childStatus = Running then
5 return Running
6 else if childStatus = Success then
7 return Success

8 return Failure

Parallel: When the Parallel node receives ticks, it routes
them to all its children. It returns Success if M ≥ N children
return Success, it returns Failure if more than N−M children
return Failure, and it returns Running otherwise. The Parallel
node is graphically represented by a square with the label “⇒”,
as in Figure 3, and its pseudocode is described in Algorithm 3.

Algorithm 3: Pseudocode of a Parallel operator with
N children

1 Function Tick()
2 forall i← 1 to N do
3 childStatus[i] ← child(i).Tick()

4 if Σi:childStatus[i]=Success = M then
5 return Success
6 else if Σi:childStatus[i]=Failure > N −M then
7 return Failure

8 else
9 return Running

Decorator: A Decorator node represents a particular
control flow node with only one child. When a Decorator node
receives ticks, it routes them to its child according to custom-
made policy. It returns to its parent a return status according
to a custom-made policy. The Decorator node is graphically
represented as a rhombus, as in Figure 3. BT designers use
decorator nodes to introduce additional semantic of the child
node’s execution or to change the return status sent to the
parent node.

Action: An action performs some operations as long as it
receives ticks. It returns Success whenever the operations are
completed and Failure if the operations cannot be completed.
It returns Running otherwise. When a running Action no
longer receives ticks, its execution stops. An Action node is
graphically represented by a rectangle, as in Figure 3, and its
pseudocode is described in Algorithm 4.

Condition: Whenever a Condition node receives ticks, it
checks if a proposition is satisfied or not. It returns Success
or Failure accordingly. A Condition is graphically represented
by an ellipse, as in Figure 3, and its pseudocode is described
in Algorithm 5.

IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, MONTH 2021 104

Algorithm 4: Pseudocode of a BT Action

1 Function Tick()
2 DoAPieceOfComputation()
3 if action-succeeded then
4 return Success
5 else if action-failed then
6 return Failure

7 else
8 return Running

Algorithm 5: Pseudocode of a BT Condition

1 Function Tick()
2 if condition-true then
3 return Success
4 else
5 return Failure

B. Control Flow Nodes With Memory

To avoid the unwanted re-execution of some nodes, and
save computational resources, the BT community developed
control flow nodes with memory [33]. Control flow nodes
with memory keep stored which child has returned Success or
Failure, avoiding their re-execution. Nodes with memory are
graphically represented with the addition of the symbol “∗” as
superscript (e.g., a Sequence node with memory is graphically
represented by a box with the label “→∗”). The memory is
cleared when the parent node returns either Success or Failure
so that, at the next activation, all children are re-considered.
Every execution of a control flow node with memory can be
obtained employing the related non-memory control flow node
using auxiliary conditions and shared memory [1]. Provided a
shared memory, these nodes become syntactic sugar.

C. Asynchronous Action Execution

Algorithm 4 performs a step of computation at each tick.
It implements an action execution that is synchronous to
the ticks’ traversal. However, in a typical robotics system,
action nodes control the robot by sending commands to a
robot’s interface to execute a particular skill, such as an arm
movement or a navigation skill; these skills are often executed
by independent components running on a distributed system.
Therefore, the action execution gets delegated to different
executables that communicate via a middleware.

As discussed in the literature [1], [56], the designer needs
to ensure that the skills running in the robot independently
from the BT get properly interrupted when the corresponding
action no longer receives ticks.

To support the preemption and synchronization, BT design-
ers split the actions execution in smaller steps, each executed
within a quantum, that is, a time window during which the
action gets executed by the robot asynchronously with respect
to the BT. During this time, the action cannot be interrupted.

The action starts when the first tick is received, and it proceeds
for another quantum only when the next tick is received. At
the end of each quantum, a running action yields control back
to the BT. This logic resembles process scheduling, where a
scheduler provides computing time, to a process, and then it
takes back control to choose the next process to run. Figure 4
shows an example of how a BT action interacts with an
external executable that controls the robot. The figure depicts
two threads, one that ticks the action node (within the BT
executable) and one that controls the robot (within an external
executable). When the action node receives a tick from its
parent, it pushes a token onto a stack, shared with the external
executable that controls the robot. Such executable controls the
robot if and only if there is a token in the stack. This behavior
also is outlined in the algorithm in Figure 4. The executable
checks the stack periodically, if there is a token in the stack,
it consumes it, and it executes a control step. If the stack
is empty, the executable halts the controller execution. If the
BT tick frequency is faster than the controller quantum (e.g.,
twice the thread’s frequency), this mechanism ensures that the
controller operates without interruptions, but it also guarantees
that the controller is halted when ticks are no longer dispatched
to the action node without delay (this is achieved using the
size of the stack equal to one).

It is clear that, in BTs, the tick frequency plays an important
role in action preemption. To allow “fast” preemption, the
quantum of actions should be short and the tick frequency
should be high. Intuitively, a blocking action, which does
not allow to be interrupted throughout its entire execution,
will continue to take control of the robot also if it no longer
receives ticks. BTs orchestrate behaviors at a relatively high
level of abstraction. In general, to avoid preemption delay, the
time spanned between a tick and the next one must be shorter
than the smallest action quantum in the BT. In our experience,
a quantum of ∆T ≈ 100ms (i.e., an update frequency of
10Hz) and a tick frequency of 20Hz represents a good trade-
off between action responsiveness and required ticks traversal
frequency.

...

Token

Stack Size = 1

BT Action Robot ControllerfBT
1

∆T

Tick ()
{
s tack . push (token)
}

while (c o n t r o l l e r . isOK ())
{
i f (not s tack . empty ()){
s tack . pop () ;
i f (not c o n t r o l l e r . i s S t a r t e d ()){
c o n t r o l l e r . s t a r t () ;
}
else {
c o n t r o l l e r . s tep () ;
}
}
else {
i f (c o n t r o l l e r . i s S t a r t e d ()){
c o n t r o l l e r . stop () ;
}
}
}

Fig. 4. Example of asynchronous external action execution. fBT is the tick
frequency and ∆T is the quantum period.

The interaction between the BT and the executable is de-
signed to ensure that the robot controller continues to operate if
the BT ticks the action node without interruptions. Otherwise,
i.e. if no ticks are received within the assigned quantum, the
controller is halted.

IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, MONTH 2021 105

IV. CONCURRENT BTS

This section introduces the first contribution of the paper.
We present the Concurrent BTs (CBTs), an extension to
classical BTs with the addition of the execution progress
and the resource allocated in the formulation. We extend our
previous work on parallel synchronization of BTs [46], [47]
employing decorator nodes that allow progress and resource
synchronization. Here we define these nodes by their pseu-
docode. We provide the source code for some of the examples
provided.1

In Section VIII we provide the formal definition and the
state-space formulation of the nodes. We also prove that, under
some assumptions, the proposed nodes do not jeopardize the
BT properties.

Concurrent BTs: A CBT is a BT whose nodes expose in-
formation about the execution progress p(xk) and the resource
required Q(xk) and priority ρ(xk) at system’s state xk ∈ Rn.
In addition, the nodes contain the user-defined function g(xk)
that represents the priority increase whenever the execution of
a node gets denied by a resource not available; we will present
the details in this section. In Section VIII we provide the
formal definition of CBTs and the formulation of the Sequence
and Fallback composition.

ProgressSynchronization Decorator: When a
ProgressSynchronization Decorator receives a tick, it
ticks its child if the child’s progress at the current state p(xk)
is lower than the current barrier b(xk). The decorator returns
to the parent Success if the child returns Success, it returns
to the parent Failure if the child returns Failure. It returns
Running otherwise. The ProgressSynchronization Decorator
node is graphically represented by a rhombus with the label
“δPb ”, as in Figure 5(a), and its pseudocode is described in
Algorithm 6.

We will calculate the barrier b(xk) either in an absolute or
relative fashion, as we will show in Sections IV-A and IV-B.

Algorithm 6: Pseudocode of a ProgressSynchroniza-
tion Decorator.

1 Function Tick()
2 if child.p(xk) ≤ b(xk) then
3 childStatus ← child.Tick()
4 return childStatus

5 return Running

δPB

Child

(a) Absolute synchro-
nization. B indicates the
set of barriers.

δP∆

Child

(b) Relative
synchronization. ∆
indicates the threshold
value.

δR

Child

(c) Resource Synchro-
nization Decorator node.

Fig. 5. Graphical representation of a Synchronization Decorator nodes.

1https://github.com/miccol/tro2021-code

ResourceSynchronization Decorator: When a
ResourceSynchronization Decorator receives a tick, it
ticks its child if the resources required by the child i, Qi(xk),
are either available or assigned to that child already. When
the decorator ticks a child, it also assigns all the resources in
Qi(xk) to that child. Whenever the child no longer requires a
resource in Qi(xk), such resource get released. The decorator
returns to the parent Success if the child returns Success, It
returns to the parent Failure if the child returns Failure. It
returns Running if either the child return running or if the
child is waiting for a resource. R is the set of all the resources
of the system. The decorator keeps also a priority value for
the subtree accessing a resource, to avoid starvation, as we
prove it in Section VIII. Whenever the decorator receives a
tick and does not send it to the child (as the resources are not
ailable), the priority value evolves according to the g(xk).
In Section VI we will show two examples that highlight
how the choice of the function g avoids starvation. The BT
keeps track of the node currently using a resource q, via the
function α(q). All the resource decorator nodes share the
value of such function.

