2101.05694v4 [cs.RO] 13 Feb 2022

arxXiv

Temporal Logic Task Allocation in Heterogeneous
Multi-Robot Systems

Xusheng Luo and Michael M. Zavlanos, Senior Member, IEEE

Abstract—In this paper, we consider the problem of optimally
allocating tasks, expressed as global Linear Temporal Logic
(LTL) specifications, to teams of heterogeneous mobile robots.
The robots are classified in different types that capture their dif-
ferent capabilities, and each task may require robots of multiple
types. The specific robots assigned to each task are immaterial, as
long as they are of the desired type. Given a discrete workspace,
our goal is to design paths, i.e., sequences of discrete states,
for the robots so that the LTL specification is satisfied. To
obtain a scalable solution to this complex temporal logic task
allocation problem, we propose a hierarchical approach that first
allocates specific robots to tasks using the information about
the tasks contained in the Nondeterministic Biichi Automaton
(NBA) that captures the LTL specification, and then designs low-
level executable plans for the robots that respect the high-level
assignment. Specifically, we first prune and relax the NBA by
removing all negative atomic propositions. This step is motivated
by “lazy collision checking” methods in robotics and allows to
simplify the planning problem by checking constraint satisfaction
only when needed. Then, we extract sequences of subtasks from
the relaxed NBA along with their temporal orders, and formulate
a Mixed Integer Linear Program (MILP) to allocate these
subtasks to the robots. Finally, we define generalized multi-robot
path planning problems to obtain low-level executable robot plans
that satisfy both the high-level task allocation and the temporal
constraints captured by the negative atomic propositions in the
original NBA. We show that our method is complete for a subclass
of LTL that covers a broad range of tasks and present numerical
simulations demonstrating that it can generate paths with lower
cost, considerably faster than existing methods.

I. INTRODUCTION

Robot motion planning traditionally consists of generating
robot trajectories between a start and a goal region, while
avoiding obstacles [1]. More recently, new planning methods
have been proposed that can handle a richer class of tasks
than standard point-to-point navigation that also include tem-
poral goals subject to time constraints. Such tasks can be
captured using formal languages, such as Linear Temporal
Logic (LTL) [2l], and include sequencing or coverage [3]], data
gathering [4], intermittent communication [5]], and persistent
surveillance [6]], to name a few. A survey on formal specifi-
cations and synthesis techniques for robotic systems can be
found in [7].

In this paper, we consider LTL tasks that require robots
of different types to collaborate to satisfy the specification.
The different robot types capture the different robot capa-
bilities, and each task may require robots of multiple types

Xusheng Luo and Michael M. Zavlanos are with the Department of Mechani-
cal Engineering and Materials Science, Duke University, Durham, NC 27708,
USA. {xusheng.luo, michael.zavlanos} @duke.edu. This work is supported in
part by ONR under agreement #N00014-18-1-2374 and by AFOSR under
the award #FA9550-19-1-0169.

to accomplish. The specific robots assigned to each task are
immaterial, as long as they are of the desired type. An example
of such an LTL task is: Az most five robots of type 1 pick
up the mail by visiting houses in a given order. Next, visit a
delivery site. Never leave the delivery site until one ground
robot of type 2 is present to pick up the mail (a robot of type
2 can carry mail from at most 5 robots of type I). Repeat
this process infinitely often. In this task, several robots are
required to work cooperatively and meet simultaneously at
the same place. Note that the specific robots to participate in
this task are not important and are not specified by the LTL
formula. Instead, it is only required that no more than five
robots of type 1 and exactly one robot of type 2 collaborate to
accomplish this task. Therefore, there are multiple ways that
this LTL task can be satisfied, which grow combinatorially
with the number of robots, robot types, and the complexity
of the LTL task. We refer to this problem as the Multi-Robot
Task Allocation (MRTA) problem for LTL tasks, in short, LTL-
MRTA. Existing control synthesis methods under temporal
logic specifications, such as the ones proposed in [8H11], build
a large product automaton composed of the Nondeterministic
Biichi Automaton (NBA) that captures the LTL specification
and the discrete transition systems describing the motion of
each one of the robots in the world. Then, these methods
employ graph search techniques on this product graph to find
the optimal plan that satisfies the LTL specification. However,
as the number of robots, the size of the environment, and the
complexity of the LTL task grows, the size of this product
graph grows exponentially large and, therefore, graph search
methods become intractable. This is more so the case for LTL-
MRTA problems as the number of possible assignments of
robots to tasks increases the complexity of the LTL specifica-
tion dramatically.

To mitigate the computational complexity of the LTL-
MRTA problem, we propose a novel hierarchical approach
that first allocates specific robots to tasks using the infor-
mation about tasks provided by the Nondeterministic Biichi
Automaton (NBA) that captures the LTL specification, and
then designs low-level executable plans for the robots that
respect the high-level assignment. Specifically, we first prune
and relax the NBA by removing all negative atomic propo-
sitions. This step is motivated by “lazy collision checking”
methods in robotics [12, [13] and allows to simplify the
planning problem by checking constraint satisfaction only
when needed. Then, we extract sequences of subtasks from the
relaxed NBA along with their temporal orders, and formulate a
Mixed Integer Linear Program (MILP), inspired by the vehicle
routing problem [14]], to allocate these subtasks to the robots,

while respecting the temporal order between subtasks. The
solution to this MILP generates a time-stamped task allocation
plan for each robot, which is a sequence of essential waypoints
that the robot needs to visit. Finally, given this time-stamped
task allocation plan for each robot, we formulate a sequence
of generalized multi-robot path planning (GMRPP) problems,
one for each subtask, to obtain executable paths that also re-
spect the negative atomic propositions that were relaxed from
the original NBA. We show through extensive simulations that
our method can handle LTL-MRTA problems with up to 10%°
states in the product graph, considerably outperforming exist-
ing methods. Moreover, we provide theoretical guarantees on
the completeness and soundness of our proposed framework,
under mild assumptions on the structure of the NBA that were
satisfied by all meaningful LTL specifications we considered
in practice, no matter their complexity. While not theoretically
optimal, our method is still able to improve on the cost of the
returned plans, unlike existing methods in the literature that
only focus on feasibility.

A. Related work

In existing literature on optimal control synthesis methods
from LTL specifications, LTL tasks are either assigned locally
to the robots in a multi-robot team, as in [10l [15] or a global
LTL specification is assigned to the team that captures the
collective behavior of all robots. In the latter case, the global
LTL specification can explicitly assign tasks to the individual
robots, as in [16H26], or it may not explicitly assign tasks to
the robots as in [27H30], and our current work in this paper.

Global temporal logic specifications that do not explicitly al-
locate tasks to robots typically need to be decomposed in order
to obtain the required allocation. For example, [31}32]] decom-
pose a global specification directly into local specifications and
assign them to individual robots. Similarly, [33} 25, 134} 135]
decompose a global specification into multiple subtasks by
exploiting the structure of the finite automata. Particularly, [33]]
convert temporal planning problems to standard planning
problems by defining actions based on transitions in the NBA,
while [25] define subtasks associated with transitions in the
NBA and synthesize plans for these subtasks which they store
in a library so that they can be reused to efficiently synthesize
plans for new LTL formulas. [35] also define subtasks associ-
ated with transitions in the automaton, but use reinforcement
learning to learn plans that execute these subtasks under
uncertainty. [34]] also use reinforcement learning but with the
purpose of converting formal languages to reward machines
that capture the structure of the task. Similar to these works,
here too we define subtasks associated with transitions in the
NBA. However, we do not assume that these subtasks are
preassigned to the robots.

Temporal logic control synthesis without an explicit as-
signment of robots to tasks has been considered in [36] that
combine the vehicle routing problem with metric temporal
logic specifications and leverage MILP to solve this problem
for heterogeneous robots. However, this approach can only
handle finite horizon tasks and does not design the low-level
executable paths as we do here. An alternative approach is

proposed in [37, 38] that decomposes a global automaton
into individual automata that are assigned to the heteroge-
neous robots and then builds a synchronous product of these
automata to synthesize parallel plans. However, the size of
the synchronous product automaton grows exponentially large
with the number of robots. Also, the requirement that parallel
plans exist does not allow application of this method to tasks
that lack such parallel executions. Furthermore, this method
also focuses only on finite robot trajectories. In relevant liter-
ature, teams of homogeneous robots have also been modeled
using Petri Nets as in [30, 39]. Specifically, [30] propose a
job shop problem under safe temporal logic specifications,
but do not consider the “eventually” operator so that liveness
in terms of good future outcomes can not be guaranteed.
Additionally, this approach only focuses on robot coordination
at the task level without considering execution. To the contrary,
[39]] select multiple shortest accepting runs in the NBA and
for each accepting run, determine whether an executable
plan exists. Finally, [40-43] automatically decompose the
automaton representation of the LTL formula into independent
subtasks that can be fulfilled by different robots. However, they
only consider LTL formulas that can be satisfied by finite
robot trajectories, limiting the applicability of the proposed
method to tasks such as recurrent sequencing and persistent
monitoring. Also, subtasks subject to precedence relations can
only be executed by a single robot.

Common in the above approaches is that they do not con-
sider cooperative tasks where robots of the same or different
types need to meet at a common location to complete a task,
Such tasks require strong synchronization between robots. In
our recent work [22), 24], we have proposed a sampling-based
planning method named STyLuS* that incrementally builds
trees to approximate the product of the NBA and the model
of the team. Using the powerful biased sampling method
proposed in [24], STyLuS* can synthesize plans for product
automata with up to 10%°0 states without considering collision
avoidance. However, STyLuS* requires global LTL specifica-
tions that explicitly assign tasks to robots. Although a subset of
specifications we consider here can be converted into explicit
LTL formulas by enumerating all possible task assignments
and connecting them with “OR” operators, this would result
in exponentially long LTL formulas. Furthermore, the biased
sampling strategy in STyLuS* needs a fixed assignment of
robots to tasks and biases search towards finding a plan for
this fixed assignment. If the assignment is not given, biased
STyLuS* will need to be run combinatorially many times, one
for each possible assignment. With unbiased sampling, [22]]
show that STyLuS* can only solve problems with product
automata that have 100 states. Instead, our proposed method
can synthesize plans for problems with 10%° states while
considering collision avoidance. On the other hand, model-
checkers like NuSMV [44], focus on finding feasible paths and
are incapable of optimizing cost. As stated in [24], NuSMV
can only handle problems with 103° states, and can not
easily process exponentially long LTL formulas generated by
explicitly expressing task assignments.

Among other methods that focus on cooperative tasks, [29]
focus on specifications capturing behaviors of homogeneous

robotic swarms at the swarm and individual levels, but they
can only impose universal or existential constraints, that is,
all robots or some robots visit a certain region. As a result,
these specifications are incapable of imposing restrictions on
the number of robots that should be present at one place
at the same time. This limitation is addressed in [45-47]
that relies on counting linear temporal logic (cLTL+/cLTL)
to capture constraints on the number of robots that must be
present in different regions. Specifically, the authors formulate
an Integer Linear Program (ILP) inspired by Bounded Model
Checking techniques [48], but can only guarantee feasibility
of the resulting paths. Instead our hierarchical method also
takes into consideration the quality of the solution at each
level. A sequential planning approach is proposed in [49]
that augments the LTL specification by introducing time and,
unlike our proposed approach, plans low-level plans for the
robots, one at a time, while treating the other robots as
obstacles. Common in the methods in [45-47, 49| is that
the size of the workspace has a significant effect on the
computation time. To mitigate the complexity due to the size
of the workspace, [50] propose a hierarchical framework that
abstracts the workspace by aggregating states with the same
observations. As we show in Section|[VII] our proposed method
scales better than the method in [SO], and provides lower
cost solutions with less runtime. Also, unlike our method, the
completeness of solutions is not guaranteed in [S0].

B. Contributions

The contributions of this paper can be summarized as
follows: We propose a new hierarchical approach to the LTL-
MRTA problem that first assigns robots to tasks and then plans
robot paths that satisfy the high level assignment. Our ap-
proach differs from common methods that rely on the product
automaton [8-H10]] or on the Bounded Model Checking [48] in
that it directly operates on the NBA. Under mild assumptions
on the NBA that are satisfied by a subclass of LTL formulas
that cover a broad class of tasks in practice, we showed that
our method is complete and sound. While not theoretically
optimal, our method still incorporates optimization steps to
improve on the cost of the returned plans. To the best of
our knowledge, this is the first LTL-MRTA method that is
both complete for a subclass of LTL and includes operations
to optimize the synthesized plans. The unique aspect of our
approach is a clever pruning and relaxation of the NBA that
removes all negative atomic propositions, and is motivated
by “lazy collision checking” methods in robotics. This step
significantly simplifies the planning problem by allowing to
check constraint satisfaction only when needed and, as a
result, contributes to significantly increasing scalability of our
method. To the best of our knowledge, this is the first time that
“lazy collision checking” methods that are common in point-
to-point navigation are used for high-level robot planning.
Another unique aspect of our method is to infer the temporal
order of tasks from the automaton, which can capture the
parallel execution of subtasks. Compared to existing methods,
our approach returns lower cost plans in significantly less time.

The rest of the paper is organized as follows. In Sections
and [lI} we present preliminaries and define the problem under

consideration, respectively. We describe the high-level task
assignment component of our method in Sections and
Specifically, in Section [[V|we prune and relax the NBA, iden-
tify subtasks from the NBA and infer temporal orders between
them. Then, in Section [V] we formulate a MILP to obtain the
high-level plans. In Section we examine the completeness
and soundness of these plans, while in Section we present
simulation results. Finally, Section [VIII| concludes the paper.
For completeness, the low-level component of our method to
obtain executable paths, which is based on existing multi-robot
path planning techniques, is presented in Appendix

II. PRELIMINARIES

A. Linear temporal logic

Linear Temporal Logic (LTL) is composed of a set of atomic
propositions AP, the boolean operators, conjunction A and
negation —, and temporal operators, next () and until &/ [2].
LTL formulas over AP follow the grammar

p=T|m| 1 ANb2| 20| O¢| o1 U pa,

where T is unconditionally true and 7 is the boolean-valued
atomic proposition. Other temporal operators can be derived
from Y. For instance, {¢ means ¢ will be eventually satisfied
sometime in the future and [J¢ means ¢ is always satisfied
from now on.

An infinite word w over the alphabet 27 the power set
of the set of atomic propositions, is defined as an infinite
sequence w = ogop... € (24%)%, where w denotes an
infinite repetition and o, € 247, Vk € N. The language
Words(¢) = {w|w = ¢} is defined as the set of words
that satisfy the LTL formula ¢, where =C (247)¥ x ¢ is
the satisfaction relation. An LTL ¢ can be translated into a
Nondeterministic Biichi Automaton (NBA) defined as follows
151]:

Definition 2.1: (NBA) A Nondeterministic Biichi Automaton
B is a tuple B = (9, Qy, X, —p,Qr), where Q is the set
of states; @y C Q is a set of initial states; ¥ = 247 is an
alphabet; —5C Q x X x @ is the transition relation; and
Or C Q is a set of accepting states.

An infinite run pp of B over an infinite word w =
000102 ..., 0 € X, Vk € N, is a sequence pp = qoq142 - - -
such that g9 € Qo and (qx, 0k, qk+1) €—5, Yk € N. An
infinite run pp is called accepting if Inf(pp) N Qr # O,
where Inf(pp) represents the set of states that appear in pp
infinitely often. If an LTL formula is satisfiable, then there
exists an accepting run that can be written in the prefix-suffix
structure such that the prefix part, connecting an initial state to
an accepting state, is traversed only once and the suffix part, a
cycle around the accepting state, is traversed infinitely often.
The words o that induce an accepting run of B constitute the
accepted language of B, denoted by L. It is shown in [2]] that
for any given LTL formula ¢ over a set of atomic propositions
AP, there exists a NBA By over alphabet Y = 24P such
that Lp, = Words(¢), where Words(¢) is the set of words
accepted by ¢.

B. Partially ordered set

A finite partially ordered set or poset P = (X, <p) is a
pair consisting of a finite base set X and a binary relation
<pC X x X that is reflexive, antisymmetric, and transitive.
Let z,y € X be two distinct elements. We write * <p y if
(x,y) €<p, and z|| py if « and y are incomparable. Moreover,
we say x is covered by y or y covers z, denoted by = <p v,
if x <p y and there is no distinct z € X such that x <p
z <p y. An antichain is a subset of a poset in which any two
distinct elements are incomparable. The width of a poset is
the cardinality of a maximal antichain. Similarly, the height
of a poset is defined as the cardinality of a chain. Finally, a
chain is a subset of a poset in which any two distinct elements
are comparable. The height of a poset is the cardinality of a
maximal chain.

