
2370 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 4, AUGUST 2022

Prehensile Manipulation Planning: Modeling,
Algorithms and Implementation

Florent Lamiraux and Joseph Mirabel

Abstract—This article presents a software platform tailored for
prehensile manipulation planning named humanoid path planner.
The platform implements an original way of modeling manipu-
lation planning through a constraint graph that represents the
numerical constraints that define the manipulation problem. We
propose an extension of the RRT algorithm to manipulation plan-
ning that is able to solve a large variety of problems. We provide
replicable experimental results via a docker image that readers may
download to run the experimental results by themselves.

Index Terms—Constrained path planning, manipulation
planning, path planning, robotics.

I. INTRODUCTION

TODAY, robots in industrial manufacturing are mostly pro-
grammed by hand. They repeat the same motion thousands

of times with great accuracy. However, automating a task with
some variability is very challenging since it requires more pro-
gramming effort to integrate sensors and motion planning in the
process. A good example of this difficulty is the Amazon picking
challenge [1]. The work described in this article is a small step
toward simplifying industrial process automation in the presence
of some variability, like the variation of the initial position
of some object or unknown obstacles. The work only covers
motion planning and, more accurately, manipulation planning.
The integration into a whole process is still under development.
We think that it is important not only to develop algorithms, but
also to provide them within an open-source software platform
in order to make the evaluation and then the integration of those
algorithms easier.

Therefore this article describes a software platform called
humanoid path planner tailored for manipulation planning in
robotics. It can handle many types of robots, from mani-
pulator arms to legged humanoid robots. Fig. 1 displays an

Manuscript received 13 March 2021; revised 28 September 2021; accepted 17
November 2021. Date of publication 24 December 2021; date of current version
8 August 2022. This work was supported in part by Airbus S.A.S. within the
framework of the common laboratory Rob4Fam. This paper was recommended
for publication by Associate Editor Lorenzo Natale and Editor Wolfram Burgard
upon evaluation of the reviewers’ comments. (Corresponding author: Florent
Lamiraux.)

The authors are with the LAAS-CNRS, University of Toulouse, 31500
Toulouse, France (e-mail: florent.lamiraux@laas.fr; josephmirabel@gmail.
com).

This article has supplementary material provided by the au-
thors and color versions of one or more figures available at
https://doi.org/10.1109/TRO.2021.3130433.

Digital Object Identifier 10.1109/TRO.2021.3130433

example of manipulation problem. The main contributions are as
follows.

1) An original and general modeling of prehensile manipu-
lation based on nonlinear constraints.

2) An original solver for nonlinear constraints that can handle
implicit and explicit constraints.

3) A manipulation planning algorithm that tackles a great
variety of manipulation planning problems.

4) An open-source software suite that implements all the
above, following state-of-the-art development tools and
methods.

5) A docker image of the aforementioned software with
installation instructions provided with this article. This
image makes the experimental results replicable.

Installation instructions can be found at https://humanoid-
path-planner.github.io/hpp-doc. This article extends the work
presented in previous papers [2], [3] with the following new
material.

1) Description of the configuration space as a Cartesian
product of Lie groups (Section III).

2) Unified and detailed definition of the grasp and placement
constraints that are only mentioned in Mirabel et al. [2]
(Section V).

3) Automatic construction of the constraint graph (Sec-
tion V).

4) The docker image of the software.
5) A description of the software platform (Section VII).
6) Experimental results for several different problems.
The article is organized as follows. Section II presents some

related work for constrained motion planning and manipula-
tion planning. Section III introduces some preliminary notions
like kinematic chains and Lie groups that are used to model
the configuration space of each joint. Section IV introduces
nonlinear constraints and solvers that are at the core of the
manipulation problem definition. Section V defines the problem
of prehensile manipulation in the general setting. Section VI
provides a general algorithm that solves manipulation plan-
ning problems. Finally, Section VII is devoted to the software
platform implementing the notions introduced in the previous
sections. Experimental results are provided for a large variety of
problems.

Each section is implemented by one or several software
packages. For some values that need to be computed, rather
than providing formulas, we sometimes give a link to the C++
or python implementation.

1552-3098 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8757-567X
https://orcid.org/0000-0002-9165-9008
mailto:florent.lamiraux@laas.fr
mailto:josephmirabel@gmail.com
mailto:josephmirabel@gmail.com
https://doi.org/10.1109/TRO.2021.3130433

LAMIRAUX AND MIRABEL: PREHENSILE MANIPULATION PLANNING: MODELING, ALGORITHMS AND IMPLEMENTATION 2371

Fig. 1. Example of manipulation planning problem. Top: Two UR3 robots
with one gripper each (X = red, Y = green, Z = blue) manipulating a cylinder
with two handles. The environment contains one rectangular contact surface (in
red). The cylinder has two rectangular contact surfaces (in green). Bottom: The
corresponding constraint graph. Names of states follow Expression (19): For
example, (∅, 1) means that gripper of robot 2 grasps handle 1 of the cylinder. In
this state, there is no placement constraint.

II. RELATED WORK

Motion planning has given rise to a lot of research work over
the past decades. The problem consists in finding a collision-free
path for a given system in an environment populated with ob-
stacles. The field covers a large variety of different applications
ranging from navigation for autonomous vehicles in partially
known environments [4] to path planning for deformable ob-
jects [5], [6], and many other applications like coverage path
planning [7], [8], or pursuit evasion planning [9].

Planning motions for high dimensional robots like humanoid
robots or multiarm systems has been shown to be highly com-
plex [10], [11]. Starting in the 1990’s random sampling methods
have been proposed to solve the problem, trading the complete-
ness property against efficiency in solving problems in high

dimensional configuration spaces [12]–[14]. The latter methods
are said to be probabilistically complete since the probability
to find a solution if one exists converges to 1 when the time of
computation tends to infinity. Since then, asymptotically optimal
random sampling algorithms have been proposed [15].

A. Path Planning With Nonlinear Constraints

Some systems are subject to nonlinear constraints. These
constraints define submanifolds of the configuration space the
robot must stay on. For example, legged robots that must keep
contact with the ground and enforce quasi-static equilibrium,
or multiarm systems grasping the same object are subject to
this type of constraints. As the volume of the constrained mani-
fold is usually equal to zero, sampling random configurations
satisfying the constraints is an event of zero probability. To
sample configurations on the constrained manifold, Dalibard
et al. [16] and Benrenson et al. [17] project random configu-
rations using a generalization of Newton-Raphson algorithm.
Another method consists in expressing some configuration vari-
ables with respect to others [3], [18] whenever this can be done.
Jaillet et al. [19] propose another method based on nonlinear
projection. They cover the constrained manifold by growing an
atlas composed of local charts. This approximation provides a
probability distribution that is closer to the uniform distribution
over the manifold than the projection of a uniform distribution
over the configuration space. Beobkyoon et al. [20] propose a
variation of the latter paper. The main difference lies in the fact
that the nodes built on the tangent space are not immediately
projected onto the manifold. Cefalo et al. [21] put forward
a general framework to plan task-constrained motions in the
presence of moving obstacles. Kingston et al. [22] provide an
in-depth review of the various approaches to motion planning
with nonlinear constraints.

B. Manipulation Planning

Manipulation planning is a particular instance of path plan-
ning, where some objects are moved by robots. Although several
instances of the manipulation problem exist like manipulation
by pushing [23], or by throwing [24], as well as multicontact
planning [25]–[27], in this article, we are only concerned with
prehensile manipulation. The configuration space of the whole
system is subject to nonlinear constraints due to the fact that
objects cannot move by themselves and should stay in a stable
pose when not grasped by a robot. The accessible configuration
space is thus a union of submanifolds as defined in the previous
section. Each of these manifolds may moreover be a foliation,
where each leaf corresponds to a stable pose of an object or
to a grasp of an object by a gripper. The geometrical structure
of the problem has been well understood for a long time [28].
Some specific instances of the problem have even been addressed
recently [29].

The first attempt to solve manipulation planning problems
using random sampling was proposed by Siméon et al. [30],
where a reduction property simplifies the problem.

Papers about manipulation planning are commonly divided
into several categories.

2372 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 4, AUGUST 2022

Navigation among movable obstacles (NAMO) [31], [32]
consists in finding a path for a robot that needs to move objects
in order to reach a goal configuration. The final poses of the
objects do not matter in this case.

Rearrangement planning [33]–[36] consists in finding a se-
quence of manipulation paths that move some objects from an
initial pose to a final pose. The final configuration of the robot
is not specified. A simplifying assumption is the existence of
a monotone solution, where each object is grasped at the most
once and is moved from its initial pose to its final pose [32], [33],
[37]–[39]. They mainly rely on two-level methods composed of
a symbolic task planner and of a motion planner [40]–[43].

Other contributions in manipulation planning explicitly ad-
dress the problem of multiarm manipulation [44]–[47].

Schmitt et al. [48] propose an approach where two robots
manipulate an object in a dynamic environment. The output of
the algorithm is a sequence of controllers rather than a sequence
of paths.

Our work shares many ideas with Hauser and Ng-Thow-
Hing [49], where the notion of constraint graph is present,
although not as clearly expressed as in this article. The main
contribution of our work with respect to the latter paper is that
the constraint graph is built automatically at the cost of a more
restricted range of applications. We only address prehensile
manipulation.

C. Open-Source Software Platforms

Open-source software platforms are an important tool to
enable fair comparison between algorithms. Several software
platforms are available for motion planning and/or manipulation
planning in the robotics community. Undoubtedly the most pop-
ular one is OMPL [50] which integrates many randomized path
planning algorithms and is widely used for teaching purposes.
Recently, Kingston et al. [22] proposed an extension for systems
subject to nonlinear constraints.

OpenRave [51] is a software platform that addresses motion
and manipulation planning. It includes computation of forward
kinematics.

One of the main differences between our solution and the
previously cited ones lies in the way manipulation constraints are
compiled into a graph. To our knowledge, none of the previous
solutions can handle such a variety of problems as large as those
described in Section VII-B.

III. PRELIMINARIES: KINEMATIC CHAINS AND LIE GROUPS

A kinematic chain is commonly understood as a set of rigid-
body links connected to each other by joints. Each joint has
one degree of freedom either in rotation or in translation. A
configuration of the kinematic chain is represented by a vector.
Each component of the vector represents the angular or linear
value of the corresponding joint.

Although well suited for fixed base manipulator arms, this
representation is ill-suited for robots with a mobile base like
wheeled mobile, aerial, or legged robots, since the mobility
of the base cannot be correctly represented by translation or
rotation joints. Representing a free-flying object by three virtual

translations followed by three virtual rotations referred to as roll,
pitch, and yaw is indeed a poor workaround due to the presence
of singularities. A good illustration of this is the gimball lock
issue that arose during Apollo 13 flight. To avoid singularities,
the following definition is proposed.