The ResourceSynchronization Decorator node is graphically
represented by a rhombus with the label “δR”, as in Fig-
ure 5(c). Algorithm 7 describes its pseudocode, in particular,
for each resource q required by the decorator’s child (Line 2),
if the resource results assigned to another child (Line 3),
then the priority of the child to get the resource q increases
according to the function g. The algorithm then assigns the
resources to the child with the highest priority (Lines 7-9) and
releases the child’s resources if either it no longer requires it
(Lines 10-11).

Remark 1. We are not interested in a scheduler that fairly as-
signs the resources as it is done, for example, in the Operating
Systems. The designer may implement a fair scheduling policy
and encode it in the function g. However, if an action has
always higher priority than another one to get a resource, this
should be modeled via a Sequence or Fallback composition.

Algorithm 7: Pseudocode of a ResourceSynchroniza-
tion Decorator.

1 Function Tick()
2 for q in child.Q(xk) do
3 if (α(q) not = child) and (α(q) not ∅) then
4 child.ρ(xk) ← child.ρ(xk−1) + g(xk)
5 return Running

6 for q in R do
7 if q in child.Q(xk) then
8 if α(q) not = child

child.ρ(xk) > α(q).ρ(xk) then
9 α(q) ← child

10 else if α(q) = child then
11 α(q) ← ∅

12 childStatus ← child.Tick()
13 return childStatus

https://github.com/miccol/tro2021-code

IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, MONTH 2021 106

A. Absolute Progress Synchronization

A BT achieves an absolute progress synchronization by set-
ting, a-priori, a finite ordered set B of values for the progress.
These values are used as barriers at the task level [42].
Whenever a child of an AbsoluteProgressSync Decorator has
the progress equal to or greater than a progress barrier in B
it no longer receives ticks until all the other nodes whose
parent is an instance of such decorator have the progress equal
to or greater than the barrier’s value. We now present a use
case example for the absolute progress synchronization, taking
inspiration from the literature [57], [58].

⇒

Pull Door Move Away
from Door

(a) Without synchronization.

⇒

δPB

Pull Door

δPB

Move Away
from Door

(b) With synchronization.
Fig. 6. BT encoding the desired behavior of Example 1

Example 1 (Absolute). A robot has to pull a door open. To
accomplish this task, the robot must execute two behaviors
concurrently: an arm movement behavior to pull the door open
and a base movement behavior to make the robot move away
from the door while this opens, as the BT in Figure 6(a).

The progress profile of the two sub-BTs, “Pull Door” T1

and “Move Away from Door” T2, holds the equations below:

pi(xk) =

{
0 if k = 0

pi(xk−1) + ai, otherwise
(1)

with a1 = 0.015 (Pull Door), a2 = 0.01 (Move Away
from Door). The equations describe a linear progress profile
for both behaviors, with the action “Pull Door” faster than
the action “Move Away from Door”. However, to ensure
that the task is correctly executed, the robot must execute
the two behaviors above in a synchronized fashion. The BT
in Figure 6(b) encode such synchronized behavior, with the
following barriers

B = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} (2)

Figure 7 shows the progress profiles of the actions with
and without synchronization. We see how, in the synchronized
case, the arm movement keeps stopping to wait for the base
movement at the points of executions defined in the barrier.

0 20 40 60 80 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Time Step k

P
ro
gr
es
s

Pull Door

Move Away

(a) Without synchronization.

0 20 40 60 80 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Time Step k

P
ro
gr
es
s

Pull Door

Move Away

(b) With synchronization.
Fig. 7. Progress profiles of the actions of Example 1.

B. Relative Progress Synchronization

In this case, synchronization does not follow a common
progress indicator, but it is relative to another node’s execution.
A BT achieves a relative progress synchronization by setting
a-priori a threshold value ∆ ∈ [0, 1]. Whenever a child
of a RelativeProgressSync Decorator exceeds the minimum
progress, among all the other nodes whose parent is an
instance such decorator, by ∆, it no longer receives ticks.

We now present a use case example for the relative progress
synchronization, taking inspiration from the literature [43]. We
provide an implementation this example in Section VI.

⇒

Head
Movement

Arm
Movement

(a) Without synchronization.

⇒

δP∆

Head
Movement

δP∆

Arm
Movement

(b) With synchronization.
Fig. 8. BT encoding the desired behavior of Example 2

Example 2 (Relative). A service robot has to give directions
to visitors to a museum. To make the robot’s motions look
natural, whenever the robot gives a direction, it points with its
arm and the head to that direction as in the BT in Figure 8(a).

The progress profile of the two sub-BTs, “Head Movement”
T1 and “Arm Movement” T2, holds the equations below:

pi(xk) =

{
0 if k = 0

pi(xk−1) + ai, otherwise
(3)

with a1 = 0.01 (Arm), a2 = 0.05 (Head). Figure 9(b) shows
the progress profile of the sub-BTs.

The equations describe a linear progress profile for both
behaviors, with the action “Move Head” faster than the action
“Move Arm”. However, the arm and head may require differ-
ent times to perform the motion, according to the direction
to point at. Hence, to look natural, the head movement must
follow the arm movement to avoid the unnatural behavior
where the robot looks first to a direction and then points at it,
or the other way round. The BT in Figure 8(b) encode such
synchronized behavior, with ∆ = 0.1

Figure 9 shows the progress profiles of the actions. We see
how the head movement stops when its progress surpasses the
arm movement’s progress by 0.1, around time step k = 10.

0 50 100 150 200
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Time Step k

P
ro
gr
es
s

Head Movement

Arm Movement

(a) Without synchronization.

0 50 100 150 200
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Time Step k

P
ro
gr
es
s

Head Movement

Arm Movement

(b) With synchronization.
Fig. 9. Progress profiles of the actions of Example 2.

IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, MONTH 2021 107

Perpetual Actions: We can use the relative synchronized
parallel node also to impose coordination between perpetual
actions, (i.e., an action that, even in the ideal case, does not
have a fixed duration, hence a progress profile), as in the
following example taken from the literature [55]. We will
present an implementation of the example above in Section VI.

⇒

Align
Piston

Insert
Piston

(a) Without synchronization.

⇒

δP∆

Align
Piston

δP∆

Insert
Piston

(b) With synchronization.
Fig. 10. BT encoding the desired behavior of Example 3

Example 3 (Perpetual Actions). An industrial manipulator
has to insert a piston into a cylinder of a motor block. It
is an instance of a typical peg-in-the-hole problem with the
additional challenge of the freely swinging piston rod. To
correctly insert the piston, the latter must be kept aligned
during the insertion into the cylinder.

We can describe this behavior as a parallel BT composition
of two sub-BTs: one for inserting the piston and one for
keeping the piston aligned with the cylinder as in Figure 10(a).
The Insert Piston action stops when the end-effector senses
that the piston hits the cylinder’s base, hence its progress
cannot be computed beforehand. Since the inserting behavior
and the alignment behavior are executed concurrently, the
robot may insert the piston too fast, resulting in a collision
between the piston and the cylinder’s edge.

Figure 10(b) shows a BT of a synchronized execution, where
the progress of the piston insertion (Insert Piston action) has
only two values, 0 and 1. It equals 1 whenever the piston is
being inserted and 0 otherwise. Similarly, for the alignment
behavior (Align Piston action). The insertion behavior stops
while the robot is aligning the piston.

Remark 2. In real-world scenarios, we can compute the
progress either in an open-loop (i.e., at each tick received
it increments the progress) or in a closed-loop (i.e., using the
sensors to compute the actual progress) fashion.

C. Resource Synchronization
This section shows how CBTs can execute multiple actions

in parallel without resource conflicts. This synchronization
becomes useful when executing in parallel BTs that have some
actions in common, as shown in Example 4, adapted from the
BT literature. This often happens whenever we want to execute
concurrently existing BTs.

Example 4. The BT in Figure 11(a) shows a BT for a missile
evasion tactic, taken from the literature [59]. The BT has
three sub-BTs that run in parallel: “Turn on Countermeasure
Maneuvers”, “Countermeasure Maneuvers once”, “Dispense
Chaff and Flares Every 10 Seconds”, “Turn Clockwise if an
Enemy on a Range”.

The actions “Countermeasure Maneuver” and “Turn Clock-
wise” run in parallel and both use the aircraft’s actuation.
There are cases in which both actions receive ticks, resulting
in possible conflicts. We can use the resource decorator node
to avoid such conflicts, as in the BT in Figure 11(b).

The authors of [59] did not address the concurrency issue
above. However, taking advantage of the composability of BTs,
we did the modification easily.

→

Missile
Warning

⇒

Once

Countermeasure
Maneuvers

Every

10s

Dispense Chaffs
and Flares

?

Enemy
In Front

Turn
Clockwise

(a) Without synchronization.

→

Missile
Warning

⇒

δR

Once

Countermeasure
Maneuvers

Every

10s

Dispense Chaffs
and Flares

?

Enemy
In Front

δR

Turn
Clockwise

(b) With synchronization.
Fig. 11. BT encoding the desired behavior of Example 4, adapted from [59]

D. Improving Predictability

We can use progress synchronization to impose a given
progress profile constraint. The idea is to define an artificial
action with the desired progress profile (over time) defined a
priori and putting it as a child of an absolute synchronized par-
allel node with the actions whose progress is to be constrained.
However, since we can only stop actions (i.e., BTs have no
means to speed up actions), we can only define such artificial
action as progress upper bound. This type of progress profile
creation may become very useful at the developing stage since
the actions may run at a different speed in the real world and in
a simulation environment. Improving predictability reduces the
difference between simulated and real-world robot execution.