A linear order Lx = (X, <) is a poset such that x <y, y,
x =y or y <r x holds for any pair of z,y € X. A linear
extension Lp = (X, <p) of a poset P is a linear order such
that x <p y if * <p y, i.e., a linear order that preserves the
partial order. We define Lp as the set of all linear extensions
of a poset P. Note that a poset and its linear extensions share
the same base set X p. Given a collection of linear orders =,
the poset cover problem focuses on reconstructing a single
poset P or a set of posets {Py,..., P} such that Ep = = or
Ui?:lE p, = 2. As shown in [52], the poset cover problem is
NP-complete. Moreover, the partial cover problem focuses on
finding a single poset P such that =p contains the maximum
number of linear orders in =, i.e., Zp C = and 3P’ s.t. Ep: C
E and |Ep/| > |Ep|. It is shown in [52] that the partial cover
problem can be solved in polynomial time.

III. PROBLEM DEFINITION
A. Transition system

Consider a discrete workspace containing [€ N7 labeled
regions of interest, so that each such region can span multiple
cells in the workspace, and denote by £ = {/ } ¢y the set of
these regions, where [I] is the shorthand notation for { 1,...,1}
We call free cells in the workspace that do not belong to any
region region-free, and paths connecting two different regions
that only pass through region-free cells label-free. We also
assume that the workspace contains obstacles that can span
multiple cells and do not overlap with the regions of interest.
We represent the workspace by a graph E = (S, —g) where
S is the finite set of vertices corresponding to free cells and
—gC § x S captures the adjacency relation.

Given the workspace E, we consider a team of n het-
erogeneous robots. We assume that these robots are of m
different types and every robot belongs to exactly one type.
Let K;,j € [m], denote the set that collects all robots of type
Jysothat 35, |K;| =nand K;NKy = 0 if j # j, where
| - | is the cardinality of a set. We collect all n robots in the
set R, i.e., R = {K;}je[m- Finally, we use [r, j] to represent
robot r of type j, where r € K;, j € [m]. To model the motion
of robot [r, j] in the workspace, we define a transition system
(TS) for this robot as follows.

Definition 3.1: (TS) A transition system for robot [r, j] is
a tuple TS, ; = (S, s, —,;,IL,;, L, ;) where: (a) S is the

» 9 g

set of free cells; (b) s »; 18 the initial location of robot [r, j];
©) —=r;C—r UJUs, Jes{(sm, Sr.;)} is the transition relation
that allows the robots to remain idle or move between cells;
(d) I ; = Upep{pk,;} U {€} where the atomic proposition
pl; is true if robot [r,j] is at region £} and e denotes the
empty label; and (e) L, ; : S — II, ; is the labeling function

that returns the atomic proposition satisfied at location s’;’ i

Given the transition systems of all robots [r,j] we can
define the product transition system (PTS), which captures all
possible combinations of robot behaviors.

Definition 3.2: (PTS) Given n transition systems TS, ; =
(S, 87 ;s =, j, Ly j), the product transition system is a
tuple PTS = (5", s%, —,II, L) where: (a) S™ = S x --- x
S is the finite set of collective robot locations; (b) s° are
the initial locations of the robots; (¢) —C S™ x S™ is the
transition relation so that (s,s’) €— if s, ; —; s;.; for all
re ’CJ7V.] € [m} (d I = UzEHIC [l,5€[lm],kell {771]} U {6}
where the atomic proposition wﬁ is true 1f there exist at least
i robots of type j, denoted by (i, j > at region ¢, at the same
time, ie., 7}, < {r € K; : Ly ;(st ;) = p ;}| > i: (e) and
L:S"— 2 is the labehng functlon that returns the set of

atomic propositions satisfied by all robots at time .

B. Task specification

In this paper, we consider MRTA problems where the tasks
are globally described by LTL formulas. Furthermore, we
consider tasks in which the same fleet of robots of a certain
type may need to visit different regions in sequence, e.g.,
to deliver objects between different regions. To capture such
tasks, we define induced atomic propositions over the set II
defined in Definition [3.2] as follows.

Definition 3.3: (Induced atomic propositions) For each ba-
sic atomic proposition 7% '; € 1L, we define an infinite set
of induced atomic propositions {ﬂf ’jX}xeN’ where x is a
connector that binds the truth of atomic propositions with
identical 7,7 and x. Specifically, when x = 0, X g

i,
equivalent to 77’“ whose truth is state-dependent. When x # 0,

the truth of wk’JX is state-and-path-dependent, meaning that it
additionally depends on other induced atomic proposmons that
share the same 7, j and . That is, both 7, ’]X and]’X with

x # 0 are true if the same 4 robots of type j visit regions
and {y,. Furthermore, the negative atomlc proposition —\ﬂ'k’JX
is equivalent to its basic counterpart -7

i j» 1.e., less than (i, j)
robots are at region /.

Let AP collect all basic and induced atomic propositions and
denote by ¥ = 247 its power set. In what follows, we omit
the superscript x when xy = 0. We denote by LTLX, the set
of formulas defined over the set of basic and induced atomic
propositions and by LTL?, the set of formulas defined only
over basic atomic propositions, respectively. Clearly, LTLX
O LTL?, which means that LTLX is able to capture a broader
class of tasks. While there exists literature on feasible control
synthesis over LTLY [46| [47], to the best of our knowledge
there is no work on optimal control synthesis over LTLX

Fig. 1. Tllustration of the workspace for Example

formulas. Next, we introduce the notion of valid temporal logic
tasks.

Definition 3.4: (Valid temporal logic task) A temporal logic
task specified by a LTLX formula defined over AP is valid
if atomic propositions with the same nonzero connector y
involve the same number of robots of the same type.

Example 1: (Valid temporal logic tasks) Consider a mail
delivery task amidst the COVID-19 pandemic (shown in
Fig. where three robots of type 1 (green stars) and two
robots of type 2 (blue circles) are located at region ¢y and /1,
respectively, /5 is an office building that the robots visit to
pick up the mail, /5 and /5 are two delivery sites, and /4 is a
control room from where other robots are driven to the orange
area between /3 and ¢4 to get disinfected and then drop off the
mail at the delivery site 3. We consider two delivery tasks: (i)
Two robots of type 1 visit building ¢, to collaboratively pick
up the mail and deliver it to the delivery site /3, and one robot
of type 2 must visit the control room ¢4 to disinfect robots of
type 1 before they get to the delivery site /3. (ii) One robot
of type 1 travels between building /> and the delivery site
{3 back and forth to transport equipment, assuming that the
disinfection area operates automatically after task These
tasks are more complex than typical task allocation problems
due to the temporal operators like “before” and “back and
forth”. Observe that in Fig. [I} the atomic propositions satis-
fied by initial robot locations are 7§, and 3 ,. Moreover,
tasks and can be captured by the valid formulas
¢ =0 ((”5% A ﬁ“gl) A QW;:{) A Omig A —ms UTT o

and ¢ = OO (Wf% A Q?Ti’%), respectively. Note that when

binding the truth of atomic propositions, the value of x
is immaterial as long as it is the same non-zero number.
Therefore, ¢o can also be written as [0 (ﬂ'ff /\()71";”%).

However, formulas ¢ (wf% A OwS’i) and ¢ (7‘(%; A Owgi)
are two invalid formulas as they connect different numbers
of robots ¢ and robot types j, respectively.

Let st be the collective state at time t. A path of length A is
defined as 7 = s° ... s and it captures the collective behavior
of the team such that s+ — s*, V¢ € [h]. Given a valid LTLX
formula ¢, a path 7 = 7P[7%| in a prefix-suffix structure
that satisfies ¢ exists since there exists an accepting run in

prefix-suffix form, where the prefix part 77 = s0...s"1 is

executed once followed by the indefinite execution of the suffix
part 7 = shi ghithaghithatl where ghithetl — g
[2]. We say that a path 7 satisfies ¢ if (a) the trace, defined
as trace(r) := L(s%)... L(s")[L(s") ... L(s"thzF1)]e,
belongs to Words(4°), where ¢° is obtained by replacing all
induced atomic propositions in ¢ by their counterparts with
the zero connector and (b) it is the same (7,) that satisfy
the induced atomic propositions waX in ¢ sharing the same
nonzero connector . In other words, condition (a) restricts the
label of the path, while condition (b) restricts the robots that
participate in the satisfaction of induced atomic propositions.
If ¢ € LTL?, the satisfaction conditions only include (a).

C. Problem definition

Given a path 7.; = 9, s, ... s of length h
forh E?bOt [, 4], 1We define the cost of 7, ; as J (.Tr,j) =
1o d(st j,s75h), where d : S x S — RT U {0} is a cost
function that maps a pair of free cells to a non-negative value,
for instance, travel distance or time. The cost of path 7 that

combines all robot paths 7. ; of length h is given by

> J(m) (1)

rek;,je[(m]

J(1) =

For plans written in prefix-suffix form, we get
J(r) = BI(r7) + (1 = B)J (™), 2)

where § € [0,1] is a user-specified parameter. Then, the
problem addressed in this paper can be formulated as follows.

Problem 1: Consider a discrete workspace with labeled
regions and obstacles, a team of n robots of m types, and a
valid formula ¢ € LTLX. Plan a path for each robot such that
the specification ¢ is satisfied and the cost in (2 is minimized.

We refer to Problem [I] as the Multi-Robot Task Allocation
problem under LTL specifications or LTL-MRTA. This is
a single-task robot and multi-robot task (ST-MR) problem,
where a robot is capable of one task and a task may
require multiple robots. Since the ST-MR problem is NP-
hard [53} 54], so is the LTL-MRTA problem. Consequently,
existing approaches to this problem become intractable for
large-scale applications [45} 146]]. In this work, we propose
a new hierarchical framework to solve LTL-MRTA problems
efficiently.

D. Assumptions

In this section, we discuss assumptions on the workspace
and the NBA translated from the LTL specifications that are
necessary to ensure completeness of our propose hierarchical
framework. As we discuss later in Section these assump-
tions are mild and were satisfied by all tasks we tested our
method on, regardless of their complexity.

1) Workspace: The following assumption ensures that re-
gions in the workspace are well-defined and mutually exclu-
sive.

Assumption 3.5: (Workspace) Regions are disjoint, and
each region spans consecutive cells. There exists a label-free

path between any two regions, between any two label-free
cells, and between any label-free cells and any regions.

If regions are partially overlapping or span multiple clusters of
cells, we can define additional atomic propositions to satisfy
Assumption [3.5] Assumption [3.5] implies that there are no
“holes” inside regions that generate different labels, label-free
cells are connected, and each region is adjacent to a label-free
cell.

2) Nondeterministic Biichi Automaton (NBA): Given a team
of n robots and an LTLX formula ¢, we can find a path 7
that satisfies ¢ by operating on the corresponding NBA A4 =
(V,), which can be constructed using existing tools, such
as LTL2BA developed by [55]]; see also Fig. 2] for the NBA
of tasks [()] and Note that the NBA in Definition 2.1] is
essentially a graph. Thus, in the remainder of this paper, we
refer to the NBA by the graph A, for notational convenience.
Before we discuss our assumptions on the structure of the
NBA A;, we describe a list of pre-processing steps to obtain
an “equivalent” NBA that does not lose any feasible paths that
satisfy the specification ¢. The goal is to remove infeasible and
redundant transitions in the NBA to reduce its size.

Specifically, let the propositional formula v € X associated
with every transition vq RN v in the NBA A, be in disjunctive
normal form (DNF), i.e, v = \/peP /\qegp(_‘)ﬂﬁ}x’ where the
negation operator can only precede the atomic propositions
and P and Q, are proper index sets. Note that any propo-
sitional formula has an equivalent formula in DNF [2]. We
call C = Ayeo, (7)Y the p-th clause of ~ that includes
a set Q, of positive and negative literals and each positive
literal is an atomic proposition 775 7 € AP. Let cls(v) denote
the set of clauses CJ in 7. And let lits™ (Cy) and lits™ (C})) be
the positive subformula and negative subformula, consisting of
all positive literals and all negative literals in the clause C}.
Those subformulas are T (constant true) if the corresponding
literals do not exist. In what follows, we do not consider self-
loops when we refer to edges in Ay, since self-loops can be
captured by vertices. We call the propositional formula v a
vertex label if v1 = vy, otherwise, an edge label. With a slight
abuse of notation, let v :V — X and v : V x V — X be the
functions that map a vertex and edge in the NBA to its vertex
label and edge label, respectively. Given an edge (vy,vs3), we
call labels v (v1) and ~y(vo) the starting and end vertex labels,
respectively. Next, we pre-process the NBA A, by removing
infeasible clauses and merging redundant literals. In particular,
given a vertex or edge label y in A, we perform the following

operations:

(1) Absorption in lits™ (C]): For each clause C] € cls(v),
we delete the positive literal 7%’?, ;€ lits™ (C), replacing it with
T, if another Wf,:);/ € Iits+(C;) exists such that ¢ < 4'. This
is because if (i’,j) are at region ¢, i.e., Wf’?l is true, so is
7T,Ej. Similarly, we replace 7rl’fj by wf_i,J if ¢ > ¢/, since 1 — 4’

.. . k' .
additional robots are needed to make 7 ; true if wi,’); is true.

(2) Absorption in lits™ (C)): We delete the negative literal

-mp; € lits™ (C}), if another —); ; € lits™ (C)) exists such

that i’ < 4. This is because if =% . is true, so is =¥ ..
1,7 2,

(3) Mutual exclusion in lits™ (C)): We delete the clause
Cg € cls(vy), replacing it with constant false L, if there exist
two positive literals Wﬁ i~ ,wﬁ /j’X € lits™(C)) such that k # &’
and x # 0. The reason is that the same i robots of type j
cannot be at different regions at the same time.

(4) Mutual exclusion in litst (Cy) and lits™ (C)): We delete
the clause C) € cls(y) if there exists a positive literal 775¢ ,jx €
Iits+(C;f) and a negative literal —‘ﬂ'ik/J € lits™ (C})) such that
¢/ < i. This is because these literals are mutually exclusive.

(5) Violation of team size: For each clause C) € cls(y),

let lits*(j7) denote literals in lits™ (C;) that involve robots of

type 7/, ie., litsT (/) = {ﬂfjx € lits™(C))|j = j'}. We delete

the clause C) if the total required number of robots of type
Jj exceeds the size |IC;], i.e., if there exists j € [m] such that
Zwﬁ}xentsﬂj) i > |-

Note that these pre-processing steps merely remove infea-
sible clauses and merge redundant literals in the NBA A,
and they do compromise any accepting words in £(.A,) that
can be generated by a feasible path. Therefore, with a slight
abuse of notation, we continue to use A¢ to refer to the NBA
associated with formula ¢ that is obtained after these pre-
processing steps.

Consider now an edge e = (v1,v2) and its starting vertex
vy in the NBA A, and assume that the current state of A, is
vertex v1. For the NBA to transition to vertex vo, certain robots
need to simultaneously reach certain regions or avoid certain
regions in order to make 7(v1,v2) true, while maintaining
~(v1) true en route. We assume that the transition to vy occurs
immediately once ~y(v1,v2) becomes true. Therefore, we can
define by a subtask the set of actions that need to be taken by
a group of robots in order to activate a transition in the NBA.
Formally, we have the following definition.

Definition 3.6: (Subtask) Given an edge (vi,v2) in the
NBA Ay, a subtask is defined by the associated edge label
~v(v1,v9) and starting vertex label ~(vy).

Subtasks can be viewed as generalized reach-avoid tasks
where specific types of robots should visit or avoid certain
regions (the “reach” part of the tasks) while satisfying the
starting vertex labels along the way (the “avoid” part of the
tasks, which here is defined in a more general way compared
to the conventional definition that requires robots to stay away
from given regions in space).

Note that every accepting run defined in Section
consists of a sequence of subtasks, as they are defined in Def-
inition However, not all sequences of subtasks associated
with an accepting run make progress towards accomplishing
the task. In what follows, we restrict the accepting runs in an
NBA to those that make progress towards accomplishing the
task. But first, we provide some intuition using the following
example.