A. Kinematic Chain

A kinematic chain is a tree of joints, where each joint repre-
sents the mobility of a rigid-body link with respect to another link
or to the world reference frame. A configuration space called the
joint configuration space is associated to each joint. The most
common joints with their respective configuration spaces are as
follows.

1) Linear translation with configuration space R.
2) Bounded rotation with configuration space R.
3) Unbounded rotation with configuration space SO(2).
4) Planar joint with configuration space SE(2).
5) Freeflyer joint with configuration space SE(3).
SO(n) and SE(n) stand for special orthogonal group and

special Euclidean group, respectively. They represent the group
of rotations and the group of rigid-body transformations in Rn.

B. Lie Groups

The joint configuration spaces listed in the previous para-
graph: Rn, SO(n), and SE(n) are all Lie groups. The group
operation is + for Rn, and composition denoted as ′′.′′ for
SE(n). We refer to Murray et al. [52, Appendix A] for a
thorough definition of Lie groups. Here we detail only those
properties that are useful for the following developments.

For any Lie groupLwith neutral element n, the tangent space
at the neutral element TnL of the group naturally maps to the
tangent space at any point of the group. This means that any
velocity v ∈ TnL uniquely defines the following.

1) A velocity w ∈ TgL at any point g of the group.
2) A vector field on the tangent space TL.
3) By integration during unit time of the latter vector field,

starting from the origin, a new point g1 ∈ L.
Item 1 above is called the transport of velocity v to g. Item 3

is called the exponential map of L and is denoted by exp.
1) Geometric Interpretations:
a) R (and by trivial generalization Rn): The neutral element

is 0. The tangent space at 0 is isomorphic to R and

∀θ ∈ R, exp(θ) = θ.

b) SE(3): An element g ofSE(3) can be seen as the position
of a moving frame in a fixed reference frame. A point x ∈
R3 is mapped to g(x). Note that x is also the coordinate
vector of g(x) in the moving frame g. If v, ω are linear
and angular velocities at the origin, (v, ω) is transported
to g as the same linear and angular velocities expressed in
the moving frame. In other words, if

M =

(
R t
0 1

)
(1)

with R ∈ SO(3) and t ∈ R3 is the homogeneous matrix
representing g, and (v,ω) is a velocity in TI3SE(3), the

LAMIRAUX AND MIRABEL: PREHENSILE MANIPULATION PLANNING: MODELING, ALGORITHMS AND IMPLEMENTATION 2373

TABLE I
MAIN LIE GROUP TYPES AND THEIR VECTOR REPRESENTATIONS

Notice that the dimensions of the configuration representation and of the
velocity representation may differ. Using (cos θ, sin θ) instead of θ for
SO(2) and SE(2) makes the parameterization continuous when θ dis-
continuously switches from −π to π.

velocity transported to g corresponds to linear and angular
velocitiesRv andRω of the moving frame. Integral curves
of the vector field mentioned in item b) above correspond
to screw motions of constant velocity expressed in the
moving frame.

SE(2), SO(3), and SO(2) are subgroups of SE(3) and
follow the same geometrical interpretation.

2) Vector Representations: Each Lie group element is repre-
sented by a vector. Rotations are represented by unit quaternions.

Therefore elements of SE(3) are represented by a vector in
R7, where the first three components represent the image of the
origin [vector t in (1)], the last four components (x, y, z, w)
represent unit quaternion w + xi+ yj + zk.

Elements of SO(3) are likewise represented by a unit vector
of dimension 4.

Elements of SE(2) are represented by a vector of dimension
4. The first two components represent the image of the origin.
The last two components represent the cosine and sine of the
rotation angle. Therefore the homogeneous matrix associated to
q = (q1, q2, q3, q4) is

M =

⎛
⎝ q3 −q4 q1

q4 q3 q2
0 0 1

⎞
⎠ .

Table I compiles this information.
3) Exponential Map: As expressed earlier, following a con-

stant velocity1 q̇ from the neutral element of a joint configuration
space leads to another configuration denoted as

q = exp(q̇).

In some cases, we may specify in subscript the Lie group that is
used: expSO(3), expSE(3).

For all Lie groups R, SO(n), SE(n), the exponential map is
surjective. This means that for any q ∈ L, there exists v ∈ TnL,
such that q = exp(v). Although exp is not injective, choosing
the smallest norm v uniquely defines function log from L to
TnL, up to some singularities where several candidates v are of
equal norms. Again, we may specify the Lie group that is used:
logSE(3), logSO(3)

1More precisely, following the vector field generated by q̇ ∈ TnL according
to the Lie group structure

4) Sum and Difference Notations: Following a constant ve-
locity q̇ ∈ TnL starting from q0 ∈ L, leads to

q1 = q0. exp(q̇).

Note that if L = R, we write

q1 = q0 + q̇

since the Lie group operator of R is+ and expR is the identity. In
order to homogenize notation, we define the following operators.
For any q0,q1 ∈ L and q̇ ∈ TnL

q0 ⊕ q̇ � q0. exp(q̇) ∈ L (2)

q1 � q0 � log(q−10 .q1) ∈ TnL. (3)

C. Robot Configuration Space

Given a kinematic chain with joints (J1, . . . , Jnjoints), ordered
in such a way that each joint has an index bigger than its parent
in the tree, the configuration space of the robot is the Cartesian
product of the joint configuration spaces

C � CJ1
× · · · × CJnjoints .

C naturally inherits the Lie group structure of the joint configura-
tion spaces through the Cartesian product. We denote bynqi,nvi
the sizes of the configuration and velocity vector representations
of joint Ji, as defined in Table I. The configuration and velocity
of the robot can thus be represented by vectors of size nq and
nv, such that

nq =

njoints∑
i=1

nqi, nv =

njoints∑
i=1

nvi.

We denote by iqi, and ivi the starting indices of joint i in the
robot configuration and velocity vectors

iqi =

i−1∑
j=1

nqj ivi =

i−1∑
j=1

nvj .

With these definitions and notation, the linear interpolation
between two robot configurations q0 and q1 is naturally written

q(t) = q0 ⊕ t(q1�q0).

This formula generalizes the linear interpolation to robots with
free-flying bases, getting rid of singularities of roll–pitch–yaw
parameterization. Cartesian products of Lie groups are repre-
sented by Class LiegroupSpace. Elements of these spaces
are represented by classes as follows.

1) LiegroupElement.
2) LiegroupElementRef.
3) LiegroupElementConstRef.

IV. NONLINEAR CONSTRAINTS AND SOLVERS

Some tasks require the robot to enforce some nonlinear con-
straints. Foot contact on the ground for a humanoid robot, center
of mass projection on a horizontal plane, gaze constraint are a
few examples.

2374 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 4, AUGUST 2022

A. Nonlinear Constraints

Definition 1: Nonlinear constraint. A nonlinear constraint
is defined by a piecewise differentiable mapping h from C to a
vector space Rm and is written

h(q) = 0. (4)

If the robot is subject to several numerical constraints,
h1, . . . , hk with values in Rm1 · · ·Rmk , these constraints are
equivalent to a single constraint h with values in Rm, where
m =

∑k
i=1 mi, such that

h(q) �

⎛
⎜⎝

h1(q)
...

hk(q)

⎞
⎟⎠ .

It may be useful to use a nonzero right hand side for the
same function h. For that we define parameterized nonlinear
constraints.

Definition 2: Parameterized nonlinear constraint. A param-
eterized nonlinear constraint is defined by a piecewise differen-
tiable mapping h from C to a vector space Rm and by a vector
h0 of Rm and is written

h(q) = h0.

Piecewise differentiable mappings are represented by abstract
Class
DifferentiableFunction.
1) Jacobian: In this article, we will make use of the term

Jacobian in a generalized way. If h is a piecewise differentiable
function from a Lie group L1 to a Lie group L2, and q1 an
element ofL1, we will denote by ∂h

∂q (q1) the operator that maps
velocities in Tq1

L1 to the velocity in Th(q1)L2 transported by
h2.

This operator is represented by a matrix with nv2 lines and
nv1 columns, where nv1 and nv2 are the dimensions of the
tangent spaces of L1 and L2, respectively.

B. NEWTON-BASED SOLVER

It is sometimes useful to produce a configuration q that
satisfies a constraint (or a set of constraints) of type (4) from
a configuration q0 that does not. This action is called the
projection of q0 onto the submanifold defined by the constraint
and is performed by a Gauss–Newton solver [53, Ch. 10] that
iteratively linearizes the constraint as follows:

h(qi+1) ≈ h(qi) +
∂h

∂q
(qi)(qi+1�qi) = 0.

Iterate qi+1 is computed as follows:

qi+1 = qi�αi
∂h

∂q

+

(qi)h(qi) (5)

where .+ denotes the Moore Penrose3 pseudo inverse, and αi is
a positive real number called the step size. Taking αi = 1 solves

2If q̇ ∈ Tq1L1 is a velocity along a time parameterized curve γ, ∂h
∂q (q1)q̇

is the velocity along curve h(γ).
3who has just been awarded the Nobel Prize.

the linear approximation, but it may not be the best choice in
general.

The computation of αi is performed by a line search algo-
rithm. The algorithm stops when the norm of each hi(qi+1)
is below a given error threshold. Class HierarchicalIt-
erative implements the above Newton method. Several line
search methods are implementedas follows.

1) Backtracking [54].
2) ErrorNormBased:

αi = C −Ktanh

(
a
‖f(qi)‖

ε2
+ b

)

where C, K, a, and b are constant values, and ε is the error
threshold.

3) FixedSequence implements a fixed sequence of αi

that converges to 1,
4) and Constant sets αi to 1.
Note that to define a new constraint, the user needs to derive

class DifferentiableFunction and to implement meth-
ods impl_compute and impl_jacobian.

C. EXPLICIT CONSTRAINTS

In manipulation planning applications in which robots ma-
nipulate objects, once an object is grasped, the position of the
object can be explicitly computed from the configuration of the
robot. In this case, some configuration variables of the system
depend on other configuration variables

q = (qrob,qobj) ∈ C, qobj = ggrasp(qrob).

Although this constraint may fit definition (4) by defining

h(q) � qobj � ggrasp(qrob) (6)

solving this constraint possibly with other constraints using an
iterative scheme (5) is obviously suboptimal.

More generally, let us denote by
1) Inq the set of positive integers not greater than

nq = dim C;
2) I a subset of Inq;
3) Ī the complement in Inq of I;
4) |I| the cardinal of I .
If q ∈ C is a configuration, we denote by qI ∈ R|I| the vector

composed of the components of q of increasing indices in I .