⇒

δPB

Profile

δPB

Arm
Movement

Fig. 12. BT encoding the desired behavior of Example 5

Example 5. A robot has to move its arm following a sigmoid
profile (i.e., the movements are first slow, then fast, then
slow again). However, the manipulation action is designed to
follow a linear profile (i.e. same movement’s speed throughout
the execution). To impose the desired profile we create the
action “Profile” that models the sigmoid and we impose a
progress synchronization with the manipulation action. The
BT in Figure 12 shows the BT to encode this task.

Figure 13 shows the progress profiles of the action with and
without the progress profile imposition. Note how the action’s
progress profile changed without editing the action. However,
this was possible as the action, originally, has a faster progress
profile than the desired one, as we have no non-intrusive means
to speed up actions.

IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, MONTH 2021 108

0 20 40 60 80 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Time Step k

P
ro
gr
es
s

Action

(a) Without Synchronization.

0 200 400 600 800
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Time Step k

P
ro
g
re
ss

Action

Profile

(b) With Synchronization.
Fig. 13. Progress profiles of Example 5 with and without synchronization.

V. SYNCHRONIZATION MEASURES

This section presents the second contribution of the paper.
We define measures for the concurrent execution of BTs used
to establish execution performance. We show measures for
both progress synchronization and predictability. In Section VI
we show how the design choices for relative and absolute
parallel nodes affect the performance.

A. Progress Synchronization Distance

Definition 1. Let N be the number of nodes that have as a
parent the same instance of a progress decorator node, the
progress distance at state xk is defined as:

π(xk) ,
N∑
i=1

N∑
j=1

|pi(xk)− pj(xk)|
2

(4)

where pi ∈ [0, 1] is the progress of the i-th child, as in
Section IV above.

We sum the progress difference for each pair of nodes that
have as parent the same instance of a progress decorator node.
We divide by 2 to avoid double count the differences. We use
the absolute difference instead of a, e.g., squared difference to
assign equal weight to the spread of the progresses.

Intuitively, a small progress distance results in high perfor-
mance for both relative and absolute progress synchronization.

B. Predictability Distance

A useful method to measure predictability is to set the
desired progress value and compute the average variation from
the expected and the true time instant in which the action has
a progress that is closest to the desired one. We can use this
measure to assess the deviation from the ideal execution.

Definition 2. Given a progress value p̄ ∈ [0, 1], a time step
t̃k , argmintk

(p(x(tk))−p̄), and t̂k be the time instance when
p(x(tk)) is expected to be equal to p̄. The time predictability
distance relative to progress p̄ is defined as:

P (p̄) , |t̃k − t̂k| (5)

Remark 3. A node may not obtain the exact desired progress
value as the progress may be defined at discrete points of
execution. Hence in Definition 2 we compute the difference
between the desired progress value ad the closest one obtained.

VI. EXPERIMENTAL VALIDATION

We conducted numerical experiments that allow us to collect
statistically significant data to study how the design choices
affect the performance measures defined in Section V and
to compare our approach against other solutions. We made
the source code available online for reproducibility.2 We also
conducted experiments on real robots to show the applicability
of our approach in the real world. We made available online
a video of these experiments.3

A. Numerical Experiments

We are ready to show how the number of barriers in B
(for absolute synchronization) and the threshold value ∆ (for
relative synchronization) affect the performance, computed
using the measures defined in Section V. For illustrative pur-
poses, we define custom-made actions with different progress
profiles. To collect statistically significant data, we ran the
BT of each experiment 10000 times; we use boxplots to
compactly show the minimum, the maximum, the median,
and the interquartile range of the measures proposed. Each
experiment starts with the progress of actions equal to 0 and
ends when all the actions progress reach 1.

How the number of progress barriers affects the per-
formance of absolute synchronization: We now present an
experiment that highlights how the number of progress barriers
in B affects the performance of absolute synchronization.

⇒

δPB

T1

δPB

T2
(a) Experiments 1

⇒

δP∆

T1

δP∆

T2

(b) Experiments 2
Fig. 14. BT used for Experiments 1 and 2.

Experiment 1. Consider the BT in Figure 14(a) where the
progress decorator implements an absolute synchronization
with equidistant barriers (i.e., a barrier at each 1

|B| progress)
and the sub-BTs are such that the progress profile of each Ti
holds Equation (6) below:

pi(xk) =

{
0 if k = 0

pi(xk−1) + ai + ωi(xk), otherwise
(6)

with a1 = 0.03, a2 = 0.02, and ωi(xk) ∈ [−ω̄, ω̄] a random
number, sampled from an uniform distribution, in the interval
[−ω̄, ω̄].

The model above describes an action whose progress
evolves linearly with a fixed value (ai) and with some dis-
turbance (ωi(xk)), modeling possible uncertainties in the
execution that affect the progress.

2https://github.com/miccol/tro2021-code
3https://youtu.be/zCBuTYogb_U

https://github.com/miccol/tro2021-code
https://youtu.be/zCBuTYogb_U

IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, MONTH 2021 109

Unsync |B| = 5 |B| = 10 |B| = 20
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

A
ve

ra
ge

P
ro

gr
es

s
D

is
ta

n
ce

s

ω̄i = ai

2

ω̄i = ai

5

ω̄i = ai

10

Fig. 15. Boxplot of the progress distances of Experiment 1 with different
numbers of barriers |B| and different values of ω̄. |B| = 0 corresponds to the
unsynchronized execution.

Figure 15 shows the results of running 10000 times the BT in
Experiment 1 in different settings and computing the average
progress distance throughout the execution. We observe better
performance with a large number of barriers and smaller
ω̄. This shows that a higher number of barriers prevents
the progress of the actions to differ from each other (see
Algorithm 6). Note also that the synchronization yields a
reduced variance even with large values of ω.

Remark 4. In Experiment 1, we consider equidistant progress
barriers. We expect similar results with non-equidistant bar-
riers, except for the corner case in which all the barriers are
agglomerated in a specific progress value.

How the threshold value affects the performance of
relative synchronization: We now present an experiment that
highlights how the value of ∆ affects the performance of
relative synchronization.

Experiment 2. Consider the BT in Figure 14(b) where the
progress decorator implements a relative synchronization and
the sub-BTs are such that the progress profile of each Ti holds
Equation (7) below.

pi(xk) =

{
0 if k = 0

pi(xk−1) + ai + ωi(xk), otherwise
(7)

with a1 = 0.03, a2 = 0.02, and ωi(xk) ∈ [−ω̄, ω̄] a random
number, sampled from an uniform distribution, in the interval
[−ω̄, ω̄].

The model above describes an action whose progress
evolves linearly with a fixed value (ai) and with some dis-
turbance (ωi(xk)), modeling possible uncertainties in the
execution that affect the progress.

Figure 16 shows the results of running 10000 times the BT in
Experiment 2 in different settings and computing the average
progress distance throughout the execution. We observe that
the performance increases with a smaller ∆ and decreases
with a larger ω̄. This shows that a smaller ∆ prevents
the progress of the actions to differ from each other (see
Algorithm 6s). Note also that the synchronization yields a
reduced variance even with large values of ω.

Remark 5. The synchronization may deteriorate other desired
qualities. For example, since actions are waiting for one

Unsyc ∆ = 0.1 ∆ = 0.05 ∆ = 0.02
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

P
ro

gr
es

s
D

is
ta

n
ce

s

ω̄i = ai
2

ω̄i = ai
5

ω̄i = ai
10

Fig. 16. Boxplot of the progress distances of Experiment 2 with different
values for ∆ and ω̄. ∆ = 1 corresponds to the unsynchronized execution.

another, the overall execution may be slower than the slowest
action. Moreover, a small value for ∆ or a larger number of
barriers can result in highly intermittent behaviors.

Remark 6. The decorators can be placed in different parts of
the BT and not as direct children of a parallel node, as shown
in Section II.

Remark 7. A single action that performs both tasks repre-
sents a better synchronized solution. However, for reusability
purposes or for the separation of concerns, the designer may
want to implement the behavior using two separated actions.

Progress synchronization comparison: We now present
an experiment that compares the synchronization performance.
We compare our approach with three different alternative ones:
One using elements from the C++11’s standard library4, as
it is the programming language used in the BT library; and
one using the DLR’s RMC Advanced Flow Control (RAF-
Con) [60], as it is a tool to develop concurrent robotic tasks
using hierarchical state machine with an intuitive graphical
user interface, addressing similar issues of BTs.5 Figure 17
shows the concurrent state machine developed in Rafcon for
the Experiments 3 and 4.

Fig. 17. Concurrent RAFCon state machine for Experiments 3 and 4. Action
1 and Action 2 increase the progress if and only the activation signal
(their input) equals 1. The Concurrent State Execution, which is a RAFCon
concurrency-state and executes the two sub-states (Action 1 and Action
2) concurrently. The Barrier Handler computes the activation signals for the
actions (i.e., it is set to 0 if the action’s progress surpasses the current barrier
(for absolute synchronization) or the other action’s progress by ∆ (for relative
synchronization); it is set to 1 otherwise)

4https://en.cppreference.com/w/cpp/thread/barrier
5Both implementations are available at github.com/miccol/TRO2021-code

https://en.cppreference.com/w/cpp/thread/barrier
github.com/miccol/TRO2021-code

IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, MONTH 2021 110

Experiment 3. Consider the BT in Figure 14(a) where the
progress decorator implements an absolute synchronization
with equidistant barriers (i.e., a barrier at each 1

|B| progress)
and the sub-BTs are such that the progress profile of each Ti
holds Equation (6) with ω̄ = 0.015.