Example 1: continued (Subtask progress in the pre-
processed NBA A,) The pre-processed NBAs corresponding
to tasks [(D] and [(iD)] are shown in Fig. 2] where the vertex labels
are placed in square brackets next to each vertex. After pre-
processing, the NBA Ay, for task [(i)] does not change whereas

(a) NBA Ay for the task (i)

21 , 3,1
[T AT

21 , 3.1
T AT

(b) NBA A for the task (ii)

Fig. 2. NBA Ay for tasksand (1)} where self-loops are omitted and the
corresponding vertex labels are placed in square brackets.

some labels in the NBA Ay for task become L due to
step [(3)} These labels are highlighted in orange.

In Fig. 2(a)] vini is the initial vertex and v is the ac-
cepting vertex. Observe that all vertices have self-loops ex-
cept for the initial vertex v In each accepting run, e.g.,
Vinit, V1, V2, U3, Vg, Vg , the satisfaction of an edge label leads to
the satisfaction of its end vertex label, assuming this end vertex
label is not L. For instance, label wgi A=y, of edge (v1,v2)
implies label —m3 ; of vertex vy, and label —73, of edge
(Vinit, v1) implies label —\7r§’71 of its end vertex vy. Intuitively,
the completion of a subtask indicated by the satisfaction
of its edge label, automatically activates the subtasks that
immediately follow it indicated by the satisfaction of their
starting vertex labels. This is because once the edge is enabled,
its end vertex label should be satisfied at the next time instant;
otherwise, progress in the NBA A, will get stuck. The same
observation also applies to the NBA in Fig. 2(b)| where the ver-
tex vinie 1s both an initial and accepting vertex and vs is another
accepting vertex. The accepting run vip, V2, v3, (v1, V2, U3)%
includes one pair of initial and accepting vertices, iy and
v3, and the accepting run viyi, V2, V1, vjn;, (although infeasible)
includes one pair of initial and accepting vertices, vip; and
vinit- Note that we view the two vy, vertices differently, one

’UO*

/

Vo
, o prior
v .
prior -1
o, Unext
o o o \'
Vaccept ../

Fig. 3. Graphical depiction of the accepting run in the prefix-suffix structure
when vaceept does not have a self-loop, which resembles a lasso. The shaded
blue line and the orange loop represent the prefix and suffix part, respectively.
The arrow indicates the progression direction and the gray circles indicate the
self-loops.

as the initial vertex and the other as the accepting vertex.
Furthermore, label Wi’ﬁ of edge (v1,v9) implies label T of
its end vertex vy; the same holds for the edge (va, Vinit) and
its end vertex vy (although infeasible). It is noteworthy that
even though the accepting vertex vs does not have a self-loop,
the satisfaction of the label wfi of its incoming edge (ve, v3)
leads to the satisfaction of the label T of its outgoing edge
(vs, v1). If the satisfaction of the incoming edge label does not
imply satisfaction of the outgoing edge label, then progress in
the NBA will get stuck at vs since the label 77 A 7)1 of
edge (vs, vinit) is infeasible and the transition between regions
{5 and {3 requires more than one time steps; see Fig.|l| which
makes the label wfj of edge (vs, v2) unsatisfiable at the next
time instant.

Motivated by the observations in Example [T} we introduce
the notions of implication and strong implication between two
propositional formulas. Then, we define a restricted accepting
run in the NBA A, in a prefix-suffix structure. The complete-
ness of our method relies on the assumption that the set of
restricted accepting runs in the NBA A, is nonempty.

Definition 3.7: (Implication and strong implication) Given
two propositional formulas + and +' over AP, we say that
formula « implies +’, denoted by Y= ', if for each clause
Cp € cls(v), there exists a clause C), € cls(y’) such that C), is

a subformula of C}, i.e., all literals in C;/l also appear in CJ. By
default, T is a subformula of any clause. In addition, formula
7 strongly implies ~', denoted by v =, «/, if v = +/, and
for each clau/se C, € cls(v'), there exists a clause C) € cls(7)
such that C;’, is a subformula of C}.

Intuitively, if v = +' or v =5 +/, robot locations that
satisfy ~ also satisfy +'.

Definition 3.8: (Restricted accepting run) Given the NBA
A, (after pre-processing) corresponding to an LTLX formula,
we call any accepting run in a prefix-suffix structure p =
pPre [psuf]w - » Uprior s Vaccept ['Unexh cees v{)rior7 'Uaccepl]w (see
Fig. [3), a restricted accepting run, if it satisfies the following
conditions:

= Vo, - -

(a) If a vertex is both an initial vertex vy and an accepting
VErteX vUaecept, WE treat it as two different vertices, namely an
initial vertex and an accepting vertex. The accepting vertex

Vaccept appears only once at the end in both the prefix and suffix
parts. In the prefix part vo, . . . , Uprior, Vaccept» if @ vertex appears
multiple times, all repetitive occurrences are consecutive. The
same holds for the suffix part vpex, - - - ,v{moﬂ Vaccept

(b) There only exist one initial vertex vg and one accepting
VErteX Vaccept iN the accepting run (they can appear multiple
times in a row). Different accepting runs can have different
pairs of initial and accepting vertices;

(c) In the prefix part, only initial and accepting vertices, vg
and Vaccept, are allowed not to have self-loops, i.e., their vertex
labels can be L. In the suffix part, only the accepting vertex
Vaccept 18 allowed not to have a self-loop;

(d) For any two consecutive vertices vy, vy in the accepting
run p, if v1 # V2, V2 # Vaccepr and vy has a self-loop, then
the edge label v(v1, v2) strongly implies the end vertex label
Y(v2), ie., ¥(v1,v2) =5 Y(v2);

(e) In the suffix part p™, if Vaecept = Vnext (this happens when
Vaccept has a self-loop), then psuf only contains the vertex vaccept.
Meanwhile, the label of the edge (Vprior; Vaccept) implies the
label of the vertex Usccepts 1-€., Y(Vpriors Vaccept) == V(Vaccept)s
(f) In the suffix part, if Usccepr 7 Vnexe (this can happen
when vyecepe does not have a self-loop), then the label of the
edge (Uprior; Vaccept) implies the label of the edge (Vaccept, Unext)
i.e., Y(Vpriors Vaccept) == ¥(Vaccepts Unext). Also, the label
¥ (Upriors Vaccept) implies the label of the edge (v[’)rior,vaccept),
i.e., ¥(Vprior; Vaccept) = ’Y(U{)rior,vaccept) Note that vpri, and

))
Uprior €an be different.

In what follows, we discuss the conditions in Definition [3.8]
in more detail. Specifically, conditions [(a)]and[(b)|require that a
restricted accepting run is “simple”. Specifically, condition
states that vertices vy and Vaccept can be treated differently since
they mark different progress towards accomplishing a task.
The prefix and suffix parts of a restricted accepting run end
ONCe Vyecept 18 Teached, as in [8]. By aggregating consecutive
identical vertices in the prefix part of a restricted accepting
run into one single vertex, there are no identical vertices in
the “compressed” prefix part. That is, it contains no cycles.
The presence of a cycle is redundant since it implies negative
progress towards accomplishing the task. The same applies to
the suffix part. On the other hand, condition states that a
restricted accepting run is basically an accepting run defined
in Section that is further defined over a pair of initial
and accepting vertices. In Section we extract smaller sub-
NBAs from the NBA Ay for each pair of initial and accepting
vertices, which helps reduce complexity of the problem.

Conditions [(c)}{(D)] require that the completion of a subtask in
a restricted accepting run automatically activates the subtasks
that immediately follow it; see Example This ensures
that robots are given adequate time to undertake subsequent
subtasks after completing the current subtask. Accepting runs
that do not satisfy conditions (d)| are disregarded. In fact,
in Section we prune vertices and edges in the NBA that
violate these conditions, further reducing the size of the NBA.
Finally, the implication (Uprior, Vaccept) == ¥ (Vaccept Vnext) in
condition requires that the robot locations enabling the
last edge in the prefix part of a restricted accepting run also
enable the first edge in the suffix part. As a result, we can

find the prefix and suffix parts of a restricted accepting run
separately. Otherwise, the progress in the NBA A, may get
stuck since these two edge labels need to be satisfied at two
consecutive time instants, similar to conditions [(d)] and
Also, as the suffix part of a restricted accepting run is a
loop, robots need to return to their initial locations in the
suffix part after executing the suffix part once. The relation
¥ (Upriors Vaccept) == ’y(vl’)rior,vaccept) requires that the initial
locations in the suffix part of a restricted accepting run enable
the edge (vgrior, Vaccept)» Which ensures that the robots can travel
back to the initial locations in the suffix part and, as a result,
activate the transition in 4, back to the vertex vgecep: that
allows to repeat the suffix part p*f. Finally, we make the
following assumption on the structure of the NBA A,.

Assumption 3.9: (Existence of restricted accepting runs)
The set of restricted accepting runs in the NBA A, is non-
empty.

We note that the sets of restricted accepting runs for
tasks and satisfy Assumption [3.9] Common robotic
tasks, such as sequencing and coverage, have NBAs that
contain restricted accepting runs. However, there is also a
small subclass of LTL where the “next” operator directly
precedes an atomic proposition that violates this assumption.
For instance, O(Wfi A Qﬂf%) requires a second robot to visit
region {3 immediately after the first robot reaches /5, which
does not allow for any physical time between the completion
of the two consecutive subtasks. On the other hand, the LTL
formula O (721 A O(n} ’}Z/{wgl)) satisfies the assumption.

3) Robot p7aths.' The definition of restricted accepting runs
is based entirely on the structure of the NBA and logical
implication relations. However, Definition [3;8] does not de-
scribe how to characterize robot paths that induce restricted
accepting runs. In what follows, we discuss conditions under
which robot paths satisfy restricted accepting runs. We call
such paths satisfying paths and we assume that such satisfying
paths exist.

Definition 3.10: (Satisfying paths of restricted accepting
runs) Given a team of n robots and a valid specification
¢ € LTLX, a robot path 7 is a satisfying path that induces
a restricted accepting run, if the following conditions hold:
(a) If a vertex label is satisfied by the path 7, it is always
satisfied by the same clause that is always satisfied by the
same fleet of robots;

(b) If a clause in an edge label is satisfied by the path 7, then
a clause in the end vertex label is also satisfied. Moreover,
the fleet of robots satisfying the positive subformula of the
clause in the end vertex label is the same as the fleet of
robots satisfying the positive subformula of the clause in the
corresponding edge label;

(c) Robot locations enabling the edges (vVaccept, Unext) and
(vl’mor, Vaceept) in the suffix part of a restricted accepting run are
identical to robot locations enabling the edge (Vprior; Vaccept) in
the prefix part.

Definition [3.10] is closely related to the definition of a
restricted accepting run. Specifically, condition [(a)] in Defini-
tion [3.10] requires that once a fleet of robots satisfies a vertex

label in a restricted accepting run, then these robots remain
idle during the next time instant so that the same clause in
this vertex label is still satisfied. This satisfies condition [(a)|in
Definition [3.8] Furthermore, condition [(b)] in Definition [3.10]
requires that once a fleet of robots satisfies an edge label in a
restricted accepting run, then these robots remain idle during
the next time instant so that the clause in the end vertex label
that is implied by the clause that is satisfied in the edge label
is also satisfied. This satisfies condition [(d)] in Definition [3.8]

Finally, condition in Definition requires that the
robot locations enabling the edge (Vprior; Vaccept) in the prefix
part of a restricted accepting run coincide with the initial
locations of the robots that enable the edge (v, prior> vdccepl) in the
suffix part of the restricted accepting run, as per condition [(f)]
in Definition [3.8] Therefore, condition in Definition [3.10]
requires that the robots travel along a loop so that the suffix
part of the restricted accepting run is executed indefinitely. In
what follows, we make the following assumption.

Assumption 3.11: (Existence of satisfying paths) There ex-
ist robot paths that satisfy the restricted accepting runs in the
NBA Ay.

E. Outline of the proposed method

An overview of our proposed method is shown in Alg. [T}
which first finds prefix paths and then suffix paths. The process
of finding prefix or suffix paths consists of relaxation and
correction stages. Specifically, during the relaxation stage, we
ignore the negative literals in the NBA 44 and formulate
a MILP to allocate subtasks to robots and determine time-
stamped robot waypoints that satisfy the task assignment. To
this end, we first prune the NBA 44 by deleting infeasible
transitions and then relax it by removing negative subformulas
so that transitions in the relaxed NBA are solely satisfied by
robots that meet at certain regions [line [I]|; see Section
The idea to temporarily remove negative literals from the NBA
is motivated by “lazy collision checking” methods in robotics
and allows to simplify the planning problem as the constraints
are not considered during planning and are only checked
during execution, when needed. Then, since by condition
in Definition [3.8] restricted accepting runs contain only one
initial vertex and one accepting vertex, for every sorted pair of
initial and accepting vertices by length in the relaxed NBA, we
extract a sub-NBA of smaller size [line 2]]; see Section [[V-B]
where Agubtask (Vinit, Vaccept) 1S the sub-NBA including only
initial vertex vipi;, accept VerteX Vaccepr and other intermediate
vertices. The sub-NBAs are used to extract subtasks and
temporal orders between them captured by a set of posets
([lines [3}f]l, see Section , and construct routing graphs,
one for each poset, that capture the regions that the robots need
to visit and the temporal order of the visits so that the subtasks
extracted from the sub-NBAs are satisfied; see Section [V-A]
Finally, given the routing graph corresponding to each poset
we formulate a MILP inspired by the vehicle routing problem
to obtain a high-level task allocation plan along with time-
stamped waypoints that the robots need to visit to satisfy
the task assignment [lines [6}{7]]; see Section During the
correction stage, we introduce the negative literals back into

Algorithm 1: Algorithm for LTL-MRTA

1 Prune and relax the NBA ;
2 foreach sorted sub-NBA Agubtask (Vinit; Vaccept) dO

; > Compute the prefix path
3 Prune the sub-NBA Aquptask (Vinit, Vaccept);
4 Infer the set of posets { Py };
5 foreach sorted poset Py do
6 Build the routing graph ;
7 Formulate MILP to get prefix high-level plans ;
8 Formulate generalized multi-robot path
plannrng to get prefix low-level paths ;
; > Compute the suffix path
9 Prune the sub-NBA Asubtask(vaccept; vaccept)’
10 Infer the set of posets { Pur};
1 foreach sorted poset Py, do
12 Build the routing graph;
13 Formulate MILP to get suffix high-level
plans;
14 Formulate generalized multi-robot path
planning to get suffix low-level paths;

the NBA and formulate a collection of generalized multi-robot
path planning problems, one for each poset, to design low-level
executable robot paths that satisfy the original specification
([line [§]l, see Section [V-C). Viewing the final states of the
prefix paths as the initial states, a similar process is conducted
for the sub-NBA Aqyptask (Vaccept Vaceept) to find the suffix paths.
Alg. [I] can terminate after a specific number of paths is
found or all possible alternatives are explored. Under the mild
assumptions discussed in Section completeness of our
proposed method is shown in Theorem in Section

Remark 3.12: We note that Assumption on the exis-
tence of satisfying paths is only a sufficient condition that
needs to be satisfied to show completeness of our proposed
method, as shown in the theoretical analysis of Section
The robot path returned by our method may not be a satisfying
path, although it still satisfies the specification ¢.

IV. EXTRACTION OF SUBTASKS FROM THE NBA AND
INFERRING THEIR TEMPORAL ORDER

In this section, we first prune and relax the NBA A,
by removing infeasible transitions and negative literals. As
discussed before, this step is motivated by “lazy collision
checking” methods in robotics and allows to simplify the
planning problem by checking constraint satisfaction during
the execution of the plans rather than their synthesis. Then,
we extract sub-NBAs from the relaxed NBA and use these
sub-NBAs to obtain sequences of subtasks and a temporal
order between them that need to be satisfied so that the global
specification is satisfied.

