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Abstract—We develop an online probabilistic metric-semantic
mapping approach for mobile robot teams relying on streaming
RGB-D observations. The generated maps contain full continuous
distributional information about the geometric surfaces and
semantic labels (e.g., chair, table, wall). Our approach is based on
online Gaussian Process (GP) training and inference, and avoids
the complexity of GP classification by regressing a truncated
signed distance function (TSDF) of the regions occupied by
different semantic classes. Online regression is enabled through
a sparse pseudo-point approximation of the GP posterior. To
scale to large environments, we further consider spatial domain
partitioning via an octree data structure with overlapping leaves.
An extension to the multi-robot setting is developed by having
each robot execute its own online measurement update and then
combine its posterior parameters via local weighted geometric
averaging with those of its neighbors. This yields a distributed in-
formation processing architecture in which the GP map estimates
of all robots converge to a common map of the environment while
relying only on local one-hop communication. Our experiments
demonstrate the effectiveness of the probabilistic metric-semantic
mapping technique in 2-D and 3-D environments in both single
and multi-robot settings.

I. INTRODUCTION

Autonomous systems navigating and executing complex
tasks in real-world environments require an understanding of
the 3-D geometry and semantic context of the environment.
This paper develops a probabilistic metric-semantic mapping
algorithm, using streaming distance and semantic category ob-
servations onboard a robot, to reconstruct geometric surfaces
and their semantic identity (e.g., chairs, tables, doors) via
sparse online GP regression. In addition to a multi-modal en-
vironment abstraction, probabilistic metric-semantic mapping
provides uncertainty estimates that can aid safe navigation and
active mapping algorithms. To support collaboration among
multiple robots operating in the same environment, we also
consider a distributed setting in which each robot observes the
environment locally, with its onboard sensors, and communi-
cates its local map with one-hop neighbor robots to arrive at
a common map of the environment observed across the whole
robot network.

We focus on a TSDF representation [1], [2] which defines
geometric surfaces implicitly, as the zero level-set of a TSDF
function. TSDF surface representations have gained popularity
due to their high accuracy (compared to regular, adaptive, or
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Fig. 1: RGB images (first column), segmented images (second
column), and depth images (third column) used by the proposed
approach for online construction of dense metric-semantic maps.

sparse grid representations [3], [4]) and ability to directly pro-
vide distance and gradient information (compared to explicit
mesh representations [5]) useful to specification of safety and
visibility constraints. Classification of the geometric surfaces
into semantic categories is crucial for context understanding
and specification of complex robot tasks [6]–[8]. Many clas-
sification techniques, however, provide maximum likelihood,
instead of Bayesian, estimates because efficient probabilistic
classification remains an open problem in machine learning
[9], [10]. The challenge is that discrete data likelihoods are not
conjugate with a continuous map prior. While one may employ
Laplace approximations to partially mitigate this challenge
[11]), we propose a multi-class TSDF inference approach
based on Bayesian regression.

We employ GP regression [12] to incorporate spatial cor-
relation into a probabilistic resolution-free TSDF map of the
3-D environment. GP inference has been successfully used to
obtain continuous map representations [13]–[15] but existing
formulations are binary (instead of multi-class) and model
occupancy (instead of a distance field). Range sensors, such
as Lidars and depth cameras, do not provide direct TSDF
observations because they measure distance in a specific
viewing direction rather than to the nearest obstacle surface.
To obtain TSDF training examples, we triangulate each depth
image into a local mesh surface and measure the distance to
it from a set of 3-D locations.

Onboard sensors provide repeated observations of the same
scene. While this redundancy is important for mitigating
measurement noise, the amount of training data keeps growing
over time. Hence, an important consideration for metric-
semantic mapping is to build maps whose memory and compu-
tation requirements are designated by the underlying structure
of the environment, rather than the number of distance and
category observations. Unfortunately, GP training scales cubi-
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cally with the number training examples but there are various
ways to address this bottleneck [16]–[19]. We observe that, in
our setting, the data can be compressed significantly through
averaging before GP training and, notably, this does not affect
the posterior TSDF distribution. The remaining training pairs
are used as pseudo points [16] to support the continuous GP
representation with a finite set of parameters. To reduce the
complexity in large maps further, one might consider local
kriging, decomposing the spatial domain into subdomains and
making predictions at a test location using only the pseudo
points contained within the subdomain. Choosing independent
subdomains, however, leads to discontinuities of the pre-
dicted TSDF function at the subdomain boundaries. Ensemble
methods that construct multiple local estimators and use a
weighted combination of their predictions include Bayesian
committee machines [20], [21], sparse probabilistic regression
[22], or infinite mixtures Gaussian process experts [23]. These
techniques avoid the discontinuities of local kriging but their
computation cost is still significant for online training. In-
spired by the adaptive occupancy representation of Octomap
[3], we propose an efficient approach that decomposes the
environment into an Octree of overlapping subdomains, while
preventing discontinuities in the GP posterior. Combining
these ideas yields a hierarchical pseudo-point parameterization
of the GP, which may be updated online to achieve incremental
probabilistic mapping. Our method generates dense metric-
semantic surfaces and, yet, remains efficient even in large
environments.

Finally, we provide a distributed formulation of our TSDF
GP regression, enabling multiple robots to collaboratively
build a common metric-semantic map of the environment.
Each robot updates a local GP Octree pseudo-point approxima-
tion but synchronizes its pseudo-point statistics by averaging
with its one-hop communication neighbors. Our distributed
inference approach is inspired by probabilistic consensus tech-
niques [24], [25], but we generalize those from using a fixed
parameter dimension to a changing number of pseudo-point
parameters, resulting from robots observing new environment
regions online. We prove that the local GP estimates of
each individual robot converge in finite time to the same GP
posterior that would have been obtained by a central server
using all observations obtained from all robots.

A preliminary version of this work was presented in [26].
This version improves the theoretical development for the
centralized single-robot setting and extends the approach to
a decentralized multi-robot setting by introducing a novel
approach for distributed incremental sparse GP regression with
theoretical guarantees for consistent estimation. Additionally,
this paper demonstrates the effectiveness of our decentralized
approach via evaluations in 2-D simulation and 3-D real data
sets. The main contributions of this work are to:
• develop an online GP training and inference algorithm for

TSDF regression that enables 3-D semantic segmentation
of the environment from streaming sensor data,

• ensure controllable computation and memory complexity
while providing a continuous-space probabilistic repre-
sentations of the environment,

• provide a distributed formulation of the TSDF GP regres-

sion, which enables a robot team to collaboratively build
a common metric-semantic map from local observations
and one-hop communication with provably equivalent
quality to batch centralized estimation.

Our metric-semantic mapping approach is demonstrated in
simulated and real-world datasets and may be used either
offline, with all sensory data provided in advance, or online,
processing distance and semantic category observations incre-
mentally as they arrive.

II. RELATED WORK

Various representations have been proposed for occupancy
or geometric surface estimation from range or depth mea-
surements. Occupancy grid mapping [27] discretizes the en-
vironment into a regular voxel grid and estimates the oc-
cupancy probability of each voxel independently. A dense
voxel representation quickly becomes infeasible for large
domains and adaptive resolution data structures, such as an
octree, are necessary [3], [28]. While accurate maps may also
be constructed using point cloud [29], [30] or surfel [31],
[32] representations, such sparse maps do not easily support
collision and visibility checking for motion and manipulation
planning. Recent work is considering explicit polygonal mesh
[5], [33], [34] and implicit signed distance function [35]–[38]
models. We focus our review on TSDF techniques as they are
most closely related to our work.

The seminal work of Curless et al. [1] emphasized the
representation power of TSDF and showed that dense surface
modeling can be done incrementally using range images.
KinectFusion [35] achieved online TSDF mapping and RGB-
D camera pose estimation by storing weighted TSDF values
in a voxel grid and performing multi-scale iterative closest
point (ICP) alignment between the predicted surface and the
depth images. Niessner et al. [4] demonstrated that TSDF
mapping can be achieved without regular or hierarchical grid
data structures by hashing TSDF values only at voxels near
the surfaces. These three works inspired a lot of subsequent
research, allowing mapping of large environments [39], real-
time operation without GPU acceleration [40], [41], map
correction upon loop closure [42], [43], and semantic category
inference [44]. Bylow et al. [45] propose a direct minimization
of TSDF projective depth error instead of relaying on explicit
data association or downsampling as in ICP. TSDF maps are
accurate and collision checking in them is essentially a look-up
operation, prompting their use as an alternative to occupancy
grids for robot motion planning and collision checking [38],
[46]. Voxblox [37] incrementally builds a (non-truncated)
Euclidean signed distance field (ESDF), applying a wavefront
algorithm to the hashed TSDF values. Fiesta [38] improves
the ESDF construction by introducing two independent queues
for inserting and deleting obstacles. Saulnier et al. [47] show
that weights of the TSDF values arise as the variance of a
Kalman filter and may be used as an uncertainty measure for
autonomous exploration and active TSDF mapping.

Most TSDF mapping techniques, however, forgo proba-
bilistic representations in the interest of scalability. Gaussian
process (GP) inference has been used to capture correlation



in binary occupancy mapping. O’Callaghan et al. [13] is
among the first works to apply GP regression to infer a latent
occupancy function using data from a range sensor. The GP
posterior is squashed to a binary observation model a posteriori
to recover occupancy likelihood. The resulting probabilistic
least-squares method is more efficient than GP classification
but still scales cubically with the amount of training data.
To address this, several works [14], [21], [48], [49] rely on
sparse kernels to perform separate GP regressions with small
subsets of the training data and Bayesian Committee Machines
(BCM) to fuse the separate estimates into a full probabilistic
occupancy map. Ramos et al. [50] proposed fast kernel ap-
proximations to project the occupancy data into a Hilbert space
where a logistic regression classifier can distinguish occupied
and free space. This idea has been extended to dynamic maps
[51] as well as into a variational autoencoder formulation [52]
that compresses the local spatial information into a latent
low-dimensional feature representation and then decodes it
to infer the occupancy of a scene. Guo and Atanasov [53]
showed that using a regular grid discretization of the latent
function and a decomposable radial kernel leads to special
structure of the kernel matrix (kronecker product of Toeplitz
matrices) that allows linear time and memory representation
of the occupancy distribution.