The model above describes the same BT used in Experi-
ment 1 with the given value for ω̄.

Unsync |B| = 5 |B| = 10 |B| = 20
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

A
ve
ra
ge

P
ro
gr
es
s
D
is
ta
n
ce
s

Code
Our

Rafcon

Fig. 18. Boxplot of the progress distances of Experiment 3 with different
numbers of barriers |B| for each method. |B| = 0 corresponds to the
unsynchronized execution. We compare the performance obtained using C++
primitives (Code), the proposed approach (Our), and the one Rafcon (Rafcon).

Figure 18 shows the results of running 10000 times the BT
in Experiment 1 with the different approaches. Note that the
unsynchronized setting (e.g., |B| = 0) yields similar values
for the different approaches. Hence the boilerplate code of
the approach does not affect the performance.

Experiment 4. Consider the BT in Figure 14(b) where the
progress decorator implements a relative synchronization and
the sub-BTs are such that the progress profile of each Ti holds
Equation (6) with ω̄ = 0.015.

The model above describes the same BT used in Experi-
ment 2 with the given value for ω̄.

Unsync ∆ = 0.1 ∆ = 0.05 ∆ = 0.02
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

A
ve

ra
ge

P
ro

g
re

ss
D

is
ta

n
ce

s

Code
Our

Rafcon

Fig. 19. Boxplot of the progress distances of Experiment 4 with different
values of ∆ for each method. ∆ = 1 corresponds to the unsynchronized
execution.

Figure 19 shows the results of running 10000 times the BT
in Experiment 4 with the different approaches. We make the
same observation of the previous experiment. Note that, as
in the previous experiment, the unsynchronized setting (e.g.,
∆ = 1) yields similar values.

Remark 8. Our solution keeps the same order of magnitude
as the computer programming ones (the most efficient from a
computation point of view) and outperforms the one of Rafcon,
while also keeping the advantages of BT over state machines
described in the literature [1].

How the number of children to synchronize affects the
performance: We now present two experiments that show how
the approach scales with the number of children.

Experiment 5. Consider a set of BTs that describe the
absolute progress synchronization of a different numbers of
actions (Figure 14(a) shows an example of such BT with two
actions). In each BT, the actions’ progress holds Equation (6),
with α = 0.03 and ω̄ = 0.015.

4 8 16 32
0

5

10

15

20

Number of Children

A
ve
ra
g
e
P
ro
g
re
ss

D
is
ta
n
ce
s

|B| = 20

|B| = 10

|B| = 5

Fig. 20. Boxplot of the predictability distances of Experiment 7 with
different values for ∆ and ω̄. ∆ = 1 corresponds to the unsynchronized
execution.

Figure 20 shows the results of running 10000 times the BT in
Experiment 5 with different numbers of children. We note how
the performance decays linearly with the number of children
(the number of children increases exponentially in the figure).

Experiment 6. Consider a set of BTs that describe the abso-
lute progress synchronization of different numbers of actions
(Figure 14(a) shows an examples of such BT with two actions).
In each BT, the actions’ progress holds Equation (6), with
α = 0.03 and ω̄ = 0.015.

4 8 16 32
0

5

10

15

20

Number of Children

A
ve

ra
ge

P
ro

gr
es

s
D

is
ta

n
ce

s

∆ = 0.02
∆ = 0.05
∆ = 0.1

Fig. 21. Boxplot for predictability distance of Experiment 7 with different
values for ∆ and ω̄. ∆ = 1 corresponds to the unsynchronized execution.

Figure 21 shows the results of running 10000 times the BT
in Experiment 5 with different numbers of children. Similar
to the previous experiment. The performance decays linearly
with the number of children.

As expected, in both absolute and relative synchronization
settings, the number of children deteriorates the progress
synchronization performance. This is due to the fact that
the children’s progresses surpass one another, increasing the
progress distance.

IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, MONTH 2021 111

How the number of barriers affects the predictability:
We now present an experiment that highlights how the number
of barriers for an absolute synchronized parallel node affects
the predictability of an execution.

Experiment 7. Consider the BT of Figure 12 where the
progress decorator implements a relative synchronization and
the action “Arm Movement”, whose progress is to be imposed,
has a progress defined such that it holds Equation (8) below:

p2(xk) =

{
0 if k = 0

p2(xk−1) + 2 + ωi(xk), otherwise
(8)

whereas the progress of the action “Profile” holds Equa-
tion (9) below:

p1(xk) =

{
0 if k = 0

p1(xk−1) + 0.1, otherwise
(9)

∆ = 1 ∆ = 0.1 ∆ = 0.05 ∆ = 0.02
0

25

50

75

100

125

150

175

200

P
re

d
ic

ta
b
il
it

y
D

is
ta

n
ce

s

ω̄i = ai
2

ω̄i = ai
5

ω̄i = ai
10

Fig. 22. Boxplot for predictability distance of Experiment 7 with different
values for ∆ and ω̄. ∆ = 1 corresponds to the unsynchronized execution.

Figure 22 reports the results of Experiment 7. We observe
worse performance with larger ω̄ and ∆.

Remark 9. In the experiments above, we showed how a
designer could synchronize the progress of several subtrees
in a non-invasive fashion. The designer can tune the number
of barriers for the absolute synchronization and the threshold
value for the relative synchronization. However, as mentioned
above, synchronizations between actions may deteriorate other
performances. Figure 23 shows the average times to complete
the executions for Experiment 4. Similar results were found
for absolute progress synchronization.

Unsync ∆ = 0.1 ∆ = 0.05 ∆ = 0.02
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

A
ve

ra
ge

T
im

e
T

o
C

om
p
le

te

Fig. 23. Boxplot for time to complete.

How the priority increment function g affects the ex-
ecution in resource synchronization: We now present two
examples of resource synchronization and how the shape of the
increment function leads to different behaviors. As mentioned
above, this synchronization is done among subtrees that have
equal priority in accessing the resources. The function g
provides the designer a way to shape their resource allocation
strategy.

Experiment 8 and 9 show an example of usage of the
resource synchronization decorator with different settings for
the function g.

Experiment 8 (Greedy Dining Robots). This experiment is the
Dining Philosopher Problem [61] with a twist. Consider three
robots that sit in a round table with three cables: Cable A,
Cable B, and Cable C. Each cable sits between two robots
such that the Robot 1 can grab Cable A and B, Robot 2
can grab Cable B and C, and Robot 3 can grab Cable C
and A. Each robot needs two cables to charge its battery.
This example represents those cases in which several software
components (controlling different robots or different parts on
the same robot) need to access a shared resource.

⇒

δR

Robot 1
Recharges

δR

Robot 2
Recharges

δR

Robot 3
Recharges

Fig. 24. BT encoding the desired behavior of Experiment 8

The BT in Figure 24 encodes a behavior of these robots
that ensures resource synchronization. At each tick, the action
“Robot i Recharges” increases the battery level by 10% of its
full capacity. The progress profile follows the battery level as
follows:

pi(xk) =

{
0 if k = 0

pi(xk−1) + 0.1, otherwise
(10)

T1, T2, and T3 are such that

Q1(xk) =

{
{A,B} if p(xk) < 1

∅ otherwise
(11)

Q2(xk) =

{
{B,C} if p(xk) < 1

∅ otherwise
(12)

Q3(xk) =

{
{C,A} if p(xk) < 1

∅ otherwise
(13)

The g function are defined as follows:

gi(xk) = 0 (14)

That is, the priority does not change when the action does not
receive ticks.

Figure 25(a) shows the progress profile of the two BT. We
see how, once a robot acquires the two wires, the wires are
assigned to that robot until it no longer requires it (i.e., the
battery is fully charged).

IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, MONTH 2021 112

Experiment 9 (Fair Dining Robots). Consider the three robot
of the Experiment 8 above, with the difference in the definitions
of the g functions:

gi(xk) = 1 (15)

That is, the priority increases when the action does not receive
ticks.

Figure 25(b) shows the progress profile of the two BT. We
see how the wires are allocated in a “fair” fashion.

The two experiments above show that the choice of the
function g becomes crucial to avoid starvation. In Section VIII
we will prove under which circumstances the BT execution
avoids starvation. Note that by tuning gi(xk), we can achieve
different profiles of execution, equivalent to the assignment
of a quantum of time received by each robot when they get
access to the shared resource.

0 10 20 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Time Step k

P
ro
gr
es
s

Robot 1

Robot 2

Robot 3

(a) Experiment 8.

0 10 20 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Time Step k

P
ro
gr
es
s

Robot 1

Robot 2

Robot 3

(b) Experiment 9.

Fig. 25. Progress profiles of the BTs of Experiments 8 and 9.

B. Real World Validation

This section presents the experimental validation imple-
mented on real robots. The literature inspired our experiments.

Progress Synchronization: In Experiment 10, below we
present an implementation of Example 2 above, motivated by
the impact of contingent behaviors on the quality of verbal
human-robot interaction [43].

Experiment 10 (iCub Robot). An iCub robot [62] has to
look and point to a given direction. Figure 28 shows the
progress plots for the two actions in the synchronized and
unsynchronized case. Figure 27 shows the progress profiles
of the two actions using the iCub Action Rendering Engine6,
where we send concurrently the command to look and point at
the same coordinate; and the ones using the BT in Figure 26
with a relative synchronization and a threshold value of
∆ = 0.1, where the actions look and point performs small
steps towards the desired coordinate.