A. Pruning and relaxation of the NBA

To prune infeasible transitions from the NBA A¢, we first
delete all edges labeled with L, as they cannot be enabled.
We also delete vertices and edges in A, that do not belong

() Apelax for task (i)

(b) Aperax for task (ii)

Fig. 4. The relaxed NBA A« for tasks [()] and

to restricted accepting runs, as defined in Definition [3.§]
Specifically, we delete all vertices without self-loops except
for the initial and accepting vertices, as per condition
in Definition Furthermore, for every vertex other than
the accepting vertex, we delete all its incoming edges with
edge labels that do not strongly imply its vertex label, as per
condition [(d)]in Definition [3.8] Finally, we delete every vertex,
except for the initial vertex, that cannot be reached by other
vertices. We note that these pruning steps do not compromise
any feasible solution to Problem [I] that induces a restricted
accepting run in Ay, as shown in Lemma [C.2]in Appendix [C]

We denote by A; the resulting pruned NBA. Given the
pruned NBA A;, we further relax it by replacing each
negative literal in vertex or edge labels with T. Let A
denote the relaxed NBA. Note that, when the specification
¢ does not involve negative atomic propositions, we have
Apelax = A;. Furthermore, Lemma in Appendix |C] states
that the language accepted by A; is included in the language
accepted by Aeax, SO this relaxation step does not remove
feasible solutions to Problem [I] In other words, A iS an
over-approximation of .A;. However, a solution to Problem |1
based on A,x may not satisfy the specification ¢. Note that
A; and Arax are sub-NBAs of Ay in terms of vertices and
edges. Thus, labels and runs in A; and Ape,x can be mapped
to labels and runs in Ay,. For instance, for an edge label
in Aplax, We denote by 74 the corresponding label in Ag
(including negative literals).

Example 1: continued (Pruning and relaxation of the NBA
Ag) The pruned NBA A7 for the task is the same as the
original NBA in Fig. The relaxed NBA Ao is shown
in Fig. The pruned NBA A; for the task is the
same as the relaxed NBA Ay,x which is shown in Fig. @(b)]
Particularly, A/ is obtained from Ay in Fig. by removing
edges (v1, Uinit), (U2, Vinit), (V3, Uinit) and replacing (viy) with
1.

B. Extraction of sub-NBA Agyprask from Ayerax

In this section, we extract multiple sub-NBAs from the
relaxed NBA ALe.x, one for every pair of initial and accepting
vertices in Aax. Then, in Section [V-C| we determine the
temporal order among subtasks in every sub-NBA.

1) Sorting the pairs of initial and accepting vertices by path
length: As required by condition [(b)] in Definition [3.8] every
restricted accepting run in A,x contains one pair of initial

and accepting vertices. In what follows, we sort all pairs of
initial and accepting vertices in Ayax in an ascending order so
that the pair of initial and accepting vertices connected by a
restricted accepting run with the shortest length appears first.
Then in Section we extract a sub-NBA from A,y for
each pair in this ascending order. Intuitively, the sub-NBAs
corresponding to restricted accepting runs of shorter length
generally will contain fewer subtasks to be completed.

(a) Computation of the shortest simple prefix path: Given
a pair of an initial vertex vy and an accepting Vertex Vaccept
in Ajax, We first compute the shortest simple path from v
t0 Vaecept 1N terms of the number of edges/subtasks, where
a simple path does not contain any repeating vertices, as
per condition [(a)] in Definition [3.8] that excludes cycles from
restricted accepting runs. This step corresponds to the prefix
part of a restricted accepting run. To this end, we first remove
all other initial vertices and accepting vertices from Agjax.
This will not affect the restricted accepting runs in Ay
associated with the pair vy and vyccep: due to condition @] in
Definition [3.8] Then, depending on whether the initial vertex
v has a self-loop, we proceed as follows.

(1) If vo does not have a self-loop, i.e., y(vg) = L: We
remove all outgoing edges vy in Ajax With label +, if the
initial robot locations do not satisfy the corresponding edge
label 4 (including the negative literals) in .A4. We emphasize
that we need to check satisfaction of 7, in the NBA 4 instead
of satisfaction of v in the relaxed NBA Ay, since if initial
robot locations cannot enable an edge starting from vg in Ay,
there is no reason to consider this edge in any NBA.

(2) If v has a self-loop, i.e., y(vy) # L: We check whether
the initial robot locations satisfy 74(vo) in the NBA Ag. If
yes, we do nothing; otherwise, we proceed as in case[(T)]in this
part and remove the self-loop of vy as well as all its outgoing
edges in A,y if the initial robot locations do not satisfy the
corresponding edge label v, in Ag.

Next, the shortest simple path connecting vg and Vaccept can
be found using Dijkstra’s algorithm. Note that if a vertex is
both an initial and accepting vertex, we treat it once as the
initial vertex and once as the accepting vertex, although it
appears twice in the shortest simple path.

(b) Computation of the shortest simple suffix cycle: Next,
we compute the shortest simple cycle around vaccept in Aretax,
where repeating vertices only appear at the beginning and at
the end of the simple cycle. This step corresponds to the suffix
part of a restricted accepting run, which is conducted in the
original NBA Areiax. If Vaceept i Aretax has a self-loop, then
the length of the shortest simple cycle is 0. Otherwise, similar
to steps in Section [(a)] used to find the shortest simple prefix
path, we first remove all other accepting vertices from Ajejax
and then remove all initial vertices (including vg) if they do
no have self-loops. In this way, the only vertex that does not
have a self-loop is the accepting vertex vaccept. This will not
affect those restricted accepting runs that are related to vy and
Vaccept due to conditions and [(c)] in Definition

Finally, the length associated with the pair vg and vaccept 1S
equal to the total length of the shortest simple prefix path and
the shortest simple suffix cycle connecting these vertices in
Arelax- By default, if no simple path or cycle exists for the pair

() Agubrask for task (i)

(b) Agubtask for task (ii)

Fig. 5. Sub-NBA Agpsk for the prefix part of tasks[(D]and [(iD)]in Example[T]
obtained from the NBA Apjox in Fig. F

Vg and Vyeeept, the length is infinite, which means there is no
restricted accepting run for this pair. We repeat this process for
all pairs of initial and accepting vertices in A.x and sort them
in ascending order in terms of the total length. As discussed
before, we plan first for pairs with shorter length since they
contain fewer subtasks to be completed.

2) Extraction of the sub-NBA Aguwsk: For every pair of
vertices vg and Vaccept N Arelax connected by a simple path of
finite total length in the above ascending order, our goal is
to determine time-stamped task allocation plans for all robots
that induce the simple prefix path and simple suffix cycle in
Apelax connecting vy and vgeeepe. To do this, we extract one
sub-NBA from the NBA A..x that we can use to construct
the prefix part of the plan and one that we can use to construct
the suffix part of the plan, respectively. Here, we discuss the
sub-NBA for the prefix part. The sub-NBA for the suffix part
is similar and is discussed in Appendix

Given the pair of vertices vy and Vaccepr, W€ construct a
prefix sub-NBA Ay by the following three steps. First,
we follow exactly the same steps in Section [(a)| that computes
the shortest simple prefix path to prune the NBA A.p.x. Next,
we remove all outgoing edges from vaccept if Vaccept % vy,
because we focus on the prefix part. Finally, let 1 denote the
set that contains all remaining vertices in A that belong
to some path connecting vy and vaccept. Then, we construct a
Sub-NBA Agpiask = (Vs, &) from A that includes all edges
that connect the vertices in V;. The sub-NBA Agypask contains
prefix parts of all restricted accepting runs associated with the
pair vy and Vaecept-

Example 1: continued (Sub-NBA Agupsk) The sub-NBA
Asubask for the prefix parts of plans associated with tasks
and [(i7)| are shown in Fig. 5] For task [(D] given the pair vjyi; and
v in the relaxed NBA A in Fig. f(a)l the total length is
3+ 0 =3 (edges (Vinit; v3), (Vinit, V4); (Vinit, v5) were removed
since vj,;y does not have a self-loop and all robots initially
located inside region ¢; do not satisfy their labels; see Fig. [I).
The NBA Agypiask, sShown in Fig. is obtained by removing
edges (Vinit, U3), (Vinit, V1), (Vinit, V5), (Vs, U3), (U5, v6) and ver-
tex vs from Ae. For task given the pair viyy and iy,

there is no cycle leading back to vi,, so the total length is
infinite and there is no corresponding sub-NBA A.x. The
total length for the pair vy and vz is 2 + 2 = 4. The
NBA Aguprask is shown in Fig. where edges (Vinit, v1)
and (v, v9) are removed since v, does not have a self-loop
and initial robot locations do not satisfy their labels.

Example 1: continued (Subtasks in Agpsk) The sub-NBA
Asubtask 18 composed of subtasks that need to be satisfied in
specific orders to reach the accepting vertex. For instance, the
path v, v1, V4,3, v in Fig. requires that first (1,2)
visits the control room ¢4, then (2, 1) visit the office building
{5 and finally the same two robots of type 1 drop off the mail
at the delivery site /3. By definition of task the temporal
order between these subtasks specifies that the time when
(1,2) visits the control room ¢4 is independent from the time
when (2, 1) pick up the mail at the building ¢», and that (1, 2)
visiting ¢4 and (2,1) visiting ¢ should occur prior to (2,1)
visiting the delivery site /.

3) Pruning the sub-NBA Agpask: Observe that the sub-
NBA Agpask in Fig. still constitutes a large portion
of Apax in Fig. which is common in practice, since
there are typically many more edges than vertices in Aejax.
However, some edges/subtasks are “redundant” in that they
can be decomposed into more elementary edges/subtasks.
Therefore, in what follows, we further prune the NBA Agypiask
by removing such redundant edges.

Recall Definition where subtasks are defined by their
edge labels and starting vertex labels. Next we define the
notion of equivalent subtasks.

Definition 4.1: (Equivalent subtasks) Subtasks (v1,v2) and
(v],v5) in an NBA A are equivalent, denoted by (vy,ve) ~
(v}, 0), if A(v1) = Y(v]), A(v1,02) = 7(v}, 1) and they are
not in the same path that connects the same pair of initial and
accepting vertices.

The last condition in Definition [.T] is necessary since two
subtasks in the same path mark different progress towards
completing a task, even if they have identical labels. Recall
that in task in Example |1} certain regions can be visited
in parallel. To capture the parallel visits, we define the fol-
lowing two properties over vertices in Agypsk, Namely, the
independent diamond (ID) property adapted from [56] and the
sequential triangle (ST) property over vertices; see also Fig. [6]

Definition 4.2: (Independent diamond property) Given four
different vertices vy, vo, v3, v4 in the NBA Agupiask, We say that
these four vertices satisfy the ID property if
(@ y(v1) =(v2) = v(va);

(b) v 5pva g s

(©
(d)
©)

Intuitively, if vertices wvy,vs,v3, and vy in Agpask satisfy
the ID property (see Fig. [6(a)), then conditions in
Definition |4.2] imply that the subtasks (vq,ve) ~ (v4,v3) and
(v1,v4) ~ (vg,v3) in Agpask are equivalent, while conditions
[(B)H(d)] in Definition [4.2] state that their order is arbitrary, i.e.,

¥
U1 ’Y—)B Vg4 =B U3;
YAy .
V1 ——B U3;
Ve (1)3) =Tifvg = Vaccept-

[v(v2)]

@,

(b) ST property

[v(v3)]
(a) ID property

7(v3)]

Fig. 6. Independent diamond and sequential triangle properties.

one can proceed the other or they can occur simultaneously.
We refer to (vy,vs) as the composite subtask and (vy,vs),
(v1,v4) as the elementary subtasks. Although both can lead to
vertex v3, composite subtasks are “redundant”, since elemen-
tary subtasks can be executed independently and, therefore,
their labels are easier to satisfy, compared to composite tasks
that need to be executed simultaneously and, therefore, more
conditions need to hold so that their labels are satisfied. Note
that we conduct the T-check in condition [(e)] in Definition
on the NBA A, so that condition in Definition is
satisfied which means that the set of restricted accepting runs
is not affected if the edge (v1,v3) is removed. This result
is formally shown in Lemma [C.5]in Appendix [C] In words,
if v4(v3) # T with v3 = Uyecepr, and if a restricted accept-
ing run traverses edges (v1,Vaccept) and (Vaccept, Unext) Where
Vaccept 7 Unext» then condition [(f)] in Definition states that
’7¢(U17Uaccepl) — ’Vt,b(vacceplavnext)- However ’yqﬁ(v%vaccept)
and Y4 (Va, Vaccept) May not imply e (Vaccept, Unext) since they
are subformulas of ~4(v1, Vaccepr). Therefore, removing the
composite edge (v1, Vaccept) Tisks emptying the set of restricted
accepting runs.

Definition 4.3: (Sequential triangle property) Given three
different vertices vy, vg,vs in the NBA Agypusk, We say that
these three vertices vy, vo, vg satisfy the ST property if

’
(@) v Lp vy Lop vs;
/\ !
b) v g vs;
(c) Yo (’03) =Tifvy = Vaccept-

If vertices vy, vo, and vs in Agpsk satisfy the ST property (see
Fig. [6(b)), then conditions [(a)] and [(b)] in Definition state
that subtask (v, v2) should be satisfied no later than (vg, vs3).
Note that if vertices vy, ve, vs, vy satisfy the ID property, then
v1, V2, vs and vy, v4,v3 satisfy the ST property. Using these
two properties, we remove all edges from Agypask associated
with composite subtasks and denote by A_, .. the resulting
pruned Agpusk- A composite subtask can be an elementary
subtask of another composite subtask at a higher layer. Thus,
removing composite subtasks is vital for reducing the size of
Agubtask- Similar to pruning Ay to get A;, the feasibility of
Problem |1|is not compromised by pruning composite subtasks
from the NBA Agyprask> s shown in Lemma [C.5]

Example 1: continued (ID and ST properties and the result-
ing NBA A_ . ..) In the NBA Agpask for task shown in
Fig.[5(a)l the vertices v1,v2, v, v4 satisfy the ID property and

Equivalent subtasks:
T (Uinit7 U1)a
(v1,v4) ~ (v2, v3),
(v1,v2) ~ (V4 v3),
(vs, vg)

Mapping function:
fl(vinitvvl) = 17

fi(vi,ve) = fi(ve,v3) = 2,
f1(U17U2) = f1(U47U3) =3,
fl(vg,vg) = 4.

Integer sequences:
I ={(1,2,3,4),(1,3,2,4)}

Poset:
Pr={1<p 2,1<p 3,1<p 4,2<p 4,3<p 4}

O

(@) A for task (i)

(b) Subtasks and poset

Fig. 7. The NBA A_

subtask and corresponding subtasks.

the vertices v, v3,v6 (74(vs) = T in Fig. satisfy the ST
property. Thus we delete (v1,vs) and (va,vg). The resulting
A sk 18 shown in Fig. The NBA A_ .« Of task [(ii)[is
the same as Agpusk Since there are no composite subtasks.

C. Inferring the temporal order between subtasks in A,

In this section, we infer the temporal relation between
subtasks in the pruned NBA A_, o = (Vi,&). For this,
we rely on partially ordered sets introduced in Section [[I-B}
Specifically, let © denote the set that collects all simple paths
connecting vy and Vaceepr iN Ay, - We focus on simple paths
since condition [(a)] in Definition [3.8] excludes cycles. Given a
simple path § € O, let 7 () denote the set of subtasks in
0. We say that two simple paths #; and f5 have the same
set of subtasks if 7(6;) = T (62). Then we partition © into
subsets of simple paths that contain the same set of subtasks,
that is, © = U.0, where T (0;) = T (6) for all 61,0, € O,
and 6, # 5. The reason for this partition is that we want to
map simple paths in A, . to posets, and the set of linear
extensions generated by a poset has the same set of elements.

Given a subset ©, of simple paths in the partition, with a
slight abuse of notation, let 7(©,) denote the set of corre-
sponding subtasks. Let the function f, : 7(0.) — [|T(©.)]]
map each subtask to a distinct positive integer. Note that two
different subtasks in two different subsets ©. and O, may
be mapped to the same integer; however, we treat these two
subsets separately. Using f., we can map every path in O,
to a sequence of integers, denoted by S.. Let I', collect all
sequences of integers for all paths in O, so |0, = |T.|.
Moreover, all sequences of integers in I'. are permutations of
each other and we denote this base set by X, = [|T(0.)]].
For every sequence S, € T, let S, [i] denote its i-th entry. We
define a linear order Lx, = (X, <p) such that S.[i] <p Se[j]
if i < j. In other words, the subtask S,[¢] should be completed
prior to S, [j]. Then, let =, collect all linear orders over X, that
can be defined from sequences in I'.. A poset P, = (X, <p,)
containing the maximum number of linear orders in =, can be
found using the algorithm proposed in [52] for the partial cover

problem, where the order represents the precedence relation.
Note that =, may not be identical to L(P,), the set of all
linear extensions of P,. Thus, after obtaining poset P,, each
of the remaining linear orders in =, that are not covered by
P, are treated as separate totally ordered sets, that are posets
as well. In this way, we do not discard any posets.