Augmenting occupancy representations with object and
surface category information is an important extension, al-
lowing improved situational awareness and complex mission
specification for robots. Several works [7], [54]–[57] employ
conditional random fields (CRFs) to capture semantic infor-
mation. Vineet et al. [54] provide incremental reconstruction
and semantic segmentation of outdoor environments using a
hash-based voxel map and a mean-field inference algorithm for
densely-connected CRFs. These techniques are accurate but
also computationally expensive because they operate over each
map element. Zheng et al. [58] incorporate spatial information
across multiple levels of abstraction and form a probability
distribution over semantic attributes and geometric represen-
tations of places using TopoNet, a deep sum-product neural
network. Grinvald et al. [44] reconstruct individual object
shapes from multi-view segmented images and assemble the
estimates in a voxelized TSDF map. Gan et al. [59] propose a
continuous-space multi-class mapping approach, which relies
on a Dirichlet class prior, a Categorical observation likeli-
hood, and Bayesian kernel inference to extrapolate the class
likelihoods to continuous space. Rosinol et al. [5], provides a
modern perception library by combining the state of the art in
geometric and semantic understanding.

In many applications, metric-semantic mapping may be
performed by a team of collaborating robots. Relying on
centralized estimation has numerous limitations related to the
communication, computation, and storage requirements of col-
lecting all robot measurements and map estimates at a central
server. It is important to develop distributed techniques that
allow local inference and storage at each robot, communication
over few-hop neighborhoods, and consensus among the robot
estimates. Techniques extending network consensus [60] to
distributed probabilistic estimation [?], [24], [61]–[63] are
closely related. These works show that distributed estimation

of a finite-dimensional parameter is consistent when the prob-
ability density functions maintained by different nodes are
averaged over one-hop neighborhoods in a strongly connected,
potentially time-varying graph. Our work extends these tech-
niques to distributed probabilistic estimation functions relying
on local averaging of sparse (pseudo-point) GP distributions.
Specific to cooperative semantic mapping, Choudhary et al.
[64] develop distributed pose-graph optimization algorithms
based on successive and Jacobi over-relaxation to split the
computation among the robots. Koch et al. [65] develop
a parallel multi-threaded implementation for cooperative 2-
D SDF mapping. Lajoie et al. [66] propose a distributed
SLAM approach with peer-to-peer communication that rejects
spurious inter-robot loop closures using pairwise consistent
measurement sets.

III. PROBLEM FORMULATION

Consider a team of n robots, communicating over a network
represented as an undirected graph G = (V, E) with vertices
V := {1, ..., n} and edges E ⊂ V×V . An edge (i, j) ∈ E from
robot i to robot j exists if the two robots can communicate.
The robots directly connected to robot i are called neighbors
and will be denoted by Ni := {j ∈ V | (i, j) ∈ E}.

The robots operate in an unknown workspace, represented
as a subset of Euclidean space, W ⊂ R3. The workspace
consists of two disjoint subsets O and F , comprising obstacles
and free space, respectively, i.e., W = O ∪ F . The obstacle
region is a closed set that is a pairwise disjoint union, O =
∪Cl=1Ol, of C closed sets, each denoting the region occupied by
object instances from the same semantic class. For example,
O1 may be the space occupied by all chairs, while O2 may
be the space occupied by all tables.

Each robot is equipped with a sensor, such as a lidar
scanner or an RGB-D camera, that provides distance and class
observations of the objects in its vicinity. We assume that the
position pit ∈ R3 and orientation Ri

t ∈ SO(3) of each sensor
i ∈ V at time step t are known, e.g., from a localization
algorithm running onboard the robots. We model a sensor
observation as a set of rays (unit vectors), e.g., corresponding
to lidar scan rays or RGB-D image pixels.

Definition 1. A sensor frame Ei = {ηik}k is a set of vectors
ηik ∈ R3 such that ‖ηik‖ = 1, ∀i, k.

At time t, the k-th sensor ray of robot i, starts at position
pit and has direction Ri

tη
i
k. Each ray measures the distance to

and semantic class of the object that it intersects with first. In
practice, the class measurements are obtained from a semantic
segmentation algorithm (e.g., [67]), applied to the RGB image
or lidar scan (see Fig. 1), while the distance measurements
are provided either as a transformation of the depth image or
directly from the lidar scan.

Definition 2. A sensor observation of robot i at time t is
a collection of distance λit,k ∈ R≥0 and object class cit,k ∈
{1, ..., C} measurements acquired along the rays ηik ∈ Ei.

We define the relationship among the object sets Ol and the
sensor observations λit,k, cit,k next.



Definition 3. The truncated signed directional distance func-
tion (TSDDF) hl(x,η) of object class Ol, is the signed
distance from x ∈ W to the boundary ∂Ol in direction
η ∈ R3, truncated to a maximum of d̄ ≥ 0, i.e.,

hl(x,η) :=

{
−min

(
dη(x, ∂Ol), d̄

)
if x ∈ Ol

min
(
dη(x, ∂Ol), d̄

)
if x ∈ W \ Ol,

dη(x, ∂Ol) := min
{
d ≥ 0

∣∣ x + dη ∈ ∂Ol
}
. (1)

According to Def. 3, hl(pit,R
i
tη
i
k) is the (truncated) dis-

tance from sensor position pit to object class Ol along the
direction Ri

tη
i
k of the k-th ray at time t. The class observation

cit,k is determined by the object set Ol with minimum absolute
TSDDF to pit along Ri

tη
i
k:

cit,k = arg min
l∈{1,...,C}

|hl(pit,Ri
tη
i
k)|. (2)

The distance observation λit,k is a noisy measurement of the
distance to the nearest object class:

λit,k = hcit,k(pit,R
i
tη
i
k) + ε, ε ∼ N (0, σ2), (3)

where σ2 is the variance of the distance measurement noise.
These definitions are illustrated in Fig. 2.

Given sensor poses pit, R
i
t and streaming onboard obser-

vations λit,k, cit,k for t = 1, 2, . . ., the main objective of
this work is to construct a metric-semantic map of the ob-
served environment online by estimating the object class sets
Ol = {x ∈ W | minη hl(x,η) ≤ 0}, implicitly represented by
the TSDDFs hl(x,η). Note that each object class is associated
with a posterior distribution over sensor frames η. To reduce
the complexity of estimating TSDDFs, which are defined for
arbitrary directions η, we consider the more usual TSDF
model, defined as the minimum of a TSDDF over η.

Definition 4. The truncated signed distance function (TSDF)
fl(x) of object class Ol is the truncated signed distance from
x ∈ X to the boundary ∂Ol, i.e.,

fl(x) := hl(x,η
∗) where η∗ = arg min

η
|hl(x,η)|. (4)

We develop incremental sparse Gaussian Process regres-
sion to maintain distributions GP(µit,l(x), kit,l(x,x

′)) over the
TSDF functions fl(x) in (4) at each robot i, conditioned on the
sensor observations

{
λiτ,k, c

i
τ,k

}
up to time t. We propose a

new data compression technique in Sec. IV and apply it in the
design of the GP training algorithm for probabilistic TSDF
inference in Sec. V. Our approach generates a continuous-
space probabilistic model of the distance to and semantic
classes of the environment surfaces. To achieve scalable online
mapping of large domains, we train independent sparse GP
models over an octree cover of the 3-D space.

Next, we extend our approach from a centralized single-
robot to a distributed multi-robot formulation. We develop new
techniques for distributed incremental sparse GP regression in
Sec. VI and apply them to the collaborative semantic TSDF
mapping problem in Sec. VII. Our method allows each robot
to update its own sparse TSDF GP model, relying on local
sensor observations and one-hop information exchange with
its neighborhoods, yet guarantees theoretically that the model

gt,1(x)
x ∈ P#

x̂up

ct,k = 1
x̂ ∈ Gt,1

ct,k′ = 2
x̂′

λ
t,k

λ
t,k ′

u

v

x

y

xc

yc

zc

Fc

z = 1

u

v

ηk

ηk′

y

z

x

pose {Rt,pt}

Sensor
Frame

World Frame

Fig. 2: Sensor observation at time t showing the distance λt,k, λt,k′

and class ct,k, ct,k′ measurements obtained along sensors rays ηk,
η′
k ∈ E when a camera sensor is at position pt with orientation Rt.

The pseudo points P# (see Sec. V-A) close to the observed surface
are shown in gray.

parameters of different robots converge in finite-time to the
same parameters that would be obtained by centralized GP
regression. The effectiveness of our approach is demonstrated
in single- and multi-robot experiments using simulated 2-D
data in Sec. VIII and real 3-D data in Sec. IX.

IV. DATA COMPRESSION FOR INCREMENTAL SPARSE
GAUSSIAN PROCESS REGRESSION

This section reviews sparse Gaussian Process regression
and introduces a new approach for compressing training data
acquired by repeated observation of the same locations, which
is typical when an onboard robot sensor observes the same
environment multiple times. Our data compression allows
training a GP model with much fewer samples, yet prov-
ably generates the same GP posterior that would have been
computed using the full uncompressed training set. Finally,
the sparse GP model and the data compression allow us to
design an efficient incremental GP algorithm that updates the
GP posterior with sequential data instead of recomputing it
from scratch.