1) Example

If q = (q1, q2, q3, q4, q5, q6, q7) and I = {1, 2, 6}, then qI =
(q1, q2, q6), qĪ = (q3, q4, q5, q7).

Similarly, if
1) m and n are two integers;
2) M and N are two subsets of Im and In, respectively;
3) J is a matrix with m rows and n columns;
we denote by

JM,N (7)

the matrix of size |M | × |N | obtained by extracting the rows of
J of indices in M and the columns of J with indices in N .

LAMIRAUX AND MIRABEL: PREHENSILE MANIPULATION PLANNING: MODELING, ALGORITHMS AND IMPLEMENTATION 2375

2) Example

If m = 3, n = 4, M = {2, 3} and N = {1, 2, 4}

J =

⎛
⎜⎜⎝

J1,1 J1,2 J1,3 J1,4
J2,1 J2,2 J2,3 J2,4
J3,1 J3,2 J3,3 J3,4
J4,1 J4,2 J4,3 J4,4

⎞
⎟⎟⎠

then

JM×N =

(
J2,1 J2,2 J2,4
J3,1 J3,2 J3,4

)
.

Definition 3: An explicit constraintE = (in, out, f) is a map-
ping from C to C, defined by the following elements.

1) A subset of input indices in ⊂ {1, . . . , nq}.
2) A subset of output indices out ⊂ {1, . . . , nq}.
3) A smooth mapping f from R|in| to R|out|,
satisfying the following properties.
1) in ∩ out = ∅;
2) for any p ∈ C, q = E(p) is defined by

qōut = pōut

qout = f(pin).

D. SOLVER BY SUBSTITUTION

To optimize constraint resolution, we perform variable sub-
stitution whenever possible in order to reduce the number of
variables as well as the dimension of the resulting implicit con-
straint. Here we describe the method first published in Mirabel
et al. [3]. Unlike in the former paper, the description we give in
Algorithm 1 is closer to the real implementation. Some links to
the source code are indeed provided in the algorithm description.

Once several compatible explicit constraints have been in-
serted in the solver, they behave as a single constraint. For
example, if q = (q1,q2,q3){

q1 = f1(q2)
q2 = f2(q3)

becomes

[
q1

q2

]
=

[
f1(f2(q3))
f2(q3)

]

and f2 should be evaluated before f1.

1) Substitution

When an explicit constraint is not successfully added fol-
lowing Algorithm 1, it is handled as an implicit constraint.
Therefore, after inserting implicit and explicit constraints, the
solver stores a system of equations equivalent to one explicit
and one implicit constraints that we denote by

h(qin,qout) = 0 (8)

qout = f(qin), where (9)

in ∩ out = ∅. (10)

Substituting (9) into (8), we define an implicit constraint on qin

only

h̃(qin) � h(qin, f(qin)) = 0.

Algorithm 1: Insertion of an Explicit Constraint in the
Solver. Line 1 is Called Once at Initialization of the Solver.
explicit is a Vector That Stores the Constraints That are
Successfully Added to the Solver. nc is the Size of the
Latter. args is an Array That, for Each Configuration Vari-
able, Stores the Index in explicit of the Constraint That
Computes This Configuration Variable, -1 if no Constraint
Computes the Index. Procedure ADD Tests Whether Explicit
Constraint E is Compatible With the Previously Inserted
Constraints. Line 6 Checks Whether any Output Variable of
E is Already Computed by a Previous Explicit Constraint. If
so the Procedure Returns Failure and E is not Inserted. The
Loop at Line 9 Recursively Checks That any Element of out
is not an Input Variable of a Previously Inserted Constraint.
If the Loop Ends Without Returning Failure, Line 18 Stores
the Information That Elements of out are Computed by E
and E is Inserted in the Vector of Constraints. Function
computeOrder at Line 20 Recursively Computes the Order
in Which the Explicit Constraints are Evaluated, Following
the Rule That the Input of a Constraint Should be Evaluated
Before the Output.

1: procedure INITIALIZESOLVER

2: explicit← empty vector of explicit constraints
3: nc← 0
4: args← array of size nq filled with -1
5: function addE = (in, out, f)
6: if argsout contains an element ≥ 0 then
7: return failure
8: queue idxArg← elements of in
9: while idxArg not empty do

10: iArg← idxArg first element
11: remove idxArgs first element
12: if iArg ∈ out then
13: return failure
14: if args[iArg] == −1 then
15: continue
16: else
17: push explicit[args[iArg]].in elements into

idxArg
18: fill argsout with nc
19: explicit.add(E); nc← nc+ 1
20: computeOrder()
21: returnsuccess

The solver by substitution applies iteration (5) to h̃, instead of
h. Therefore we need to compute the Jacobian of h̃

∂h̃

∂qin
=

∂h

∂qin
+

∂h

∂qout
.
∂f

∂qin
.

As the Jacobian of h is provided with the implicit constraint,
we need to compute ∂f

∂qin
. Let us recall that f may be the

combination of several compatible explicit constraints. Let us
denote by E the mapping from C to C associated to f by
Definition 3. Let J denote the nv × nv Jacobian matrix of E.

2376 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 4, AUGUST 2022

Then J is defined by blocks as follows:

Jin×in = I|in| Jin×out = 0

Jout×in =
∂f

∂qin
Jout×out = 0. (11)

If E is the composition of several explicit constraints Ei =
(ini, outi, fi) of Jacobian Ji, i ∈ Inc, for an integer nc, then

J =

1∏
i=nc

Ji (12)

with Ji obtained by expression (11) after replacing in, out, and
f by ini, outi, and fi.

∂f
∂qin

is then obtained by extracting from J block out× in.
Let us now detail the iterative computation of (12). Let J be

the product of Jj for j from nc to i+ 1. Note that if Ji and J
are square matrices of size nv, of the form (11), Ji.J can be
computed by block as follows:

(Ji.J)ini×Inv
= Jini×Inv

(Ji.J)outi×Inv
=

∂fi
∂qini

.Jini×Inv

and as columns out of J are equal to 0, left multiplying J by Ji
consists in modifying only the following block of J :

(Ji.J)outi×in =
∂fi
∂qini

.Jini×in.

Other coefficients of JiJ are equal to the corresponding coeffi-
cients of J . An implementation of the aforementioned Jacobian
product can be found here.

The solver by substitution described in this section is imple-
mented by Class SolverBySubstitution, that stores an
instance of ExplicitConstraintSet.

2) Important Remark

As mentioned in Table I, the configuration and velocity vec-
tors may have different sizes. As a consequence, index sets
in and out in Definition 3 correspond to configuration vector
indices, while in Expression (11), they correspond to velocity
vector indices. To keep notation simple, we use the same notation
for different sets.

E. CONSTRAINED PATH

Now that we are able to project configurations onto subman-
ifolds defined by numerical constraints, up to some numerical
threshold, we need to define paths on such submanifolds. The
usual way of doing so is by discretizing the path and projecting
each sample configuration. The shortcoming is that it requires
choosing a discretization step at path construction thus losing
the continuous information of the path.

Instead, we propose an alternative architecture, where paths
store the constraints they are subject to and apply the constraints
at path evaluation (i.e., when computing the configuration at
a given parameter). Let P ∈ C1([0, T], C) be a path without
constraint defined on an interval [0, T], and proj a projector

onto a submanifold defined by numerical constraints (i.e., an
instance of SolverBySubstitution).

Then the corresponding constrained path P̃ is defined on the
same interval by

∀t ∈ [0, T], P̃ (t) = proj(P (t)).

Paths are implemented by Class Path. Several implementa-
tions of unconstrained paths are provided: StraightPath for
linear interpolation generalized to Lie groups, ReedsShepp-
Path, and DubinsPath for nonholonomic mobile robots.

1) Continuity of Projection Along a Path: Projecting con-
figurations at path evaluation has the advantage of not losing
information. In return, the projection of a continuous path may
be discontinuous. Thus, before inserting a projected path in a
roadmap for example, it is necessary to detect possible discon-
tinuities. Hauser [55] proposes a solution to this problem. In
a previous paper [56], we described two algorithms to check
whether a projected path is continuous. These algorithms are im-
plemented by classes pathProjector::Dichotomy and
pathProjector::Progressive. Note that when a path
is not continuous, the algorithms return a continuous portion
of the path starting at the beginning of the path. This enables
function EXTEND in Algorithm 4 to create a new node.

V. MANIPULATION PROBLEM

The previous sections have presented how we model kine-
matic chains, configurations, and velocities for a given robotic
system and how configurations and paths can be projected onto
a submanifold of the configuration space defined by numerical
constraints.

In this section, we will use these notions to represent a robotic
manipulation problem.

Definition 4: Prehensile manipulation problem
A prehensile manipulation problem is defined by the

following.
1) One or several robots.
2) One or several objects.
3) A set of possible grasps.
4) Environment contact surfaces.
5) Object contact surfaces.
6) An initial configuration.
7) A final configuration.
Admissible configurations of the system are configurations

that satisfy the following property.
1) Each object is either grasped by a robot, or lies in a stable

contact pose.
2) The volumes occupied by the links of the robots and by

the objects are pairwise disjoint.
Admissible motions of the system are motions that satisfy the

following property.
1) Configurations along the motion are admissible.
2) The pose of objects in stable contact is constant.
3) The relative pose of objects grasped by a gripper with

respect to the gripper is constant.
The solution of a prehensile manipulation problem is an

admissible motion that links the initial and goal configurations.

LAMIRAUX AND MIRABEL: PREHENSILE MANIPULATION PLANNING: MODELING, ALGORITHMS AND IMPLEMENTATION 2377

We will now provide precise definitions for grippers, grasps,
and stable contact poses.

A. Grasp

1) Configuration Space: The configuration space of a ma-
nipulation problem is the Cartesian product of the configuration
spaces of the robots and of the objects

C = Cr1× · · · × Crnr
× SE(3)no

where nr is the number of robots, no is the number of objects,
and Cri , i ∈ {1, . . ., nr} is the configuration space of robot ri.

Definition 5: Gripper. A gripper g is defined as a frame
attached to the link of a robot. g(q), q ∈ C denotes the pose
of the frame when the system is in configuration q.

Definition 6: Handle. A handle is composed of the following.
1) A frame h attached to the root joint of an object.
2) A list flags = (x, y, z, rx, ry, rz) of six Boolean values.
h(q), q ∈ C denotes the pose of the frame when the system

is in configuration q.
Definition 7: Grasp. A grasp is a numerical constraint h over
C, defined by the following.

