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Jonathan P. How , Fellow, IEEE, and Luca Carlone

Abstract—Multi-robot simultaneous localization and mapping
(SLAM) is a crucial capability to obtain timely situational aware-
ness over large areas. Real-world applications demand multi-robot
SLAM systems to be robust to perceptual aliasing and to operate
under limited communication bandwidth; moreover, it is desirable
for these systems to capture semantic information to enable high-
level decision-making and spatial artificial intelligence. This article
presents Kimera-Multi, a multi-robot system that: 1) is robust and
capable of identifying and rejecting incorrect inter- and intrarobot
loop closures resulting from perceptual aliasing; 2) is fully dis-
tributed and only relies on local (peer-to-peer) communication to
achieve distributed localization and mapping; and 3) builds a glob-
ally consistent metric-semantic 3-D mesh model of the environment
in real time, where faces of the mesh are annotated with semantic
labels. Kimera-Multi is implemented by a team of robots equipped
with visual-inertial sensors. Each robot builds a local trajectory
estimate and a local mesh using Kimera. When communication is
available, robots initiate a distributed place recognition and robust
pose graph optimization protocol based on a distributed graduated
nonconvexity algorithm. The proposed protocol allows the robots to
improve their local trajectory estimates by leveraging inter-robot
loop closures while being robust to outliers. Finally, each robot
uses its improved trajectory estimate to correct the local mesh
using mesh deformation techniques. We demonstrateKimera-Multi
in photo-realistic simulations, SLAM benchmarking datasets, and
challenging outdoor datasets collected using ground robots. Both
real and simulated experiments involve long trajectories (e.g., up to
800 m per robot). The experiments show that Kimera-Multi: 1) out-
performs the state of the art in terms of robustness and accuracy;
2) achieves estimation errors comparable to a centralized SLAM
system while being fully distributed; 3) is parsimonious in terms of
communication bandwidth; 4) produces accurate metric-semantic
3-D meshes; and 5) is modular and can also be used for standard
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3-D reconstruction (i.e., without semantic labels) or for trajectory
estimation (i.e., without reconstructing a 3-D mesh).

Index Terms—Multi-robot systems, simultaneous localization
and mapping, robot vision systems.

I. INTRODUCTION

MULTI-ROBOT collaborative simultaneous localization
and mapping (SLAM) is an important topic in robotics

research, due to its capability to provide situational awareness
over large-scale environments for extended periods of time.
Such capability is fundamental for various applications, such
as factory automation, search and rescue, intelligent transporta-
tion, planetary exploration, and surveillance and monitoring in
military and civilian endeavors.

In this work, we advance state-of-the-art collaborative SLAM
by developing a system that enables real-time estimation of
dense metric-semantic 3-D mesh models under realistic
constraints on communication bandwidth. The 3-D mesh
captures the complete and dense geometry of the environment
that the robots operate in. Furthermore, by annotating the
mesh with human-understandable semantic labels (e.g.,
“building,” “road,” and “object”), our system provides high-level
abstractions of the environment that are necessary to enable
next-generation spatial perception [1] (or spatial artificial
intelligence [2]) and high-level decision-making. In single-robot
SLAM, metric-semantic models have been employed in
pioneering work, such as SLAM++ [3] and SemanticFusion [4].
Recent work includes systems that can build metric-semantic
3-D models in real time using a multicore CPU, including
Kimera [1] and Voxblox++ [5]. In multi-robot SLAM, many
existing systems rely on sparse landmarks (see, e.g., [6] and [7]).
While these systems excel at collaborative localization, they
do not provide a complete solution to dense mapping, which is
required by critical navigation tasks, such as collision avoidance
and motion planning. On the other hand, recent multi-robot
systems begin to leverage semantic information to aid
collaborative SLAM, but the underlying representations are still
sparse (e.g., objects [8], [9]). Recent work [10] employs dense
semantic segmentation, but the approach is limited to pairwise
matching of local maps. Overall, there has not been a complete
multi-robot system for dense metric-semantic SLAM, partially
due to the additional communication and computation costs
involved in building such a model. This work closes this gap
by developing a collaborative metric-semantic SLAM system.
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Furthermore, the proposed system is fully distributed and is
capable of operating under realistic communication constraints.

In addition, this work aims to improve the robustness of
collaborative SLAM for operations in challenging real-world
environments. In practice, perceptual aliasing caused by similar-
looking scenes often results in wrong inter-robot data associ-
ations (i.e., outlier loop closures), which, in turn, cause catas-
trophic failures of standard estimation back-ends. In multi-robot
SLAM, this issue is further complicated by the lack of a common
reference frame and a global outlier-free odometry backbone.
While recent work has proposed several robust estimation tech-
niques for collaborative SLAM, they either rely too heavily on
initialization [11], [12] or employ heuristic search methods [13],
[14], which can cause low recall (i.e., missing correct loop
closures). This work addresses this challenge by developing a
robust distributed back-end based on graduated nonconvexity
(GNC) [15].

Contributions: The primary contribution of this work is
Kimera-Multi, a fully distributed system for multi-robot dense
metric-semantic SLAM. Our system enables a team of robots
to collaboratively estimate a semantically annotated 3-D mesh
model of the environment in real time. Each robot runs Kimera
[16] to process onboard visual-inertial sensor data and obtain
local trajectory and 3-D mesh estimates. When communication
becomes available, a fully distributed procedure is triggered to
perform inter-robot place recognition, relative pose estimation,
and robust distributed trajectory estimation. From the jointly op-
timized trajectory estimates, each robot performs real-time local
mesh deformation to correct local mapping drift and improve
global map consistency. The implementation of Kimera-Multi
is modular and allows different components to be disabled or re-
placed. Fig. Fig. 1 demonstrates Kimera-Multi on a three-robot
collaborative SLAM dataset collected at Medfield, MA, USA.

The second technical contribution of this work is a new
two-stage method for outlier-robust distributed pose graph op-
timization (PGO), which serves as the distributed back-end of
Kimera-Multi. The first stage initializes robots’ local trajectories
in a global reference frame by using GNC [15] to estimate
relative transformations between the coordinate frames of pairs
of robots. This method is robust to outlier loop closures and,
furthermore, is efficient because it does not require iterative
communication. The second stage solves the full robust PGO
problem. For this purpose, we present a distributed extension
of GNC built on top of the state-of-the-art Riemannian block-
coordinate descent (RBCD) solver [17]. Compared to prior
techniques, our approach achieves more robust and accurate
trajectory estimation and is less sensitive to parameter tuning.

Our third contribution is an extensive experimental eval-
uation. We present quantitative evaluations of Kimera-Multi
on a collection of large-scale photo-realistic simulations and
SLAM benchmarking datasets. In addition, we demonstrate
Kimera-Multi on challenging real-world datasets collected by
autonomous ground robots. Our results show thatKimera-Multi:
1) provides more robust and accurate distributed trajectory es-
timation compared to alternative techniques employed in prior
work [13], [14]; 2) achieves estimation accuracy that is similar
to a centralized system while being fully distributed; 3) is

Fig. 1. Demonstration of Kimera-Multi in a three-robot collaborative
SLAM dataset collected at Medfield, Massachusetts, USA. Total trajectory
length (including all robots) is 2188 meters. (a) Trajectory estimate from
Kimera-VIO is affected by estimation drift. (b) Kimera-Multi achieves
accurate and robust trajectory estimation. (c) Kimera-Multi also produces
an optimized 3D mesh of the environment.

communication-efficient and achieves as much as 70% commu-
nication reduction compared to baseline centralized systems; 4)
builds accurate metric-semantic 3-D meshes; and 5) is modular
and allows different features such as mesh reconstruction and
semantic annotation to be disabled according to user needs.