A. Background on Sparse GP Regression

A Gaussian Process is a set of random variables such that
the joint distribution of any finite subset of them is Gaussian.
A GP-distributed function f(x) ∼ GP(µ0(x), k0(x,x′)) is
defined by a mean function µ0(x) and a covariance (kernel)
function k0(x,x′). The mean and covariance are such that for
any finite set X = {x1, . . . ,xM}, the random vector f(X ) :=
[f(x1), . . . , f(xM )]

> ∈ RM has mean with j-th element
µ0(xj) and covariance matrix with (j, l)-th element k0(xj ,xl)
for j, l = 1, . . . ,M . Given a training set D = {(xj , yj)}Mj=1,



generated according to yj = f(xj) + ηj with independent
Gaussian noise ηj ∼ N (0, σ2), the posterior distribution of
the random function f(x) can be obtained from the joint
distribution of the value f(x) at an arbitrary location x and
the random vector y := [y1, . . . , yM ]

> of measurements. In
detail, the joint distribution is:[
f(x)
y

]
∼ N

([
µ0(x)
µ0(X )

]
,

[
k0(x,x) k0(x,X )
k0(X ,x) k0(X ,X ) + σ2I

])
,

while the corresponding conditional distribution f(x)|X ,y ∼
GP(µ(x), k(x,x′)) has mean and covariance functions:

µ(x) := µ0(x) + k0(x,X )(k0(X ,X ) + σ2I)−1(y − µ0(X )),

k(x,x′) := k0(x,x′)− k0(x,X )(k0(X ,X ) + σ2I)−1k0(X ,x′).
(5)

Computing the GP posterior has cubic complexity in the
number of observations M due to the matrix inversion in (5).

Inspired by Snelson and Ghahramani [16], we introduce a
sparse approximation to the GP posterior in (5) using a set of
pseudo points P ⊂ D whose number |P| �M . The key idea
is to first determine the distribution N (µ,Σ) of f := f(P)
conditioned on X , y according to (5):

µ := µ0(P) + k0(P,X )(k0(X ,X ) + σ2I)−1(y − µ0(X ))

= µ0(P) + k0(P,P) (k0(P,P) + Γ)
−1
γ (6)

Σ := k0(P,P)− k0(P,X )
(
k0(X ,X ) + σ2I

)−1
k0(X ,P),

= k0(P,P) (k0(P,P) + Γ)
−1
k0(P,P)

where Γ := k0(P,X )
(
Λ + σ2I

)−1
k0(X ,P), Λ :=

k0(X ,X ) − k0(X ,P)k0(P,P)−1k0(P,X ), and γ :=

k0(P,X )
(
Λ + σ2I

)−1
(y − µ0(X )). Using the definitions

of information matrix Ω := Σ−1 and information mean
ω := Ωµ, we can equivalently write:

ω = Ωµ0(P) + k0(P,P)−1γ,

Ω = k0(P,P)−1 (k0(P,P) + Γ) k0(P,P)−1.
(7)

Then, the posterior density of f(x) conditioned on X ,y is:

p(f(x)|X ,y) =

∫
p(f(x)|f)p(f |X ,y)df (8)

which is a GP with mean and covariance functions:

µ(x) = µ0(x) + k0(x,P)k0(P,P)−1
(
Ω−1ω − µ0(P)

)
k(x,x′) = k0(x,P)k0(P,P)−1Ω−1k0(P,P)−1k0(P,x′)

+ k0(x,x′)− k0(x,P)k0(P,P)−1k0(P,x′). (9)

If we assume that conditioned on P , the measurements
yj are generated independently, i.e., Λ is approximated by
a diagonal matrix with elements λ(xj) := k0(xj ,xj) −
k0(xj ,P)k0(P,P)−1k0(P,xj), then the complexity of com-
puting µ, Σ in (6) (training) and µ(x), k(x,x′) in (9) (testing)
are O(|P|2|X | + |P|3) and O(|P|2), respectively, instead of
O(|X |3) and O(|X |2) without pseudo points in (5). The use
of pseudo points leads to significant computational savings
when |P| � |X |. We assume that the kernel parameters are
optimized offline and focus on online computation of the terms
in (9), needed for prediction.

B. Repeated Input Data Compression

Next, we detail a way to obtain additional savings in terms
of data storage requirements. Specifically, if the training data
D = (X ,y) contains repeated observations from the same
locations, i.e., the points in X are not unique, then the GP
training complexity can be reduced from cubic in |X | to cubic
in the number of distinct points in X . We formalize this in the
following proposition, which establishes that the GP posterior
is unchanged if we compress the observations in y obtained
from the same locations in X .

Proposition 1. Consider f(x) ∼ GP(µ0(x), k0(x,x′). Let:

X = {x1 , . . . ,x1 ,x2 , . . . ,x2 , . . . ,xn , . . . ,xn }
y = [y1,1, . . . , y1,m1

, y2,1, . . . , y2,m2
, . . . , yn,1, . . . , yn,mn ]

>

be data generated from the model yi,j = f(xi) + ηi,j with
ηi,j ∼ N (0, σ2) for i = 1, . . . , n and j = 1, . . . ,mi. Let:

P = {x1, . . . ,xn}, ζ =

 1

m1

m1∑
j=1

y1,j , . . . ,
1

mn

mn∑
j=1

yn,j

>
(10)

be a compressed version of the data generated from f(xi) with
noise η̂i ∼ N (0, σ

2

mi
). Then, f(x)|X ,y and f(x)|P, ζ have the

same Gaussian Process distribution GP(µ(x), k(x,x′)) with:

µ(x) = µ0(x) + k0(x,P)Z(ζ − µ0(P)),

k(x,x′) = k0(x,x′)− k0(x,P)Zk0(P,x′),
(11)

where Z−1 := k0(P,P) + σ2 diag(m)−1 and m is a vector
with elements mi.

Proof. The distribution of f(x)|X ,y is provided in (5). Using
the data P , ζ, instead of X , y, to compute the posterior GP
distribution of f(x), according to (5), leads to the expression
in (11). We need to show that (5) and (11) are equal given
the relationship between X , y and P , ζ in (10). Let E be a
binary matrix defined such that k0(X ,x) = Ek0(P,x). Note
that k0(X ,X ) = Ek0(P,P)E>, k0(x,X ) = k0(x,P)E>,
E>E = diag(m), and ζ = (E>E)−1E>y. Using these
expressions in (5) leads to:

µ(x) = µ0(x)+

k0(x,P)E>(Ek0(P,P)E> + σ2I)−1(y − Eµ0(P)),

k(x,x′) = k0(x,x′)− (12)

k0(x,P)E>(Ek0(P,P)E> + σ2I)−1Ek0(P,x′).

An application of the matrix inversion lemma followed
by algebraic manipulation shows that E>(Ek0(P,P)E> +

σ2I)−1 =
(
k0(P,P) + σ2(E>E)−1

)−1
(E>E)−1E> =

Z(E>E)−1E>. Replacing this and ζ = (E>E)−1E>y
in (12) shows that the GP distributions of f(x)|X ,y and
f(x)|P, ζ are equal.

Prop. 1 allows us to summarize a training set X , y by
keeping the distinct points P ⊂ X as well as the average
observation value ζ(p) and number of times m(p) that each
point p ∈ P has been observed. Given these statistics,
the mean function µ(x) and covariance function k(x,x′) of
the posterior GP can be obtained according to (11) with



ζ := ζ(P) and m := m(P). When the training points X
contain many repetitions, the subset P of distinct points is a
natural choice of pseudo points (Sec. IV-A) and, in this case,
the posterior obtained from training with P is exact (Prop. 1)
instead of an approximation of the posterior obtained from
training with X . We exploit this compression technique for
efficient incremental GP training when the same observations
are observed multiple times.

C. Incremental Compressed Sparse GP Regression

Suppose now that, instead of a single training set D, the
data are provided sequentially, i.e., an additional dataset D̃t
of points X̃t with labels ỹt is provided at each time step t.
The cumulative data up to time t are Dt := ∪tτ=1D̃τ . Based on
Prop. 1, we can define an incrementally growing set of pseudo
points Pt with associated number of observations mt(p)
and average observation ζt(p) for p ∈ Pt and observation
precision Zt. We show how to update these statistics when
a new dataset D̃t+1 = (X̃t+1, ỹt+1) arrives at time t + 1.
Let P̃t+1 be the set of unique points in X̃t+1 with number
of observations m̃t+1(p) and average observation ζ̃t+1(p) for
p ∈ P̃t+1. The update of Pt, mt(p) and ζt(p) is:

Pt+1 = Pt ∪ P̃t+1

mt+1(p) =

{
mt(p) + m̃t+1(p), if p ∈ Pt,
m̃t+1(p), else,

ζt+1(p) =

{
mt(p)ζt(p)+m̃t+1(p)ζ̃t+1(p)

mt+1(p) , if p ∈ Pt,
ζ̃t+1(p), else.

(13)

To update the observation precision Zt, first consider the
existing pseudo points Pt. Let l be the index of p ∈ Pt in
Zt. Define εl := σ2

(
1

mt+1(p) −
1

mt(p)

)
, B0 := Zt, and for

l = 1, . . . , |Pt|:

Bl+1 =
(
B−1
l + εlele

>
l

)−1
= Bl −

Blele
>
l Bl

1
εl

+ e>l Blel
. (14)

With some abuse of notation, let B := B|Pt| be the observation
precision after all p ∈ Pt have been updated. Finally, we
update B by introducing the pseudo points P̃t+1 \ Pt that
have been observed for the first time:

Zt+1 =

[
B−1 C
C> D

]−1

=

[
B +BCSC>B −BCS
−SC>B S

]
,

(15)
where C := k0(Pt, P̃t+1\Pt), D := k0(P̃t+1\Pt, P̃t+1\Pt)+
σ2 diag(m̃t+1(P̃t+1 \ Pt))−1, and S := (D−C>BC)−1. By
recursively tracking these matrix inverses, the posterior update
can be executed efficiently every time a new observation
arrives with complexity that is cubic in the number of new
distinct points. This is a significant improvement over naı̈ve
GP training.

Unfortunately, this complexity still exhibits computational
bottlenecks over large domains, where the number of pseudo
points Pt continues to grow with t. Returning to the TSDF
mapping problem, this situation happens when a robot con-
tinuously explores a large 3-D environment. We introduce
an octree spatial decomposition with overlapping subregions,

allowing us to train independent GPs with a fixed maximum
number of pseudo points in each subregion. This aspect,
as well as how the training sets are constructed from the
robot observations, discussed in Sec. III, and utilized for
probabilistic semantic TSDF mapping are the focus of the
following section.