1) A gripper g.
2) A handle h.
Let h̄ be the smooth mapping from C to R6 defined by

h̄(q) = logR3×SO(3)

(
g−1(q)h(q)

)
. (13)

h(q) is obtained by extracting from h̄ the components the values
of which are true in the handle flag.

Note that R3 × SO(3) and SE(3) have different group op-
erators, exponential maps, and logarithms. Constant velocity
motions in SE(3) are screw motions while constant velocity
motions in R3 × SO(3) consist of linear interpolation of the
center of the frame and constant angular velocity.

Definition 8: Grasp complement. Given a grasp constraint
defined by gripper g, handle h, and some flag vector, the grasp
complement is a parameterized nonlinear constraint defined by

hcomp(q) = h0

where hcomp is composed of the components of h̄ that are not in
h and h0 is a vector with the same size as hcomp output.

2) Geometric Interpretation and Examples: The first three
components of h̄(q) in (13) correspond to the position of the
center of h(q) in the frame of g(q). The last three components
of h̄(q) are a vector representing the relative orientation of h(q)
with respect to g(q). The direction of the vector represents the
axis of rotation, the norm of the vector represents the angle of
rotation.

1) If flags = (true,true,true,true,true,true) the
grasp is satisfied iff g(q) and h(q) coincide

h = h̄

hcomp is an empty constraint.
2) If flags = (true,true,true,true,true,false)

the grasp is satisfied iff the centers and z axes of g(q)
and h(q) coincide (free rotation around z). This is useful

for cylindrical objects

h = (h̄1, h̄2, h̄3, h̄4, h̄5)

hcomp = (h̄6)

3) If flags = (true,true,false,true,true,false)
the grasp is satisfied iff the center of h(q) is on the z-axis
of g(q) and if the z-axes of g(q) and h(q) coincide (free
translation and rotation around z). This is also useful for
cylindrical objects

h = (h̄1, h̄2, h̄4, h̄5)

hcomp = (h̄3, h̄6).

However, inequality constraints need to be added manu-
ally on h̄3 to limit the translation.

4) If flags = (true,true,true,false,false,
false) the grasp is satisfied iff the centers of g(q)
and h(q) coincide (free rotation). This is useful for
spherical objects

h = (h̄1, h̄2, h̄3)

hcomp = (h̄4, h̄5, h̄6).

If q0 is a configuration satisfying the grasp constraint: h(q0)
= 0, then the submanifold defined by

{q ∈ C, h(q) = 0 hcomp(q) = hcomp(q0)}

contains all the configurations that are reachable from q0 while
maintaining the grasp. Note that this representation of relative
pose constraints has been used in the stack of task software,
although it is not described in the corresponding paper [57]. It
is different from task space regions [17] where open domains of
SE(3) are defined.

B. Stable Contact Pose

When an object is not grasped, it should lie in a stable pose.
There are two simple methods to enforce that as follows.

1) Defining virtual grippers in the environment and virtual
handles on the object, implicitly defines a discrete set of
poses.

2) Defining a virtual gripper on a horizontal plane and a
virtual handle on the object, and using a grasp with
flags (false,false,true,true,true,false)
constrains the object to move along an infinite horizontal
plane.

Here we propose a third method that enables users to define
contact surfaces in a more flexible way. To this end, we denote
by:

1) (oi)i∈I a set of convex polygons attached to an object;
2) (fj)j∈J a set of convex polygons attached to the environ-

ment or to a mobile part of a robot that can receive objects
(mobile robot for example);

3) respectively, Coi , noi the barycenter of oi and the normal
to the plane containing oi;

4) Cfj , nfj the barycenter of fj and the normal to the plane
containing fj ;

2378 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 4, AUGUST 2022

Fig. 2. Distance defined by two convex polygons.

5) P (Coi , fj), the orthogonal projection of Coi onto the
plane containing fj .

Then we define the distance between polygons oi and fj as
the distance of Coi to the cylindrical volume of generatrix nfj

and of directrix fj

d(fj , oi) =
√

d2‖ + d2⊥ (14)

where

i, j are the indices that minimize the above distance

d‖ =

{
d(fj , P (Coi , fj)) if P (Coi , fj) outside fj
0 otherwise

d⊥ = nfj .
�CfjCoi .

Fig. 2 illustrates this definition.
We denote by oi(q) and fj(q) the poses in configuration q

of frames with respective centers Coi and Cfj and with x-axis
normal to each polygon. Similarly as in Definition 7, we define

h̄(q) = logR3×SO(3)

(
fj(q)

−1oi(q)
)
. (15)

The contact constraint is defined by the following piecewise
differentiable function:

h(q) =

{
(h̄1, 0, 0, h̄5, h̄6) if P (Coi , fj) inside fj
(h̄1, h̄2, h̄3, h̄5, h̄6) if P (Coi , fj) outside fj

. (16)

It is straightforward that this function vanishes if and only if two
convex polygons oi and fj are in contact and if Coi is inside fj .

As for grasps, we need to define a parameterized complement
constraint for the contact constraint in order to specify the
submanifold of configurations reachable from one configuration
while keeping the object in a constant stable pose. The naive way
consists in defining

hcomp(q) =

{
(h̄2, h̄3, h̄4) if P (Coi , fj) inside fj
(0, 0, h̄4) if P (Coi , fj) outside fj

.

h̄2, h̄3, h̄4, respectively, represent the translation in y − z plane
and the rotation around x-axis of frame oi with respect to
frame fj . Let q0 be a configuration such that h(q0) = 0. The
submanifold defined by

{q ∈ C, h(q) = 0 hcomp(q) = hcomp(q0)} (17)

contains one object pose for each pair of polygons (oi, fj), and
there are |I|.|J | possible combinations. Thus, this constraint is

not suitable to enforce object immobility along a path since the
object may jump from one pose to another.

To disambiguate the various combinations of convex polygons
that can be in contact, we define

hcomp(q) =

⎧⎪⎪⎨
⎪⎪⎩

(h̄2 + 2jM, h̄3 + 2iM, h̄4)
if P (Coi , fj) inside fj
(2jM, 2iM, h̄4)
if P (Coi , fj) outside fj

(18)

where
1) i and j are the indices that minimize distance (14);
2) M is a positive real number, such that for any κ ∈ J , all

vertices of fκ are included in the disk of center Cfκ and
of radius M .

With this definition, the submanifold defined by (16)–(18)
contains configurations, where the object is in a unique stable
pose. The polygon indices i and j, as well as their relative
position can indeed be recovered from (18)

i =

⌊
h̄3

2 M
+

1

2

⌋

j =

⌊
h̄2

2 M
+

1

2

⌋

h̄1 = h̄5 = h̄6 = 0

h̄2 = hcomp 1 − 2jM

h̄3 = hcomp 2 − 2iM

h̄4 = hcomp 3

and from (15)

fj(q)
−1oi(q) = expR3×SO(3)

(
h̄
)
.

Uniqueness comes from the fact that when two convex polygons
are in contact, necessarily, |h̄2| ≤M, |h̄3| ≤M .

C. Merging Constraint and Complement into an Explicit
Constraint

Note that when a grasp constraint and its complement are
combined, they constitute an explicit constraint since the pose
of the object grasped uniquely depends on the configuration of
the robot that grasps the object.

Similarly, when a placement constraint and its complement
are combined, they constitute an explicit constraint since the
pose of the object placed uniquely depends on the pose of the
contact surface on which the object is placed. This latter pose

1) either depends on the configuration of the robot the contact
surface belongs to;

2) or is constant if the contact surface belongs to the
environment.

In any case, the explicit expression of the object pose depends
on the right hand side of the complement constraint that is
constant along transition paths.

During the construction of the constraint graph (described in
Section V-D), grasp, and placement constraints, their comple-
ments and the associated explicit constraints are created together

LAMIRAUX AND MIRABEL: PREHENSILE MANIPULATION PLANNING: MODELING, ALGORITHMS AND IMPLEMENTATION 2379

and registered using methodregisterConstraintof Class
ConstraintGraph.

D. Constraint Graph

According to Definition 4, the set of admissible configurations
of a manipulation problem is the union of submanifolds of
the configuration space of the system. Each submanifold is
defined by grasp and/or stable contact constraints. We call each
submanifold a state of the problem.

A state can be defined by a subset of active grasps, any object
not grasped being in a stable contact pose. Let ng, nh, and
no, respectively, denote the number of grippers, handles, and
objects.

We denote by
1) graspij i ∈ {1, . . . , ng} j ∈ {1, . . . , nh} the grasp con-

straint of handle j by gripper i;
2) graspij/comp i ∈ {1, . . . , ng} j ∈ {1, . . . , nh} the com-

plement constraint of the latter;
3) placei i ∈ {1, · · ·no} the placement constraint of object

i;
4) placei/comp i ∈ {1, · · ·no} the complement constraint of

the latter.
A state S is denoted by a vector of size ng

S =
(
h1, . . . , hng

)
(19)

where hi ∈ {∅, 1, . . . , nh} denotes the index of the handle
grasped by gripper i; hi = ∅means that gripper i does not grasp
any handle.

1) Number of States: Note that for i ∈ {1, . . . , nh} the num-
ber of occurrences of i in S is at the most 1: A handle cannot be
grasped by several grippers. Note also that the number of occur-
rences of ∅ is not limited: Several grippers may hold nothing.
Letm be a nonnegative integer not greater thanmin(ng, nh) and
let us count the number of states with m handles grasped. The
number of subset of m handles among nh is equal to nh!

(nh−m)!m! .
And the number of ways of dispatching them among the ng

grippers is equal to ng!
(ng−m)! . Thus, the total number of states is

equal to

min(ng,nh)∑
m=0

nh!

(nh −m)!m!

ng!

(ng −m)!
.

Definition 9: Adjacent states Two states S1 =
(h11, . . . , hng1) and S2 = (h12, . . . , hng2) are adjacent to
each other if they differ by only one grasp and the grasp is
empty in one of the states

∃i ∈ {1, . . . , ng}, hi1 �= hi2 and (hi1 = ∅ or hi2 = ∅) and

∀j ∈ {1, . . . , ng}, j �= i, hj1 = hj2.

Definition 10: Constraint graph The constraint graph related
to a manipulation problem as defined in Definition 4 is a graph.

a) The nodes of which are states defined by subsets of
grasps (19).

b) Two edges (back and forth) connect two states if they are
adjacent to each other.

c) One edge connects each state to itself.

TABLE II
STATE CONSTRAINTS

TABLE III
TRANSITION CONSTRAINTS: i, j ARE EITHER 1 OR 2

Column “belongs to” means that paths along the transition belong to the state, i.e., the
transition contains the state constraints.