Novelty with respect to previous work [18]: An earlier version
ofKimera-Multiwas presented in [18], but the present article ex-
tends that work with two new contributions. First, we develop an
outlier-robust and fully distributed trajectory estimation method
based on GNC. In [18], we used an incremental extension of
pairwise consistency maximization (PCM) [13] to reject outlier
loop closures. However, PCM employs a graph-theoretic for-
mulation and, in practice, relies on heuristic maximum clique
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Fig. 2. Kimera-Multi: system architecture. Each robot runs Kimera
(including Kimera-VIO and Kimera-Semantics) to estimate local
trajectory and mesh. Robots then communicate to perform distributed loop
closure detection and robust distributed PGO. Given the optimized trajectory,
each robot performs LMO.

Fig. 3. Communication protocol and data flow between pair of robots.

Fig. 4. Robust distributed initialization. Left: Three-robot scenario with local
reference frames A,B,D, each coinciding with the first pose of the corre-
sponding robot. Between every pair of robots, inlier loop closures (−→) lead
to similar estimates for the alignment between frames (���). Each outlier loop
closure (−→) produces an outlier frame alignment (���), which can be rejected
with GNC. Right: Corresponding robot-level spanning tree.

search, which causes low recall. In this work, we show that the
proposed distributed graduated nonconvexity (D-GNC) method
outperforms PCM in terms of robustness and accuracy and is
less sensitive to parameter tuning. The second new contribu-
tion is a set of additional experimental evaluations. These in-
clude a comprehensive evaluation of different robust distributed
PGO techniques (see Section VII-A), evaluations on additional
photo-realistic simulations and benchmarking datasets (see Sec-
tion VII-B), and evaluations on two new challenging outdoor
datasets (see Figs. Fig. 1 and 14) collected using autonomous
ground robots (see Section VII-C).

Fig. 5. LMO deformation graph including mesh vertices (violet) and keyframe
vertices (red). Edges connect two mesh vertices that are adjacent in the mesh
(gray links), as well as mesh vertices with the keyframe vertices they are observed
in (orange links). The green poses denote optimized poses from distributed PGO.
(a) Undeformed mesh. (b) Deformed mesh.

Fig. 6. Single-robot tests. Comparisons between solvers on single-robot syn-
thetic PGO problems across ten Monte Carlo runs. (a) Outlier ratio: 10%.
(b) Outlier ratio: 70%.

Fig. 7. Multi-robot tests. Comparisons between solvers on three-robot syn-
thetic PGO problems across ten Monte Carlo runs. (a) Outlier ratio: 10%. (b)
Outlier ratio: 70%.

II. RELATED WORK

A. Metric-Semantic SLAM

In recent years, single-robot SLAM research is steadily mov-
ing toward systems that can build metric-semantic maps [4],
[5], [16], [19]–[30]. Related research efforts include systems
building voxel-based models [4], [23]–[29], Euclidean signed
distance field (ESDF) and meshes [5], [16], [31], or 3-D scene
graphs [30]. In this work, we build our multi-robot metric-
semantic SLAM system on top of Kimera [16], which pro-
vides accurate real-time visual-inertial odometry (VIO) and
lightweight mesh reconstruction.

In the multi-robot SLAM literature, the majority of ap-
proaches have focused on dense geometric representations (e.g.,



TIAN et al.: KIMERA-MULTI: ROBUST, DISTRIBUTED, DENSE METRIC-SEMANTIC SLAM FOR MULTI-ROBOT SYSTEMS 2025

Fig. 8. Comparing final trajectory estimates of different techniques under 70% outlier loop closures. All methods use the same probability threshold of 99%.
(a) PCM (ATE = 2.24 m). (b) GNC (naïve init) (ATE = 11.59 m). (c) PCM + GNC (ATE = 0.09 m). (d) GNC (ATE = 0.003 m).

Fig. 9. Metric reconstruction evaluation on the Euroc sequences. Mesh error
(in meters) for the 3-D meshes by Kimera-Semantics and Kimera-Multi’s
LMO.

Fig. 10. Metric reconstruction evaluation on the Camp, City, and Med-
field simulator datasets. Mesh error (in meters) for the 3-D meshes by
Kimera-Semantics and Kimera-Multi’s LMO.

occupancy maps [32]) or sparse landmark maps [6], [33];
see [34] and the references therein. Recent work begins to
incorporate sparse objects or dense semantic information in
multi-robot perception. Choudhary et al. [8] use class labels
to associate objects within a multi-robot pose graph SLAM
framework. Tchuiev and Indelman [9] develop a distributed

Fig. 11. Dense metric-semantic 3-D mesh model generated by Kimera-Multi
with three robots in the simulated Camp scene.

object-based SLAM method that leverages the coupling between
object classification and pose estimation. Yue et al. [10] leverage
dense semantic segmentation to perform relative localization and
map matching between pairs of robots. In [18], we present an
early version of Kimera-Multi and demonstrated it as the first
fully distributed system for multi-robot dense metric-semantic
SLAM. The present article extends [18] with a new outlier-
robust distributed PGO algorithm and additional experimental
evaluations.

B. Distributed Loop Closure Detection

Inter-robot loop closures are critical to align the trajectories of
the robots in a common reference frame and to improve their tra-
jectory estimates. In a centralized visual SLAM system (see, e.g.,
[35]), robots transmit a combination of global descriptors (e.g.,
bag-of-words (BoW) vectors [36], [37] and learned full-image
descriptors [38]) and local visual features (see, e.g., [39] and



2026 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 4, AUGUST 2022

Fig. 12. Dense metric-semantic 3-D mesh model generated by Kimera-Multi
with three robots in the simulated City scene.

Fig. 13. Dense metric 3-D mesh model generated by Kimera-Multi with three
robots in the simulated Medfield scene.

[40]) to a central server that performs centralized place recogni-
tion and geometric verification (GV). Recent work develops dis-
tributed and communication-efficient paradigms for inter-robot
loop closure detection. Cieslewski and Scaramuzza [41] propose
an efficient method for distributed visual place recognition,
based on splitting and distributing BoW visual features [36].
A subsequent approach is developed in [7] and [42] based
on clustering and distributing NetVLAD [38] descriptors. A

complementary line of work develops efficient methods for dis-
tributed GV. Giamou et al. [43] develop a method to verify a set
of candidate inter-robot loop closures using minimum data ex-
change. Tian et al. [44], [45] consider distributed GV under com-
munication and computation budgets and develop near-optimal
communication policies based on submodular optimization.

C. Distributed PGO

PGO is commonly used as the estimation backbone of
state-of-the-art SLAM systems. Centralized approaches for
multi-robot PGO collect all measurements at a central station,
which computes the trajectory estimates for all the robots [12],
[46]–[49]. In parallel, considerable efforts have been made
to design distributed PGO methods. Cunningham et al. [6],
[33] use Gaussian elimination to exchange marginals over
the separator poses. Another family of approaches are based
on distributed gradient descent [50]–[52]. Aragues et al. [53]
use a distributed Jacobi approach to estimate 2-D poses.
Choudhary et al. [8] propose a two-stage approach that uses
the distributed Gauss–Seidel (DGS) method to initialize
rotation estimates and solve a single Gauss–Newton iteration.
This method is also implemented as the distributed back-end in
recent decentralized SLAM systems [7], [14]. Recently, Fan and
Murphey [54] propose a majorization–minimization method that
adapts Nesterov’s acceleration technique to achieve significant
empirical speedup. Tian et al. [17] develop the RBCD method
that can be similarly accelerated and, furthermore, propose
a distributed global optimality verification method based
on accelerated power iteration. The conference version of
Kimera-Multi [18] uses RBCD as the distributed back-end.
A subsequent work [55] develops distributed PGO with
convergence guarantees under asynchronous communication.