The unsynchronized execution looks unnatural as the head
moves way faster than the arm. The synchronization allowed
a reduction of the average progress distance from 0.4176
to 0.0964. From the plot in Figure 28 we note how, with
the synchronized execution, the head stops as soon as its
progress surpasses the one of the arm by 0.1. Then it moves
slower. Moreover, the synchronized execution completes the
task in about double the time. This is due to the fact that

6https://robotology.github.io/robotology-documentation/doc/html/group_
_actionsRenderingEngine.html

⇒

δPB

?

→

Target on
Left

Point with
Left Arm

→

Target on
Right

Point with
Right Arm

δPB

Look at
Target

Fig. 26. BT encoding the behavior of Experiment 10

(a) [Unsync] Initial State. (b) [Sync] Initial State.

(c) [Unsync] The robot starts moving
the head.

(d) [Sync] The robot moves head and
arm slowly.

(e) [Unsync] The robot finishes to
move the head while the arm is still
moving.

(f) [Sync] The robot keeps moving
head and arm slowly.

(g) [Unsync] The robot finishes to
move the arm.

(h) [Sync] The robot finishes to move
the head and arm.

Fig. 27. Execution steps of Experiment 10 with (right) and without (left)
synchronization.

0 1 2 3 4
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Time (s)

P
ro
gr
es
s

Head

Arm

0 2 4 6 8
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Time (s)

P
ro
gr
es
s

Head

Arm

Fig. 28. Progress values for Experiment 10 with (right) and without (left)
synchronization

smaller movements in iCub are performed slowly, and the
synchronized execution breaks down the action in small steps.

https://robotology.github.io/robotology-documentation/doc/html/group__actionsRenderingEngine.html
https://robotology.github.io/robotology-documentation/doc/html/group__actionsRenderingEngine.html

IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, MONTH 2021 113

Resource Synchronization: We now present the use case
of a resource synchronization mechanism. We took a BT used
for a use case for an Integrated Technical Partner European
Horizon H2020 project RobMosys7 and then we used the
resource synchronization mechanism to parallelize some tasks
executed sequentially using the classical formulation of BTs.
As noted in the BT literature [48], [53] turning a sequential
behavior execution into a concurrent one becomes much
simpler in BTs compared to FSMs.

Experiment 11 (R1 Robot). An R1 robot [63] has to pick
up an object from the user’s hand and then navigate towards
a predefined destination. To grasp the object from the user’s
hand, the robot has to put the arm in a pre-grasp position,
extend its hand8, grasp the object, and finally, retract the hand.

The BT in Figure 29 encodes the behavior of the robot
designed using the classical BT nodes and Figure 31 shows
some execution steps, as done in the original project above.

→

?

Object
Grasped

→

?

Close to
Object

Goto
Object

→∗

Move Arm
In Pregrasp

Extract
Hand

Close
Hand

Retract
Hand

?

At Destination Goto
Destination

Fig. 29. Original BT encoding the behavior of Experiment 11. The node
labeled with →∗ represents a sequence with memory.

However, the robot can execute the pregrasp motion as well
as the extraction of the arm while it approaches the user
and the retraction of the arm while it navigates towards the
destination, whereas the grasping action needs the robot to
be still. Hence we can execute the pre-grasp and post-grasp
action while the robot moves, speeding up the execution. The
BT in Figure 30 models such behavior, taking advantage of
the resource synchronization, where the action “Goto” and
“Close Hand” allocate the resource Mobile Base as long as
they are running. Figure 32 shows some execution steps. The
concurrent execution of some actions allows a faster overall
behavior as in [48], [53].

⇒

?

Close to
Object

δR

Goto
Object

?∗

Close to
Object

δR

→∗

Move Arm
In Pregrasp

Extract
Hand

Close
Hand

Retract
Hand

→

Object
Grasped

?

At Destination δR

Goto
Destination

Fig. 30. BT encoding the behavior of Experiment 11 using the resource
synchronization mechanism. This BT is significantly simpler than the one in
Figure 29.

7https://scope-robmosys.github.io/
8The arm has a prismatic joint in the wrist.

(a) The robot approaches the user.
Action Executed: “Goto Object”.

(b) The robot reaches the user.
Action Executed: “Goto Object”.

(c) The robot moves the arm in
pre-grasp position. Action Executed:
“Move Arm”.

(d) The robot extracts the hand.
Actions Executed: “Extract Hand”.

(e) The robot closes the hand.
Actions Executed: “Close Hand”.

(f) The robot retracts the hand.
Actions Executed: “Retract Hand”.

(g) The robot moves towards the desti-
nation. Actions Executed: “Goto Des-
tination”.

(h) The robot moves towards the desti-
nation. Actions Executed: “Goto Des-
tination”.

Fig. 31. Execution screenshots of Experiment 11 running the BT in Fig-
ure 29.

(a) The robot moves towards the
user while positioning the arm and
hand. Actions Executed: “Goto Ob-
ject”, “Move Arm In Pregrasp”, and
“Extract Hand”.

(b) The robot reaches the user and
then closes the hand.
Action Executed: “Close Hand”.

(c) The robot moves towards the des-
tination while retracting the hand.
Actions Executed: “Goto Destination”
and “Retract Hand”.

(d) The hand gets retracted.
Action Executed: “Goto Destination”.

Fig. 32. Execution screenshots of Experiment 11 running the BT in Fig-
ure 30.

https://scope-robmosys.github.io/

IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, MONTH 2021 114

Perpetual Actions: We now present an experiment where
we show the applicability of our approach with perpetual
actions. Experiment 12 below presents an implementation of
Example 3, inspired by the literature [55].

Experiment 12 (Panda Robot). An industrial manipulator
has to insert a piston into a hollow cylinder. The piston’s
rod and the piston’s head are attached via a revolute joint.
To correctly insert the rod, the robot must keep it aligned
during the insertion into the cylinder. During the execution,
the end-effector gets misaligned, requiring the robot to realign
the rod. Figure 10(b) depicts the BT that encodes this task.
The action progress equals the ones of Example 3. Figure 33
shows the execution steps of this experiment with and without
synchronization. We see how the synchronized execution fails
since the robot inserts the piston too fast for the alignment
sub-behavior to have an effect.

(a) [Unsync] The rod gets misaligned.
The robot keeps inserting the rod.

(b) [Sync] The rod gets misaligned.
The robot stops inserting the rod.

(c) [Unsync] The robot aligns the rod
while this moves downwards. The rod
hits the cylinder.

(d) [Sync] The robot aligns the rod.

(e) [Unsync] A safety fault stops the
execution.

(f) [Sync] The insertion task resumes

Fig. 33. Execution screenshots of Experiment 12 with (right) and without
(left) synchronization.

VII. SOFTWARE LIBRARY

This section presents the third contribution of the paper.
We made publicly available an implementation of the nodes
presented in this paper. The decorators work with the Behav-
iorTree.CPP engine [64] and the Groot GUI [65]. The user can
define the values of barriers |B| (for absolute progress syn-
chronization), the threshold ∆ (for relative progress synchro-
nization), or the priority increment function g of Definition 15.
The BT can also have independent synchronizations, as shown
in the BT of Figure 34. We made the details available in the
library’s repository.9

Fig. 34. Concurrent BT of example using the Groot GUI.

A. Implement concurrent BTs with BehaviorTree.CPP

Listing 1 below shows the code to implement Example 1
above with the BehaviorTree.CPP engine. The user has to
instantiate the root and the actions nodes (Lines 1-4), then
it defines the barriers (Lines 6-7), it instantiates the decorators
(Lines 9-10), and finally, it constructs the BT (Lines 12-16).

Listing 1. Implementation code for the BT in Example 1
1 BT : : P a r a l l e l N o d e p a r a l l e l (" r o o t " , 2) ;
2
3 SyncSmoothAct ion a c t i o n 1 ("Arm Movement " , 0 , 0 . 0 1 5) ;
4 SyncSmoothAct ion a c t i o n 2 (" Base Movement " , 0 , 0 . 0 1) ;
5
6 A b s o l u t e B a r r i e r b a r r i e r ({ 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 ,
7 0 . 7 , 0 . 8 , 0 . 9 , 1 . 0 }) ;
8
9 D e c o r a t o r P r o g r e s s S y n c dec1 (" dec1 " , &b a r r i e r) ;

10 D e c o r a t o r P r o g r e s s S y n c dec2 (" dec2 " , &b a r r i e r) ;
11
12 dec1 . a d d Ch i l d (& a c t i o n 1) ;
13 dec2 . a d d Ch i l d (& a c t i o n 2) ;
14
15 p a r a l l e l . a d d C h i l d (& dec1) ;
16 p a r a l l e l . a d d C h i l d (& dec2) ;

B. Implement concurrent BTs with Groot

We provide a palette of nodes that allow the user to instan-
tiate them using the Groot GUI in a drag-and-drop fashion.
The instructions on how to load the palette are available
in the library’s documentation. Details on how to instantiate
and run a generic BT are available in the Groot library’s
documentation.

9https://github.com/miccol/TRO2021-code

https://github.com/miccol/TRO2021-code

IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, MONTH 2021 115

VIII. THEORETICAL ANALYSIS

This section presents the fourth contribution of the paper.
We first give a set of formal definitions, and then we provide
a mathematical analysis of the BT synchronization. As the
decorators defined in this paper may disable the execution of
some sub-trees, we need to identify the circumstances that
preserve the entire BT’s properties.

A. State-space Formulation of Behavior Trees

The state-space formulation of BTs [1] allows us to study
them from a mathematical standpoint. A recursive function
call represents the tick. We will use this formulation in the
proofs below.