Finally, given a partition {©.} and a corresponding set of
posets { P. }, we sort { P, } lexicographically first in descending
order in terms of the width of posets and then in ascending
order in terms of the height. Recall that the width of a poset is
the cardinality of its maximal antichain, and its height is the
cardinality of its maximal chain; see Section Intuitively,
the wider a poset is, the more temporally independent subtasks
it contains. The shorter a poset is, the fewer subtasks it has. We
consider first wider posets since they impose less restrictions
on the high-level plans compared to shorter posets. Every
linear extension of subtasks in a poset produces a simple path
connecting vo and Vceept 1N A ppqk-

Example 1: continued (Temporal constraints) For task
there are two simple paths in A, leading to vg and all have
the same set of four edges, thus, ©1 = {Vini, v1, V4, V3, Vg;
Uinit, V1, V2, U3, Vg }; see Fig The design of equivalent
subtasks, mapping function, integer sequence and the poset are
shown in Fig.[7(b)] The temporal relation implies that subtasks
(v1,v4) and (v1,v2) are independent, which agrees with our
observation. For task the NBA A_, .. in Fig. only
has one path of two subtasks that generates a totally ordered
set where every two subtasks are comparable.

Remark 4.4: 1f the size of sub-NBA A_, . is still large,
leading to large number of simple paths, we can select a fixed
number of simple paths, similar to finding a fixed number of
runs in [39]. This will not severely compromise the diversity
of the selected simple paths since a lot of simple paths are
combinations of the same set of elementary subtasks.

V. DESIGN OF HIGH-LEVEL TASK ALLOCATION PLANS
AND LOW-LEVEL EXECUTABLE PATHS

In this section, we synthesize plans that satisfy the LTL
specification ¢ by first generating a time-stamped task alloca-
tion plan that respects the temporal order between subtasks that
need to be satisfied in order to satisfy the specification, and
then obtaining a low-level executable path that also satisfies the
negative literals that we removed from A, in Section
In what follows, we discuss the synthesis of a prefix path;
a similar process is used to synthesize the suffix path in
Appendix Specifically, to synthesize high-level prefix
plans, we iterate over the sorted set of posets {Ppre}, where
Pye is a poset corresponding to a simple prefix path in
Ak and, for every poset in { Py} we formulate a MILP
to assign robots to tasks and determine a high-level plan, i.e.,
a sequence of time-stamped waypoints, that the robots need to
visit to satisfy the subtasks in the corresponding simple path
in A_; .« Note that, given a poset P € { Py}, every element
in the corresponding base set X p is an integer associated with
an edge/subtask in the NBA A_, . . Since a solution to the
proposed MILP is effectively a linear extension of the poset
P, the corresponding plan sequentially satisfies the vertex

and edge labels of all subtasks in A_, . associated with the
elements in X p. Therefore, this plan produces a simple path
in Ay that connects vy and vaecepr. To obtain the low-
level executable path, for every subtask in this simple path, we
formulate a generalized multi-path robot planning problem that
considers the negative literals that were removed from Ajepax
in Section [[V-Al

The proposed MILP is inspired by the vehicle routing
problem (VRP) with temporal constraints [[14]. In the VRP,
a fleet of vehicles traverses a given set of customers such that
all vehicles depart from and return to the same depot, and
each customer is visited by exactly one vehicle. Compared
to the VRP with temporal constraints [14]], the LTL-MRTA
problem is significantly more complicated. First, robots are not
required to return to their initial locations. Instead, there may
exist robots that need to execute the task forever corresponding
to the “always” LTL operator. Second, there may exist labeled
regions that do not need to be visited at all and others that
need to be visited exactly once, more than once, or infinitely
many times. Finally, visits of regions and visiting times are
subject to logical constraints induced by the NBA A

subtask *

A. Construction of the prefix routing graph

We first construct the vertex set and then the edge set of the
routing graph G. Both constructions consist of four layers that
iterate over the edges, then the labels, then the clauses, and
finally, the literals in A_, ... The outline of the algorithm is
shown in Alg. 2} An illustrative graph for task [(1)]is shown in
Fig. [§|

1) Construction of the vertex set: The vertex set Vg consists
of three types of vertices, namely, location vertices related to
initial robot locations, literal vertices related to edge labels
in the sub-NBA A_, ..., and literal vertices related to vertex
labels in the sub-NBA A_, .. Specifically, we construct the
location vertices as follows.

(a) Location vertices associated with initial robot locations:
First we create n vertices, collected in the set V,m C Vg such
that each vertex p01nts to the initial location s . of robot
[r,j] € K;,Vj € [m] [line[1} Alg.]2] (see blue dots in Fig.).

To obtain the set of literal vertices in Vg, we iterate over
subtasks in Xp. Given a subtask e = (v1,v2) € Xp, we
construct vertices for the edge label y(v1, v2) and the starting
vertex label «y(vq), if they are neither T nor L. Specifically,
we take the following steps.

(b) Literal vertices associated with edge labels: 1f
Y(v1,v2) # T, we operate on y(v1,v2) = V,ep Ageg, waX
starting by iterating over the clauses C) € cls(y) in the
label, and then over the literals in each clause C) [lines
@ Alg. 2. The literal = ’X e lits™ (Cy) implies that at least

1,7), i.e., i robots of type j, should visit the target region ¢y
simultaneously. Hence, we create 7 vertices in Vg all associated
with region £;. If (i, j) visit these 7 vertices simultaneously,
one robot per vertex, then wk’]" is true. Note that if x # 0,
the robots visiting these ¢ vertices should be the same as those
visiting another ¢ vertices associated with another literal with
the same nonzero connector, which is ensured by the MILP
formulation; see the red, yellow, and green dots in Fig. B}

Algorithm 2: Construct the routing graph

Input: Poset P

; > Create the vertex set
1 Create the vertex set Vi, for initial locations ;

; > vertices for labels
2 for e=(v1,v2) € Xp do
3 if y(v1,v2) # T then
4 for C) Ekclj(fy) -d(l
5 for ;% € lits™ (C)) do
6 Create ¢ vertices ;
7 if y(v1) # T, L then
8 ‘ Create vertices by following lines
; > Create the edge set
9 for e = (v1,v2) € Xp do
10 if y(v1,v2) # T then

1 for C) € cls(v) do

12 for WfJX € lits™(C)) do

13 () Vertices of initial robot locations ;

14 (44) Vertices of prior subtasks ;

15 (#i7) Vertices associated with v(v1) ;

16 if v(v1) # T,L then

17 if S5 = then

18 ‘ Create edges by following lines ;

19 else if S5 # () then

20 Create edges from vertices associated with

subtasks in S¥ ;

21 if X¢, =0 and X #0 then

22 Create edges from vertices associated
with initial robot locations ;

(c) Literal vertices associated with starting vertex labels:
After vertices in Vg associated with the edge label v(vy,v2)
of subtask e have been constructed, vertices in Vg associated
with the starting vertex label y(v1) can be constructed in the
same manner if (v1) is neither T nor L [lines Alg. 2]I.

Repeating steps in Appendices and [(c)| for all subtasks in
X p completes the construction of the vertex set Vg. Note that
each vertex in Vg \ Vin is associated with a literal of a certain
subtask in X p. Also, each literal of a certain subtask in Xp is
associated with one or more vertices in Vg \ Vinit, and the literal
specifies the region and the robot type associated with these
vertices. To capture this correspondence, let ./\/l‘: : Vg \ Vinit —
Xp and M?i}ts : V6 \Vinic = [[irs map a vertex in Vg \ Vipi to its
associated subtask and literal, respectively, where [],. is the
cartesian product Xp x {0,1} xP x Q,,, and 0, 1 represent the
label type, O for vertex label and 1 for edge label. Furthermore,
let MU : ;e — 2Y9 and MSE : [, — 2Y9 map a literal
and clause to the associated vertices in G, respectively, where
[1. is the cartesian product Xp x {0,1} x P. We also define
MY : Vg — L and MY : Vg — {K,} that map a vertex in
Vg to its associated region and robot type. Finally, if x # 0,
we define MX : N+ — 257401} {0 map y to all labels in
X p that have literals with the same connector y, which will
be used in the MILP problem in Appendix [A-A3|to encode the
constraint that some regions are visited by the same ¢ robots

4@

Fig. 8. Routing graph G for task s1 15 52 1 and 33 , are initial locations
of three robots of type 1 and s1 2 and 32 5 are initial locations of two robots of
type 2 (see case . Red dots Zl and €2 correspond to the edge label 7r2 1
of element 3, i.e., edge (1}1,1}2) in Xp; see Fig. - Yellow dots é K

correspond to the edge label Y i of element 4, and green dot €1 corresponds
to the edge label 7r1 o of element 2 (see Appendix |(b)). No dots correspond

to vertex labels since all vertex labels are either T or L. The edges from 61
to El and from Z2 to 62 are due to 3 <p 4.

of type j.

Example 1: continued (Mappings for task (i)) The map-
pings in Fig. [8] associated with the vertex /3 are: MY (¢3) =
(v1,v2) = 3and MY (£3) = ((v1,v2), 1,1, 1) since the vertex
0% corresponds to the first literal 71';3} of the first clause of
the edge label of subtask (vi,vs) in Xp; see also Fig.
ME(ls) = £y and ME(£3) = Ky since the literal 75
requires two robots of type 1 to visit region /5.

Furthermore, the literal/clause-to-vertex mappings are:
Ml]i)ts(((vlv v2),1,1,1)) = M%}Is(((vla v2),1,1)) = {fé, E%};
Ml\i}s(((vh 7)4), L1, 1)) = Mg}ls(((vlv ’U4), 1 1)) = {gzll} since
the literal 7 ,, the first literal of the first clause of the edge
label of subtask (vq,v4), requires one robot to visit region
(4. Finally, the connector-to-label mapping is: MX(1) =
{((v1,v2),1), ((vs,v6),1)} since the connector 1 appears in
the edge label of subtask (v1,v2) and the edge label of subtask
(1)3, 1}6).

2) Construction of the edge set: The edges in G respect
the partial order among subtasks captured by the poset P. We
construct the edge set £ by following a similar procedure
as that used to construct the vertex set Vg. Specifically, we
iterate over the elements in Xp. For every subtask e =
(v1,v2) € Xp, if y(v1,v2) # T, we first operate on the
edge label y(v1,v2) =V ep /\qegp 7. X starting by iterating
over the clauses C) € cls(7), and then over the literals in
each clause C} [lines PIITS| Alg. []l. Specifically, recall from
Appendix lV—-_Azl that the literal 77" € Iits+(C;,’) corresponds
to 7 vertices in Vg that are associated with region £}, that should
be visited by ¢ robots. In what follows, we identify three types
of leaving vertices in Vg from where ¢ robots can depart to
reach these 7 vertices that satisfy literal wf]X

(a) Location vertices: The location vertices in Vi asso-
ciated with robots of type j are leaving vertices. We add an
edge from all initial vertices to every vertex associated with
literal wi JX (see blue edges in Fig. . Intuitively, robots depart
from initial locations to undertake certain subtasks. These
edges are associated with a weight T that is equal to the
shortest travel time from the initial location to region ¢; and
another weight d that is equal to the smallest traveling cost
between the initial location and ¢;, which will be used in the

MILP problem in Appendices and to encode the
scheduling constraints and the objective.

(b) Leaving vertices associated with prior subtasks: Let
X< oo X - and X ﬁp denote the sets that collect subtasks
in Xp that are smaller than, covered by, and incomparable
to subtask e, respectively (see Section . In words, X¢
contains subtasks in X p that should be completed prior to e,
X&, € X¢ contains subtasks in X¢ | that can be completed
right before e, and X |TP contains subtasks independent from
e. To find leaving vertices, we iterate over S7 = X% »U X ﬁp
that includes all subtasks that can be completed prior to e,
respecting the partial order between subtasks. Given a subtask
e = (vi,vh) € 8%, if its edge label ~'(v},v}) # T, we
iterate over all clauses in 7 and thgn over all literals in each
clause. Specially, given a clause C;j, € cls(v’), for any literal
wf,/,’j)f/ € Iits+(C;,/), if j/ = j, then literal vertices in Vg
associated with this literal are leaving vertices. If further i’ = 4,
we randomly create ¢ one-to-one edges starting from these
i vertices and ending at the ¢ vertices associated with wﬁ’j"
(see the orange edges in Fig. [§). Because there are exactly
1 robots of type j, it suffices to build ¢ one-to-one edges.
Furthermore, if x = x’ # 0, then literals ﬂfjx and Wf/:’]?,(/ must
have the same number of vertices. Building i one-to-one edges
can guarantee that the same ¢ robots of type j satisfy these
two literals. Otherwise, if ¢/ # i, we add 7 x ¢’ edges to /5g/
by creating an edge from any vertex associated with Wf,;/(
to any vertex of wfjx Finally, since each region may span
multiple cells, the weights 7™ and d of these edges are set as
the shortest travel time and lowest traveling cost from £y to {j.
After creating edges associated with the edge label ~/(v], v5)
of €/, we identify leaving vertices among literal vertices in Vg
associated with the starting vertex label v(v}]) of ¢’ and build
edges in the same manner.

(¢) Leaving vertices associated with v(v1) of e: When the
iteration over S{ is completed, we identify leaving vertices
among literal vertices associated with the starting vertex label
~(v1) of the current subtask e by following the procedure in
Appendix for the prior subtasks. This is because v(v1)
becomes true before y(vy,vs).

So far we have constructed three types of leaving vertices
corresponding to the literal wﬁ 7 in lits™ (Cy)) of the edge label
v(v1,vs) [lines Alg.[2]l. We continue constructing leav-
ing vertices for all other literals in lits™ (Cy) [line |12} Alg.
and clauses in cls(v) [line Alg. . After constructing all
edges pointing to vertices associated with literals in the edge
label y(v1,v9) of the current subtask e [line Alg. 2], we
construct edges pointing to vertices associated with literals in
the starting vertex label v(v;), by identifying leaving vertices
among location vertices and literal vertices associated with
prior subtasks. Specifically, let S5 = X¢ U X ﬁp be the set
that collects all subtasks that can occur immediately prior to
subtask e. The satisfaction of edge labels of subtasks in S5
can directly lead to the starting vertex vy of e. We consider
the following cases.

(1) S5 = 0: 1In this case, no subtask can be completed
before subtask e, i.e., the subtask e should be the first one
among all in Xp to be completed. Thus, v; is identical to the

initial vertex vg. In this case, we only identify location vertices
as leaving vertices, as in Appendix [(a)] [lines Alg. 2],

(2) S5 # (0: We identify leaving vertices associated with
prior subtasks in SS5. Given a subtask ¢ = (vi,v}) € S5,
we find all clauses C;,/ € cls(y’) in the edge label v/ of €’
such that, for the considered clause C € cls() in the starting
vertex label of subtask e, its corresponding clause (C;/)¢ in

A, is the subformula of their corresponding clauses (C;/)¢ in

Px e lits™t (C)) we create i one-

Ag. Next, for each literal Ly
to-one edges, starting from those ¢ vertices asso/ciated with the
counterpart of literal wf ;X in the found clause C), € cls(y’) and
ending at the ¢ vertices associated with waX [lines Alg. .
We create such one-to-one edges based on condition n
Definition [3.8] and condition [(b)] in Definition That is, the
edge label strongly implies its end vertex label, the satisfied
clause in the edge label implies the satisfied clause in the end
vertex label, and the fleet of robots satisfying the clause in
the vertex label belongs to the fleet of robots satisfying the
clause in the incoming edge label. This is also the reason
why we consider prior subtasks in S§ rather than S} as in
Appendix [(b)]

(3) X, = 0 and Xﬁp # (: In this case, the subtask
e can be the first one among all to be completed. If so, its
starting vertex label (v) should be satisfied at the beginning.
However, robots cannot depart from leaving vertices that are
literal vertices (see case in Appendix [(c)), because these
edges are enabled after subtask e. Therefore, for the vertex
label (v), we additionally identify leaving vertices pointing
to initial robot locations, as in Appendix [(a)] [lines 22} Alg. 2]
Note that, if X ip = (b, there are no leaving vertices associated
with initial locations since there exists a subtask that should
be completed before e and, therefore, subtask e can not be the
first one. When the iteration over all subtasks in X p is over,
we finish the construction of the edge set £ [line [0 Alg. [2]].