D. Robust PGO

Standard least squares formulation of PGO is susceptible
to outlier loop closures that can severely impact trajectory
estimation. To mitigate the effect of outliers in single-robot
SLAM, early methods are based on RANSAC [56], branch and
bound [57], and M-estimation (see [58] and [59]). Sünderhauf
and Protzel [60] develop a method to deactivate outliers using
binary variables. Agarwal et al. [61] build on the same idea and
develop the dynamic covariance scaling method. Hartley et al.
[62] and Casafranca et al. [63] propose to minimize the �1-norm
of residual errors. Chatterjee and Govindu [64], [65] develop
iteratively reweighted least squares (IRLS) methods to solve ro-
tation averaging using a family of robust cost functions. Hu et al.
[66] develop similar IRLS methods for single-robot SLAM.
Olson and Agarwal [67] and Pfingsthorn and Birk [68], [69]
consider multimodal distributions for the noise. Lajoie et al.
[70] and Carlone and Calafiore [71] develop global solvers
based on convex relaxations. A separate line of work investigates
consensus maximization formulations that seek to identify the
maximal set of mutually consistent inliers [72]–[74]. Recently,
Yang et al. [15] have developed GNC that optimizes a sequence
of increasingly nonconvex surrogate cost functions and demon-
strated state-of-the-art performance on robust PGO problems.



TIAN et al.: KIMERA-MULTI: ROBUST, DISTRIBUTED, DENSE METRIC-SEMANTIC SLAM FOR MULTI-ROBOT SYSTEMS 2027

Fig. 14. Stata experiment. (a) Trajectory estimate from Kimera-VIO. (b) Trajectory estimate produced by Kimera-Multi, using D-GNC with the default
approximate variable updates. (c) Trajectory estimate produced by Kimera-Multi, using D-GNC with full variable updates. (d) Trajectory estimate produced
by centralized GNC.

In multi-robot SLAM, Indelman et al. [11] and Dong et al.
[12] apply expectation–maximization to find consistent inter-
robot loop closures and estimate initial relative transformations
between robots. Mangelson et al. [13] design the PCM ap-
proach to perform robust map merging between pairs of robots.
Lajoie et al. [14] develop the DOOR-SLAM system, which
implements an extended version of PCM as the outlier rejec-
tion method before distributed trajectory estimation. The recent
NeBula system [75] also employs PCM within a centralized
collaborative SLAM architecture. In this work, we develop a
fully distributed extension of GNC [15] and demonstrate that our
method outperforms PCM in terms of robustness and accuracy.

III. SYSTEM OVERVIEW

In Kimera-Multi, each robot runs the fully decentralized
metric-semantic SLAM system shown in Fig. 2. The system
consists of four main modules: 1) local (single-robot) Kimera;
2) distributed loop closure detection; 3) robust distributed trajec-
tory estimation via PGO; and 4) local mesh optimization (LMO).
Among these modules, distributed loop closure detection and

robust distributed PGO are the only ones that involve communi-
cation between robots. Fig. 3 shows the data flow between these
modules.
Kimera [1] runs onboard each robot and provides real-time

local trajectory and mesh estimation. In particular, Kimera-VIO
[16] serves as the VIO module, which processes raw stereo
images and inertial measurement unit (IMU) data to ob-
tain an estimate of the odometric trajectory of the robot.
Kimera-Semantics [16] processes depth images (possibly ob-
tained from RGB-D cameras or by stereo matching) and 2-
D semantic segmentations [76] and produces a dense metric-
semantic 3-D mesh using the VIO pose estimates. In addition,
Kimera-VIO computes a BoW representation of each keyframe
using ORB features and DBoW2 [37], which is used for dis-
tributed loop closure detection. Interested readers are referred
to [1] and [16] for more technical details.

Distributed loop closure detection (see Section IV) is executed
whenever two robots α and β are within communication range.
The robots exchange BoW descriptors of the keyframes they
collected. When the robots find a pair of matching descriptors
(typically corresponding to observations of the same place),
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they perform relative pose estimation using standard GV tech-
niques. The relative pose corresponds to a putative inter-robot
loop closure and is used during robust distributed trajectory
estimation.

Robust distributed trajectory estimation (see Section V) solves
for the optimal trajectory estimates of all robots in a global
reference frame, by performing robust distributed PGO using
odometric measurements from Kimera-VIO and all putative
loop closures detected so far. At the beginning, a robust ini-
tialization scheme is used to find coarse relative transformations
between robots’ reference frames. Then, a robust optimization
procedure based on a distributed extension of GNC [15] using
the RBCD solver [17] is employed to simultaneously select
inlier loop closures and recover optimal trajectory estimates.
Compared to the incremental PCM technique [13] used in the
conference version of Kimera-Multi [18], our new approach
enables more robust and accurate trajectory estimation and is
less sensitive to parameter tuning.

LMO (see Section VI) is executed after the robust distributed
trajectory estimation stage. This module performs a local pro-
cessing step that deforms the mesh at each robot to enforce con-
sistency with the trajectory estimate resulting from distributed
PGO.
Kimera-Multi is implemented in C++ and uses the Robot

Operating System [77] as a communication layer between robots
and between the modules executed on each robot. The system
runs online using a CPU and is modular, thus allowing modules
to be replaced or removed. For instance, the system can also pro-
duce a dense metric mesh if semantic labels are not available or
only produce the optimized trajectory if the dense reconstruction
is not required by the user.

IV. DISTRIBUTED LOOP CLOSURE DETECTION

This section describes the front-end of Kimera-Multi, which
is responsible for detecting inter-robot loop closures between
pairs of robots. The information flow is summarized in Fig. 3.
When communication becomes available, robot α initiates the
distributed loop closure detection process, by sending global
descriptors of its new keyframes since the last rendezvous to
the other robot β. We implement these descriptors as BoW
vectors using the DBoW2 library [37]. Upon receiving the BoW
vectors, robot β searches within its own keyframes for candidate
matches whose normalized visual similarity scores exceed a
threshold (≥ 0.1 in our code). When a potential loop closure
is identified, the robots perform standard GV to estimate the
relative transformation between the two matched keyframes. In
our implementation, robot β first requests the 3-D keypoints
and associated descriptors of the matched keyframe from robot
α (see Fig. 3). Subsequently, robot β computes putative corre-
spondences by matching the two sets of feature descriptors using
nearest neighbor search implemented in OpenCV [78]. From
the putative correspondences, robot β attempts to compute the
relative transformation using Nistér’s five-point method [79] and
Arun’s three-point method [80] combined with RANSAC [56].
Both techniques are implemented in the OpenGV library [81].
If GV succeeds with more than five correspondences, the loop

closure is accepted and sent to the robust distributed trajectory
estimation module.

V. ROBUST DISTRIBUTED TRAJECTORY ESTIMATION

In Kimera-Multi, the robots estimate their trajectories by
collaboratively solving a PGO problem using the entire team’s
odometry measurements and intra-robot and inter-robot loop
closures. Some of these loop closures may be outliers (due to,
e.g., perceptual aliasing), and thus, we need an outlier-robust
method for solving PGO. In the earlier version of Kimera-Multi
[18], we used an incremental variant of PCM [13] for outlier
rejection via maximum clique computation prior to trajectory
estimation. However, even with parallelization [82], the runtime
of exact maximum clique search exceeds 10 s already in graphs
with 700 loop closures, which is not practical for our applica-
tion. For this reason, in practice, PCM has to rely on heuristic
maximum clique algorithms and, thus, often exhibits poor recall,
as shown in Section VII-A.