V. PROBABILISTIC METRIC-SEMANTIC MAPPING

In this section, we consider the single-robot mapping prob-
lem. For simplicity of notation, we suppress the superscript
i that denotes the robot index. The sensor measurements
{λt,k, ct,k} are generated according to the models in (2) and
(3) that depend on the TSDDFs {hl(x,η)} of the different
semantic classes in the environment. As mentioned in Sec. III,
instead of {hl(x,η)}, we focus on estimating the TSDFs
{fl(x)}, whose domains are lower-dimensional. We apply the
incremental GP regression technique developed in Sec. IV.
Since the sensor data {λt,k, ct,k} are not direct samples from
the TSDFs, they need to be transformed into training sets D̃t,l,
suitable for updating the GP distributions of {fl(x)}.

A. Training Set Construction

The class measurements allow us to associate the sensor
data with particular semantic classes, while the distance mea-
surements allow us to estimate the points where the sensor
rays hit the object sets Ol. We define the following point sets
for each detected semantic class at time t:

Gt,l = {x̂ ∈ R3
∣∣ x̂ = λt,kRtηk + pt and ct,k = l}. (16)

The values fl(x̂) of the TSDFs are close to zero at points
x̂ ∈ Gt,l because the sensor rays hit an object surface close
to these locations.

As shown in Prop. 1, the complexity of online GP training
can be improved by forcing the training data to repeatedly
come from a finite set of points. We choose a grid discretiza-
tion P# of the workspace W and construct a training set by
selecting points x ∈ P#, that are at most ε > 0 away from
the points x̂ ∈ Gt,l, and approximating their TSDF values
fl(x) ≈ gt,l(x) (see Fig. 2). Precisely, the training data sets
are constructed at time t as:

D̃t,l = {(x, gt,l(x))|x ∈ P#,∃x̂ ∈ Gt,l s.t. ||x− x̂||2 ≤ ε}.
(17)

In the case of a camera sensor, the TSDF value gt,l(x) of
a pseudo point x is obtained by projecting x to the image
plane and approximating its distance from the distance values
of nearby pixels. In detail, suppose ηk is the unit vector
corresponding to the pixel closest to the projection of x (red
pixel in Fig. 2) and let x̂ ∈ Gt,l be the coordinates of its ray
endpoint (blue point in Fig. 2). Let x̂right and x̂up (two cyan
points in Fig. 2) be the ray endpoints of two adjacent pixels.
Then, gt,l(x) is the signed distance from x to the plane defined
by x̂, x̂right, and x̂up:

gt,l(x) := n>(x− x̂), n := sign(q>(pt − x̂))q,

q =
(x̂right − x̂)× (x̂up − x̂)

‖(x̂right − x̂)× (x̂up − x̂)‖
,

(18)



where q is the normal of the plane and the signed distance
from pt to the plane is positive because the sensor is known
to be outside of the object set Ol. With the input variables as
distance observations and target variables as truncated signed
distance field specified, we shift to how actually compute the
posterior inference.

B. Incremental TSDF Inference

Recall that we are using streaming measurements to update
the GP distributions of the TSDFs {fl(x)}. We derived an
incremental sparse GP update in Sec. IV-C. Here, we use
the transformed TSDF training data D̃t,l to update the GP
distribution for each class l. At time t, the new data are D̃t,l =

(X̃t,l, ỹt,l) and the new pseudo points are P̃t,l = X̃t,l \Pt−1,l.
Given X̃t,l, ỹt,l, P̃t,l for each class l, we can update Pt,l, ζt,l,
mt,l via (13). If online prediction is required, we can also
update the precision matrix Zt,l using (14) and (15). Then,
we have the GPs of all classes updated, and can predict the
TSDF at any query point according to (11). Next we discuss
how the inferred posterior may be employed to construct a
semantic category prediction.

C. Semantic Category Prediction

Next, we discuss how to predict the semantic class labels on
the surfaces of the implicitly estimated object sets Ol. While
we did not explicitly model noise in the class observations
in (2), in practice, semantic segmentation algorithms may
produce incorrect pixel-level classification. This leads to some
sensor observations λt,k, ct,k being incorrectly included into
the training set D̃t,l of a different semantic class. This happens,
for example, if objects from two different classes, say l1 and
l2, are spatially close to each other and, in an RGB image,
parts of the boundary of one are classified as belonging to the
other class. Over time, with multiple sensor observations, the
TSDF approximations for both classes l1 and l2 may contain
pseudo points x ∈ P# with small TSDF values, indicating
an object surface at the same location. To predict the correct
semantic class, we compare the likelihoods of the different
classes at surface points using the posterior GP distributions
of the TSDFs fl(x).

Proposition 2. Let GP(µt,l(x), kt,l(x,x
′)) be the distribu-

tions of the truncated signed distance functions fl(x) at time
t, determined according to (11). Consider an arbitrary point
x ∈ ∂O on the surface of the obstacle set, i.e., x is such that
fl(x) = 0 for some class l ∈ {1, . . . , C}. Then, the probability
that the true class label of x is c ∈ {1, . . . , C} is:

P
(

arg min
l
|fl(x)| = c

∣∣∣∣ min
l
|fl(x)| = 0

)
=

1
σt,c(x)φ(

µt,c(x)
σt,c(x) )∑

l
1

σt,l(x)φ(
µt,l(x)
σt,l(x) )

,

where φ(·) is the probability density function of the standard
normal distribution and σt,l(x) :=

√
kt,l(x,x).

Nb

root

s

Ng

δ s
2`(N

r)

Nr

Fig. 3: Illustration of an octree data structure, containing two pseudo
points (blue and cyan) in two dimensions. The support regions S(·)
and test regions T (·) of three nodes Nr , Ng , Nb are shown as dashed
and filled areas with red, green, and blue color, respectively. No
pseudo points are contained in the test region T (Ng) (filled green)
of node Ng but two pseudo points are in its support region S(Ng)
(dashed green). In this example, the maximum number of allowable
pseudo points for each region is max(N) = 1, so node Ng is split
into the red (Nr) and yellow (not labeled) regions. The cyan pseudo
point belongs to both Pt,l(N

b) and Pt,l(N
r).

Proof.

Let lc(z) := P
(

arg min
l
|fl(x)| = c and minl |fl(x)| ≤ |z|

)
.

Since P (minl |fl(x)| ≤ |z|) =
∑
l ll(z):

P
(

arg min
l
|fl(x)| = c

∣∣∣∣ min
l
|fl(x)| ≤ |z|

)
=

lc(z)∑
l ll(z)

The term we are interested in computing is limz→0
lc(z)∑
l ll(z)

.
Let x be an arbitrary (test) point and define µl := µt,l(x)
and σl := σt,l(x) for l = 1, . . . , C. The GP distribution
of fl stipulates that its value at x has a density function
p(z) = 1

σl
φ
(
z−µl
σl

)
. Hence, P(|fl(x)| ≥ z) = 1−Φ( |z|−µlσl

) +

Φ(−|z|−µlσl
). Note that lc(z) corresponds to the probability that

|fc(x)| ≤ |fl(x)| for all l. Since all fl are independent of each
other:

lc(z) =
1

σc

∫ z

−z
φ
(ζ − µc

σc

)∏
l 6=c

(
1− Φ

( |ζ| − µl
σl

)
+ Φ

(−|ζ| − µl
σl

))
dζ

The claim is concluded by lim
z→0

lc(z)
2z = 1

σc
φ
(−µc
σc

)
.

The class distribution for an arbitrary point x ∈ W , not
lying on an object surface, may also be obtained, as shown in
the proof of Prop. 2 but is both less efficient to compute and
rarely needed in practice.

D. Octree of Gaussian Processes

Even after compressing the TSDF training data using
Prop. 1 to a small set of distinct pseudo points, the GP
training complexity still scales cubically with the number of
pseudo points. To ensure that online training is possible for
large environments, we develop an octree data structure with
overlapping octant regions to store the pseudo points. We train
independent GPs in each of these regions, which is efficient



since the maximum number of pseudo points per region is
fixed. The region overlap serves to eliminate discontinuities
in the resulting TSDF estimate. At test time, the TSDF value
of a query point is inferred using only the parameters of
the corresponding region according to (11). The overlapping
octant regions are illustrated in Fig. 3.

Formally, an octree of pseudo points is a tree data structure
such that each internal node has at most eight children. Each
node is associated with a spatial region in the 3-D workspace
W . The root is associated with a cube with side length
s > 0, which is recursively subdivided into up to eight
overlapping octant regions by the eight child nodes. Each node
N maintains the following information:

1) `(N) ≥ 0: level of N in the tree, starting from 0 at the
root node.

2) ctr(N) ∈ R3: center of the region associated with N .
3) S(N) := {x ∈ W| ‖x−ctr(N)‖∞ ≤ δ s

2`(N)+1 }: support
region of N with δ > 1.

4) T (N) := {x ∈ W| ‖x − ctr(N)‖∞ ≤ s
2`(N)+1 }: test

region of N .
5) P(N) ⊆ S(N) ∩ P#: set of pseudo points assigned to

this node
6) max(N): node N splits into eight children if the number

of observed pseudo points P(N) exceeds max(N)
7) children(N): empty set if N is a leaf and, other-

wise, a set of eight nodes at level `(N) + 1 with
centers in {ctr(N) + sxe1 + sye2 + sze3|sx, sy, sz ∈
{− s

2`(N)+1 ,+
s

2`(N)+1 }}.
The pseudo points Pt,l observed up to time t (see Sec. V-B)

are stored in octree data structures for each class l. The points
assigned to node N for class l at time t are Pt,l(N) :=
Pt,l ∩S(N). The pseudo points Pt,l(N) of each leaf node N
are used to train an independent GP. At time step t, prediction
associated with each class l for test points in the region T (N)
is performed by the GP associated with node N . The class
distribution of test points with small predicted TSDF values
(surface points) is determined according to Prop. 2. With
the data structure developed for efficient representations of
possibly large domains, we next shift to how the proposed
incremental posterior inference scheme may be decentralized
across a collection of interconnected robots.

VI. DISTRIBUTED INCREMENTAL SPARSE
GP REGRESSION

In this section, we develop a distributed version of the
incremental sparse GP regression in Sec. IV. We consider n
robots, communicating over a network G = (V, E). Each robot
i ∈ V receives its own local observations D̃it = (X̃ it , ỹit) at
time t and extracts newly observed pseudo points P̃it , with
associated number of observations m̃i

t and average values ζ̃
i

t,
as detailed in Sec. IV-C. This information is used to update
the complete set of pseudo points Pit observed up to time t,
along with the number of observations mi

t and average values
ζit, according to (13). These parameters Θi

t :=
{
Pit ,mi

t, ζ
i
t

}
,

maintained by robot i, define a complete GP distribution for
the function f(x), with mean and covariance functions in (11).