Edges are also called transitions. Nodes contain
a) the grasp constraints that are active in the corresponding

state;
b) a placement constraint for each object that is not grasped

by any handle.
Transitions contain
a) The constraints of the node they connect with the least

active grasps.
b) The parameterized complement constraint of each of the

latter.
2) Example: To illustrate the notions expounded in the pre-

vious sections, let us consider an example of two UR3 robots
manipulating a cylinder illustrated in Fig. 1. The robot is fitted
with one gripper attached to the end-effector. The cylinder is
equipped with two handles and with two square contact surfaces
corresponding to the top and bottom sides of the cylinder.
ng = 2, nh = 2, no = 1. The flag of the handles are

(true,true,true,false,true,true).

Therefore, grasp constraints are of dimension 5 and keep the
rotation of the gripper around the cylinder axis free. Table II
indicates which constraints are active for each state and Table III
for each transition.

3) Automatic Construction: Given a set of grippers, handles
and objects, the constraint graph can be constructed automat-
ically. Here is an implementation in python. Algorithm 2 de-
scribes this implementation. Functions

1) GRASPCONSTRAINT;
2) GRASPCONSTRAINTCOMP, build grasp constraint and

complement constraint as defined in Section V-A;
3) PLACECONSTRAINT;
4) PLACECONSTRAINTCOMP build placement constraints

and complement as defined in Section V-B;
5) EXISTSTATE(Gr) returns true if a state has already been

created for the set of grasps given as input;
6) STATE(Gr) returns the state created with the set of grasps

given as input;
7) OBJECTINDEX(h) returns the index of the object handle h

belongs to.

2380 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 4, AUGUST 2022

Algorithm 2: Recursive Construction of the Constraint
Graph. The Construction Starts by the State With no Grasp.
Call to RECURSE Function Loops over the Available Grip-
pers and Handles and Creates States With one More Grasp,
and a Transition to These New States. In Each State, a
Placement Constraint is Added for Each Object of Which no
Handle is Grasped. Variables G and H Contain the Indices
of the Free Grippers and Handles. Variable Gr Stores the
Current Set of Grasps Following Expression (19). Lines 5 to
9 Compute Which Objects are not Grasped. Lines 20 to 23
Insert Placement Constraints in the State for Those Objects.
Line 24 Recurses Only if the Latest Node Reached is New.
Functions CREATESTATE and CREATETRANSITION are Given
in Algorithm 3.

1: global variables
2: no �number of objects
3: ng �number of grippers
4: nh �number of handles
5:
6: function BUILDCONSTRAINTGRAPH

7: G ← [0, . . . , ng − 1] �list of gripper indices
8: H ← [0, . . . , nh − 1] �list of handle indices
9: Gr ← [∅, . . . , ∅] �list of size ng

10: RECURSEG,H, Gr
11: function RECURSE(G,H, Gr)
12: CREATESTATE(Gr)
13: if G = ∅ orH = ∅ then
14: return
15: for g in G do
16: G′ ← G \ {g}
17: for h inH do
18: H′ ← H \ {h}
19: Gr′ ← Gr
20: Gr′[g]← h
21: isNewState← not EXISTSTATEGr′

22: CREATESTATEGr′

23: CREATETRANSITIONGr, Gr′

24: if isNewState then RECURSEG′,H′, Gr′

VI. MANIPULATION PLANNING

In this section, we show how the constraint graph defined in
the previous section is used to plan collision-free manipulation
paths. Although we are working on an extension of the RMR*
algorithm [58] to several grippers, objects, and handles, the only
manipulation planning algorithm available so far in HPP is an
extension of the RRT algorithm described in the next section.

A. Manipulation-RRT

Manipulation randomly exploring random tree is an extension
of the RRT algorithm [59] that grows trees in the free configu-
ration space, exploring the different states of the manipulation
problem. Algorithm 4 describes the algorithm implemented in
C++ here.

After initializing the roadmap with the initial and goal config-
urations, the algorithm iteratively calls method ONESTEP until

Algorithm 3: Method CREATESTATE Builds the Constraints
Relative to a State: One Grasp Constraint for Each Grasp,
and One Placement Constraint for Each Object Not Grasped.
CREATETRANSITION Builds the Constraints Relative to a
Transition: The Constraints of the Initial State (with the
fewest grasps) and Their Complements.

1: function CREATESTATE(Gr)
2: if EXISTSTATE(Gr) then
3: return
4: S ← new state
5: S.P l← [true, . . .,true] �list of size no

6: for g in [0, . . . , ng − 1] do
7: h← Gr[g]
8: S.P l[objectIndexh]← false
9: S .ADD(GRASPCONSTRAINTg,h)
10: for o in [0, . . . , no] do
11: if S.P l[o] then
12: S .ADD(PLACECONSTRAINTo)
13: function createTransitionGr1, Gr2
14: T ← new transition(Gr1, Gr2)
15: S1 ←STATEGr1 �Recover state for this set of

grasps
16: for g in [0, . . . , ng − 1] do
17: h← Gr1[g]
18: T .ADD(GRASPCONSTRAINTg,h)
19: T .ADD(GRASPCONSTRAINTCOMPg,h)
20: for o in [0, . . . , no] do
21: if S1.P l[o] then
22: T .ADD(PLACECONSTRAINTo)
23: T .ADD(PLACECONSTRAINTCOMPo)
24: T1 ← new transition(Gr2, Gr1)
25: T1.SETCONSTRAINTS(T .CONSTRAINTS)

a solution path is found or the maximum number of iterations is
reached. This method picks a random configuration (line 6) and
for each connected component of the roadmap and each state of
the constraint graph, extends the nearest node in the direction
of the random configuration (lines 7–10). For each successful
extension, the end of the extension path is stored for subsequent
connections (line 11). After the extension step, the algorithm
tries to connect new nodes to other connected components using
two strategies as follows.

1) Function TRYCONNECTNEWNODES calls method
CONNECT between all pairs of new nodes.

2) Function TRYCONNECTTOROADMAP tries to connect
each new node to the nearest nodes in other connected
components of the roadmap also using function CONNECT.

Function CONNECT attempts to connect two configurations
in two states. First, it checks whether there exists a transition
between the states. If so, it checks that the right hand side of
the parameterized constraints of the transition is the same for
both configurations (up to the error threshold). Then it returns
the linear interpolation between the configurations, projected
onto the submanifold defined by the transition constraints. If
the path is in collision or discontinuous, only the continuous
collision-free part at the beginning of the path is returned.

LAMIRAUX AND MIRABEL: PREHENSILE MANIPULATION PLANNING: MODELING, ALGORITHMS AND IMPLEMENTATION 2381

Algorithm 4: Manipulation RRT Algorithm Iteratively Calls
Method ONESTEP Until a Solution Path is Found or the
Maximum Number of Iterations is Reached. Function CON-
NECT is Described in Algorithm 5.

1: function INITIALIZEROADMAP(qinit,qgoal)
2: Γ← new roadmap
3: Γ.ADDNODE(qinit); Γ.ADDNODE(qgoal)
4: function oneStepΓ
5: newNodes← empty list
6: qrand ←SHOOTRANDOMCONFIG
7: for cc in connected components of Γ do
8: for s in constraint graph states do
9: qnear ←NEARESTNODEcc, s,qrand

10: p←EXTENDs, qnear, qrand
11: if p then newNodes← newNodes ∪ {end of p}
12: nc←TRYCONNECTNEWNODESΓ, newNodes
13: if nc = 0 then
14: TRYCONNECTTOROADMAPΓ, newNodes
15: function tryConnectNewNodesΓ, nodes
16: for q1,q2 in nodes, q1 �= q2 do
17: s1 ← stateq1; s2 ← stateq2

18: p← Connectq1, s1,q2, s2
19: if p then
20: Γ.ADDEDGEq1,q2, p
21: function tryConnectToRoadmapΓ, nodes
22: for q1 in nodes do
23: s1 ← stateq1

24: for cc in connected components of Γ do
25: if q1 /∈ cc then
26: near← K nearest neighbors of q1 in cc
27: for q2 in near do
28: s2 ← stateq2

29: p← Connectq1, s1,q2, s2
30: if p then Γ.ADDEDGEq1,q2

31: function extends, qnear, qrand
32: solver←SOLVERBYSUBSTITUTION
33: T ← random edge getting out of s
34: g ← state T points to
35: for c in g.CONSTRAINTS do
36: solver.ADDCONSTRAINTc(q) = 0
37: for c in T .CONSTRAINTS do
38: solver.ADDCONSTRAINTc(q) = c(qnear)
39: qtarget ← solver.SOLVEqrand
40: if qtarget then
41: p← linear interpolation from qnear to qtarget
42: p.ADDCONSTRAINTST .CONSTRAINTS()
43: if p collision-free and continuous then
44: else return collision-free continuous portion of p

starting at qnear

Function EXTEND attempts to generate a path from a config-
uration in a state to another state following a random transition.
Similarly as for function CONNECT, the path is projected onto the
submanifold defined by the transition constraints. The end con-
figuration is obtained by applying to the random configuration
the constraints of the transition and of the goal state.

B. Examples

In this section, the algorithm described in the previous section
is depicted with two examples. Fig. 3 shows function EXTEND

Algorithm 5: Function CONNECT of M-RRT Algorithm.

function CONNECT(q1, s1,q2, s2)
parameter ε > 0

p← linear interpolation from q1 to q2

T ←TRANSITION(s1, s2)
if not T thenreturn ∅
for c in T .CONSTRAINTS () do

if ‖c(q2)− c(q1)‖ ≥ ε then return ∅
else
p.ADDCONSTRAINT(c(q) = c(q1))

if p in collision then return ∅
return p

Fig. 3. Example of extension along a transition of the constraint graph. Top
qrand, middle qnear, bottom qtarget.

2382 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 4, AUGUST 2022

Fig. 4. Method CONNECT applied to two configurations.

defined in the previous section applied to the example of Fig. 1.
The system considered is composed of two robots and a cylinder
with two handles. The picture at the top displays qrand. The
picture in the middle displays qnear that belongs to state (∅, ∅).
The transition that is randomly selected (Algorithm 4, line 33)
is (∅, ∅)→ (1, ∅), meaning that robot 1 will try to grasp handle
1. According to Tables II and III, the transition constraints are
(place1, place1/comp). The first one is of type (16), the second
of type (18), and is parameterized: The right hand side uniquely
defines the contact surfaces and the position of the object on
the contact surface. qtarget is obtained by projecting qrand onto
the manifold defined by the following constraints (Algorithm 4,
lines 35–39).

1) place1, place1/comp that belong to the transition.
2) grasp11 that belongs to the goal state.
According to Section V-C, the first two constraints can be

replaced by an explicit constraint: The position of the object
can be derived from the right hand side of place1/comp that is
initialized with configuration qnear.