Definition 3 (Behavior Tree [1]). A BT is a three-tuple

Ti , {fi, ri,∆t}, (16)

where i ∈ N is the index of the tree, fi : Rn → Rn is the right
hand side of a difference equation, ∆t is a time step and ri is
the return status that can be equal to either Running, Success,
or Failure. Finally, let xk , x(tk) be the system state at time
tk, then the execution of a BT Ti is described by:

xk+1 = fi(xk), (17)
tk+1 = tk + ∆t. (18)

Definition 4 (Sequence compositions of BTs [1]). Two or
more BTs can be composed into a more complex BT using a
Sequence operator,

T0 = Sequence(T1, T2).

Then r0, f0 are defined as follows

If xk ∈ S1 (19)
r0(xk) = r2(xk) (20)
f0(xk) = f2(xk) (21)

else

r0(xk) = r1(xk) (22)
f0(xk) = f1(xk). (23)

T1 and T2 are called children of T0.

Remark 10. When executing the new BT, T0 first keeps
executing its first child T1 as long as it returns Running or
Failure.

For notational convenience, we write:

Sequence(T1,Sequence(T2, T3)) = Sequence(T1, T2, T3)
(24)

and similarly for arbitrarily long compositions.

Definition 5 (Fallback compositions of BTs [1]). Two or more
BTs can be composed into a more complex BT using a Fallback
operator,

T0 = Fallback(T1, T2).

Then r0, f0 are defined as follows

If xk ∈ F1 (25)
r0(xk) = r2(xk) (26)
f0(xk) = f2(xk) (27)

else

r0(xk) = r1(xk) (28)
f0(xk) = f1(xk). (29)

For notational convenience, we write:

Fallback(T1,Fallback(T2, T3)) = Fallback(T1, T2, T3) (30)

and similarly for arbitrarily long compositions.

Definition 6 (Parallel compositions of BTs [1]). Two or more
BTs can be composed into a more complex BT using a Parallel
operator,

T0 = Parallel(T1, T2,M).

Where f0(x) , (f1(x), f2(x)) and r0 is defined as follows

If M = 1

r0(x) = S If r1(x) = S ∨ r2(x) = S (31)
r0(x) = F If r1(x) = F ∧ r2(x) = F (32)
r0(x) = R else (33)

If M = 2

r0(x) = S If r1(x) = S ∧ r2(x) = S (34)
r0(x) = F If r1(x) = F ∨ r2(x) = F (35)
r0(x) = R else (36)

For notational convenience, we write:

Parallel(T1,Parallel(T2, T3, 2), 2) = Parallel(T1, T2, T3, 3)
(37)

as well as:

Parallel(T1,Parallel(T2, T3, 1), 1) = Parallel(T1, T2, T3, 1)
(38)

and similarly for arbitrarily long compositions.

Definition 7 (Finite Time Successful [1]). A BT is Finite Time
Successful (FTS) with region of attraction R′, if for all starting
points x(0) ∈ R′ ⊂ R, there is a time τ , and a time τ ′(x(0))
such that τ ′(x) ≤ τ for all starting points, and x(t) ∈ R′ for
all t ∈ [0, τ ′) and x(t) ∈ S for t = τ ′

As noted in the following lemma, exponential stability
implies FTS, given the right choices of the sets S, F,R.

Lemma 1 (Exponential stability and FTS [1]). A BT for
which xs is a globally exponentially stable equilibrium of the
execution, and S ⊃ {x : ||x − xs|| ≤ ε}, ε > 0, F = ∅,
R = Rn \ S, is FTS.

Safety is the ability to avoid a particular portion of the state-
space, which we denote as the Obstacle Region. To make
statements about the safety of composite BTs, we need the
following definition. Details on safe BTs can be found in the
literature [1].

IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, MONTH 2021 116

Definition 8 (Safeguarding [1]). A BT is safeguarding, with
respect to the step length d, the obstacle region O ⊂ Rn, and
the initialization region I ⊂ R, if it is safe, and FTS with
region of attraction R′ ⊃ I and a success region S, such that
I surrounds S in the following sense:

{x ∈ X ⊂ Rn : inf
s∈S
||x− s|| ≤ d} ⊂ I, (39)

where X is the reachable part of the state space Rn.

This implies that the system, under the control of another
BT with maximal statespace steplength d, cannot leave S
without entering I , and thus avoiding O [1].

Definition 9 (Safe [1]). A BT is safe, with respect to the
obstacle region O ⊂ Rn, and the initialization region I ⊂ R,
if for all starting points x(0) ∈ I , we have that x(t) 6∈ O, for
all t ≥ 0.

B. CBT’s Definition

We now formulate additional definitions. We use these
definitions to provide a state-space formulation for CBTs
(Definition 16 below) and to prove system properties.

Definition 10 (Progress Function). The function p : Rn →
[0, 1] is the progress function. It indicates the progress of the
BT’s execution at each state.

Definition 11 (Resources). R is a collection of symbols that
represents the resources available in the system.

Definition 12 (Allocated Resource). LetN be the set of all the
nodes of a BT, the function α : Rn ×R→ N is the resource
allocation function. It indicates the BT using a resource.

Definition 13 (Resource Function). The function Q : Rn →
2R is the resource function. It indicates the set of resources
needed for a BT’s execution at each state.

Definition 14 (Node priority). The function ρ : Rn → R is
the priority function. It indicates the node’s priority to access
a resource.

Definition 15 (Priority Increment Function). The function g :
Rn → R is the priority increment function. It indicates how
the priority changes while a node is waiting for a resource.

We can now define a CBT as BT with information regarding
its progress and the resources needed as follows:

Definition 16 (Concurrent BTs). A CBT is a tuple

Ti , {fi, ri,∆t, pi, qi}, (40)

where i, fi, ∆t, ri are defined as in Definition 3, pi is a
progress function, and q is a resource function.

A CBT has the functions pi and qi in addition to the others
of Definition 3. These functions are user-defined for Actions
and Condition. For the classical operators, the functions are
defined below.

Definition 17 (Sequence compositions of CBTs). Two CBTs
can be composed into a more complex CBT using a Sequence
operator,

T0 = Sequence(T1, T2).

The functions r0, f0 match those introduced in Definition 4,
while the functions p0, q0 are defined as follows

If xk ∈ S1 (41)

p0(xk) =
p1(xk) + p2(xk)

2
(42)

q0(xk) = q2(xk) (43)
else

p0(xk) =
p1(xk)

2
(44)

q0(xk) = q1(xk). (45)

Definition 18 (Fallback compositions of CBTs). Two CBTs
can be composed into a more complex CBT using a Fallback
operator,

T0 = Fallback(T1, T2).

The functions r0, f0 are defined as in Definition 5, while the
functions p0, q0 are defined as follows

If xk ∈ F1 (46)
p0(xk) = p2(xk) (47)
q0(xk) = q2(xk) (48)

else

p0(xk) = p1(xk) (49)
q0(xk) = q1(xk). (50)

Definition 19 (Parallel compositions of CBTs). Two CBTs
can be composed into a more complex CBT using a Parallel
operator,

T0 = Parallel(T1, T2).

The functions r0, f0 are defined as in Definition 6, while the
functions p0 and q0 are defined as follows

p0(xk) = min(p1(xk), p2(xk)) (51)
q0(xk) = q1(xk) ∪ q2(xk) (52)

Remark 11. Conditions nodes do not perform any action.
Hence their progress function can be defined as p(xk) = 0
and their resource function as q(xk) = ∅ ∀xk ∈ Rn.

Definition 20 (Absolute Barrier). An absolute barrier is
defined as:

b(xk) , min{bi ∈ B : ∀Tj ∈ T, pj(xk) ≥ bi−1∧
∧∃Tk : pk(xk) ≥ bi}

(53)

with B a finite set of progress values.

Definition 21 (Relative Barrier). A relative barrier is defined
as:

b(tk) , minTi∈T {pi}+ ∆ (54)

with ∆ ∈ [0, 1]

IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, MONTH 2021 117

Definition 22 (Functional Formulation of a Progress Decorator
Node). A CBT T1 can be composed into a more complex BT
using an Absolute Progress Decorator operator,

T0 = AbsoluteProgress(T1, b(xk)).

Then r0, f0, p0, Q0 are defined as follows

p0(xk) = p1(xk) (55)
Q0(xk) = Q1(xk) (56)

If p1(xk) < b(xk)

f0(xk) = f1(xk) (57)
r0(xk) = r1(xk) (58)

else

f0(xk) = xk (59)
r0(xk) = R (60)

With b(xk) as in Definition 20 for an absolute synchroniza-
tion or as in Definition 21 for a relative synchronization.

Definition 23 (Functional Formulation of a Resource Deco-
rator Node). A Smooth BT T1 can be composed into a more
complex BT using a Resource Decorator operator,

T0 = ResourceDecorator(T1, g).

With g as in Definition 15. then r0, f0, p0, Q0 are defined
as follows

p0(xk) = p1(xk) (61)
If (∀q ∈ Q1(xk) : α(xk, q) = T1 ∧ ρ1(xk) ≥ ρmax)

∨ α(xk, q) = ∅
r0(xk) = r1(xk) (62)
f0(xk) = f1(xk) (63)
Q0(xk) = Q1(xk) (64)

α(xk, q) =



T1 if q ∈ Q1(xk)

∅ if q 6∈ Q1(xk) :

α(xk−1, q) = T1

α(xk−1, q) otherwise
ρ(xk) = ρ(xk−1)

(65)

else

r0(xk) = R (66)
f0(xk) = xk (67)
Q0(xk) = ∅ (68)
ρ1(xk) = ρ1(xk−1) + g1(xk) (69)

With α from Definition 12.