In this article, we propose a new distributed approach for
robust trajectory estimation based on GNC [15]. The main idea
in GNC is to start from a convex approximation of the robust
cost function and then gradually introduce the nonconvexity to
prevent convergence to spurious solutions. While, in general,
GNC does not require an initial guess [15], it has been observed
that global solvers for 3-D SLAM (e.g., SE-Sync [83]) become
too slow in the presence of outliers [74]. For this reason, in [74],
local optimization is performed instead at each iteration of GNC
(starting from an outlier-free initial guess), and this approach has
been shown to be very effective. In single-robot SLAM, one can
easily obtain an outlier-free initial guess by chaining together
odometry measurements. In the multi-robot case, there is no
odometry between different robots’ poses, and the challenge,
thus, becomes building an initial guess that is insensitive to
outliers.

To address the aforementioned challenge, the proposed D-
GNC approach involves two stages. In the first stage (see Sec-
tion V-B), we use an outlier-robust and communication-efficient
method to initialize robots’ trajectories in a global reference
frame. In the second stage (see Section V-C), we develop a
fully distributed procedure to execute GNC, using the RBCD
distributed solver as a subroutine. Algorithm 1 provides the
pseudocode of D-GNC.

A. Background: GNC

We start by providing a brief review of GNC [15], [84]. One
challenge associated with classical M-estimation [85], [86] is
that the employed robust cost function ρ can be highly non-
convex, hence making local search techniques sensitive to the
initial guess. The key idea behind GNC is to optimize a sequence
of easier (i.e., less nonconvex) surrogate cost functions that
gradually converges to the original robust cost function. Each
surrogate problem takes the same form as classical M-estimation

min
x∈X

∑
i

ρμ(ri(x)) (1)
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Algorithm 1: Distributed Graduated Nonconvexity.
Input:

- Initial trajectory estimates in local frames of each
robot

- Odometry and intra-robot and inter-robot loop
closures that each robot is involved in

- Threshold c̄ of truncated least squares cost
Output:

- Optimized trajectory estimate of each robot in global
frame

1: Robust initialization: robots communicate to initialize
trajectory estimates in a global reference frame (see
Section V-B).

2: In parallel, each robot initializes GNC weights for its
local intra and inter-robot loop closures wi = 1, ∀i.

3: while not converged do
4: Variable update: with fixed weights, robots

communicate to execute RBCD for T iterations
(default T = 15).

5: Weight update: in parallel, each robot updates GNC
weights for intra-robot loop closures and inter-robot
loop closures it is involved in.

6: Parameter update: in parallel, each robot updates the
control parameter μ.

7: end while

where ri : X → R is the residual error associated with the ith
measurement. The sequence of surrogate functions ρμ, param-
eterized by control parameter μ, satisfies that for some given
constants μ0 and μ1: 1) for μ→ μ0, the function ρμ is convex,
and 2) for μ→ μ1, ρμ converges to the original (nonconvex)
robust cost function ρ. In practice, one initializes μ near μ0

and gradually updates its value to approach μ1 as optimization
proceeds.

For each instance of (1), GNC reformulates the problem
using the Black–Rangarajan duality [84], which states that under
certain technical conditions (satisfied by all common choices
of robust cost functions), (1) is equivalent to the following
optimization problem:

min
x∈X ,wi∈[0,1]

∑
i

[
wir

2
i (x) + Φρμ

(wi)
]

(2)

where wi ∈ [0, 1] is a scalar weight associated with the ith
measurement. In (2), the outlier process Φρμ

(wi) introduces a
penalty term for each wi, and its expression depends on the
chosen robust cost function ρ and the control parameter μ.
Similar to the classical IRLS scheme, GNC performs alternating
minimization over the variable x and weightswi to optimize (2),
but in the meantime also updates the control parameter μ.

1) Variable Update: Minimize (2) with respect toxwith fixed
weights wi. This amounts to solving a standard weighted
least-squares problem

x� ∈ arg min
x∈X

∑
i

wir
2
i (x). (3)

2) Weight Update: Minimize (2) with respect towi with fixed
variable x. The corresponding update for each wi has a
closed-form expression that depends on the current robust
surrogate function ρμ; see [15, Proposition 3-4].

3) Parameter Update: Update μ by a constant factor to
approach μ1.

The control parameter μ is initialized at a value close to μ0.
In the absence of a better guess, all weights are initialized to one
(i.e., all measurements are considered inliers initially). Then, the
steps above are repeated until μ approaches μ1.

B. Robust Distributed Initialization

To optimize the pose graph, we first need to initialize all robot
poses in a shared (global) coordinate frame (see Algorithm 1,
line 1). Each robot can readily initialize its trajectory in its
local reference frame by chaining odometry measurements. To
express these local initial guesses in the global reference frame,
however, we must estimate the relative pose between the local
reference frames.

1) Pairwise Coordinate Frame Estimation: First, let us see
how this can be done between two robots α and β, with local
reference frames A and B, respectively. Consider a loop clo-
sure between the ith pose of α and jth pose of β, denoted as
X̃

αi

βj
∈ SE(3). Denote the odometric estimates of pose i and j

(in the local frames of the two robots) as X̂
A

αi
, X̂

B

βj
∈ SE(3).

By combining these pose estimates with the loop closure, we
obtain a noisy estimate of the relative transformation between
frames A and B

X̂
A

Bij
� X̂

A

αi
X̃

αi

βj

(
X̂

B

βj

)−1
(4)

where the subscript of X̂
A

Bij
indicates that this estimate is

computed using loop closure (i, j). From (4), we see that each
inter-robot loop closure provides a candidate alignment for the
reference frames A and B. Furthermore, candidate alignments
produced by inlier loop closures are expected to be in mutual
agreement; see Fig. 4 and also [11]. To obtain a reliable estimate
of the true relative transformation, we thus formulate and solve
the following robust pose averaging problem:

X̂
A

B ∈ arg min
X∈SE(3)

∑
(i,j)∈Lα,β

ρ(rij(X)) (5)

whereρ : R→ R is the truncated least squares (TLS) robust cost
function [15], and Lα,β is the set of inter-robot loop closures
between robot α and β. Each residual measures the geodesic
distance between the to-be-computed average pose X and the

measurement X̂
A

Bij

rij(X) �
∥∥∥X � X̂

A

Bij

∥∥∥
Σ

(6)

where Σ ∈ S6
++ is a fixed covariance matrix. In our implemen-

tation, we use a diagonal covariance with a standard deviation
of 0.1 rad for rotation and 0.5 m for translation. Between a
given pair of robots, one robot can solve (5) locally using
GNC [15] without extra communication (since each robot al-
ready has access to all loop closures it is involved in) and
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transmits the solution to the other robot. In practice, we use
the GNC implementation available in Georgia Tech Smoothing
and Mapping (GTSAM) [87], which uses Levenberg–Marquardt
(LM) (initialized at identity pose) in each GNC variable update
to solve (5).

2) Multi-robot Coordinate Frame Estimation: The above
pairwise procedure can be executed repeatedly to express all
local reference frames (and trajectory estimates) in a global
frame while being robust to outliers. To do so, we first choose an
arbitrary spanning tree in the robot-level dependence graph [17],
whose vertices correspond to robots, and edges represent the
presence of at least one inter-robot loop closure between the
two corresponding robots (see Fig. 4). Note that the spanning
tree induces a unique path between any two robots. Without loss
of generality, we select an arbitrary robot α and use its reference
frame A as the global frame. For each remaining robot β, we
need to obtain its relative transformation to the global frame

X̂
A

B ∈ SE(3). This is done by traversing the unique path in
the robot-level spanning tree from α to β and composing all
estimated pairwise transformations computed using (5) along
the way. In practice, this procedure can be performed in a fully
distributed fashion, by incrementally growing the robot-level
spanning tree from α using local communication. Finally, each

robotβ uses its corresponding X̂
A

B to express its initial trajectory
in the global frame. Note that our distributed PGO approach does
not require the robots to share these initial trajectory estimates,
but only requires them to be expressed in a shared global frame
at each robot.