Remark 5.1: (Relaxation of strong implication in condi-
tion [(d)] in Definition [3.8) Condition [(d)] in Definition [3.8]
requires that an edge label strongly implies its end vertex
label. This condition ensures both that the satisfaction of an
edge label leads to the satisfaction of its end vertex label and
that when constructing the routing graph G, robots satisfying
the positive subformula in an end vertex label belong to
robots satisfying the corresponding edge label (see step [(2)]in
Appendix [(c)). This condition can be relaxed to requiring that
an edge label implies its end vertex label (see Definition [3.7),
which can still ensure that the satisfaction of an edge label
implies the satisfaction of its end vertex label, so that the
previous instance of GMRPP still activates the immediately
following instance of GMRPP. The only change needed in this
case is in the pre-processing steps in Section [[II-D2] where we
need to remove all clauses in an end vertex label that are not
a subformula of clauses in the corresponding edge label. This
way, the edge label strongly implies the remaining clauses in
its end vertex label.

B. Construction of the robot prefix plans

Given the routing graph constructed in Section [V-A| the
proposed MILP contains five types of constraints includ-

ing routing constraints, scheduling constraints, logical con-
straints, temporal constraints, and transition constraints; see
Appendix [A] The feasibility of the MILP and the properties of
the resulting solutions are analyzed in Lemmas [C.9] and [C.1(]
Given the solution to the MILP, we first define a time axis that
includes the sorted completion times of all subtasks in Xp.
This time axis produces a linear extension of the poset P and
the plan generated by this linear extension satisfies the vertex
and edge labels in a given simple path in A_,,.. Next, we
extract a time-stamped task allocation plan, augmented with
completion time of each subtask, for each robot that can be
used to generate low-level paths satisfying the specification ¢.

1) Time axis: The progress made in A, is directly
linked to the satisfaction of edge labels which, by condition [(d)|
in Definition [3.8] implies the satisfaction of their end vertex
labels, excluding vyccepi. Therefore, we collect the completion
times of all subtasks in X p (the time when edges are enabled)
and sort them in an ascending order to form a single increasing
time axis, denoted by . We note that there are no identical time
instants in the time axis since, by construction, the solution
to the MILP is a simple path in A_, . and subtasks in any
simple path are completed at different times.

2) High-level robot plans: Next we extract a high-level plan
for each robot, which is a sequence of waypoints that the
robots need to visit to complete the subtasks in X p along with
the time instants of these visits. Specifically, for each robot
[, 7], let p, ; denote its corresponding high-level plan and let
t,; denote its timeline. Consider also a vertex vy € Vit in
the routing graph G that is associated with the initial location
of robot [r, j] and let v be the vertex that robot r traverses
to. Note that robot can only travel along one outgoing edge
of vj. Note also that each vertex in the routing graph G is
associated with a label captured in the mapping M_. If the
label associated with v} is a vertex label, then we proceed
to the next vertex v5 that robot r reaches from vj, until
a vertex v* € Vg associated with an edge label is found.
Then, the region associated with this vertex v*, captured by
the mapping MY (v*), constitutes the first waypoint robot
r needs to visit to complete a subtask. We add this region
MY (v*) to the plan p, ;. Next, the corresponding visit time
indicates the completion time of the associated subtask that is
captured by the mapping MY (v*). We add this time instance
to timeline ¢, ;. Since each time instant on the time axis
{ corresponds to the completion of one subtask, this visit
time in ¢, ; corresponds to the time instant on ¢ that the
subtask MY (v*) is completed. Continuing this process, we
can construct for robot [r, j] a sequence of waypoints and the
corresponding timeline whose time instants appear on the time
axis £. Given this high-level plan {p,;}, we can design low-
level executable paths that reconsider the negative literals that
were originally removed from the NBA Ajejax-

Example 1: continued (Time-stamped task allocation plan)
After solving the MILP for the workspace in Fig. [I] the
high-level plans and the associated timelines for robots are as
follows: pa1 = p31 = {l2,03},t21 = t31 = {6,16},p20 =
{l4}, ta o = {10}. That is, robots [2,1] and [3,1] visit the
office building /5 at time instant 6, then robot [2,2] visits
the control room ¢4 at time instant 10, and finally robots

[2,1] and [3,1] visit the delivery site {3 at time instant 16.
The remaining robots remain idle. Observe that the lengths
of the plans differ since every robot may undertake different
number of subtasks. The induced simple path in A_, . in
Fig. 1S Upnit, V1, V2, U3, Vg. The associated time axis is
t=1{0,6,10,16}, one time instant per subtask. In words, the
subtask (vin, v1) is completed at time instant 0 and the subtask
(v1,v2) is completed at time instant 6, which corresponds to
the event that robots [2,1] and [3, 1] visit the office building
lo.

C. Design of low-level prefix paths

In this section we discuss the correction stage that re-
introduces the negative literals to the NBA and corrects the
high-level plans designed in Section (if needed) so that
they satisfy the specification ¢. To this end, we first find the
simple path in the NBA A_, . connecting v and vaccepe USIng
the time axis and the time-stamped task allocation plan. To
satisfy the specification ¢, for every subtask in the simple path,
we formulate a generalized multi-robot path planning (GM-
RPP) problem. Each GMRPP is essentially a generalization of
the multi-robot point-to-point navigation problem, whose goal
is to determine a collection of executable paths that allow
the robots to complete the current subtask (by enabling the
edge label at the end while respecting the starting vertex en
route) and automatically activate the next subtask, since the
satisfaction of the edge label leads to the satisfaction of the
starting vertex of the next subtask. The details can be found
in Appendix [B] that also discusses different implementations
of the proposed GMRPP (see Appendix that depend on
whether all or a subset of robots are allowed to move during
the execution of the current subtask, since not all robots are
responsible for the completion of this subtask, and whether
the completion times of subtasks are disjoint or partially
overlapping. Finally, the feasibility of the proposed GMRPP
is analyzed Lemma [C.T1] in Appendix [C]

D. Obtaining the best prefix-suffix path

After obtaining the prefix path corresponding to a poset
P € { Py} for the given pair vg and vyccep, Next we find the
suffix path around wvccepr. For this, we can follow a similar
process as this described in Sections [V-ARNV-C] to find the
prefix path for poset P € { Py}, with the difference that now
we treat the accepting vertex vuccept as both the initial vertex vg
and the accepting vertex vyccep. This is because the suffix path
is essentially a loop, i.e., the final locations in the suffix path
are identical to the initial locations in the suffix path, which are
also the final locations in the prefix path; see Appendix
for more details.

Specifically, given the pair vy and Vuccept, WE solve one
MILP for each poset P’ € {P,} to obtain a correspond-
ing suffix path; these MILPs can be infeasible if there are
no feasible paths that induce simple paths corresponding to
the poset P’. Then, among all suffix paths for all posets
P’ € { Py} we select the one with the lowest cost. This best
suffix path corresponds to the prefix path generated from a
poset P € { Py} for the given pair vy and vyccepr. Combining

(a)t=6

(b) t =10 (c)t=18

Fig. 9. Key frames demonstrating the execution of low-level paths that satisfy
task [(D] The initial configuration is shown in Fig. [T} Fig. 0(a)] shows that at
time instant 6, robots [2, 1] and [3, 1] reach the office building ¢2, while robot
[1,2] is on the way to the control room 4. Fig. shows at time instant 10,
robot [1, 2] reaches the control room ¢4 while robots [2,1] and [3, 1] head
towards the delivery site £3. Finally, they reach ¢3 in Fig. at time instant
18. Robots [1, 1] and [2, 2] remain idle throughout the process.

this suffix path with the corresponding prefix path we obtain
the best total path associated with the poset P for the given
pair vg and Vaccepr- Then, using cost function @), we select
the best total path over all posets in {Pp.} for the given
pair vg and Uuecep. Finally, by iterating over all pairs of
initial and accepting vertices with finite total length, we can
obtain the best total path. We highlight that our method can
terminate anytime once a feasible path is found, but running
the algorithm longer can lead to more optimal feasible paths.
Note also that by iterating over the pairs vo and Vuecepr and
the corresponding posets in the ascending order discussed in
Section[[V-C] it is more likely that the first solutions we obtain
have low cost since they involve fewer subtasks that need to be
accomplished. This observation is also validated numerically
in Section [VIIl

Example 1: continued (Low-level paths) When generating
low-level paths for task we also consider collision avoid-
ance. Fig.[9]shows an array of three key frames where different
subtasks are completed. Observe that task is completed
at time 15, longer than 12 given by the time-stamped task
allocation plan since the high-level plan uses the shortest
travel time between regions and does not consider collision
avoidance.

VI. THEORETICAL ANALYSIS

In this section, we analyze the completeness and soundness
of our method. First we show that, with mild assumptions, our
method is complete for LTLY specifications.

Theorem 6.1: (Completeness) Consider a discrete
workspace satisfying Assumption a team of n robots
of m types and a valid specification ¢ € LTL’. Assume
also that there exists a path 7 = 7P¢[7*U1]“ that induces a
restricted accepting run p = pPe[p™f]«
[vnexh...,v;rior,vamm]“ in the pre-processed NBA A4 and
satisfies Assumption Then, the proposed synthesis
method can find a robot path 7 = 7P[7U] that satisfies the
specification ¢.

= V0, - - + y Uprior Vaccept

The key idea in the proof of Theorem is to first show
that feasible paths still exist in A, and then use this fact
to show feasibility of the MILP and GMRPP problems. The
detailed proof can be found in Appendix [C} We emphasize that

the completeness result in Theorem is ensured for LTLO
rather than LTLX formulas. This is because task allocations
captured by induced atomic propositions in the prefix part may
not lead to feasible allocations in the suffix part. However,
when the LTLX specification can be satisfied by finite-length
paths, such as co-safe LTL [57] or LTLf [58]], then our method
is complete also for LTLX specifications; This is shown in
Proposition [C.§] in Appendix [C-C| as part of the proof of
Theorem

Remark 6.2: We note that the path 7 constructed by our
approach may not satisfy Assumption that requires that
robots close their suffix loops at the same time the NBA
Ay transitions to Vuecepr. However, in our method, when the
NBA A, transitions to vuccept, only those robots involved in
the completion of the last subtask in the prefix part return
to regions corresponding to their initial locations. Thereafter,
trajectories are closed.

The following statement shows the soundness of our
method, which is a direct consequence of Theorem @

Corollary 6.3: (Soundness) Consider a discrete workspace,
a team of n robots of m types and a valid specification
¢ € LTLX. Then, the path returned by the GMRPP satisfies
the specification ¢. Also, the specific implementation of the
GMRPP is not important.

VII. NUMERICAL EXPERIMENTS

In this section we present three case studies, implemented
in Python 3.6.3 on a computer with 2.3 GHz Intel Core i5
and 8G RAM, that illustrate the correctness and scalability
of our method. The MILP is solved using Gurobi [S9]] with
big-M Mpax = 10°. First, we compare with the optimal
solution to examine the suboptimality of our proposed method
when the NBA can be captured by one poset (thus, only
one solution). Second, we generate multiple solutions for
specifications with multiple posets, and compare the cost of
the first solution corresponding to the widest poset to that
of the subsequent solutions. We observe that the quality of
the first solution obtained for the widest poset is generally
very good. Finally, we compare our method to the approach
proposed in [50]] for large workspaces and numbers of robots
and show that our method outperforms the approach in [S0]]
in terms of optimality and scalability. We emphasize that the
sets of restricted accepting runs of all specifications ¢ — ¢19
considered in the following simulations, are nonempty, which
shows that this assumption is not restrictive in practice.

A. Case study I: Suboptimality

In this case study, we examine the quality of the paths
constructed for the two tasks in the Example[I] Observe that in
Fig. a unique poset corresponds to the sub-NBA A_ ..«
for task A similar observation can be made for the sub-
NBA A_ .« in Fig. for task In the workspace shown
in Fig. 0] we randomly generate the initial locations of all
robots inside label-free cells. To measure the suboptmality of
our solution in terms of path length (travelled distance), we

use brute-force search to find the optimal cost.

TABLE 1
STATISTICS ON THE OPTIMAL COST AND SOLUTIONS

task I NoCol+Seq Col+Sim

cost horizon cost horizon
36.0+£5.1 364453 (35) 23.9+4.1 38.845.5 19.6+2.8
254428 28.6+3.1 (8) 29.2+29 28.64+3.1 29.2429

Case Study I: Column “NoCol4-Seq” represents the case where collision avoidance is
ignored and robots move sequentially, and column “Col+Sim” incorporates collision
avoidance and simultaneous execution. The notation J* denotes the optimal cost without
considering collision avoidance. The number of trials out of 50 trials where the cost cost
is equivalent to the optimal cost J* are shown inside the parentheses.

Next, given the same randomly generated initial robot loca-
tions, we implement our proposed method in the following two
different ways. First, we implement GMRPP without collision
avoidance and with sequential execution (see Appendix|B-BIJ.
Using sequential execution, only robots participating in the
subtask under consideration are assigned target regions and
the rest of the robots just move out of their way, whereas in
the case of the simultaneous execution (see Appendix [B-D2),
multiple subtasks can be undertaken at the same time, and
robots that do not participate in the current subtasks simultane-
ously move towards their target points for subsequent subtasks.
Second, we implement GMRPP with collision avoidance (see
Appendix and with simultaneous execution. Both im-
plementations employ the full execution (see Appendix|B-B1)),
in which all robots are allowed to move. Note that in the
partial execution (see Appendix [B-D3), only necessary robots
participating in the current subtask are allowed to move and
the remaining robots are treated as obstacles. Table [I| shows
statistical results on the path costs and path time horizons
(number of time stamps), averaged over 50 trials. For task
the MILP for the high-level plan includes 105 variables and
183 constraints; for task it includes 33 variables and 61
constraints to find the prefix plan and 94 variables and 162
constraints to find the suffix plan.

Without considering collision avoidance, the cost returned
by our method is close to the optimal cost, especially for
task [(D)] that only requires paths of finite length. In 35 out of 50
trials, our method can identify the exact optimal solutions. For
task[(iD} the additional cost arises from planning separately for
the prefix and suffix parts. In the prefix part, the robot can visit
the cell in region /5 that is the closest to its initial location,
however, it may incur additional cost to return to this cell in
the suffix part. The costs when considering collision avoidance
are also close to the optimal cost, indicating that often robots
follow the shortest path. As for the path horizon, observe that,
for task (1)} simultaneous execution results in shorter horizons
since one robot of type 2 can move towards region ¢4 while
two robots of type 1 leave from their initial locations for region
{5. Nonetheless, for task the horizon remains almost the
same, since the corresponding subtasks cannot be executed in
parallel by the same robot.

B. Case study II: Quality of the first solution

Common to the two specifications in the first case study
is that the sub-NBA A for the prefix and suffix parts

subtask
can be concisely captured by one poset, which may not be

the case for most specifications. Here, we consider various
specifications that can produce many posets and examine the
quality of the first solutions obtained for the widest poset (see
Section by comparing to subsequent solutions obtained
for subsequent posets. We use the same workspace and robot
team as in Example [I| The considered specifications are as
follows:

¢s =00(m31 A O(my AO(ma1 A Om51),
¢a =00(m31 A Omy) AD(rY (
A D—wré{l
¢5 = O(myy A O(mys Uns 1)) ANDO(my A Onyy),
g6 =00(xy v wr) ADOT ADO(RS 5 V 73 ,)
A D-wréi N D—wrgg,
o7 = DO(W%Q A Q(O_‘sz)) A DO(W?J A O(O_‘Wil))
A <>(7T§,1 A Wg,z)a
¢s =00(my75 A O(myy AOTys)) A-mi , Uy,
A _‘7Ti2 UW;:; I (Doﬂ'gg \ Doﬂg,ﬁa

where (a) ¢3 requires that the same two robots of type 1 meet
first at regions /o, then {3, next ¢4, and finally at /5, repeating
this process infinitely often; (b) ¢4 requires that the same two
robots of type 1 meet at region ¢ and then /3 infinitely many
times. Also, every time one robot of type 1 visits region /5,
it should stay there until one robot of type 2 visits region 4.
Finally, at most one robot of type 1 should be at region ¢4 at
any time; (c) ¢5 requires that one robot of type 2 visits region
{4 and stays there until two robots of type 1 reach region /5.
This type 2 robot should visit regions ¢4 and then ¢35 infinitely
many times; (d) ¢g requires that the same robot of type 1
visits regions /3 or /5 infinitely many times and this robot
visits region /o infinitely many times, while two robots of
type 2 meet at regions {3 or /5 infinitely many times. Finally,
at most one robot of any type can be present at region £4; (e)
¢7 requires that one robot of type 2 periodically visits region
£4 while one robot of type 1 periodically visits region ¢5. All
robots must eventually meet at region /3; (f) ¢g requires that
two robots of type 2 meet at region /4, then ¢ and next /5,
repeating this infinitely many times with the restriction that
no robots of type 2 reach regions {5 and {5 before two robots
of type 2 meet at region ¢4 for the first time. Ultimately, two
robots of type 1 should meet at region /5 or /3 infinitely often.