Definition 24 (Active node). A BT node Ti is said to be active
in a given BT if Ti is either the root node or whenever r(xk) =
R, Ti will eventually receive a tick.

An active node is a node that eventually will receive a tick
when its returns status is running.

C. Lemmas

The synchronization mechanism proposed in this paper may
jeopardize the FTS property (described in Definition 7) of
a BT. In particular, a FTS BT may no longer receive ticks
from decorators proposed in this paper as this will wait for
another action indefinitely. This relates to the problem of
starvation, where a process waits for a critical resource and
other processes, with a higher priority, prevent access to such
resource [61].

Lemma 2 (ProgressSync FTS BTs). Let T1 and T2

be two FTS, with region of attraction R1 and R2

respectively, and active sub-BTs in the BT T . The
sub-BTs T̃1 = DecoratorSync(T1, b(xk)) and T̃2 =
DecoratorSync(T2, b(xk)) in the BT T̃ obtained by replacing
in T T1 and T2 with T̃1 and T̃2 respectively, are FTS.

Proof. Since the T1 and T2 are active they will receive ticks
as long as their return status is running, from Equations (16)
and (58), T̃1 and T̃2 have the same return statuses of T1 and T2

respectively, they both will receive ticks as long as they return
status is running. Since T1 and T2 are FTS with region of
attraction R they will eventually reach a state xk̄ ∈ Si, which
implies ri(xk̄) = S hence eventually pi(xk̄) = 1. In such case
the the decorator propagate every tick that it receive.

Corollary 1 (of Lemma 2). Let T1, T2, · · · , and TN be N FTS
with region of attraction Ri and active sub-BTs. Each sub-bt
T̃i = DecoratorSync(Ti, B) is FTS if ri(xk) = S =⇒
pi(xk) = 1 hold.

Proof. The proof is similar to the one of Lemma 2.

Lemma 3. Let T1 be a safeguarding BT with respect to the
step length d, the obstacle region O ⊂ Rn, and the initializa-
tion region I ⊂ R. Then T0 = ProgressSync(T , b(xk)) is
also safeguarding with respect to the step length d, the obstacle
region O ⊂ Rn, and the initialization region I ⊂ R, for any
value of b(xk).

Proof. From Definition 8, T holds the following: {x :
infs∈S1

||x − s|| ≤ d} ⊂ I hence |f1(xk) − xk| ≤ d holds.
From Definition 10, f0(xk) is either f1(xk) or xk, hence hence
|f0(xk)− xk| ≤ d holds.

Lemma 4. Let T0 = ResourceDecorator(T1, g), if
g(xk) > 0 ∀xk ∈ R then the execution of T0 is starvation-free
regardless the resources allocated.

Proof. According to Equation (69), since g(xk) > 0, when-
ever the T0 does not propagate ticks to the BT T1 it gradually
increases the priority of T1.

Setting g(xk) > 0 implements aging, a technique to avoid
starvation [61]. We could also shape the function g such that
it implements different scheduling policies. However, that falls
beyond the scope of the paper.

IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, MONTH 2021 118

IX. CONCLUSIONS

This paper proposed two new BTs control flow nodes for
resource and progress synchronization with different synchro-
nization policies, absolute and relative. We proposed mea-
sures to assess the synchronization between different sub-
BTs and the predictability of robot execution. Moreover, we
observed how design choices for synchronization might affect
the performance. The experimental validation supports such
observations.

We showed our approach’s applicability in a simulation
system that allowed us to run the experiments several times
in different settings to collect statistically significant data. We
also showed the applicability of our approach in real robot
scenarios taken from the literature. We provided the source
code of our experimental validation and the code for the
control flow nodes aforementioned. Finally, we studied the
proposed node from a theoretical standpoint, which allowed us
to identify the assumptions under which the synchronization
does not jeopardize some BT properties.

ACKNOWLEDGMENT

This work was carried out in the context of the SCOPE
project, which has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 732410, in the form of financial
support to third parties of the RobMoSys project. We also
thank, in alphabetical order, Fabrizio Bottarel, Marco Mon-
forte, Luca Nobile, Nicola Piga, and Elena Rampone for the
support in the experimental validation.

REFERENCES

[1] M. Colledanchise and P. Ögren, Behavior Trees in Robotics and AI:
An Introduction, ser. Chapman and Hall/CRC Artificial Intelligence and
Robotics Series. Taylor & Francis Group, 2018.

[2] F. Rovida, B. Grossmann, and V. Krüger, “Extended behavior trees for
quick definition of flexible robotic tasks,” in 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2017, pp. 6793–6800.

[3] D. Zhang and B. Hannaford, “Ikbt: solving symbolic inverse kinematics
with behavior tree,” Journal of Artificial Intelligence Research, vol. 65,
pp. 457–486, 2019.

[4] A. Csiszar, M. Hoppe, S. A. Khader, and A. Verl, “Behavior trees for
task-level programming of industrial robots,” in Tagungsband des 2.
Kongresses Montage Handhabung Industrieroboter. Springer, 2017,
pp. 175–186.

[5] E. Coronado, F. Mastrogiovanni, and G. Venture, “Development of
intelligent behaviors for social robots via user-friendly and modular
programming tools,” in 2018 IEEE Workshop on Advanced Robotics
and its Social Impacts (ARSO). IEEE, 2018, pp. 62–68.

[6] C. Paxton, A. Hundt, F. Jonathan, K. Guerin, and G. D. Hager, “Costar:
Instructing collaborative robots with behavior trees and vision,” in 2017
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2017, pp. 564–571.

[7] D. Shepherd, P. Francis, D. Weintrop, D. Franklin, B. Li, and A. Afzal,
“[engineering paper] an ide for easy programming of simple robotics
tasks,” in 2018 IEEE 18th International Working Conference on Source
Code Analysis and Manipulation (SCAM). IEEE, 2018, pp. 209–214.

[8] X. Neufeld, S. Mostaghim, and S. Brand, “A hybrid approach to
planning and execution in dynamic environments through hierarchical
task networks and behavior trees,” in Fourteenth Artificial Intelligence
and Interactive Digital Entertainment Conference, 2018.

[9] M. Kim, M. Arduengo, N. Walker, Y. Jiang, J. W. Hart, P. Stone,
and L. Sentis, “An architecture for person-following using active target
search,” arXiv preprint arXiv:1809.08793, 2018.

[10] N. Axelsson and G. Skantze, “Modelling adaptive presentations in
human-robot interaction using behaviour trees,” in Proceedings of the
20th Annual SIGdial Meeting on Discourse and Dialogue, 2019.

[11] A. Ghadirzadeh, X. Chen, W. Yin, Z. Yi, M. Björkman, and D. Kragic,
“Human-centered collaborative robots with deep reinforcement learn-
ing,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 566–571,
2020.

[12] C. I. Sprague and P. Ögren, “Adding neural network controllers to be-
havior trees without destroying performance guarantees,” arXiv preprint
arXiv:1809.10283, 2018.

[13] B. Banerjee, “Autonomous acquisition of behavior trees for robot con-
trol,” in 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2018, pp. 3460–3467.

[14] B. Hannaford, “Hidden markov models derived from behavior trees,”
arXiv preprint arXiv:1907.10029, 2019.

[15] E. Scheide, G. Best, and G. A. Hollinger, “Learning behavior trees for
robotic task planning by monte carlo search over a formal grammar.”

[16] E. Safronov, M. Vilzmann, D. Tsetserukou, and K. Kondak, “Asyn-
chronous behavior trees with memory aimed at aerial vehicles with
redundancy in flight controller,” in 2019 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, 2019, pp.
3113–3118.

[17] C. I. Sprague, Ö. Özkahraman, A. Munafo, R. Marlow, A. Phillips,
and P. Ögren, “Improving the modularity of auv control systems using
behaviour trees,” arXiv preprint arXiv:1811.00426, 2018.

[18] P. Ögren, “Increasing Modularity of UAV Control Systems using Com-
puter Game Behavior Trees,” in AIAA Guidance, Navigation and Control
Conference, Minneapolis, MN, 2012.

[19] T. S. Bruggemann, D. Campbell et al., “Analysing the reliability of multi
uav operations,” in 17th Australian International Aerospace Congress:
AIAC 2017. Engineers Australia, Royal Aeronautical Society, 2017, p.
406.

[20] D. Crofts, T. S. Bruggemann, and J. J. Ford, “A behaviour tree-based
robust decision framework for enhanced uav autonomy,” 2017.

[21] M. Molina, A. Carrera, A. Camporredondo, H. Bavle, A. Rodriguez-
Ramos, and P. Campoy, “Building the executive system of autonomous
aerial robots using the aerostack open-source framework,” Interna-
tional Journal of Advanced Robotic Systems, vol. 17, no. 3, p.
1729881420925000, 2020.

[22] O. Biggar and M. Zamani, “A framework for formal verification of be-
havior trees with linear temporal logic,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 2341–2348, 2020.

[23] T. G. Tadewos, L. Shamgah, and A. Karimoddini, “On-the-fly decentral-
ized tasking of autonomous vehicles,” in 2019 IEEE 58th Conference
on Decision and Control (CDC). IEEE, 2019, pp. 2770–2775.

[24] J. Kuckling, A. Ligot, D. Bozhinoski, and M. Birattari, “Behavior trees
as a control architecture in the automatic modular design of robot
swarms,” in International Conference on Swarm Intelligence. Springer,
2018, pp. 30–43.