C. Robust Distributed PGO

Following the initialization stage, robots perform robust
distributed PGO to obtain optimal trajectory estimates while
simultaneously rejecting outlier loop closures. Let Xαi

=
(Rαi

, tαi
) ∈ SE(3) denote the ith pose of robot α in the global

frame. We aim to optimize all pose variables using all odometric
measurements and putative loop closures

min
Xαi

∈SE(3),
∀α∈R, ∀i

∑
α∈R

nα−1∑
i=1

rαi
(Xαi

,Xαi+1
)2

︸ ︷︷ ︸
odometry

+

∑
(αi,βj)∈L

ρ
(
rαi

βi
(Xαi

,Xβj
)
)

︸ ︷︷ ︸
loop closures

(7)

whereR = {α, β, . . .} denotes the set of robots, nα is the total
number of poses of robot α, and the set of loop closures L
includes both intrarobot and inter-robot loop closures. Each
residual error in (7) corresponds to a single relative pose mea-
surement in the global pose graph, where the residual error is
measured using the chordal distance. For example, the residual

corresponding to a loop closure is given by [83]

rαi

βi
(Xαi

,Xβj
) �

(
wR

∥∥∥Rβj
−Rαi

R̃
αi

βj

∥∥∥2
F
+

wt

∥∥∥tβj
− tαi

−Rαi
t̃
αi

βj

∥∥∥2
2

)1/2

(8)

where X̃
αi

βj
= (R̃

αi

βj
, t̃

αi

βj
) ∈ SE(3) is the observed noisy trans-

formation, andwR, wt > 0 specify measurement precisions. We
employ the standard quadratic cost for odometric measurements
as they are outlier-free. For loop closures, we choose ρ to be the
TLS function as in Section V-B.

To solve (7), we develop a fully distributed variant of GNC,
which uses the RBCD solver [17] as the workhorse during itera-
tive optimization. Recall from Section V-A that GNC alternates
between variable (i.e., trajectory) updates and weight updates.
In the following, we discuss how each of these two operations
is performed in the distributed setup.

1) Variable Update: In this case, the variable update step
becomes an instance of standard (weighted) PGO

min
Xαi

∈SE(3),
∀α∈R, ∀i

∑
α∈R

nα−1∑
i=1

rαi
(Xαi

,Xαi+1
)2+

∑
(αi,βj)∈L

wαi

βj
· rαi

βi
(Xαi

,Xβj
)2. (9)

Compared to (7), terms including the robust cost function ρ
(corresponding to the loop closures) are replaced by weighted
squared residuals; see also (3). We apply the RBCD solver [17]
for distributed optimization of (9) (see Algorithm 1, line 4).
In short, RBCD operates on the rank-restricted relaxation [83]
of (9) and subsequently projects the solution to the special
Euclidean group. In our implementation, we set the default
rank relaxation to 5. RBCD is a fully decentralized algorithm,
in which each robot α ∈ R is responsible for estimating its
own trajectoryXα � {Xαi

, i = 1, . . . , nα}. During execution,
robots alternate to update their trajectories by relying on partial
information exchange with their teammates. Specifically, at
each iteration, in which robot α updates its trajectory, it needs
to communicate once with its neighboring robots (i.e., robots
that share inter-robot loop closures with robot α), where the
communication can be either direct or relayed by other robots.
Furthermore, robot α only needs to receive neighboring robots’
“public poses” (i.e., poses that share inter-robot loop closures
with robot α). This property allows RBCD to preserve privacy
and saves communication effort over the remaining poses. The
main advantages of RBCD over the previous DGS method [8]
lies in the fact that it has provable convergence guarantees. More-
over, RBCD can be used as an anytime algorithm, since each
iteration is guaranteed to improve over the previous iterates by
reducing the PGO cost function, while DGS requires completing
rotation estimation before initiating pose estimation. We refer
interested readers to [17] for complete details about RBCD.

In the original (centralized) GNC algorithm, each variable
update step is solved to full convergence using a global solver
or local search technique. In the distributed setup, however,
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solving each instance of (9) to full convergence can be slow,
due to the first-order nature of typical distributed optimiza-
tion methods (including both RBCD and DGS). To develop a
more practical and efficient approach, we relax the convergence
requirements and allow approximate solutions during variable
updates. Specifically, we only apply RBCD for a fixed number of
iterations to refine the trajectory estimates based on the current
weights. In our implementation, we set the number of iterations
to 15 by default. The resulting trajectories are then used to warm
start the next variable update step. As measurement weights
converge, our approach also allows the trajectory estimates to
converge to relatively high precision.

2) Weight Update: In the original GNC paper [15], it has
been shown that the weight update for each residual function
using TLS only depends on the current residual error r̂i, control
parameter μ, and the threshold c̄ of the TLS cost

wi ←

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if r̂2i ∈

[
μ+1
μ c̄2,+∞

]
c̄
r̂i

√
μ(μ+ 1)− μ, if r̂2i ∈

[
μ

μ+1 c̄
2, μ+1

μ c̄2
]

1, if r̂2i ∈
[
0, μ

μ+1 c̄
2
] . (10)

See [15, Proposition 4] for more details. The weight update
step is particularly suitable for distributed computation, as (10)
suggests that this operation can be performed independently and
in parallel for each residual function (i.e., loop closure). We
leverage this insight to implement a fully distributed weight
update scheme (see Algorithm 1, line 5). Specifically, each
robot first updates weights associated with its internal loop
closures in parallel. Then, for each inter-robot loop closure, one
of the two involved robots computes the updated weight and
subsequently transmits the new weight to the other robot. After
the weight update stage, each robot also updates its local copy
of the control parameter μ so that the sequence of surrogate cost
functions gradually converges to the original TLS function (see
Algorithm 1, line 6).

VI. LOCAL MESH OPTIMIZATION

This section describes how to perform local correction of the
3-D mesh in response to a loop closure. Kimera-Semantics
builds the 3-D mesh from theKimera-VIO (odometric) estimate.
However, since distributed PGO described in previous section
improves the accuracy of the trajectory estimate by enforcing
loop closures, it is desirable to correct the mesh according to the
optimized trajectory estimate (i.e., each time distributed PGO is
executed). Here, we propose an approach for mesh optimization
based on deformation graphs [88]. Deformation graphs are a
model from computer graphics that deforms a given mesh in
order to anchor points in this mesh to user-defined locations
while ensuring that the mesh remains locally rigid; deformation
graphs are typically used for 3-D animations, where one wants
to animate a 3-D object while ensuring it moves smoothly and
without artifacts [88].

Creating the Deformation Graph: In our approach, we create
a unified deformation graph, including a simplified mesh and a
pose graph of trajectory keyframes. The process is illustrated in
Fig. 5. The intuition is that the “anchor points” in [88] will

be the keyframes in our trajectory. More specifically, while
Kimera-Semantics builds a local 3-D mesh for each robot
α using pose estimates from Kimera-VIO, we keep track of
the subset of 3-D mesh vertices seen in each keyframe from
Kimera-VIO. To build the deformation graph, we first subsample
the mesh from Kimera-Semantics to obtain a simplified mesh.
We simplify the mesh with an online vertex clustering method
by storing the vertices of the mesh in an octree data structure;
as the mesh grows, the vertices in the same voxel of the octree
are merged and degenerate faces and edges are removed. The
voxel size is tuned according to the environment or the dataset.
Then, the vertices of this simplified mesh and the correspond-
ing keyframe poses are added as vertices in the deformation
graph; we are going to refer to the corresponding vertices in
the deformation graph as mesh vertices and keyframe vertices.
Moreover, we add two types of edges to the deformation graph:
mesh edges (corresponding to pairs of mesh vertices sharing a
face in the simplified mesh) and keyframe edges (connecting a
keyframe with the set of mesh vertices it observes).