These specifications involve various operators and are rep-
resentative of commonly used complex tasks in robotics ap-
plications. For example, ¢3 can capture surveillance and data
gathering tasks [17, 4], and the subformula DO(W%:% Y Wf%)
in ¢g can specify intermittent connectivity tasks where robots
are required to meet at communication regions infinitely
often [5, 160, |61]. Furthermore, subformula Dﬂ7r§72 in ¢5 can
be used to represent collision avoidance among robots and
-ty U wé;% in ¢g can prioritize certain subtasks to others.

We executed our method 20 times for each specification. In
each trial, we randomly generated initial robot locations inside
the label-free cells such that no two robots occupy the same
cell. We considered collision avoidance, as well as full and

TABLE II
RESULTS FOR SPECIFICATIONS ¢3 — ¢8

_ N —5 N —

Tk | Npur 1] Aol o gy | o e | N = 1 Nt =5 Nt = 10

‘ ‘ cost time(sec) cost time(sec) cost time(sec)
¢3 8 (20, 142) (20, 49) 3,2 (5,5) (45, 78) (276, 397) | 66.4+4.7 1.74£0.2 — — — —
fon 4 (10, 57) (10, 31) (3,2) 3,3) (45, 78) (130, 210) | 61.4+4.8 1.4+0.2 — — — —
@5 2 (11, 31) (11, 25) (10, 19) 3,3) (78, 141) (76, 142) 17.9+£5.7 0.5+0.1 17.945.7 2.240.7 — —
fon) 1 4,9) 4, 8) “4,5) “,5) (117, 203) (204, 308) | 33.3+7.1 1.24£0.5 30.8+5.7 3.2+1.1 30.8+£57 4.5+1.5
o7 3 (24, 140) (24, 104) (22,57) (9, 18) | (124, 194) (93, 164) | 454+7.1 2.5+03 454+7.1 29+03 454+7.1 3.9+03
P8 4 (15, 83) (15, 41) (8, 13) 8, 14) (120, 210) (201, 325) | 74.0+6.2 1.6+0.2 74.0+6.2 8.7+0.5 74.0+6.2 224+1.2

Case Study II: Ny is the number of pairs of initial and accepting vertices, |Al, [Agl, [A e | and |A | are the size of the NBA before and after

subtask subtask

pre-processing, for the prefix and suffix parts from which the first solutions are obtained, respectively. MILPP and MILP! are the size of MILP of the first
solution. The symbol “—” means that only one solution found for ¢z and ¢4, and less than or equal to 5 solutions found for ¢s.

simultaneous execution. In Table |II, we report the number of
pairs of initial and accepting vertices in the NBA A4 before
pre-processing, the size (number of vertices and edges) of the
NBA Ay before and after pre-processing, and the size of the
sub-NBA A_ . for the prefix and suffix parts from which the
first solutions are obtained. The size (number of variables and
constraints) of the MILP for the prefix and suffix part of the
first solution is also displayedp_-] We terminate our method until
all solutions or the first 10 solutions are generated, whichever
comes first. We record the smallest cost achieved by the first
solution, after the first 5 and 10 solutions along with the
runtimes.

In Table [II, we observe that the size of sub-NBA A, ..
is dramatically reduced compared to the size of NBA before
pre-processing, especially for specifications ¢3, ¢7 and ¢g,
considerably reducing the computation times. It takes about
20 seconds to get 10 solutions for specification ¢g. Except for
specification ¢g, the first solution returned by our method is
also the lowest cost solution. For specification ¢g, the best
solution corresponds to one of the first 5 posets. This is
because our optimization-based method sorts the set of posets
in part according to their height so that posets with smaller
numbers of subtasks are considered first (see Section [[V-C).
Therefore, we can terminate our method only after a few
solutions have been obtained, which is especially important
when the complexity of the planing problem increases, as in
the next case study.

C. Case study III: Scalability

In this case study, we examine the scalability of our pro-
posed method with respect to the size of the workspace and the
number of robots. Specifically, we first compare our method
to the Bounded-Model-Checking-based (BMC) method in [50]
and then, we examine the effect of full or partial execution on
the performance.

1) Comparison with the BMC method: Similar to our
method, [50] also adopts a hierarchical framework, which
improves the scalability of methods in [46, 47] that address
feasible control synthesis over LTL?. For the purpose of
comparison, we borrow the workspace used in [50], a 30-by-
30 grid world containing 6 regions /;,i = 1,...,6; shown in

IThe size of the MILP differs for different solutions since they may be
generated from different posets of subtasks. We only report the results for
the first solution since we aim to examine the quality of the first solution.

Fig. 10. Grid world from [50]

Fig. At each trial, 20% of cells are randomly selected as
obstacles. We consider a team of n robots of the same type
whose initial locations are randomly sampled inside region ¢;.
The specification we consider is given by [S0]:

P9 = D<>7T721,1 A D(}ﬂi/zl A D<>7T;t/271

A _‘77411,1 u (ﬂ'il A 7"?,1)7

which requires (a) all robots to meet at region /5 infinitely
often, (b) at least half of the robots to meet at regions {3 and
4, respectively, infinitely often, and (c) robots should not visit
region ¢4 until at least one robot is inside region ¢5 and one
robot is inside region /g at the same time. We vary the number
of robots n from 4 to 30, which produces a product transition
system that has up to (30 x 30)3° ~ 10 states.

The size of the NBA is independent from the number of
robots. The NBA A, has one pair of initial and accepting
vertices, 5 vertices and 10 edges (excluding self-loops). The
sub-NBA A_, . for the prefix part has 5 vertices and 5
edges and for the suffix part has 4 vertices and 5 edges. In
the implementation of our method, we employ the full and
simultaneous execution. We record runtimes and cost of the
first feasible solutions, where the cost is the sum of the cost
of the prefix and suffix parts. Both methods consider collision
avoidance. The horizon increases by 10 when no solution
exists for the GMRPP, until the considered horizon exceeds the
initial horizon by 100. The source code for [50] can address
robots of the same type, and is available at [62]]. The statistical

TABLE III
RESULTS WITH RESPECT TO THE NUMBER OF ROBOTS

20

TABLE IV
RESULTS WITH RESPECT TO THE NUMBER OF ROBOTS.

n Our method BMC method n Full execution Partial execution

cost time(sec) cost time(sec) cost time(sec) cost time(sec)
4 270.6+4.4 62.4+1.4 944.4+21.2 76.5+13.8 4 181.4+17.7 89.54+5.0 180.4420.1 65.8+10.1
8 513.0430.2 124.949.2 1819.0£149.9 334.9+153.9 8 356.64+16.0 198.9+£12.3 354.2+15.2 129.3+4.9
12 794.6+11.1 187.4+9.1 2217.0£163.8 704.3£178.0 12 573.5+63.3 350.7+25.4 554.34+49.4 192.5+£10.4
16 1080.2+14.7 502.0+225.4 2725.84+149.2 1135.8+123.7 16 774.24+59.0 561.0+44.4 763.0+50.7 278.9+8.9
30 2509.44168.9 4072.1+985.4 — — 32 1560.4+160.7 1886.8+£696.0 1524.6+30.6* 778.1+134.9

results averaged over 10 trials are shown in Table For
n = 30 robots, the MILP to find the prefix plan includes 89179
variables and 91244 constraints and the MILP to find the suffix
plan includes 112519 variables and 115482 constraints.

Observe in Table [[II| that our method outperforms the BMC
method both in terms of runtimes and optimality of the
solutions. Specifically, as the number of robots increases, the
runtime of our method is about half the runtime of the BMC
method but the cost returned by our method is about 1/3 of
the cost of the solutions obtained using the BMC method.
The reason is that we optimize the cost at both the high level
and the low level, while the BMC method only considers
feasibility. For n = 30 robots, the BMC method did not
produce a solution within 2 hours. Furthermore, the efficiency
of the low-level path planner has significant impact on the
runtime. In our method, the number of times that the path
planner is invoked is the same or smaller than the number of
subtasks in the simple path extracted from the high-level plan
(see Appendix [B-A). On the other hand, the BMC method
abstracts the given environment by aggregating states with the
same observation, where transitions between abstract states are
defined by whether they share the same boundary. Then, each
transition in the high-level plan obtained by the BMC method
is converted into one instance of multi-robot path planning
problem. Obviously, the number of transitions in the BMC
method is larger than the number of subtasks in our method,
since each subtask may take multiple transitions.

2) Full vs. partial GMRPP execution: We use the same
workspace as in Fig.[I0|and consider a team of n homogeneous
robots that are subject to the specification:

¢10 = O(m3, V 751) A 50(72712,1 A Oﬁi’/lll)

A Doﬂi/&l A Dﬁwgl,

which requires that (a) at least 3 robots eventually meet at
either region /5 or /g, (b) a fleet of at least half robots meet at
region /5 and then the same robots meet at region ¢, infinitely
often, (c) at least a quarter robots meet at region {3 infinitely
often, and (d) always no more than 3 robots can be present at
region {g at the same time.

Before pre-processing, there are two pairs of initial and
accepting vertices in the NBA 44 that contains 8 vertices and
27 edges. After pre-processing, the NBA A4 has 8 vertices and
20 edges. For the first pair of initial and accepting vertices, the
sub-NBA A_, ... associated with the prefix part has 7 vertices
and 10 edges, and the sub-NBA associated with suffix part
has 5 vertices and 7 edges. We compare the performance of

* 3 out of 10 trials failed.

our method for the full and partial execution in the GMRPP
problem and for an increasing number of robots up to 32.
The results averaged over 10 trials are shown in Table
For n = 32 robots, the MILP to find the prefix plan includes
41428 variables and 42533 constraints and the MILP to find
the suffix plan includes 78625 variables and 81200 constraints.
It can be seen that our method with partial execution in the
GMRPP problem takes less time than with full execution.
This advantage becomes more significant as the number of
robots increases since in this case, a larger number of robots
that do not participate in the current subtask can remain idle
and can be treated as obstacles in the GMRPP. For example,
the subtask requiring that at least 3 robots meet at region
l5 or lg, only involves 3 robots no matter how large the
robot team is. On the other hand, the full execution of the
GMRPP problem results in slightly larger cost which suggests
that even though all robots are allowed to move, those robots
that do not participate in the specific subtask rarely move
because our method optimizes the cost. Observe that for the
partial execution of the GMRPP problem and for 32 robots,
no solutions are generated in 3 out of 10 trials. This is due to
the fact that robots treated as obstacles affect the obstacle-free
workspace and, therefore, may make the GMRPP infeasible.
Thus, the partial execution of the GMRPP problem can be
more effective in large workspaces with few robots, where
a few idle robots do not significantly alter the obstacle-free
environment.

VIII. CONCLUSION

In this work, we consider the problem of allocating tasks,
expressed as global LTL specifications, to teams of hetero-
geneous mobile robots. This problem cannot be solved using
existing model checkers since all possible allocations of robots
to tasks can result in LTL formulas that are prohibitively long.
We proposed a hierarchical approach to solve this problem
that first solves an MILP to obtain a high-level time-stamped
allocation of robots to tasks and then formulates a sequence
of multi-robot path planning problems to obtain the low-level
executable paths. We proved that, with mild assumptions,
the proposed method is complete and we provided extensive
simulations that showed that our method outperforms the state-
of-the-art BMC method in terms of optimality and scalabil-
ity. Scalability of our method is primarily due to a clever
relaxation of the NBA that captures the LTL specification,
that involves removing the negative literals. This relaxation

is motivated by “lazy collision checking” methods for point-
to-point navigation, and significantly simplifies the high-level
planning problem as constraint violation is not considered
during planning and instead it is only checked during execution
when needed. To the best of our knowledge, this is the first
time that “lazy collision checking” methods are used and
shown to be effective for high-level planning tasks.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

REFERENCES

S. M. LaValle, Planning algorithms.
versity press, 2006.

C. Baier and J.-P. Katoen, Principles of model checking.
MIT press Cambridge, 2008.

G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Tem-
poral logic motion planning for mobile robots,” in IEEE
International Conference on Robotics and Automation
(ICRA), Barcelona, Spain, 2005, pp. 2020-2025.

M. Guo and M. M. Zavlanos, “Distributed data gathering
with buffer constraints and intermittent communication,”
in 2017 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2017, pp. 279-284.

Y. Kantaros and M. M. Zavlanos, “Distributed intermit-
tent connectivity control of mobile robot networks,” IEEE
Transactions on Automatic Control, vol. 62, no. 7, pp.
3109-3121, 2017.

K. Leahy, D. Zhou, C.-I. Vasile, K. Oikonomopoulos,
M. Schwager, and C. Belta, “Persistent surveillance for
unmanned aerial vehicles subject to charging and tempo-
ral logic constraints,” Autonomous Robots, vol. 40, no. 8,
pp- 1363-1378, 2016.

M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon,
and M. Fisher, “Formal specification and verification of
autonomous robotic systems: A survey,” ACM Computing
Surveys (CSUR), vol. 52, no. 5, pp. 1-41, 2019.

S. L. Smith, J. Tdmova, C. Belta, and D. Rus, “Optimal
path planning under temporal logic constraints,” in 2010
IEEE/RSJ International Conference on Intelligent Robots
and Systems. 1EEE, 2010, pp. 3288-3293.

A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus,
“Optimality and robustness in multi-robot path planning
with temporal logic constraints,” The International Jour-
nal of Robotics Research, vol. 32, no. 8, pp. 889-911,
2013.

M. Guo and D. V. Dimarogonas, “Multi-agent plan
reconfiguration under local LTL specifications,” The In-
ternational Journal of Robotics Research, vol. 34, no. 2,
pp- 218-235, 2015.

Y. Kantaros and M. M. Zavlanos, “Intermittent connec-
tivity control in mobile robot networks,” in 49th Asilomar
Conference on Signals, Systems and Computers, Pacific
Grove, CA, USA, 2015, pp. 1125-1129.

G. Séanchez and J.-C. Latombe, “A single-query bi-
directional probabilistic roadmap planner with lazy col-
lision checking,” in Robotics research. Springer, 2003,
pp- 403-417.

K. Hauser, “Lazy collision checking in asymptotically-
optimal motion planning,” in 2015 IEEE International

Cambridge uni-

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

21

Conference on Robotics and Automation (ICRA).
2015, pp. 2951-2957.

D. Bredstrom and M. Ronnqvist, “Combined vehicle
routing and scheduling with temporal precedence and
synchronization constraints,” European journal of oper-
ational research, vol. 191, no. 1, pp. 19-31, 2008.

J. Tumova and D. V. Dimarogonas, “Multi-agent plan-
ning under local LTL specifications and event-based syn-
chronization,” Automatica, vol. 70, pp. 239-248, 2016.
S. G. Loizou and K. J. Kyriakopoulos, “Automatic
synthesis of multi-agent motion tasks based on LTL
specifications,” in 43rd IEEE Conference on Decision
and Control (CDC), vol. 1, The Bahamas, December
2004, pp. 153-158.

S. L. Smith, J. Tdmova, C. Belta, and D. Rus, “Optimal
path planning for surveillance with temporal-logic con-
straints,” The International Journal of Robotics Research,
vol. 30, no. 14, pp. 1695-1708, 2011.

I. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas, and
S. A. Seshia, “Automated composition of motion prim-
itives for multi-robot systems from safe LTL specifica-
tions,” in 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 1EEE, 2014, pp. 1525-
1532.