While each robot may estimate f(x) individually, we con-
sider how the robots may exchange information to estimate
f(x) collaboratively. Our approach is inspired by techniques
extending network consensus [60] to distributed probabilis-
tic estimation [24], [25], [61]–[63]. We observe that the
continuous-space GP distribution of f(x) is induced by the
statistics mi

t, ζ
i
t associated with the finite number of pseudo

points Pit and, hence, if the robots exchange information
about and agree on these finite-dimensional parameters, then
the corresponding GP distributions of f(x) at each robot
will agree. Our main innovation is a distributed algorithm
for updating the sparse GP parameters of one robot using
the parameters of its one-hop neighbors’ distributions. While
existing results apply to fixed finite-dimensional parameter
estimation, our approach applies to function estimation with
an infinite-dimensional GP distribution, updated via consensus
on an incrementally growing set of pseudo-point parameters.

In Sec. IV-A, we demonstrated a duality between the joint
Gaussian distribution over the pseudo points and the posterior
GP induced by these pseudo points. Specifically, if the joint
Gaussian distribution of the pseudo points in (6) or (7) is avail-
able, then we can calculate the mean and covariance functions
the GP in (9). This observation suggests that it is sufficient to
keep track of the information mean and information matrix of
the joint Gaussian distribution of the pseudo points.

Before continuing, we define a few key quantities related
to the graph G. Specifically, denote as A ∈ Rn×n its
adjacency matrix, whose elements Aij may be non-binary. Let
D := diag(D11, . . . , Dnn) be the diagonal degree matrix of
the graph with elements Dii =

∑
j 6=iAij and L := D−A be

the graph Laplacian. Define a weight matrix W := I−νL for
0 ≤ ν ≤ 1

∆ , where ∆ = max(D11, . . . , Dnn) is the maximum
node degree. The vector of ones, 1 ∈ Rn, is an eigenvector of
W since L1 = 0. Also, W is a row-stochastic nonnegative and
primitive matrix [60] and, hence, has a stationary distribution,
specified by its left eigenvector π with

∑n
i=1 πi = 1. This

Perron weight matrix construction is common in consensus
and distributed gradient descent algorithms [60], [68], [69].

To gain intuition about the construction of consensus
schemes over GP posteriors, we first review distributed
Kalman filtering for fixed-dimensional parameter estimation.
Remark 1 (Directed time-varying graphs). For simplicity, we
consider an undirected static graph G with a fixed weight ma-
trix W . Relying on consensus results for switching networks
[60], [70], [71], our results may be generalized to directed
and time-varying graphs assuming that the graph sequence
is uniformly strongly connected, i.e., there exists an integer
T > 0 such that the union of the edges over any time interval
of length T is strongly connected.

A. Distributed Kalman Filtering
Suppose that the robots aim to estimate a fixed (finite-

dimensional) vector f cooperatively using local observations
yit, generated according to a linear Gaussian model:

yit = Hif + ηit, ηit ∼ N (0, V i). (19)

Assume that the observations yit received by robot i are
independent over time and from the observations of all other



robots. Assume also that the graph G is connected and that
f is observable if one has access to the observations received
by all robots, i.e., the matrix

[
H1 · · · Hn

]
has rank equal

to the dimension of f . Since individual observations yit alone
may be insufficient to estimate f , the robots need to exchange
information. We suppose that each robot starts with a prior
probability density function pi0(f) over the unknown vector f
and updates it over time, relying on its local observations yit
as well as communication with one-hop neighbors in G.

Rahnama Rad and Tahbaz-Saleh [61] developed a consistent
distributed estimation algorithm, in which each agent i uses
standard Bayesian updates with its local observations yit+1

but, instead of its own prior pit, each agent uses a weighted
geometric average of its neighbors’ priors:

pit+1(f) ∝ pi(yit+1|f)
n∏
i=1

(pit(f))
Wij , (20)

where pi(yit+1|f) is an observation model, such as (19), that
should satisfy certain regularity conditions [61]. Atanasov et
al. [62] showed that if the prior distributions pi0 are Gaussian
and the observation models are linear Gaussian as in (19), the
resulting distributed Kalman filter is mean-square consistent
(the estimates arg maxf p

i
t(f) of all agents i converge in

mean square to the true f ). Specifically, if the priors are
f ∼ N (µi0,Σ

i
0) with information matrix Ωi0 := (Σi0)−1 and

information mean ωi0 := Ωi0µ
i
0, the Gaussian version of the

distributed estimator in (20) is:

ωit+1 =

n∑
i=1

Wijω
j
t +Hi>V i

−1
yit+1

Ωit+1 =

n∑
j=1

WijΩ
j
t +Hi>V i

−1
Hi

(21)

because geometric averaging and Bayesian updates with Gaus-
sian densities lead to a Gaussian posterior density [62]. The
relationship between geometric means being used for belief
propagation in (20) and weighted averaging via mixing matrix
W forms the conceptual basis for message passing in the more
general GP posterior inference setting which we detail next.

B. Distributed Incremental Sparse GP Regression

The distributed estimation algorithm in (21) does not di-
rectly apply to GP regression because the estimation tar-
get f(x) is infinite-dimensional. However, the sparse GP
regression, described in Sec. IV, relies on a finite (albeit
incrementally growing) set of pseudo points Pt, and we show
that it is possible to obtain distributed incremental sparse GP
regression based on (21). As discussed in the beginning of this
section, each robot i maintains parameters Θi

t :=
{
Pit ,mi

t, ζ
i
t

}
based on its local observations D̃it = (X̃ it , ỹit). Our key
idea is to perform weighted geometric averaging over local
posteriors, which translates to simple weighted averaging of
the means and covariances in (6) of f at a finite set of pseudo
points Q ⊇ Pit , which will be specified precisely below. The
parameters Θi

t maintained by robot i induce a GP distribution
over f in (11), which in turn provides a Gaussian probability
density function pit(f) := p(f |Θi

t) over the (finite-dimensional)

vector f := f(Q) with mean and covariance, obtained from
(11):

µit(Q) := µi0(Q) + ki0(Q,Pit)Zit
(
ζit − µi0(Pit)

)
,

Σit(Q) := ki0(Q,Q)− ki0(Q,Pit)Zitki0(Pit ,Q),
(22)

where Zit = (ki0(Pit ,Pit) + σ2 diag(mi
t)
−1)−1. In order to

derive decentralized updates for GPs akin to (21), we first
present the iterative updates associated with robots’ local
posteriors in terms of their information mean and information
matrix corresponding to the mean and covariance of pit(f).

Lemma 1. The information mean ωit(Q) := Ωit(Q)µit(Q)
and information matrix Ωit(Q) := (Σit(Q))−1 of the Gaussian
probability density function pit(f) := p(f |Θi

t) of f := f(Q)
with parameters Θi

t :=
{
Pit ,mi

t, ζ
i
t

}
and mean and covari-

ance in (22) are:

ωit(Q) = ki0(Q,Q)−1µi0(Q) + σ−2 diag(mi
t(Q))ζit(Q)

Ωit(Q) = ki0(Q,Q)−1 + σ−2 diag(mi
t(Q)),

(23)

where, similar to Sec. IV-C, mi
t(p) and ζit(p) denote the

number of observations and average observation, respectively,
for p ∈ Pit and their domains have been extended to Q ⊇ Pit
by defining mi

t(q) = ζit(q) = 0 for q ∈ Q \ Pit .

Proof. Similar to the proof of Prop. 1, let E be a binary
matrix such that ki0(Pit ,x) = Eki0(Q,x), i.e., E selects the
points from the superset Q which correspond to Pit . Note
that ki0(Q,Pit) = ki0(Q,Q)E>, ki0(Pit ,Q) = Eki0(Q,Q),
and ki0(Pit ,Pit) = Eki0(Q,Q)E>. The expression for Ωit(Q)
follows from the matrix inversion lemma applied to the
covariance matrix in (22) and noting that E> diag(mi

t)E =
diag(mi

t(Q)). Then, note that:

Ωit(Q)ki0(Q,Pit)Zit
=
(
I + σ−2E> diag(mi

t)Ek
i
0(Q,Q)

)
E>Zit (24)

= σ−2E> diag(mi
t)(Z

i
t)
−1Zit = σ−2E> diag(mi

t).

Thus, the information mean is:

ωit(Q) = Ωit(Q)
(
µi0(Q) + ki0(Q,Pit)Zit

(
ζit − µi0(Pit)

))
= Ωit(Q)µi0(Q) + σ−2E> diag(mi

t)
(
ζit − µi0(Pit)

)
= ki0(Q,Q)−1µi0(Q) + σ−2E> diag(mi

t)ζ
i
t (25)

= ki0(Q,Q)−1µi0(Q) + σ−2 diag(mi
t(Q))ζit(Q)

With the expression for the parametric updates associated
with the posterior inference defined by observations acquired
locally at robot i only, we next detail how to augment this
update with neighboring robots’ information.

1) Distributed updates with a fixed pseudo-point set: To
begin, suppose that the pseudo-point sets are fixed across all
robots, i.e., P ≡ Pit , and the local observations D̃it+1 =

(X̃ it+1, ỹ
i
t+1) satisfy X̃ it+1 ⊆ P for all t, i. Then, the informa-

tion means and matrices in (23) have equal dimensions across
the robots, and we can apply the update in (21) directly:

ωit+1 =

n∑
i=1

Wijω
j
t +Hi>

t+1(σ2I)−1ỹit+1,

Ωit+1 =

n∑
j=1

WijΩ
j
t +Hi>

t+1(σ2I)−1Hi
t+1,

(26)



where Hi
t+1 := ki0(X̃ it+1,P)ki0(P,P)−1, ωit := ωit(P), and

Ωit := Ωit(P). The information means and matrices have
a simple structure, and, similar to (13), it is sufficient to
track only the number of observations mi

t and the average
observations ζit over time:

ωit+1 =

n∑
i=1

Wijω
j
0 +

1

σ2

n∑
i=1

Wij diag(mj
t )ζ

j
t +

1

σ2
diag(m̃i

t+1)ζ̃
i

t+1

Ωit+1 =

n∑
j=1

WijΩ
j
0 +

1

σ2

n∑
i=1

Wij diag(mj
t ) +

1

σ2
diag(m̃i

t+1), (27)

where m̃i
t+1 and ζ̃

i

t+1 are the number of new observations and
new observation averages received by robot i of the pseudo
points P at time t + 1. We consider the case with incremen-
tally growing pseudo-point sets that are potentially different
across the robots before presenting the final distributed update
equations for mi

t and ζit. This is the focus of the following
subsection.