For each mesh vertex k in the deformation graph, we assign
a transformation Mk = (RM

k , tMk ), where RM
k ∈ SO(3) and

tMk ∈ R3; Mk defines a local coordinate frame, where Rk is
initialized to the identity and tk is initialized to the position gk of
the mesh vertex fromKimera-Semantics (i.e., without account-
ing for loop closures). We also assign a pose Xi = (Rx

k, t
x
k)

to each keyframe vertex i. The pose is initialized to the pose
estimates from Kimera-VIO.

Optimizing the Deformation Graph: The goal is to correct
the mesh on each robot in response to changes in the keyframe
poses (due to PGO). Toward this goal, we need to adjust the
poses (and the mesh vertex positions) to “anchor” the keyframe
poses to the latest estimates from distributed PGO, as shown in
Fig. 5. Let us denote the optimized poses from distributed PGO
as X̄i, and call n the number of keyframes in the trajectory and
m the total number of mesh vertices in the deformation graph.
Following [88], we compute updated poses Xi and Mk of the
vertices in the deformation graph by solving the following local
optimization problem at each robot:

arg min
X1,...,Xn∈SE(3)
M1,...,Mm∈SE(3)

n∑
i=0

||Xi � X̄i||2Σx

+

m∑
k=0

∑
l∈NM (k)

||RM
k (gl − gk) + tMk − tMl ||2Σ

+

n∑
i=0

∑
l∈NM (i)

||Rx
i g̃il + txi − tMl ||2Σ (11)

where gk denotes the nondeformed position of vertex k in the
deformation graph, g̃il denotes the nondeformed position of
vertex l in the coordinate frame of keyframe i,NM (k) denotes
all the mesh vertices in the deformation graph connected to
vertex k, and � denotes a tangent space representation of the
relative pose between Xi and X̄i [89, 7.1]. Intuitively, the first
term in the minimization (11) enforces (“anchors”) the poses
of each keyframe Xi to match the optimized poses X̄i from



2032 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 4, AUGUST 2022

distributed PGO. The second term enforces local rigidity of the
mesh by minimizing the mismatch with respect to the nonde-
formed configuration gk. The third term enforces local rigidity
of the relative positions between keyframes and mesh vertices
by minimizing the mismatch with respect to the nondeformed
configuration in the local frame of pose Xi. We optimize (11)
using an LM method in GTSAM [87].

Since the deformation graph contains a subsampled version
of the original mesh, after the optimization, we retrieve the
location of the remaining vertices as in [88]. In particular, the
positions of the vertices of the complete mesh are obtained as
affine transformations of nodes in the deformation graph

ṽi =

m∑
j=1

sj(vi)[R
M
j (vi − gj) + tMj ] (12)

where vi indicates the original vertex positions and ṽi are the
new deformed positions. The weights sj are defined as

sj(vi) =
(
1− ||vi − gj ||/dmax

)2
(13)

and then normalized to sum to one. Here, dmax is the distance to
the k + 1 nearest node, as described in [88] (we set k = 4).

Note that the Kimera-Semantics mesh also includes seman-
tic labels as an attribute for each node in the mesh, which remain
untouched in the mesh deformation.

VII. EXPERIMENTS

In this section, we perform extensive evaluations of
Kimera-Multi. Our results show that Kimera-Multi provides ro-
bust and accurate estimation of trajectories and metric-semantic
meshes, is efficient in terms of communication usage, and is
flexible thanks to its modularity. The rest of this section is
organized as follows. In Section VII-A, we analyze the ro-
bustness of Kimera-Multi in numerical experiments. In Sec-
tion VII-B, we evaluate the quality of trajectory estimates
and metric-semantic reconstruction in photo-realistic simula-
tions and benchmarking datasets. Finally, in Section VII-C,
we demonstrate Kimera-Multi on two challenging real-world
datasets collected by ground robots.

A. PGO Robustness Analysis

In this section, we evaluate different robust trajectory esti-
mation techniques on synthetic datasets with varying ratios of
outlier loop closures. Our results demonstrate the importance of
robust initialization for multi-robot PGO. Furthermore, we show
that alternative technique based on PCM [13] has low recall
(i.e., missing correct loop closures). Overall, we show that the
proposed D-GNC method achieves the best performance and is
not sensitive to parameter tuning.

1) Single-Robot Experiments: To offer additional insights
and contrast with the multi-robot analysis later, we first perform
ablation studies on single-robot synthetic datasets. We simulate
2-D PGO problems contaminated by outliers using the INTEL
dataset [90]. To generate outlier loop closures, we randomly
select pairs of nonadjacent poses in the original pose graph
and add relative measurements with uniformly random rotations

and translations. For translations, we sample each coordinate
uniformly at random within the domain [−10, 10] m.

The following trajectory estimation techniques are compared:
1) L2: standard least squares optimization using LM; 2) PCM:
outlier rejection with pairwise consistency maximization [13]
using the approximate maximum clique solver [82] followed
by LM; 3) GNC: graduated nonconvexity [15]; and 4) PCM +
GNC: PCM outlier rejection followed by GNC. Both LM and
GNC are implemented in GTSAM [87]. All methods start from
the odometry initial guess. Note that both PCM and GNC require
the user to specify a confidence level (in the form of a probability
threshold) that determines the maximum residual of inliers. We
vary this probability threshold and compare different techniques
across the entire spectrum.

Fig. 6 shows the absolute trajectory errors (ATEs) with respect
to the maximum likelihood estimate, computed using the outlier-
free pose graph. Results are collected over ten Monte Carlo runs.
Standard LM optimization is not robust even under 10% outlier
loop closures [see Fig. 6(a)]. In many cases, PCM tends to be
overly conservative and reject inliers (due to approximate maxi-
mum clique search), which leads to an increase in the trajectory
error. The same issue also negatively impacts the performance of
PCM + GNC (blue), since rejected inliers cannot be recovered.
On the other hand, GNC (green) achieves smaller error across
the entire spectrum. Under 70% outliers [see Fig. 6(b)], PCM
has larger errors especially at higher probability thresholds (e.g.,
99%), indicating that the method is unable to reject all outliers.
In this case, applying subsequent GNC helps to improve the
performance of PCM. However, also in this case, applying GNC
alone consistently achieves the best performance over the entire
range of probability thresholds. This result suggests that GNC
should be the method of choice in single-robot PGO independent
from the parameter tuning.

2) Multi-robot Experiments: In multi-robot PGO, there is
no longer an outlier-free initial guess (i.e., odometry), which
is crucial for the strong performance of GNC observed in the
single-robot case. We investigate this issue in the next experi-
ment and demonstrate the robust initialization scheme proposed
in Section V-B as an effective solution. Similar to the previous
experiment, we use the INTEL dataset with the same outlier
model described previously. The pose graph is divided into
three segments with approximately equal lengths to simulate
a three-robot collaborative SLAM scenario.

We compare two variants of GNC using different initial
guesses. The first variant uses the proposed robust initialization
scheme and is labeled as “GNC” in Fig. 7 (green). The second
variant uses a naïve initialization formed using the local odome-
try of each robot and randomly sampled inter-robot loop closures
between pairs of robots; see (4). This variant is labeled as “GNC
(naïve init)” in Fig. 7 (magenta). When PCM is used, we sample
inter-robot loop closures from the inlier set returned by PCM. All
problems are solved using a centralized implementation based
on GTSAM [87]. Distributed experiments will be presented in
the next section.