After substitution, the set of constraints is reduced to an
implicit constraint on the configuration variables of robot 1 (6
variables). The solution found by the solver, qtarget (line 39) is
displayed in Fig. 3 at the bottom. Notice that as expected, the
position of the object is the same in qtarget as in qnear.

The path returned by function EXTEND is the linear in-
terpolation between qnear and qtarget constrained with place1,
place1/comp with right hand side initialized with qnear. As
explained earlier, this constraint is replaced by an explicit con-
straint. Let us notice that the linear interpolation already satisfies
the constraint, but this is not always the case.

If the latter path is in collision, the collision-free part of the
path starting at qnear is returned.

Fig. 4 illustrates method CONNECT applied to two configu-
rations q1 (top) and q2 (bottom). Both configurations belong
to state (1, ∅).4 The transition between those states (1, ∅)→
(1, ∅) contains the following constraints (Tables II and III).
grasp11/comp, grasp11.

4Note that q1 is at the intersection between states (∅, ∅) and (1, ∅).

Method CONNECT checks that the right hand side of
grasp11/comp is the same forq1 andq2, up to the error threshold
(Algorithm 4, line 51). From a geometrical point of view, this
means that the orientation of the cylinder along its axis, with
respect to the gripper is the same in both configurations. Let us
recall that the right hand side of grasp11 is 0. If the condition is
satisfied, the method builds the linear interpolation between q1

andq2 with the explicit constraint equivalent to {grasp11/comp,
grasp11} and returns this path if it is collision-free.

C. Waypoint Transitions

By definition, a prehensile manipulation motion contains
configurations that are in contact

1) between gripper and object during grasp;
2) between object and contact surface when the object lies in

a stable pose.
Contacts are difficult to handle using classical collision detec-

tion libraries and are often considered as collisions. To overcome
this issue, we keep the gripper open during grasp, and objects
slightly above contact surfaces in stable poses.

However, even with these simple tricks, solution paths to a
manipulation problem need to come close to collision, raising
the well-known issue of narrow passages.

To cope with this, we define intermediate states in the con-
straint graph called waypoint states. These states are inserted
between the regular states of the constraint graph. They require
some prior definitions.

Definition 11: Pregrasp A pregrasp is a numerical constraint
h over C, defined by

1) a gripper g;
2) a handle h;
3) a nonnegative real number Δ.
Let h̄ be the smooth mapping from C to R6 defined by

h̄(q) = logR3×SO(3)

(
g−1(q)h(q)

)
− (Δ0 0 0 0 0)T . (20)

h(q) is obtained by extracting from h̄ the components the values
of which are true in the handle flag.

Note that when this constraint is satisfied, the handle is trans-
lated along x-axis over a distanceΔ compared to a configuration
satisfying the grasp constraint. The value of Δ depends on
the geometry of the gripper and object. Clearance values are
associated to the handle: clo and to the gripper: clg . Δ is defined
as clo + clg . The clearance parameters are part of the definition
of the gripper and handle and are stored in SRDF files.

Definition 12: Preplacement A preplacement is a numerical
constraint h over C, defined by

1) (oi)i∈I a set of convex polygons attached to an object;
2) (fj)j∈J a set of convex polygons attached to the environ-

ment or to a mobile part of a robot that can receive objects
(mobile robot for example);

3) a nonnegative real number Δ.
with the same notation as in Section V-B, we define i and j as

the indices that minimize d(fj , oi) [(14)], and

h̄(q) = logR3×SO(3)

(
fj(q)

−1oi(q)
)
+ (Δ0 0 0 0 0)T . (21)

LAMIRAUX AND MIRABEL: PREHENSILE MANIPULATION PLANNING: MODELING, ALGORITHMS AND IMPLEMENTATION 2383

Fig. 5. Along a transition where an object already grasped is grasped a
second time, an intermediate waypoint state called pregrasp (pg) is added. This
intermediate state is represented by an hexagonal box.g2 > h2|(1, ∅)means that
gripper 2 is going to grasp handle 2 from the state, where gripper 1 grasps handle
1. The constraints associated to this waypoint state are those of the state with
the least active grasps (here (1, ∅)) and the pregrasp constraint corresponding to
the new grasp (here pregrasp22). The transition constraints are the same for all
transitions (in red) and identical to the loop transition of the state with the least
active grasps (in blue: here grasp11 and grasp11/comp).

The left hand side of the preplacement constraint is defined by
(16).

Note that when this constraint is satisfied, the object is trans-
lated over a distance Δ along the normal to the contact surface.

We denote by
1) pregraspij i ∈ {1, . . . , ng} j ∈ {1, . . . , nh} the pregrasp

constraint of handle j by gripper i;
2) preplacei i ∈ {1, · · ·no} the preplacement constraint of

object i.
We replace the transitions of the constraint graph defined in

Section V-D by a sequence of intermediate states and transitions:
Given Definition 9, if two states S1 and S2 are adjacent to each
other, one of them contains an additional grasp with respect to
the other. Without loss of generality, consider that S2 contains
the additional grasp gr(gi, hj), i ∈ {1, · · ·ng}, j ∈ {1, · · ·nh}.
Let us denote by o the object to which handle hj belongs. Then
either

1) o is already grasped in state S1;
2) o is in placement in state S1.
In case 1, we replace the transitions between S1 and S2 by

an additional waypoint state and four waypoint transitions as
explained in Fig. 5 .

In case 2, we replace the transitions between S1 and S2 by
three additional waypoint states and eight waypoint transitions
as explained in Fig. 6 .

1) Construction of a Path Along a Waypoint Transition:
Function EXTEND in Algorithm 4 builds a path along a transi-
tion from an initial configuration by projecting the configuration
onto the submanifold defined by the goal state constraints and
by the transition constraints. The right hand side of the transition
constraint is first initialized with the initial configuration.

A waypoint transition builds a path by defining a sequence of
configurations that belong to the intermediate waypoint states,
each configuration being obtained by projecting the previous
configuration onto the corresponding manifold. Fig. 8 proposes

Fig. 6. Along a transition where an object in placement is grasped by a gripper,
we add three waypoint states called pregrasp (pg), where the gripper is above the
object, grasp-placement (gp), where the object is grasped but still in placement
and preplacement (pp) where the object is grasped above the contact surface.
All transitions between the state with the least active grasps and the waypoint
gp have the same constraints as the loop transition of the state with the least
active grasps (here: place1 and place1/comp in blue). All transitions between
the waypoint state gp and the state with the most active grasps have the same
constraints as the loop transition of the state with the most active grasps (here:
grasp11 and grasp11/comp in red).

Fig. 7. Structure of the constraint graph corresponding to the system in
Section V-D2 after inserting waypoint transitions. Waypoint transitions starting
from/going to (∅, ∅) contain three waypoint states. All other waypoint transitions
contain one waypoint state.

an example of extension along edge (∅, ∅)→ (1, ∅) from config-
urationqnear (Fig. 3 middle). The edge contains three waypoints.
The random configuration qrand is displayed in Fig. 3, top.
Table IV lists the waypoint configurations that are produced
when extending qnear toward qrand, and the constraints applied
to compute these configurations.

2) Implementation: From an implementation point of view,
class WaypointEdge derives from class Edge. The waypoint
configurations are computed by method generateTarget-
Config that is specialized in class WaypointEdge.

Note that waypoint states are internal to waypoint edges,
and thus, not known by the constraint graph when determining
to which state a configuration belongs (Algorithm 4 lines 17
and 23) and when visiting the states of the constraint graph
(Algorithm 4 line 8).

2384 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 4, AUGUST 2022

Fig. 8. Example of extension along the waypoint transition between states
(∅, ∅) and (1, ∅). Each picture represents a waypoint. The last waypoint is in
state (1, ∅). qnear and qrand are the same as in Fig. 3.

TABLE IV
WAYPOINT CONFIGURATIONS COMPUTED ALONG EDGE (∅, ∅)→ (1, ∅)

The resulting path betweenqnear andqtarget is a concatenation of constrained
linear interpolation. Constraints applied between a waypoint and its prede-
cessor are shown in blue.

VII. HUMANOID PATH PLANNER

In this section, we describe in greater details the software
platform humanoid path planner that implements the concepts
and algorithms of the previous sections.

Humanoid path planner is a collection of standard software
packages that depend on each other. The main packages are the
following.

1) hpp-fcl a modified version offcl. The main additional
features are
1) computation of a lower bound of the distance when

testing collision between two objects. This is required
for continuous collision detection;

2) security margins in collision checking.
2) pinocchio [60] a library computing forward kinematics

and dynamics for multi-body kinematic chains;
3) hpp-constraints a library that implements numeri-

cal constraints and solvers;
4) hpp-core a library that implements most of the concepts

relative to motion planning. The main features are
1) abstraction of paths in configuration spaces and some

implementations;
2) abstraction of path planning and path optimization and

some implementations;
3) abstraction of steering methods and some

implementations;
4) roadmaps;
5) validation of configurations and paths, notice that this

includes an implementation of continuous collision
checking first proposed by Schwarzer et al. [61].

5) hpp-manipulation a library that implements manip-
ulation problems and manipulation planning with
1) composite kinematic chains composed of the robots

and objects;
2) the constraint graph;
3) M-RRT algorithm.

6) hpp-manipulation-urdf an extension of the SRDF
parser to retrieve information relative to objects, like the
definition of grippers, handles, and contact surfaces.

An HPP session consists of a standalone executable hp-
pcorbaserver that implements CORBA services. These ser-
vices can be extended via a plugin system. The application can
then be controlled with python scripts or C++ code. CORBA
clients are provided in python and C++. The packages imple-
menting CORBA clients and servers are

1) hpp-corbaserver for canonical path planning prob-
lems; and

2) hpp-manipulation-corba for manipulation prob-
lems. This package also provides an implementa-
tion of the automatic constraint graph construction in
python.

The environment used for path planning as well as the paths
computed can be displayed using gepetto-gui through the
following packages.

1) gepetto-viewer.
2) gepetto-viewer-corba.
3) hpp-gepetto-viewer.

LAMIRAUX AND MIRABEL: PREHENSILE MANIPULATION PLANNING: MODELING, ALGORITHMS AND IMPLEMENTATION 2385

Fig. 9. Constrained motion planning for HRP-2 humanoid robot sliding on
the ground in quasi-static equilibrium: the feet should stay horizontal with a
fixed relative position and the center of mass should project between the feet.
The initial configuration is shown on the left. The goal configuration is shown
on the right. The algorithm is a constrained RRT close to the one described in
Dalibard et al. [16].