2) Distributed updates with dynamic pseudo-point sets:
Consider the general case where each robot maintains its
own pseudo-point set Pit and the observations D̃it+1 =

(X̃ it+1, ỹ
i
t+1) may introduce new pseudo-points P̃it+1 6⊆ Pit .

Our key observation is that the parameters Θi
t induce a GP

distribution over the whole function f and, hence, can be
used to obtain a Gaussian distribution over a pseudo-point set
that is larger than Pit according to (22) and (23). Note that
the structure of the information mean and information matrix
in (23) remains unchanged when the set of pseudo-points Q
changes. To increment the pseudo-point set of robot i at time
t, we aggregate the pseudo points Pjt of its neighbors and the
newly observed pseudo points P̃it+1 as follows:

Pit+1 =
⋃

j∈Ni∪{i}

Pjt ∪ P̃it+1 (28)

Then, the distributed averaging in (21) can be performed over
the information means and information matrices in (23) with
Q = Pit+1 and Hi

t+1 := ki0(X̃ it+1,Pit+1)ki0(Pit+1,Pit+1)−1:

ωit+1(Pit+1) =
n∑
i=1

Wijω
j
t (Pit+1) +Hi>

t+1(σ2I)−1ỹit+1,

Ωit+1(Pit+1) =
n∑
i=1

WijΩ
j
t (Pit+1) +Hi>

t+1(σ2I)−1Hi
t+1.

(29)

We may rewrite the preceding expressions in terms of the
number of observations mi

t+1(p) and average observations
ζit+1(p) for any p ∈ Pit+1, akin to (13), by following the
steps in (27) for the dynamic pseudo-point case, leading to:

mi
t+1(p) =

∑
j∈Ni∪{i}

Wijm
j
t (p) + m̃i

t+1(p), (30)

ζit+1(p) =

∑
j∈Ni∪{i}Wijm

j
t (p)ζjt (p) + m̃i

t+1(p)ζ̃it+1(p)

mi
t+1(p)

.

With the updates for robot i in terms of its local observations
and message passing with its neighbors Ni specified, we
shift in the following subsection to establishing its statistical
properties.

C. Theoretical Guarantee for Consistent Estimation

We show that the proposed distributed incremental sparse
GP regression defined by (28), (30), and (11) converges to a
centralized sparse GP regression, which uses the observation
data ∪t ∪i D̃it from all robots. At each time step t, the
centralized estimator receives data ∪iD̃it, and, as discussed
in Sec. IV-C, updates a global set of pseudo points Pctrt ,
the number of times mctr

t (p) each pseudo point p ∈ Pctrt
has been observed, and the average observation ζctrt (p) of
p ∈ Pctrt . In order to show that the GP maintained by
each robot i eventually agrees with the centralized GP, the
centralized estimator should also be affected by the Perron
weight matrix W . If W = 1

n11
>, the information provided

by different robots is equally credible and the centralized
estimator can use the combined set of observations ∪iD̃it
directly. If, however, the left eigenvector π of W is not 1, then
its elements πi specify different credibility for the different
robots. More precisely, the centralized estimator should treat
the measurements D̃it of robot i as if they were generated
with noise variance σ2/πi, instead of the true noise variance
σ2. This is equivalent to scaling the number of observations
m̃i
t provided by robot i by its “credibility” πi, leading to

the following update for the centralized sparse GP regression
parameters:

Pctrt+1 = ∪ni=1P̃it+1 ∪ Pctrt ,

mctr
t+1(p) = mctr

t (p) +

n∑
i=1

πim̃
i
t+1(p), (31)

ζctrt+1(p) =
mctr
t (p)ζctrt (p) +

∑n
i=1 πim̃

i
t+1(p)ζ̃it+1(p)

mctr
t+1(p)

,

for all p ∈ Pctrt+1. The next result shows that the individual GP
distributions maintained by each robot using the distributed
updates in (30) converge to the centralized GP distribution
determined by the parameters above.

Proposition 3. Let D̃it = (X̃ it , ỹit) be the data received by
robot i at time t, associated with pseudo points P̃it ⊂ P# and
number of observations m̃i

t(p) and average observation ζ̃it(p)
for p ∈ P#. If the data streaming stops at some time T <
∞, then as t → ∞, the distributions GP(µit(x), kit(x,x

′))
maintained by each robot i, specified according to (11) with
parameters Pit , mi

t(p), ζit(p) in (28) and (30) converge to
the distribution GP(µctrt (x), kctrt (x,x′)) of the centralized
estimator with parameters Pctrt , mctr

t (p), ζctrt (p) in (31), i.e.,
|µit(x)−µctrt (x)| → 0 and |kit(x,x′)−kctrt (x,x′)| → 0 almost
surely for all i ∈ V , x,x′.

Proof. Since the distributions GP(µit(x), kit(x,x
′)) and

GP(µctrt (x), kctrt (x,x′)) are completely determined by the
parameters Pit , mi

t(p), ζit(p) and Pctrt , mctr
t (p), ζctrt (p), re-

spectively, it is sufficient to show that |mi
t(p)−mctr

t (p)| → 0
and |ζit(p) − ζctrt (p)| → 0 for all i ∈ V , p ∈ P#. Let
p ∈ P# be arbitrary and note that mi

0(p) = mctr
0 (p) = 0

and ζi0(p) = ζctr0 (p) = 0 since no pseudo points have been
observed initially. Expand (31) recursively to obtain mctr

t (p)



and ζctrt (p) in terms of the observation statistics:

mctr
t (p) =

t∑
τ=0

n∑
i=1

πim̃
i
τ (p),

ζctrt (p) =
1

mctr
t (p)

t∑
τ=0

n∑
i=1

πim̃
i
τ (p)ζ̃iτ (p).

(32)

Similarly, expand (30) to obtain mi
t(p) and ζit(p) in terms of

the observation statistics:

mi
t(p) =

t∑
τ=0

n∑
j=1

[
W t−τ ]

ij
m̃j
τ (p),

ζit(p) =
1

mi
t(p)

t∑
τ=0

n∑
j=1

[
W t−τ ]

ij
m̃j
τ (p)ζ̃jτ (p),

(33)

where the weights [W t−τ ]ij appear since the data m̃j
τ (p) and

ζ̃jτ (p) propagate through the network with weight matrix W
and reach robot i via all paths of length t− τ . Alternatively,
(33) can be viewed as the solution of the discrete-time linear
time-invariant system in (30) with transition matrix Φ(t, τ) =
W t−τ , t ≥ τ . Since the data collection stops at some finite
time T , m̃i

t(p) = ζ̃it(p) = 0 for all t > T , i ∈ V . The
convergence of (33) to (32) is concluded from the fact that
[W t]ij → πj > 0 since W is a row-stochastic nonnegative
and primitive matrix.

Prop. 3 is a similar result to [61, Thm. 3], where it is shown
that, if the weight matrix W is doubly stochastic, a distributed
parameter estimator is as efficient as any centralized parameter
estimator. However, Prop. 3 applies to distributed function es-
timation using an incrementally growing set of parameters and
re-weights the observations used by the centralized estimator
via the stationary distribution π of W to ensure convergence
even when W is not doubly stochastic.

D. Echoless Distributed GP Regression

The distributed pseudo point update we derived in (30) is not
efficient for two reasons. First, convergence to the central GP
estimate is guaranteed only in the limit, as t→∞ (Prop. 3).
Second, every time robots exchange messages, all information
they have must be sent. This is inefficient as may be seen
in the proof of Prop. 3, the observations are exchanged an
infinite number of times (echos in the network). To address
these limitations, we label the communication messages with
the list of robots that have already received them and show
that convergence to the centralized estimate can, in fact, be
achieved in finite time.

Let Θ̃i
t := {P̃it , m̃i

t(P̃it), ζ̃it(P̃it), `it} define a mini-batch
of observations for robot i. At time t, Θ̃i

t contains the new
observations P̃it , m̃i

t(P̃it), ζ̃it(P̃it) of robot i as well as a list of
robots `it that have already received this mini-batch. The list `it
is initialized by {i}. Additionally, for each robot i, we define
a set of mini-batches Bit+1 that the robot should use at time
t to update its GP parameters. The mini-batch set Bit from
the previous time step contains old mini-batches that robot i
should transmit to its neighbors. Inspired by the similarity of
(32) and (33), we propose a distributed protocol which ensures:

Fig. 4: Visualization of the distributed GP parameter update in (34) in
a network with three nodes (red, green, blue). The node parameters
are shown at time t = 0 and t = 1. Only a single observation with
one pseudo point is received by node 1 (blue) at time t = 0 and is
propagated to node 0 (red) at time t = 1.

• each mini-batch visits each robot once rather than echoing
in the network, relying on `it to keep track of visited robots,

• convergence to the centralized GP distribution is achieved
in finite and minimum time by picking the stationary distri-
bution π of W as the coefficient in (33).