Fig. 7 reports ATE results across ten Monte Carlo runs. With
10% outlier loop closures [see Fig. 7(a)], it is less likely that
the naïve initialization is affected by outliers. Consequently, the
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two variants of GNC have similar performance in most cases,
but naïve initialization still causes occasional failures (magenta
outliers). The failure cases correspond to instances when the
initial guess was accidentally built using an outlier loop closure.
The problem caused by incorrect initialization becomes more
evident under 70% outlier loop closures [see Fig. 7(b)], where
naïve initialization fails in the majority of instances. This is
because under 70% outliers, the naïve initial guess is almost
always contaminated by wrong loop closures, which severely
affects the performance of GNC. In comparison, using PCM
helps to avoid catastrophic failures, but PCM still exhibits low
recall as in the single-robot case. Finally, the proposed robust
initialization effectively corrects the wrong initial guess, and
applying GNC from the robust initialization (green) consistently
outperforms other techniques.

To provide additional insights over the performance of dif-
ferent techniques, Fig. 8 shows qualitative comparisons of final
trajectory estimates on a random problem instance with 70% out-
liers. All techniques use the same probability threshold of 99%.
Under this setting, PCM [see Fig. 8(a)] fails to reject all outlier
loop closures. As a result, its solution is distorted when compared
to the maximum likelihood estimate. When applying GNC from
naïve initialization [see Fig. 8(b)], the method fails to recover any
inlier loop closures due to incorrect initialization that causes the
variable update to converge to wrong estimates. Fig. 8(c) and (d)
shows that applying either PCM or robust initialization to correct
the initial guess before applying GNC can effectively resolve the
problem. Between this two approaches, however, our proposed
robust initialization produces lower trajectory error, which can
also be seen by comparing the trajectory estimates within the
red box. This is because PCM incorrectly removes inlier loop
closures during outlier rejection, which causes a loss of accuracy
that cannot be recovered by GNC.

B. Evaluation in Simulation and Benchmarking Datasets

We evaluate Kimera-Multi in three photo-realistic simulation
environments (Medfield, City, Camp), developed by the Army
Research Laboratory Distributed and Collaborative Intelligent
Systems and Technology (DCIST) Collaborative Research Al-
liance [91]. In addition, we also evaluate on three real-world en-
vironments (Vicon Room 1, Vicon Room 2, Machine Hall)
from theEuRocdataset [92]. Among all datasets,Machine Hall
contains five sequences, which are used to simulate collabora-
tive SLAM with five robots. The simulation and Vicon Room
datasets contain three sequences that are used to simulate a
three-robot scenario. In our experiments in this section and
Section VII-C, we run Kimera-Multi in a setting, where robots
are constantly in communication range, which means that inter-
robot loop closures are established at the earliest possible time.
In future work, we plan to further improve our implementa-
tion and test our system in scenarios where communication is
intermittent.

1) Trajectory Estimation Results: We first evaluate the accu-
racy of different distributed trajectory estimation techniques. In
this experiment, we useKimera-VIO to process raw sensor data,
and it is, thus, hard to obtain accurate covariance information

for all measurements. In our implementation, we use a fixed
isotropic covariance for each residual in PGO, with a standard
deviation of 0.01 rad for rotation and 0.1 m for translation.
Moreover, we use a relatively conservative probability threshold
of 50% for all robust estimation techniques. We compare the
following distributed solvers: 1) L2: standard PGO (least squares
optimization) using RBCD [17]; 2) PCM: outlier rejection with
PCM [13], followed by RBCD; 3) D-GNC (NI): proposed D-
GNC method starting from a naïve initial guess that combines
local odometry of each robot with randomly sampled inter-robot
loop closures between pairs of robots; 4) PCM + D-GNC:
outlier rejection with PCM, followed by D-GNC; 5) D-GNC: the
proposed D-GNC method with robust initialization; 6) D-GNC
(ES): an “early stopped” version of D-GNC that terminates
after 50 total RBCD updates; and 7) centralized GNC from
GTSAM [87].

Table I reports the final ATE of each method when evaluated
against the ground truth. Note that the total trajectory length
varies significantly across datasets, which also causes ATE to
vary. Due to the existence of outlier loop closures, standard least
squares optimization (L2) gives large errors. PCM improves
over the L2 results, but still yields large errors on a subset of
datasets. The proposed D-GNC method achieves significantly
lower trajectory errors on all datasets. Similar to the synthetic
experiments (see Section VII-A), we observe that applying GNC
after PCM (“PCM + D-GNC” in the table) always leads to
suboptimal performance compared to the proposed approach,
due to the low recall of PCM. On the Medfield simulation,
applying D-GNC from naïve initialization fails. In this case, the
naïve initialization is wrong due to the selection of an outlier
loop closure. This creates an error in the initial alignment of
robots’ reference frames which D-GNC is unable to correct.
Finally, we observe that on three of the datasets, applying early
stopping (ES) leads to lower error compared to full optimization
(distributed or centralized). In this experiment, estimation errors
are computed with respect to the ground-truth trajectories, which
are, in general, different from the true (unknown) maximum
likelihood estimate. In summary, the proposed D-GNC method
achieves the best performance, and applying ES does not sig-
nificantly affect the accuracy of trajectory estimation, which
remains comparable to the centralized GNC.

2) Communication Usage and Solution Runtime: In Table II,
we compare the communication usage of Kimera-Multi with
two baseline centralized architectures that either transmit all
images or keypoints. Data payloads used by Kimera-Multi
are divided into three parts: place recognition (exchanging
BoW vectors), GV (exchanging keypoints and descriptors),
and distributed PGO. The front-end (first two modules) con-
sumes more communication than the back-end (distributed
PGO). Overall, our results demonstrate that Kimera-Multi is
communication-efficient. For instance, on the Vicon Room 2
dataset, our system achieves a communication reduction of
70% compared to the baseline centralized system that transmits
all keypoints and descriptors. On the other hand, the system
does not achieve equally significant communication reduction
on the Machine Hall dataset. Compared to other datasets, the
increased number of robots in Machine Hall results in more
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TABLE I
ATE IN METERS WITH RESPECT TO GROUND-TRUTH TRAJECTORIES

For each dataset, we also report the total trajectory length (including all robots). L2: standard least squares optimization using LM; PCM: pairwise consistency maximization [13];
D-GNC: proposed distributed trajectory estimation method (using robust initialization); NI: naïve initialization; ES: early stopping. For reference, we also report the ATE of
centralized GNC (colored in gray).

TABLE II
COMMUNICATION USAGE AND SOLUTION RUNTIME

The data payloads induced by Kimera-Multi are further divided into three modules: place recognition (PR) that exchanges bag-of-word vectors, GV that transmits
keypoints and feature descriptors, and distributed pose graph optimization (DPGO). Centralized communication and runtime are colored in gray.

data transmission. In particular, the loose thresholds for loop
closure detection lead to increased data transmission during the
GV stage. Further communication reduction may be achieved
by employing recent communication-efficient methods for dis-
tributed place recognition [7], [42] and GV [44], [45].

In addition, Table II reports the runtime of D-GNC and
also compares with the centralized solver (implemented in
GTSAM [87]). Our method has reasonable runtime (approx-
imately 10 s) for the smaller Vicon Room datasets. For the
larger datasets, D-GNC requires more time for full convergence.
Nevertheless, applying ES effectively keeps the runtime close
to its centralized counterpart, without heavily compromising
estimation accuracy.