[25] Ö. Özkahraman and P. Ögren, “Combining control barrier functions and
behavior trees for multi-agent underwater coverage missions,” in 2020
59th IEEE Conference on Decision and Control (CDC). IEEE, 2020,
pp. 5275–5282.

[26] O. Biggar, M. Zamani, and I. Shames, “A principled analysis of behavior
trees and their generalisations,” arXiv preprint arXiv:2008.11906, 2020.

[27] P. de la Cruz, J. Piater, and M. Saveriano, “Reconfigurable behavior
trees: towards an executive framework meeting high-level decision mak-
ing and control layer features,” in 2020 IEEE International Conference
on Systems, Man, and Cybernetics (SMC). IEEE, 2020, pp. 1915–1922.

[28] P. Ögren, “Convergence analysis of hybrid control systems in the form
of backward chained behavior trees,” IEEE Robotics and Automation
Letters, vol. 5, no. 4, pp. 6073–6080, 2020.

[29] “BostonDynamics Spot SDK,” 2020. [Online]. Available: https:
//www.bostondynamics.com/spot2_0

[30] S. Macenski, F. Martín, R. White, and J. G. Clavero, “The marathon 2:
A navigation system,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 2718–2725.

[31] F. Martín, J. Ginés, F. J. Rodríguez, and V. Matellán, “Plansys2:
A planning system framework for ros2,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS 2021, Prague,
Czech Republic, September 27 - October 1, 2021. IEEE, 2021.

[32] D. Isla, “Handling Complexity in the Halo 2 AI,” in Game Developers
Conference, 2005.

[33] I. Millington and J. Funge, Artificial intelligence for games. CRC Press,
2009.

[34] J. Lunze and F. Lamnabhi-Lagarrigue, Handbook of hybrid systems
control: theory, tools, applications. Cambridge University Press, 2009.

https://www.bostondynamics.com/spot2_0
https://www.bostondynamics.com/spot2_0

IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. Y, MONTH 2021 119

[35] C. Sloan, J. D. Kelleher, and B. Mac Namee, “Feasibility study of utility-
directed behaviour for computer game agents,” in Proceedings of the
8th International Conference on Advances in Computer Entertainment
Technology, 2011, pp. 1–6.

[36] A. J. Champandard, “10 reasons the age of finite state machines
is over,” AIGameDev.com. [Online]. Available: http://aigamedev.com/
open/article/fsm-age-is-over

[37] E. W. Dijkstra, “Go to statement considered harmful [letter to the
editor],” Communications of the ACM, vol. 11, no. 3, pp. 147–148, 1968.

[38] F. Rubin, “Goto considered harmful considered harmful,” Communica-
tions of the ACM, vol. 30, no. 3, pp. 195–196, 1987.

[39] B. A. Benander, N. Gorla, and A. C. Benander, “An empirical study of
the use of the goto statement,” Journal of Systems and Software, vol. 11,
no. 3, pp. 217–223, 1990.

[40] R. L. Ashenhurst, “Acm forum,” Commun. ACM, vol. 30, no. 5, p.
350–355, May 1987. [Online]. Available: https://doi.org/10.1145/22899.
315729

[41] M. Iovino, E. Scukins, J. Styrud, P. Ögren, and C. Smith, “A survey
of behavior trees in robotics and ai,” arXiv preprint arXiv:2005.05842,
2020.

[42] G. Taubenfeld, Synchronization algorithms and concurrent program-
ming. Pearson Education, 2006.

[43] K. Fischer, K. Lohan, J. Saunders, C. Nehaniv, B. Wrede, and K. Rohlf-
ing, “The impact of the contingency of robot feedback on hri,” in 2013
International Conference on Collaboration Technologies and Systems
(CTS). IEEE, 2013, pp. 210–217.

[44] J. Lee, J. F. Kiser, A. F. Bobick, and A. L. Thomaz, “Vision-based con-
tingency detection,” in Proceedings of the 6th international conference
on Human-robot interaction. ACM, 2011, pp. 297–304.

[45] S. Kopp, B. Krenn, S. Marsella, A. N. Marshall, C. Pelachaud, H. Pirker,
K. R. Thórisson, and H. Vilhjálmsson, “Towards a common framework
for multimodal generation: The behavior markup language,” in Interna-
tional workshop on intelligent virtual agents. Springer, 2006.

[46] M. Colledanchise and L. Natale, “Improving the parallel execution
of behavior trees,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 7103–7110.

[47] ——, “Analysis and exploitation of synchronized parallel executions
in behavior trees,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2019.

[48] S. G. Brunner, A. Dömel, P. Lehner, M. Beetz, and F. Stulp, “Au-
tonomous parallelization of resource-aware robotic task nodes,” IEEE
Robotics and Automation Letters, vol. 4, no. 3, pp. 2599–2606, 2019.

[49] A. Champandard, “Enabling concurrency in your behavior hierarchy,”
AIGameDev. com, 2007.

[50] B. G. Weber, P. Mawhorter, M. Mateas, and A. Jhala, “Reactive planning
idioms for multi-scale game ai,” in Computational Intelligence and
Games (CIG), 2010 IEEE Symposium on. IEEE, 2010, pp. 115–122.

[51] M. Mateas and A. Stern, “A behavior language for story-based believable
agents,” IEEE Intelligent Systems, vol. 17, no. 4, pp. 39–47, 2002.

[52] R. A. Agis, S. Gottifredi, and A. J. García, “An event-driven behavior
trees extension to facilitate non-player multi-agent coordination in video
games,” Expert Systems with Applications, p. 113457, 2020.

[53] M. Colledanchise, A. Marzinotto, D. V. Dimarogonas, and P. Ögren,
“The advantages of using behavior trees in multi-robot systems,” in ISR
2016: 47st International Symposium on Robotics; Proceedings of. VDE,
2016, pp. 1–8.

[54] Q. Yang and R. Parasuraman, “Hierarchical needs based self-adaptive
framework for cooperative multi-robot system,” in 2020 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics (SMC). IEEE,
2020, pp. 2991–2998.

[55] F. Rovida, D. Wuthier, B. Grossmann, M. Fumagalli, and V. Krüger,
“Motion generators combined with behavior trees: A novel approach
to skill modelling,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 5964–5971.

[56] M. Colledanchise and L. Natale, “On the implementation of behavior
trees in robotics,” IEEE Robotics and Automation Letters, 2021.

[57] S. Chitta, B. Cohen, and M. Likhachev, “Planning for autonomous
door opening with a mobile manipulator,” in 2010 IEEE International
Conference on Robotics and Automation. IEEE, 2010, pp. 1799–1806.

[58] A. Hern, “Boston dynamics crosses new threshold with door-opening
dog,” The Guardian, 2018.

[59] J. Yao, Q. Huang, and W. Wang, “Adaptive cgfs based on grammatical
evolution,” Mathematical Problems in Engineering, vol. 2015, 2015.

[60] S. G. Brunner, F. Steinmetz, R. Belder, and A. Dömel, “Rafcon: A
graphical tool for engineering complex, robotic tasks,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2016, pp. 3283–3290.

[61] A. S. Tanenbaum and H. Bos, Modern operating systems. Pearson,
2015.

[62] G. Metta, G. Sandini, D. Vernon, L. Natale, and F. Nori, “The icub hu-
manoid robot: an open platform for research in embodied cognition,” in
Proceedings of the 8th workshop on performance metrics for intelligent
systems, 2008, pp. 50–56.

[63] A. Parmiggiani, L. Fiorio, A. Scalzo, A. V. Sureshbabu, M. Randazzo,
M. Maggiali, U. Pattacini, H. Lehmann, V. Tikhanoff, D. Domenichelli
et al., “The design and validation of the r1 personal humanoid,” in 2017
IEEE/RSJ international conference on intelligent robots and systems
(IROS). IEEE, 2017, pp. 674–680.

[64] “BehaviorTree.CPP. Behavior Trees Library in C++. Batteries
included.” 2020. [Online]. Available: https://github.com/BehaviorTree/
BehaviorTree.CPP

[65] “Groot. Graphical Editor to create BehaviorTrees. Compliant with
BehaviorTree.CPP,” 2020. [Online]. Available: https://github.com/
BehaviorTree/Groot

http://aigamedev.com/open/article/fsm-age-is-over
http://aigamedev.com/open/article/fsm-age-is-over
https://doi.org/10.1145/22899.315729
https://doi.org/10.1145/22899.315729
https://github.com/BehaviorTree/BehaviorTree.CPP
https://github.com/BehaviorTree/BehaviorTree.CPP
https://github.com/BehaviorTree/Groot
https://github.com/BehaviorTree/Groot

	I Introduction
	II Related Work
	III Background
	III-A Classical Formulation of Behavior Trees
	III-B Control Flow Nodes With Memory
	III-C Asynchronous Action Execution

	IV Concurrent BTs
	IV-A Absolute Progress Synchronization
	IV-B Relative Progress Synchronization
	IV-C Resource Synchronization
	IV-D Improving Predictability

	V Synchronization Measures
	V-A Progress Synchronization Distance
	V-B Predictability Distance

	VI Experimental Validation
	VI-A Numerical Experiments
	VI-B Real World Validation

	VII Software Library
	VII-A Implement concurrent BTs with BehaviorTree.CPP
	VII-B Implement concurrent BTs with Groot

	VIII Theoretical Analysis
	VIII-A State-space Formulation of Behavior Trees
	VIII-B CBT's Definition
	VIII-C Lemmas

	IX Conclusions
	References