The distributed update of the parameters of robot i at time
step t is:

Bit+1 =
⋃

Θ̃jτ∈Brt ,r∈Ni,i/∈`
j
τ

Θ̃j
τ ∪ Θ̃i

t+1

`jτ = `jτ ∪ {i} for all Θ̃j
τ ∈ Bit+1

Pit+1 =
⋃

Θ̃jτ∈Bit+1

Pjτ ∪ Pit

mi
t+1(p) = mi

t(p) +
∑

Θ̃jτ∈Bit+1

πjm̃
j
τ (p)

ζit+1(p) =
mi
t(p)ζit(p) +

∑
Θ̃jτ∈Bit+1

πjm̃
j
τ (p)ζ̃jτ (p)

mi
t+1(p)

(34)

We prove below that this distributed update rule converges
in finite time to the centralized GP distribution. Compared
with (30), the distributed update in (34) is able to achieve
finite-time convergence because it uses the weights π from the
stationary distribution of W right away, instead of processing
the same information an infinite number of times to determine
the final weights. Moreover, (30) stipulates that two robots
should exchange all of their information at each time step,
which is very inefficient in practice. The mini-batch messages
in (34) allow the robots to exchange only the latest information
and guarantee that each observation reaches each agent once.
A visualization of this method is shown in Fig. 4.

Proposition 4. Let D̃it = (X̃ it , ỹit) be the data received by
robot i at time t, associated with pseudo points P̃it ⊂ P#

and number of observations m̃i
t(p) and average observation

ζ̃it(p) for p ∈ P#. If the data streaming stops at some time
T < ∞, then at time t = T + n − 1, the distributions
GP(µit(x), kit(x,x

′)) maintained by each robot i, specified
according to (11) with parameters in (34) are exactly equal
to the distribution GP(µctrt (x), kctrt (x,x′)) of the centralized
estimator with parameters in (31), i.e., µit(x) = µctrt (x) and
kit(x,x

′) = kctrt (x,x′) almost surely for all i ∈ V , x,x′.



Proof. As in the proof of Prop. 3, it is sufficient to show that
at t = T + n− 1, mi

t(p) = mctr
t (p) and ζit(p) = ζctrt (p) for

all i ∈ V , p ∈ P#. As before, we express mi
t(p) and ζit(p) in

terms of m̃j
τ (p) and ζ̃jτ (p) for arbitrary p ∈ P# and τ ≤ t.

The key is to realize whether mini-batch Θ̃j
τ is received by

robot i. Since the mini-batch exchanges are happening based
on the communication graph structure, the elements of W t−τ

determine which robots have received a mini-batch released at
time τ by time t. Precisely, if [W t−τ ]ij > 0, then robot i has
received mini-batch Θ̃j

τ by time t and otherwise, if [W t−τ ]ij =
0, it has not received it. Let sign(x) denote the sign of a scalar
x with sign(0) = 0. Expanding (34) recursively leads to:

mi
t(p) =

t∑
τ=0

n∑
i=1

sign(
[
W t−τ ]

ij
)πjm̃

j
τ (p) (35)

ζit(p) =
1

mi
t(p)

t∑
τ=0

n∑
j=1

sign(
[
W t−τ ]

ij
)πjm̃

j
τ (p)ζ̃jτ (p)

Since the data collection stops at some finite time T , m̃i
τ (p) =

ζ̃iτ (p) = 0 for all τ > T , i ∈ V . Comparing (33) and (32),
equality of µit(x) and µctrt (x) and kit(x,x

′) and kctrt (x,x′) at
t = T + n − 1 is concluded by the fact that

[
Wn−1

]
ij
> 0

because the network is connected.

VII. DISTRIBUTED METRIC-SEMANTIC MAPPING

We apply the distributed GP regression technique devel-
oped in Sec. VI to the multi-robot metric-semantic TSDF
mapping problem. Each robot i receives local distance and
class observations

{
λit+1,k, c

i
t+1,k

}
, which are transformed

using the procedure in Sec. V-A into training data sets
D̃it+1,l =

(
X̃ it+1,l, ỹ

i
t+1,l

)
for estimating the TSDFs {fl(x)}

of the different object classes. Each dataset D̃it+1,l is com-
pressed into a set of pseudo points P̃it+1,l with associated
number of observations m̃i

t+1,l(p) and average observation
ζ̃it+1,l(p) for p ∈ P̃it+1,l. Each robot maintains a separate
GP GP(µit,l(x), kit,l(x,x

′) for each class TSDF fl(x). In the
multi-robot case, the GP distributions of robot i are updated
simultaneously and independently for all classes using the
new class-specific observation data P̃it+1,l, m̃

i
t+1,l(P̃it+1,l),

ζ̃it+1,l(P̃it+1,l) as well as information from the neighboring
robots in the form of class-specific mini-batches Bit+1,l as
described in (34). To make the GP models scalable to large
environments, we organize the pseudo points Pit,l for each
robot i and class l in an octree data structure, as in Sec. V-D,
and predict the class of a query point via the method in
Sec. V-C. Prop. 4 guarantees that the local TSDF GPs at each
robot converge to a common GP, which is equivalent to the one
that would be obtained by centralized sparse GP regression.
Moreover, when the streaming of new observations stops, the
convergence happens in finite time as soon as each observation
is received by each robot exactly once. In other words, there
is no unnecessary communication in the form of information
exchange echo in the network.

VIII. EVALUATION USING 2-D SIMULATED DATA

In this section, we evaluate our semantic TSDF mapping
approach in 2-D simulated environments. We first demonstrate

Fig. 5: Ground-truth 2-D simulated environment (top left) with two
object classes (red, blue), ground-truth TSDF for the blue class (top
middle), and reconstructed TSDF with frame size = 10 (top right).
The reconstructed TSDF boundaries are shown for three different
frame size parameters on the bottom row: 10 (bottom left), 3
(bottom middle), 2 (bottom right). Sharp edges are captured better
with frame size 3 vs. 10 but using frame size less that 3 caused
missing parts at the boundaries.

the qualitative and quantitative performance of the single-
robot approach of Sec. V. Then, we report results for the
multi-robot approach of Sec. VII using three robots to map
the same environment collaboratively. In all experiments, we
employ a sparse Matérn kernel (ν = 3/2) [21]. We choose
the workspace discretization P# as a grid with resolution
voxel size. Given a training point x̂ in (16), we choose a
square region of pseudo points from P# around x̂. These
pseudo points are used to construct the training set in (17)
around the sensor hit points x̂, instead of a circle with
radius ε. We call the number of pseudo points on the edge
of the square region frame size, and choose it so that
(frame size− 1)× voxel size ≥ 2ε.

A. Single-Robot 2-D Evaluation

We generate random 2-D environments (see Fig. 5) and
robot trajectories by sampling poses sequentially and keeping
the ones that are in free space. Observations are obtained along
the robot trajectories using a simulated distance-class sensor.
We apply our incremental sparse GP regression method to
obtain a probabilistic TSDF map and compare it with the
ground truth TSDF.

1) TSDF Accuracy: One sample environment from our 2-D
simulation with the ground truth and reconstructed TSDF and
boundaries is shown in Fig. 5. Our method provides continuous
probabilistic TSDF estimates. The choice of frame size is
very dependent on the desired truncation value for the SDF
reconstruction. Larger frame size allows estimating larger
truncation values but incurs additional computation cost. The
precision and resilience to measurement noise of our method
are evaluated in Fig. 6. The test points are chosen from a grid
with resolution 0.5×voxel size within the truncation distance
from the ground-truth object boundaries.

2) Classification Accuracy: We evaluate the average preci-
sion and recall of our posterior classification over 50 random
2-D maps. In each map, we pick uniformly distributed random
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Fig. 6: Misclassification Rate, Precision, Recall, and Normalized SDF
Error for different class error probability and distance noise variance.
The top right plot shows the average SDF error over 10 random
maps with a 100 random observations each, with voxel size = 0.1,
max(N) = 100, δ = 1.2.

points along the obstacle boundaries, and calculate the SDF
error and the class-detection accuracy. Since the values are
symmetric for binary classification, we present the average
precision and recall over the two classes in Fig. 6. The figure
shows that the misclassification rate, precision, recall, and SDF
error are not very sensitive to class error probability. The
misclassification rate is the ratio of all to the misclassified test
points. The SDF error is the average absolute value difference
between the estimated and ground-truth SDF values. We report
normalized SDF error: SDF error

voxel size . Fig. 7 investigates the effect
of the parameters of our algorithm on misclassification rate,
normalized SDF error, False Discovery Rate (FDR := 1 −
Precision), and False Negative Rate (FNR := 1 − Recall).
We see that the misclassification rate, FNR, and FDR respond
similarly to parameter variations.

Increasing the maximum number of pseudo points per
octree support region, max(N), improves the (normalized)
SDF error. The improvement is significant at first but after a
certain octree support region size, even exponential increases
in max(N) do not significantly affect the SDF error. The
classification measures improve slightly with an initial increase
in max(N). Increasing δ has a similar effect on all the
performance measures. Increasing the GP noise variance σ2

at first improves all the measures but then it worsens them.
An incorrect choice of σ2 is critical to the method, but affects
the misclassification rate smoothly so, it must be in the right
region, but as long as the value of σ2 is in the right ballpark,
choosing the optimal σ2 is not critical.

B. Multi-Robot 2-D Evaluation

Next, we evaluate the distributed GP regression in a three-
robot simulation and investigate the convergence of the local
GP estimates of each robot to a centralized GP estimate.
We use the same random polygonal 2-D environments with
two object classes but this time generate trajectories for three
different robots (see Fig. 8). The robots communicate with

100.6 101.2 101.81 102.41 103.01

10−2

10−1

100

Feature points’ number in each leaf (max(N))

1 1.2 1.4 1.6 1.8 2

Over lap ratio of tree’s leaves (δ)

0 0.5 1 1.5 2

10−1

100

Gaussian Process noise variance
5 · 10−2 0.1 0.15 0.2 0.25 0.3

Voxel size

Misclassification Rate Normalized SDF Error FDR FNR

Fig. 7: Misclassification rate, normalized SDF error, False Discovery
Rate (FDR), and False Negative Rate (FNR) as a function of the
number of pseudo points per octree support region (max(N)),
support region overlap ratio (δ), GP noise variance σ2, and workspace
discretization (voxel size). The default parameter values are δ = 1.5,
max(N) = 100, σ2 = 1, voxel size = 0.1. Class and distance
measurements with class error probability of 0.05 and distance noise
variance 0.5 are obtained from 100 random observations in each of
50 random 2-D maps. Test points are selected within a threshold of
0.05 from the ground truth class boundaries.

each other over a graph with a fixed weight matrix:

W =

 0.5 0.25 0.25
0.25 0.75 0
0.25 0 0.75

 . (36)

The GP regression parameters at each robot are the same as
the defaults in Sec. VIII-A.