3) Metric-Semantic Mesh Quality: We use the ground-truth
point clouds available in the EuRoc Vicon Room 1 and 2
datasets, and the ground-truth mesh (and its semantic labels)
available in the DCIST simulator to evaluate the accuracy of
the 3-D metric-semantic mesh built by Kimera-Semantics
and the impact of the LMO. For evaluation, the estimated and
ground-truth meshes are sampled with a uniform density of
103 points/m2, as in [16]. The resulting semantically labeled
point clouds are then registered using the iterative closest point
(ICP) [93] implementation in Open3D [94]. Then, we calculate
the mean distance between each point in the ground-truth point
cloud to its nearest neighbor in the estimated point cloud to
obtain the metric accuracy of the 3-D mesh. In addition, we
evaluate the semantic reconstruction accuracy by calculating

TABLE III
SEMANTIC RECONSTRUCTION EVALUATION

Semantic labels accuracy before and after correction by LMO
in the DCIST simulator.

the percentage of correctly labeled points [16] relative to the
ground truth using the correspondences given by ICP. Figs. 9
and 10 report the metric accuracy of the individual meshes
constructed by each robot as well as the merged global mesh,
and Table III shows the semantic reconstruction accuracy in the
simulator (EuRoc does not provide ground-truth semantics).
In general, the metric-semantic mesh accuracy improves after
LMO for both individual and merged 3-D meshes, demonstrat-
ing the effectiveness of LMO in conjunction with our distributed
trajectory optimization. The dense metric-semantic meshes are
shown in Figs. 11 and 12. In the case when semantic labels are
unavailable, we are still able to generate the mesh, colored by
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TABLE IV
LOOP CLOSURE STATISTICS ON OUTDOOR DATASETS

For each pair of robots, we show the number of loop closures accepted by D-GNC
over the total number of putative loop closures (including outliers). Diagonal entries
correspond to intrarobot loop closures.

the RGB image colors, as shown in Fig. 13, for the experiment
in the simulator portraying the Medfield scene.

C. Evaluation in Large-Scale Outdoor Datasets

1) Experimental Setup: We demonstrate Kimera-Multi on
two challenging outdoor datasets, collected using a Clearpath
Jackal UGV equipped with a forward-facing RealSense D435i
RGBD Camera and IMU. The first dataset was collected at the
Medfield State Hospital, Medfield, MA, USA (see Fig. 1). Three
sets of trajectories were recorded, with the longest trajectory
being 860 m in length. The second dataset was collected around
the Ray and Maria Stata Center, Massachusetts Institute of Tech-
nology (see Fig. 14) and also includes three different trajectories
with each trajectory being over 500 m in length. In both Figs. 1
and 14, the red, orange, and blue trajectories correspond to robots
with ID 0, 1, and 2, respectively. Both sets of experiments are
challenging and include many similar-looking scenes that induce
spurious loop closures.

2) Results and Discussions: Table IV reports statistics about
loop closures on the outdoor datasets. Specifically, for each
pair of robots, we report the number of loop closures accepted
by D-GNC over the total number of detected loop closures
(including outliers). Diagonal entries in the table correspond to
intrarobot loop closures. Both datasets contain many outlier loop
closures, which are successfully rejected by D-GNC. Compared
toMedfield, theStata dataset contains significantly fewer inter-
robot loop closures, which makes distributed PGO particularly
challenging.

In order to evaluate estimation accuracy in the absence
of ground-truth trajectories, we measure end-to-end errors as
in [95]. In particular, we design each individual robot trajectory
to start and finish at the same place and then compute the final
end-to-end position errors. The end-to-end error is not equivalent
to the ATE, but still provides useful information about the final
estimation drift on each trajectory. Table V compares the end-
to-end errors of Kimera-VIO, Kimera-Multi (using D-GNC to
estimate trajectories), and centralized result (solved using GNC
in GTSAM [87]). To complement the quantitative result, we also
provide qualitative visualizations of the optimized trajectories
and meshes in Figs. 1 and 14.

On the Medfield dataset (see Fig. 1), Kimera-VIO accu-
mulates a drift of approximately 15–25 m on each trajectory
sequence. We note that the drift is mostly in the vertical direction,
hence only partially visible in Fig. Fig. 1(a). Through loop

TABLE V
TRAJECTORY LENGTHS AND END-TO-END ERRORS IN METERS ON

OUTDOOR DATASETS

Fig. 15. Stata experiment. Optimized mesh produced by Kimera-Multi
corresponding to trajectory estimate shown in Fig. 14(c).

closures and robust distributed PGO,Kimera-Multi significantly
reduces the error and, furthermore, achieves the same perfor-
mance as the centralized solver, as shown in Table V. In this
case, the global pose graph has 15 650 poses in total (including
all robots). D-GNC uses a total of 100 RBCD iterations, which
takes 53 s. Further runtime reduction may be achieved by de-
creasing the rate at which keyframes are created. In summary,
our trajectory estimation results together with the final optimized
mesh shown in Fig. 1(c) demonstrate the effectiveness of the
proposed system.

In comparison, the Stata dataset (see Fig. 14) is more chal-
lenging, partially due to the lack of enough inter-robot loop
closures (see Table IV b). Kimera-VIO accumulates higher
drifts, as shown in Fig. 14(a) and Table V. Fig. 14(b) shows the
Kimera-Multi trajectory estimates produced using the default
settings of D-GNC (see Algorithm 1). In this case, the global
pose graph has 11 184 poses in total. D-GNC uses 120 RBCD
iterations, which takes 50 s. We observe that while the orange
and red trajectory estimates are qualitatively correct, the blue
trajectory is not correctly aligned in the global frame. This
is because with the approximate variable updates of D-GNC
(presented in Section V-C), the only inter-robot loop closure
with the blue trajectory is rejected. Additionally, with fewer
inter-robot loop closures, RBCD generally converges at a slower
rate. To resolve this issue, we increase the number of RBCD iter-
ations within each variable update, hence making D-GNC more
similar to the centralized GNC algorithm. With this change,
D-GNC uses a total of 2000 RBCD iterations, which takes 14
minutes. However, the final trajectory estimates [see Fig. 14(c)]
are significantly improved and are close to centralized GNC [see
Fig. 14(d)]. The corresponding end-to-end errors are also close
to centralized GNC, as shown in Table V. Fig. 15 shows the
optimized mesh produced by Kimera-Multi corresponding to
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the trajectory estimates shown in Fig. 14(c). In this experiment,
the difficulty faced by Kimera-Multi is primarily due to the lack
of inter-robot loop closures (see Table IV b). In the future, we
plan to further improve the loop closure detection module to gain
better performance in similar visually challenging scenarios.

VIII. CONCLUSION

In this article, we presented Kimera-Multi, a distributed
multi-robot system for robust and dense metric-semantic SLAM.
Our system advances state-of-the-art multi-robot perception by
estimating 3-D mesh models that capture both dense geometry
and semantic information of the environment. Kimera-Multi is
fully distributed: each robot performs independent navigation,
using Kimera to estimate local trajectories and meshes in real
time. When communication becomes available, robots engage
in local communication to detect loop closures and perform
distributed trajectory estimation. From the globally optimized
trajectory estimates, each robot performs LMO to refine its local
map. We also presented D-GNC, a novel two-stage method for
robust distributed PGO, which serves as the estimation back-
bone of Kimera-Multi and outperforms prior outlier rejection
methods.

We performed extensive evaluation of Kimera-Multi, using
a combination of photo-realistic simulations, indoor SLAM
benchmarking datasets, and large-scale outdoor datasets. Our
results demonstrated that Kimera-Multi: 1) provides robust and
accurate trajectory estimation while being fully distributed; 2)
estimates 3-D meshes with improved metric-semantic accuracy
compared to inputs from Kimera; and 3) is communication-
efficient and achieves significant communication reductions
compared to baseline centralized systems.
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