TABLE V
EXPERIMENTAL RESULTS FOR HRP-2 SLIDING ON THE GROUND (36 DEGREES

OF FREEDOM): TIME OF COMPUTATION AND NUMBER OF NODES

A. Virtual Machine

A virtual docker image can be downloaded to run, test, and
replicate the examples described in the next sections. An archive
is provided with this article. Decompress the archive and follow
instructions in the README file.

B. Experimental Results

In this section, we report on several experimental results
obtained with HPP software on constrained motion planning
and on manipulation planning problems. The raw data can be
found in hpp_benchmark package. Here we only present a
few test cases. The benchmarks are run 20 times each on an
Intel Core i7 at 2.60 GHz, with 32 Gigabytes of RAM and 9
Megabytes of cache memory. For each test case, we report the
minimum, maximum, mean, and standard deviation of the time
of computation on the one hand, and of the number of nodes in
the roadmap built to solve the problem, on the other.

1) Constrained Motion Planning: One test case concerns
constrained motion planning. The robot is an HRP-2 humanoid
robot in quasi-static equilibrium that can slide on the ground
(Fig. 9). This type of motion can be postprocessed into a walking
motion using the method described in Dalibard et al. [62]. The
results are displayed in Table V.

2) Manipulation Planning: In this section, we present some
experimental results of manipulation planning problems ob-
tained with M-RRT algorithm described in Section VI.

The first test case features robot Baxter manipulating two
boxes on a table (see Fig. 10). The boxes are swapped between
the initial and final configurations. The robot has two grippers
and each box is equipped with a handle. Thus, the constraint

Fig. 10. Manipulation problem with Baxter robot manipulating two small
boxes. The robot is requested to swap the boxes.

TABLE VI
EXPERIMENTAL RESULTS FOR BAXTER ROBOT MANIPULATING TWO BOXES ON

A TABLE (31 DEGREES OF FREEDOM)

Fig. 11. Manipulation planning problem with PR-2 robot manipulating a box.
The robot needs to flip the box upside down from an initial pose (top) to a goal
pose (bottom).

graph contains seven nodes. The experimental results are dis-
played in Table VI.

The second test case features robot PR-2 manipulating a box
on a table. The robot is requested to flip the box upside down
from an initial pose to a goal pose as represented in Fig. 11.
The robot is equipped with two grippers and the box with two
handles. The constraint graph contains seven nodes. Table VII
shows the experimental results.

The third test case features humanoid robot Romeo manipu-
lating a placard. The robot is requested to rotate the placard by

2386 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 4, AUGUST 2022

TABLE VII
EXPERIMENTAL RESULTS FOR PR-2 ROBOT MANIPULATING A BOX ON A

TABLE (39 DEGREES OF FREEDOM)

TABLE VIII
EXPERIMENTAL RESULTS FOR ROMEO ROBOT MANIPULATING A

PLACARD (67 DEGREES OF FREEDOM)

Fig. 12. Manipulation planning problem with Romeo robot manipulating a
placard. The robot needs to flip the placard by 180 degrees from an initial pose
(left) to a goal pose (right), keeping balance.

180 degrees. It is equipped with two grippers and the placard
with two handles. Each handle is associated to a single gripper.
The number of states of the constraint graph is thus three.

In the three previous test cases, the constraint graph was
automatically built by Algorithm 2. If the number of grippers and
handles increases, the number of states in the constraint graph
may increase very quickly. However, using python bindings, it
is possible to define constraint graphs with only the necessary
states. We now present a test case that illustrates this possibility.
The system is depicted in Fig. 13.

In this example, an operator provides the sequence of actions
(transitions) the system needs to perform as follows.

1) Robot 1 grasps sphere 1.
2) Robot 2 grasps cylinder 1.
3) Robot 1 sticks sphere 1 to cylinder 1.
4) Robot 1 releases sphere 1.
5) Robot 1 grasps sphere 2.
6) Robot 1 sticks sphere 2 to cylinder 1.
7) Robot 1 releases sphere 2.
8) Robot 2 puts cylinder 1 on the ground.
From this sequence of actions, the sequence of states visited

is computed and only those states (nine in total) are built in the
constraint graph. Then, a sequence of subgoals in the successive
states is computed, in such a way that each subgoal is accessible
by the previous one (on the same leaf of the corresponding
transition foliation). The subgoals are then linked by running

Fig. 13. Construction set: Two robots are requested to assemble magnetic
spheres on a cylinder from an initial configuration (top) to a goal state (bottom).

TABLE IX
EXPERIMENTAL RESULTS FOR CONSTRUCTION SET ASSEMBLY

(36 DEGREES OF FREEDOM)

Fig. 14. UR-5 robot manipulating a ball lying on a plane. The robot is requested
to pick the ball and place it a few centimeters aside.

a constrained visibility PRM algorithm [63] on each leaf. The
python code can be found at github.com.

Fig. 13 displays the initial configuration and the goal state.
Table IX shows the experimental results.

3) Influence of Waypoint Transitions: All the previous exper-
imental results have been obtained using waypoint transitions
as described in Section VI-C. We now empirically show the
positive effect of waypoints on the efficiency of manipulation
planning. To do that, we run 20 times Algorithm M-RRT on
the same problem with and without waypoint transitions. The
problem is defined by a UR-5 robot manipulating a ball as shown
in Fig. 14. The results are reported in Table X. We can notice in
this example, that waypoint transitions decrease the computation
time and the number of nodes by two orders of magnitude. This

LAMIRAUX AND MIRABEL: PREHENSILE MANIPULATION PLANNING: MODELING, ALGORITHMS AND IMPLEMENTATION 2387

TABLE X
UR-5 MANIPULATING A BALL WITH AND WITHOUT WAYPOINT TRANSITIONS

is because in grasp configurations, the gripper is very close to
the object and only a small part of the approaching directions
of the gripper toward the object leads to collision-free paths. On
the contrary waypoint states are away from obstacles and easier
to reach. The transition between the pregrasp waypoint and the
grasp ∩ placement waypoint is almost always collision-free.

4) Analysis: The experimental results show that M-RRT is
able to solve a variety of manipulation problems including that of
a legged robot in quasi-static equilibrium. No parameter tuning
is required between the different problems. All parameters are
set to a default value for all test cases.

As in any random motion planning method, we observe a large
standard deviation between the 20 runs of each test case, for the
number of nodes as well as for the time of computation.

We have also observed experimentally that the efficiency of
M-RRT decreases when

1) the number of states to visit to solve a problem increases;
2) the number of foliated states increases.
Thus, M-RRT is not able to solve the construction set problem

within a reasonable amount of time. However, to our knowledge
it is the only algorithm in the literature capable of solving a
variety of problems as large as those presented in this section.

VIII. CONCLUSION

This article presents a software platform aimed at prototyping
and solving a large number of prehensile manipulation planning
problems. The platform provides an original algorithm M-RRT
that is an extension of RRT exploring the leaves of the foliations
defined by the manipulation constraints. The automatic insertion
of waypoint states makes the resolution more efficient and the
resulting paths more natural.

It is the authors’ opinion that this platform is perfect for
researchers who want to develop and benchmark new manip-
ulation planning algorithms. Note that some of the on-going
work in humanoid locomotion [27] is based on HPP.

To show the maturity of the project, we provide a docker
image embarking the software.

As a future work, we aim at working on general manipulation
planning algorithms that can handle use cases as diverse as those
proposed in the benchmark section. A good candidate is a gener-
alization of RMR* [58]. Also we intend to focus on manipulation
path optimization since paths computed by random algorithms
are too long to be applied to real robots as such. Finally, we would
like to generalize the reduction property proposed by Siméon
et al. [30]. The constraint graph representation is a perfect tool
for that.

REFERENCES

[1] C. Eppner et al., “Four aspects of building robotic systems: Lessons
from the amazon picking challenge 2015,” Auton. Robots, vol. 42, no. 7,
pp. 1459–1475, Oct. 2018.

[2] J. Mirabel et al., “HPP: A new software for constrained motion planning,”
in Proc. IEEE/RJS Int. Conf. Intell. Robots Syst., Daejeon, South Korea,
2016, pp. 383–389.

[3] J. Mirabel and F. Lamiraux, “Handling implicit and explicit constraints in
manipulation planning,” in Proc. Robot.: Sci. Syst., 2018.

[4] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, “Anytime
dynamic A*: An anytime, replanning algorithm,” in Proc. 15th Int. Conf.
Autom. Planning Scheduling, 2005, pp. 262–271.

[5] F. Lamiraux and L. E. Kavraki, “Planning paths for elastic objects under
manipulation constraints,” Int. J. Robot. Res., vol. 20, no. 3, pp. 188–208,
2001.

[6] O. Roussel, P. Fernbach, and M. Taïx, “Motion planning for an elastic
rod using contacts,” IEEE Trans. Automat. Sci. Eng., vol. 17, no. 2,
pp. 670–683, Apr. 2020.

[7] H. Choset, “Coverage for robotics—A survey of recent results,” Ann. Math.
Artif. Intell., vol. 31, no. 1, pp. 113–126, 2001.

[8] E. Galceran and M. Carreras, “A survey on coverage path planning for
robotics,” Robot. Auton. Syst., vol. 61, no. 12, pp. 1258–1276, 2013.

[9] L. J. Guibas, J.-C. Latombe, S. M. Lavalle, D. Lin, and R. Motwani, “A
visibility-based pursuit-evasion problem,” Int. J. Comput. Geometry Appl.,
vol. 09, no. 04n05, pp. 471–493, 1999.

[10] J. T. Schwartz and M. Sharir, “On the ‘piano movers’ problem. II. General
techniques for computing topological properties of real algebraic mani-
folds,” Adv. Appl. Math., vol. 4, no. 3, pp. 298–351, 1983.

[11] J. Canny, The Complexity of Robot Motion Planning. Cambridge, MA,
USA: MIT Press, 1983.

[12] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for fast path planning in high dimensional configuration spaces,”
IEEE Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580, Aug. 1996.

[13] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” Int. J. Comput. Geometry Appl., vol. 9, no. 4/5,
pp. 495–512, 1999.

[14] J. Kuffner and S. LaValle, “RRT-connect: An efficient approach to single-
query path planning,” in Proc. Int. Conf. Robot. Autom., 2000, pp. 473–479.

[15] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894, 2011.

[16] S. Dalibard, A. Nakhaei, F. Lamiraux, and J.-P. Laumond, “Whole-body
task planning for a humanoid robot: A way to integrate collision avoid-
ance,” in Proc. IEEE Int. Conf. Humanoid Robots, Paris, France, 2009,
pp. 1–6.

[17] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions: A frame-
work for pose-constrained manipulation planning,” Int. J. Robot. Res.,
vol. 30, no. 12, pp. 1435–1460, 2011.