To verify Prop. 4 empirically, we compare the mean absolute
error (MAE) between the GP prediction of an individual robot
i and the centralized estimator ctr using all robot observations
as described in Sec. VI-C. Specifically, at each time step t, we
consider all classes l and associated pseudo points Pctrt,l that
have been observed by the centralized estimator and calculate
the mean MAE as:

MAEt =
1

Lt|Pctrt,l |
∑
`

∑
p∈Pctrt,l

∣∣µit,l(p)− µctrt,l (p)
∣∣ , (37)

where Lt is the number of observed object classes by time
t. The variance MAE is computed equivalently to (37) with
µit,l(p) and µctrt,l (p) replaced by kit,l(p,p) and kctrt,l (p,p).

Fig. 8 shows the final reconstructions of one robot and the
centralized estimator. As expected, the final reconstructions
are identical and convergence happens in finite time. The
behavior of the mean and variance MAE curves is similar.
This is expected because the distance between the local and
centralized GP parameters is due to unobserved information
rather than stochastic noise. We see that the MAE curves
approach 0 quickly. Several peaks are observed in the curves



Fig. 8: Three robot trajectories (green, orange, purple) in a 2-D
simulated environment (top left) with two object classes (red, blue).
The zero level-sets of the TSDF reconstructions for the two classes by
centralized GP regression (bottom left) and distributed GP regression
from the perspective of the orange robot (bottom right) are shown.
As expected, due to Prop. 2, the centralized and individual robot
reconstructions are identical. This is verified quantitatively in the
GP mean and variance mean absolute error (MAE) plot (top right).
The initial GP parameters for each robot and object class were
µi
0,l(x) = 0.5, ki0,l(x,x) = 1.

when new sections of the environment that are not visible to
robot i are observed by another robot in the network. The new
information disseminates in the network and the MAE curves
approach zero again.

IX. EVALUATION USING 3-D REAL DATA

In this section, we evaluate our semantic TSDF mapping
approach using real RGB-D data from physical 3-D envi-
ronments. We demonstrate the qualitative and quantitative
performance of the single-robot approach of Sec. V and the
multi-robot approach of Sec. VII, using three robots to map the
same environment collaboratively. As in the 2-D experiments
in Sec. VIII, we use a sparse Matérn kernel (v = 3/2) and a
grid of potential pseudo points P# with resolution voxel size.
Given a query point x̂, we choose a cubic region around it such
that (frame size− 1)× voxel size ≥ 2× ε to construct the
training data in (16). All points from P# that lie in the cubic
region are chosen as pseudo points associated with x̂.

A. Single-Robot 3-D Evaluation

We compare our method to the incremental Euclidean
signed distance mapping method Fiesta [38] on the Cow and
Lady dataset [37]. We also demonstrate the 3-D semantic
reconstruction performance of our method on the SceneNN
dataset [72].

1) Cow and Lady Dataset: The reconstruction of the Cow
and Lady dataset with 829 depth images and known camera
trajectory by the single-robot TSDF GP regression of Sec. V is
shown in Fig. 9. A triangular mesh is extracted from the mean
TSDF prediction using the marching cubes algorithm [73].

Fig. 9: Single-robot reconstruction of the Cow and Lady dataset [37].
Red hues indicate lower TSDF variance.

The reconstruction time and error with respect to the ground-
truth scene point cloud provided by the dataset are reported in
Fig. 10. The error of Fiesta with default parameters is shown as
well. Similar to the 2-D simulations, increasing the maximum
number of pseudo points max(N) per octree support region
improves the SDF error of our approach. The improvement is
significant at first and less pronounced afterwards. Conversely,
the computation time decreases at first because the number of
leaves in the octree decreases and then increases afterwards as
the GP covariance matrices get larger. Increasing δ leads to an
insignificant improvement in the SDF error at the expense of
a significant reconstruction time increase. Increasing the GP
noise variance improves the SDF error at first (especially when
the error is close to zero) but worsens is afterwards without
significant impact on time. As voxel size varies, our method
outperforms Fiesta noticeably.

2) SceneNN Dataset: We evaluate the classification ac-
curacy of our method on the SceneNN dataset in Fig. 11.
The GP posterior is evaluated on a test grid with resolution
0.5× voxel size. The test points with posterior variance less
than a threshold are used to reconstruct a triangular mesh
via the marching cubes algorithm [73]. We use Prop. 2 for
classification. The effect of the different parameters on the
performance is illustrated in Fig. 11. Increasing max(N)
improves both classification and TSDF reconstruction results.
The improvement after max(N) = 100 is negligible but
time increases significantly. Increasing δ improves the TSDF
reconstruction significantly at first. After δ = 1.4, the improve-
ment is negligible. As seen in the 2-D simulations, choosing
a correct magnitude for the GP noise variance σ2 is very
important for both the classification and TSDF reconstruction
but choosing the optimal value for σ2 is not critical.

B. Multi-Robot 3-D Evaluation

Finally, we evaluate our distributed GP regression on the
Cow and Lady and SceneNN datasets. To imitate data collec-
tion by multiple robots, we split the RGB-D image sequences
into equal parts and consider each as data obtained by a
different robot. As in the 2-D simulation, we use three robots
with communication structure specified by the weight matrix
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Fig. 10: Evaluation of the SDF reconstruction time (sec) and error (m)
of our incremental sparse GP regression algorithm on the Cow and
Lady dataset [37] and in comparison with Fiesta [38]. The errors
are evaluated with respect to the ground-truth scene point cloud
provided by the dataset. Training is done with 829 depth images and
known camera trajectory. The default parameters for our algorithm
are max(N) = 200, δ = 1.5, σ2 = 25, voxel size = 0.1,
frame size = 5, and SDF truncation value 3× voxel size.

W in (36). Each robot uses the distributed update rule in
(34) and communication continues for 2 rounds after the
last RGB-D image from the individual robot sequences is
received. The parameters of the individual robots are the same
as in the single-robot experiments in Sec. IX-A. The choice
of additional rounds is due to Prop. 4, where we showed
theoretically that T +n−1 rounds are needed, where T is the
observation sequence length and n is the number of robots, for
the local GP distributions to agree with that of a centralized
GP estimator. As in the 2-D simulations, to verify Prop. 4
empirically, we compare the mean absolute error (MAE) in
(37) between the GP mean and variance of an individual robot
and the centralized estimator.

The results from the Cow and Lady dataset are reported in
Fig. 12 and Fig. 13, while those from the SceneNN dataset
are reported in Fig. 14 and Fig. 15. The local and centralized
reconstruction results are identical in both data sets, which
confirms the expected theoretical consistency. The mean and
variance MAE curves also behave similarly in both data sets
because the errors in the local GP regression are due to unob-
served information, that has not yet been received by the robot,
rather than measurement noise. As in the 2-D simulation, the
peaks in the MAE curves are due to another robot in the
network observing a new region that has not yet been observed
by this robot. These peaks quickly decrease, which indicates
the fast empirical convergence of the distributed sparse GP
algorithm.

X. CONCLUSION

This paper developed a Bayesian inference method for on-
line probabilistic metric-semantic mapping via scalable Gaus-
sian Processes regression of semantic class signed distance
functions. Our algorithm was enabled by several key ideas.
First, repeated observations of the same environment locations
can be compressed before training a GP regression method
without any effect on the posterior distribution. This, com-
bined with an overlapping-leaf octree data structure of pseudo
points, allowed the development of an incremental sparse GP
regression technique, which scales to large domains. Second,
instead of explicit modeling of class likelihoods and reliance
on computationally challenging GP classification techniques,
the presence of distance measurements allows independent GP
regression for each class. A class probability mass function can
still be recovered at test time based on the distance distribu-
tions, and its accuracy was shown empirically to be resilient to
increasing classification error rates. Third, distributed parame-
ter estimation techniques based on consensus can be extended
to distributed function estimation by relying on incrementally
growing pseudo points. This enables distributed incremental
sparse GP regression, guaranteed to converge in finite-time
to the same distribution as that of a centralized estimator
without relying on multi-hop communication. Our method
enables robot teams to collaboratively build dense metric-
semantic maps of unknown environments using streaming
RGB-D measurements. This offers a promising direction for
future research in semantic task specifications and uncertainty-
aware task planning.
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Torr, “Incremental dense semantic stereo fusion for large-scale semantic
scene reconstruction,” in IEEE International Conference on Robotics and
Automation (ICRA), 2015, pp. 75–82.

[55] S. Sengupta and P. Sturgess, “Semantic octree: Unifying recognition,
reconstruction and representation via an octree constrained higher order
mrf,” in 2015 IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE, 2015, pp. 1874–1879.

[56] S. Yang, Y. Huang, and S. Scherer, “Semantic 3D occupancy mapping
through efficient high-order CRFs,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2017, pp. 590–597.

[57] Z. Zhao and X. Chen, “Building 3D semantic maps for mobile robots
using RGB-D camera,” Intelligent Service Robotics, vol. 9, no. 4, pp.
297–309, 2016.

[58] K. Zheng and A. Pronobis, “From pixels to buildings: End-to-end
probabilistic deep networks for large-scale semantic mapping,” arXiv
preprint arXiv:1812.11866, 2018.

[59] L. Gan, R. Zhang, J. W. Grizzle, R. M. Eustice, and M. Ghaffari
Jadidi, “Bayesian spatial kernel smoothing for scalable dense semantic
mapping,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
790–797, 2020.

[60] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proceedings of the IEEE,
vol. 95, no. 1, pp. 215–233, 2007.

[61] K. Rahnama Rad and A. Tahbaz-Salehi, “Distributed parameter estima-
tion in networks,” in IEEE Conference on Decision and Control (CDC),
2010, pp. 5050–5055.

[62] N. Atanasov, R. Tron, V. M. Preciado, and G. J. Pappas, “Joint estimation
and localization in sensor networks,” in IEEE Conference on Decision
and Control (CDC), 2014, pp. 6875–6882.
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