[18] J. Cortés, T. Simeon, and J.-P. Laumond, “A random loop generator for
planning the motions of closed kinematic chains using PRM methods,” in
Proc. IEEE Int. Conf. Robot. Autom., 2002, pp. 2141–2146.

[19] L. Jaillet and J. M. Porta, “Path planning under kinematic constraints
by rapidly exploring manifolds,” IEEE Trans. Robot., vol. 29, no. 1,
pp. 105–117, Feb. 2013.

[20] B. Kim, T. T. Um, C. Suh, and F. Park, “Tangent bundle RRT: A ran-
domized algorithm for constrained motion planning,” Robotica, vol. 34,
pp. 202–225, 2016.

[21] M. Cefalo and G. Oriolo, “A general framework for task-constrained
motion planning with moving obstacles,” Robotica, vol. 37, pp. 575–598,
2019.

[22] Z. Kingston, M. Moll, and L. E. Kavraki, “Exploring implicit spaces
for constrained sampling-based planning,” Int. J. Robot. Res., vol. 38,
no. 10/11, pp. 1151–1178, 2019.

[23] O. Ben-Shahar and E. Rivlin, “Practical pushing planning for rearrange-
ment tasks,” IEEE Trans. Robot. Automat., vol. 14, no. 4, pp. 549–565,
Aug. 1998.

[24] J. Z. Woodruff and K. M. Lynch, “Planning and control for dynamic,
nonprehensile, and hybrid manipulation tasks,” in Proc. IEEE Int. Conf.
Robot. Autom., 2017, pp. 4066–4073.

[25] T. Bretl, “Motion planning of multi-limbed robots subject to equilibrium
constraints: The free-climbing robot problem,” Int. J. Robot. Res., vol. 25,
no. 4, pp. 317–342, Apr. 2006.

[26] S. Lengagne, J. Vaillant, E. Yoshida, and A. Kheddar, “Generation of
whole-body optimal dynamic multi-contact motions,” Int. J. Robot. Res.,
vol. 32, no. 9/10, pp. 1104–1119, 2013.

2388 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 4, AUGUST 2022

[27] S. Tonneau, A. Del Prete, J. Pettré, C. Park, D. Manocha, and N. Mansard,
“An efficient acyclic contact planner for multiped robots,” IEEE Trans.
Robot., vol. 34, no. 3, pp. 586–601, Jun. 2018.

[28] R. Alami, T. Siméon, and J.-P. Laumond, “A geometrical approach to plan-
ning manipulation tasks (3). The case of discrete placements and grasps,”
Scientific Res. Nat. Center, Paris, France, LAAS-CNRS, hal-01309950,
1989.

[29] M. Vendittelli, J.-P. Laumond, and B. Mishra, “Decidability in robot
manipulation planning,” 2018, arXiv:1811.03581.

[30] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipulation
planning with probabilistic roadmaps,” Int. J. Robot. Res., vol. 23, no. 7/8,
pp. 729–746, Jul. 2004.

[31] G. Wilfong, “Motion planning in the presence of movable obstacles,” in
Proc. 4th Annu. Symp. Comput. Geometry, 1988, pp. 279–288.

[32] M. Stilman and J. Kuffner, “Planning among movable obstacles with
artificial constraints,” Int. J. Robot. Res., vol. 27, no. 11/12, pp. 1295–1307,
2008.

[33] J. Ota, “Rearrangement of multiple movable objects-integration of global
and local planning methodology,” in Proc. IEEE Int. Conf. Robot. Autom.,
vol. 2, 2004, pp. 1962–1967.

[34] C. R. Garrett, T. Lozano-Perez, and L. P. Kaelbling, “Sample-based
methods for factored task and motion planning,” in Proc. Robot.: Sci.
Syst., 2017.

[35] A. Krontiris and K. Bekris, “Dealing with difficult instances of object
rearrangement,” in Proc. Robot. Sci. Syst., Roma, Italy, 2015.

[36] P. Lertkultanon and Q.-C. Pham, “A single-query manipulation planner,”
IEEE Robot. Automat. Lett., vol. 1, no. 1, pp. 198–205, Jan. 2016.

[37] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, “Manipulation
planning among movable obstacles,” in Proc. IEEE Int. Conf. Robot.
Autom., 2007, pp. 3327–3332.

[38] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in Proc. IEEE Int. Conf. Robot. Automat.,
2014, pp. 639-646.

[39] D. Nieuwenhuisen, A. F. van der Stappen, and M. H. Overmars, “An
effective framework for path planning amidst movable obstacles,” in
Algorithmic Foundation of Robotics VII. Berlin, Germany: Springer, 2008,
pp. 87–102.

[40] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate
motion, manipulation and task planning,” Int. J. Robot. Res., vol. 28, no. 1,
pp. 104–126, Jan. 2009.

[41] L. Kaelbling and T. Lozano-Pérez, “Integrated task and motion planning
in belief space,” Int. J. Robot. Res., vol. 32, no. 9/10, pp. 1194–1227, 2013.

[42] T. Lozano-Pérez and L. P. Kaelbling, “A constraint-based method for
solving sequential manipulation planning problems,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2014, pp. 3684–3691.

[43] M. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum, “Differen-
tiable physics and stable modes for tool-use and manipulation planning,”
in Proc. Robot.: Sci. Syst., 2018.

[44] M. Gharbi, J. Cortés, and T. Siméon, “Roadmap composition for multi-arm
systems path planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Saint-Louis, USA, 2009, pp. 2471–2476.

[45] K. Harada, T. Tsuji, and J.-P. Laumond, “A manipulation motion planner
for dual-arm industrial manipulators,” in Proc. IEEE Int. Conf. Robot.
Automat., 2014, pp. 928–934.

[46] A. Dobson and K. Bekris, “Planning representations and algorithms for
prehensile multi-arm manipulation,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Hamburg, Germany, 2015, pp. 6381–6386.

[47] Z. Xian, P. Lertkultanon, and Q. Pham, “Closed-chain manipulation of
large objects by multi-arm robotic systems,” IEEE Robot. Automat. Lett.,
vol. 2, no. 4, pp. 1832–1839, Oct. 2017.

[48] P. S. Schmitt, F. Wirnshofer, K. M. Wurm, G. V. Wichert, and W. Burgard,
“Modeling and planning manipulation in dynamic environments,” in Proc.
IEEE Int. Conf. Robot. Autom., 2019, pp. 176–182.

[49] K. Hauser and V. Ng-Thow-Hing, “Randomized multi-modal motion
planning for a humanoid robot manipulation task,” Int. J. Robot. Res.,
vol. 30, no. 6, pp. 678–698, 2011.

[50] I. A. Şucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robot. Automat. Mag., vol. 19, no. 4, pp. 72–82, Dec. 2012.

[51] R. Diankov, “Automated construction of robotic manipulation programs,”
Ph.D. dissertation, Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA,
USA, Aug. 2010.

[52] R. M. Murray, S. S. Sastry, and L. Zexiang, A Mathematical Introduction
to Robotic Manipulation. Boca Raton, FL, USA: CRC Press, 1994.

[53] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York,
NY, USA: Springer, 2006.

[54] “Backtracking line search.” [Online]. Available: https://en.wikipedia.org/
wiki/Backtracking_line_search

[55] K. Hauser, “Fast interpolation and time-optimization on implicit contact
submanifolds,” in Proc. Robot.: Sci. Syst., Berlin, Germany, 2013.

[56] J. Mirabel and F. Lamiraux, “Manipulation planning: Building paths
on constrained manifolds,” Jul. 2016, [Online]. Available: https://hal.
archives-ouvertes.fr/hal-01360409

[57] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar, “A versatile generalized
inverted kinematics implementation for collaborative working humanoid
robots: The stack of tasks,” in Proc. Int. Conf. Adv. Robot., Munich,
Germany, 2009, pp. 1–6.

[58] P. S. Schmitt, W. Neubauer, W. Feiten, K. M. Wurm, G. V. Wichert, and
W. Burgard, “Optimal, sampling-based manipulation planning,” in Proc.
IEEE Int. Conf. Robot. Autom., 2017, pp. 3426–3432.

[59] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” Int.
J. Robot. Res., vol. 20, no. 5, pp. 378–400, May 2001.

[60] J. Carpentier et al., “The pinocchio C library: A fast and flexible implemen-
tation of rigid body dynamics algorithms and their analytical derivatives,”
in Proc. IEEE/SICE Int. Symp. Syst. Integrations., 2019, pp. 614–619.

[61] F. Schwarzer, M. Saha, and J.-C. Latombe, “Exact collision checking
of robot paths,” in Algorithmic Foundations of Robotics V. vol. 7, J.-D.
Boissonnat et al., Eds., Berlin, Germany: Springer, 2004, pp. 25–41.

[62] S. Dalibard, A. El Khoury, F. Lamiraux, A. Nakhaei, M. Taïx, and
J.-P. Laumond, “Dynamic walking and whole-body motion planning for
humanoid robots: An integrated approach,” Int. J. Robot. Res., vol. 32,
no. 9/10, pp. 1089–1103, Aug. 2013.

[63] T. Simeon, J.-P. Laumond, and C. Nissoux, “Visibility-based probabilistic
roadmaps for motion planning,” J. Adv. Robot., vol. 14, no. 6, pp. 477–494,
2000.

Florent Lamiraux received the graduate degree from the Ecole Polytechnique
Paris, France, in 1993, and the Ph.D. degree in computer science from the Institut
National Polytechnique de Toulouse, Toulouse, France, in 1997, for his research
on MobileRobots.

Between 1997 and 1999, he worked with Rice University, Houston, TX, USA,
as a Postdoctoral Research Associate on motion planning for deformable objects.
Since 2005, he has been working on humanoid robots. He spent two years in
AIST Tsukuba, Tsukuba, Japan, in 2008 and 2009. He is currently Directeur de
Recherche at LAAS-CNRS, Toulouse. His research interests include manipula-
tion planning and control for humanoid and industrial robots.

Joseph Mirabel received the graduate degree from the Ecole Polytechnique,
Paris, France, and the Royal Institute of Technology, Stockholm, Sweden, in
2013, the Ph.D. degree in robotics from the Institut National Polytechnique de
Toulouse, Toulouse, France, in 2017.

Between 2017 and 2021, he worked with LAAS-CNRS, Toulouse, as a
Researcher on reactive manipulation planning and robot control with visual
feedback. He recently joined Eureka Robotics as a Senior Scientist. His research
interests include motion and manipulation planning.

https://en.wikipedia.org/wiki/Backtracking_line_search
https://en.wikipedia.org/wiki/Backtracking_line_search
https://hal.archives-ouvertes.fr/hal-01360409
https://hal.archives-ouvertes.fr/hal-01360409

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