Y. Kantaros and M. M. Zavlanos, “Intermittent connec-
tivity control in mobile robot networks,” in 2015 49th
Asilomar Conference on Signals, Systems and Comput-
ers. 1EEE, 2015, pp. 1125-1129.

——, “Sampling-based control synthesis for multi-robot
systems under global temporal specifications,” in 2017
ACM/IEEE 8th International Conference on Cyber-
Physical Systems (ICCPS). 1EEE, 2017, pp. 3—14.
——, “Distributed optimal control synthesis for multi-
robot systems under global temporal tasks,” in Proceed-
ings of the 9th ACM/IEEE International Conference on
Cyber-Physical Systems. 1EEE Press, 2018, pp. 162—
173.

——, “Sampling-based optimal control synthesis for
multirobot systems under global temporal tasks,” IEEE
Transactions on Automatic Control, vol. 64, no. 5, pp.
1916-1931, 2018.

——, “Temporal logic optimal control for large-scale
multi-robot systems: 10%°0 states and beyond,” in 2018
IEEE Conference on Decision and Control (CDC).
IEEE, 2018, pp. 2519-2524.

, “Stylus*: A temporal logic optimal control syn-
thesis algorithm for large-scale multi-robot systems,’
The International Journal of Robotics Research, vol. 39,
no. 7, pp. 812-836, 2020.

X. Luo and M. Zavlanos, “Transfer planning for temporal
logic tasks,” in Proc. of the 58th IEEE Conference on
Decision and Control, France, Nice, 2019.

X. Luo, Y. Kantaros, and M. M. Zavlanos, “An
abstraction-free method for multi-robot temporal logic
optimal control synthesis,” IEEE Transaction on Robotics
(accepted), arXiv preprint arXiv:1909.00526, 2019.

M. Kloetzer, X. C. Ding, and C. Belta, “Multi-robot
deployment from LTL specifications with reduced com-

IEEE,

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

munication,” in 2011 50th IEEE Conference on Decision
and Control and European Control Conference. 1EEE,
2011, pp. 4867-4872.

Y. Shoukry, P. Nuzzo, A. Balkan, I. Saha, A. L.
Sangiovanni-Vincentelli, S. A. Seshia, G. J. Pappas, and
P. Tabuada, “Linear temporal logic motion planning for
teams of underactuated robots using satisfiability modulo
convex programming,” in 2017 IEEE 56th Annual Con-
ference on Decision and Control (CDC). IEEE, 2017,
pp. 1132-1137.

S. Moarref and H. Kress-Gazit, “Decentralized control of
robotic swarms from high-level temporal logic specifica-
tions,” in 2017 International Symposium on Multi-robot
and Multi-agent Systems (MRS). 1EEE, 2017, pp. 17-23.
B. Lacerda and P. U. Lima, “Petri net based multi-robot
task coordination from temporal logic specifications,”
Robotics and Autonomous Systems, vol. 122, p. 103289,
2019.

J. Tumova and D. V. Dimarogonas, “Decomposition of
multi-agent planning under distributed motion and task
LTL specifications,” in 2015 54th IEEE Conference on
Decision and Control (CDC). 1EEE, 2015, pp. 7448—
7453.

Y. Kantaros and M. M. Zavlanos, ‘“Distributed
communication-aware coverage control by mobile
sensor networks,” Automatica, vol. 63, pp. 209-220,
2016.

A. Camacho, E. Triantafillou, C. J. Muise, J. A. Baier,
and S. A. Mcllraith, “Non-deterministic planning with
temporally extended goals: Ltl over finite and infinite
traces.” in AAAI, 2017, pp. 3716-3724.

A. Camacho, R. T. Icarte, T. Q. Klassen, R. Valenzano,
and S. A. Mcllraith, “LTL and beyond: Formal lan-
guages for reward function specification in reinforcement
learning,” in Proceedings of the 28th International Joint
Conference on Artificial Intelligence (IJCAI), 2019, pp.
6065-6073.

P. Schillinger, M. Biirger, and D. V. Dimarogonas, “Hi-
erarchical LTL-task mdps for multi-agent coordination
through auctioning and learning,” The International Jour-
nal of Robotics Research, 2019.

S. Karaman and E. Frazzoli, “Linear temporal logic
vehicle routing with applications to multi-uav mission
planning,” International Journal of Robust and Nonlinear
Control, vol. 21, no. 12, pp. 1372-1395, 2011.

Y. Chen, X. C. Ding, A. Stefanescu, and C. Belta, “For-
mal approach to the deployment of distributed robotic
teams,” IEEE Transactions on Robotics, vol. 28, no. 1,
pp. 158-171, 2011.

K. Leahy, A. Jones, M. Schwager, and C. Belta, “Dis-
tributed information gathering policies under temporal
logic constraints,” in 2015 54th IEEE Conference on
Decision and Control (CDC). IEEE, 2015, pp. 6803—
6808.

M. Kloetzer and C. Mahulea, “Path planning for robotic
teams based on LTL specifications and petri net models,”
Discrete Event Dynamic Systems, vol. 30, no. 1, pp. 55—
79, 2020.

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

22

P. Schillinger, M. Biirger, and D. V. Dimarogonas,
“Decomposition of finite LTL specifications for effi-
cient multi-agent planning,” in Distributed Autonomous
Robotic Systems. Springer, 2018, pp. 253-267.

——, “Simultaneous task allocation and planning for
temporal logic goals in heterogeneous multi-robot sys-
tems,” The International Journal of Robotics Research,
vol. 37, no. 7, pp. 818-838, 2018.

F. Faruq, D. Parker, B. Laccrda, and N. Hawes, “Simulta-
neous task allocation and planning under uncertainty,” in
2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 1EEE, 2018, pp. 3559-
3564.

C. Banks, S. Wilson, S. Coogan, and M. Egerstedt,
“Multi-agent task allocation using cross-entropy temporal
logic optimization,” in 2020 IEEE International Confer-
ence on Robotics and Automation (ICRA). 1EEE, 2020,
pp. 7712-7718.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella,
“Nusmv 2: An opensource tool for symbolic model
checking,” in International Conference on Computer
Aided Verification. Springer, 2002, pp. 359-364.

Y. E. Sahin, P. Nilsson, and N. Ozay, “Provably-correct
coordination of large collections of agents with counting
temporal logic constraints,” in Proceedings of the 8th
International Conference on Cyber-Physical Systems.
ACM, 2017, pp. 249-258.

——, “Synchronous and asynchronous multi-agent co-
ordination with cLTL+ constraints,” in 2017 IEEE 56th
Annual Conference on Decision and Control (CDC).
IEEE, 2017, pp. 335-342.

——, “Multirobot coordination with counting temporal
logics,” IEEE Transactions on Robotics, 2019.

A. Biere, K. Heljanko, T. Junttila, T. Latvala, and
V. Schuppan, “Linear encodings of bounded LTL model
checking,” arXiv preprint cs/0611029, 2006.

A. M. Jones, K. Leahy, C. I. Vasile, S. Sadradinni, Z. Ser-
lin, R. Tron, and C. Belta, “Scalable and Robust Deploy-
ment of Heterogenenous Teams from Temporal Logic
Specifications,” in International Symposium on Robotics
Research (ISRR), Hanoi, Vietnam, October 2019.

Y. E. Sahin, N. Ozay, and S. Tripakis, “Multi-agent co-
ordination subject to counting constraints: A hierarchical
approach,” in Distributed Autonomous Robotic Systems.
Springer, 2019, pp. 265-281.

M. Y. Vardi and P. Wolper, “An automata-theoretic ap-
proach to automatic program verification,” in Ist Sym-
posium in Logic in Computer Science (LICS). 1EEE
Computer Society, 1986.

L. S. Heath and A. K. Nema, “The poset cover problem,”
Open Journal of Discrete Mathematics, vol. 3, no. 03, p.
101, 2013.

G. A. Korsah, A. Stentz, and M. B. Dias, “A com-
prehensive taxonomy for multi-robot task allocation,”
The International Journal of Robotics Research, vol. 32,
no. 12, pp. 1495-1512, 2013.

E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A

taxonomy for task allocation problems with temporal and

ordering constraints,” Robotics and Autonomous Systems,

vol. 90, pp. 55-70, 2017.

P. Gastin and D. Oddoux, “Fast LTL to biichi automata

translation,” in International Conference on Computer

Aided Verification. Springer, 2001, pp. 53-65.

A. Stefanescu, “Automatic synthesis of distributed tran-

sition systems,” 2006.

O. Kupferman and M. Y. Vardi, “Model checking of

safety properties,” Formal Methods in System Design,

vol. 19, no. 3, pp. 291-314, 2001.

G. De Giacomo and M. Y. Vardi, “Linear temporal logic

and linear dynamic logic on finite traces,” in Twenty-

Third International Joint Conference on Artificial Intel-

ligence, 2013.

L. Gurobi Optimization, “Gurobi optimizer reference

manual,” 2018. [Online]. Available: http://www.gurobi.

com

Y. Kantaros, M. Guo, and M. M. Zavlanos, “Temporal

logic task planning and intermittent connectivity control

of mobile robot networks,” IEEE Transactions on Auto-

matic Control, vol. 64, no. 10, pp. 41054120, 2019.

R. Khodayi-mehr, Y. Kantaros, and M. M. Zavlanos,

“Distributed state estimation using intermittently con-

nected robot networks,” IEEE Transactions on Robotics,

vol. 35, no. 3, pp. 709-724, 2019.

[62] Y. E. Sahin, “https://github.com/sahiny/cltl-hierarchical,”
2019.

[63] S. Russell and P. Norvig, “Artificial intelligence: a mod-
ern approach,” 2002.

[64] J. Yu and S. M. LaValle, “Optimal multirobot path
planning on graphs: Complete algorithms and effective
heuristics,” IEEE Transactions on Robotics, vol. 32,
no. 5, pp. 1163-1177, 2016.

[55]

[56]

[57]

[58]

[59]

[60]

[61]

APPENDIX A
TIME-STAMPED TASK ALLOCATION

In this section, we first formulate the MILP to obtain the
time-stamped task allocation plan for the prefix part. Next,
we present a similar process for the suffix part. Finally, we
discuss extensions of the MILP to address problem-specific
requirements.

A. Construction of the prefix MILP

To formulate the proposed MILP, we define two types
of variables: the routing variables z,,. € {0,1} and the
scheduling variables ¢t} € N, where @y, = 1 if robot
r € MY (v) traverses the edge (u,v) € &g, and t,,,t}, are
times when robot r should arrive at and is allowed to leave
from vertex v € Vg. We assume that robot r is still at vertex v
at departure time ¢;.. Since the satisfaction of the edge label
is instantaneous, if v € Vg is associated with an edge label,
we have ¢, = ¢}, which means that the robot is allowed to
leave at the next time instant. As for the vertex label, we have
t... < tF., which means that the robot should stay where it is

to wait for the satisfaction of the corresponding edge label.

23

1) Routing constraints: These constraints are associated
with vertices and restrict the flow of robots between connected
vertices in Vg. Specifically, Vv € Vg \ Vinit, the constraint that
v is visited by at most one robot of type M¥.(v) can be written

as
Z Z Tuor < 17 (3)

wi(u,v)€EG re MY (v)

which is not a strict equality since the clause that vertex v
is associated with can be false. In this case, there is no need
to visit this vertex. Moreover, the constraint that the inflow is
no less than the outflow at any vertex v € Vg \ Vini can be

written as
> mwr £ Y Tuwn VT EME(), @)
w:(v,w)E€g u:(u,v)EEg

which states that robots can remain idle if they are not assigned
a subtask. Then, Vv € Vi, the initial conditions associated
with constraint @) are

Z Typwr < 1, ifr =71, € MY (v), (52)
w:(v,w)EEg
S e =0, ¥r e MY\ {r}, G)

w:(v,w)E€g

where r, refers to the specific robot at the initial location
MY (v) = s if v € Vipic.

2) Scheduling constraints: These constraints are also as-
sociated with vertices and capture the temporal relation on a
vertex or between visits of two connected vertices. First, we
require positivity of scheduling variables, Vv € Vg, i.e.,

Z Typr, V1 € ME(v), (6)

u:(u,v)EEG

0 <ty th < Mpax

vrY Yur —
where M.« is a large positive integer. The constraint @
implies that ¢, = ¢;7. = 0 if vertex v is not visited by robot

vr vr
r. The initial condition associated with constraint () is

ty, =t =0, Vre ME®uw), Vo€ V. (7)

The scheduling constraints between visiting times of two
connected vertices considering the travel time, Vr €
MY (v), V¥ (u,v) € &g, are
t;rr + (T + Dxyor <ty + Minax (1 — Zuwr),
if u|| pv,
t T Ty <t + Mpax (1 — Ty,), otherwise.

(8a)
(8b)

where T is the shortest travel time between regions that
vertices u and v correspond to and u|pv means that the
subtask MY (u) is incomparable to MY (v), corresponding
to the cases in Appendices [(b)] and When z,,, = 1,
constraint becomes ¢}, +T +1 < t,, and constraint (8b)
becomes ¢} + Ti¥, < t,.. Because Tf, > 0, constraints (8)
ensure that ¢, should be no less than ¢ if x,,, = 1. Note
that a cycle in G must include a pair of incomparable vertices,
since all comparable vertices constitute a chain. Constraint
prevents cycles in G where all vertices correspond to the same

region. For instance, consider such a cycle uy, uo, ..., uc, u1.

http://www.gurobi.com
http://www.gurobi.com

Without constraint , a solution with zero travel time
satisfies constraints (3], and (8D), resulting in @y, u,r =
yeeoy= Ty _u,r = 1 for a robot r, without this robot actually
visiting any vertex from its initial location. Constraint (8a)
is functionally similar to the subtour elimination constraint
in vehicle routing problems which prevents any solution that
consists of a disconnected tour. We leverage a term 1 to ensure
that time increases along the edge that connects incomparable
vertices, thus preventing visiting of a cycle.

3) Logical constraints: These constraints associate ver-
tices with subtasks and encode the logical relation between
labels, clauses and literals, and the realization of literals.
Given a subtask e € Xp, every vertex or edge label v =
vaP /\qegp wfq";;g" (neither T nor _L) is true as long as one
of its clauses is true. To this end, we associate each clause
C) € cls(y) with a binary variable b, such that b, = 1 if the

p-th clause C} is true. Hence, the label y being true can be

encoded as
> by =1. ©)
peEP

That is, one and only one clause is true, which is justified by
condition [(a)] in Definition [3.10] which states that it is the same
clause in a vertex label that is satisfied. The logical relation,
between a clause and its literals, that the satisfaction of the
clause is equivalent to the satisfaction of all its literals, is
written as

PO >)

9€2p ve M (e,0(1,p,q) wi(w,v)EEG re MY (v)

Z 7;‘1 :bP7

q€Qyp

(10)

which connects the routing variables x,,, with the logical
variables b,. In words, if b, = 1, then every vertex associated
with the p-th clause should be visited by one robot. Let

)R SR D

veMIE(e,0[1,p,q) wi(u,v)EEG re MY (v)

Zq:

be the inner summation in (I0). If b, = 1, then all liter-
als in Iits+(Cg) are true. In this case, for the g-th literal

wf:”j’f,q € lits™(C}), all i? vertices in M*(e, 0|1, p, q) should
be visited, so Zu;(u,v)esg ZreM%(v) ZTuor = 1 for each
vertex v € M\t (e, 0[1,p, q), and therefore z, = i%, and the

left side of constraint (10) becomes

IRWE SEED

9€Qp 9€Qp q9€Qp
If b, = 0, all x,,, in constraint equal 0, which implies
that no vertices need to be visited for false clauses. Combining
constraints (6) and (10), ZTEM%(U) t... equals O if the clause
that v is associated with is false. That is, a robot remains idle
if it is not responsible for the satisfaction of any clause.

> it =1=b,

q€Qp

Note that the logical relation in constraint only requires
that some vertices should be visited at some point in time
to satisfy all literals. Next, we formulate the synchronization
constraint requiring that, if v is an edge label and the p-
th clause C is true, all vertices in MSE(e, 1,p) should be

24

visited at the same time since the satisfaction of edge labels is
instantaneous. We define the pairwise vertex set induced from
Vo = {(u,v) | u,v € MSE(e, 1,p),u # v}.

the clause C as Vyp =
If b, = 1, visiting any pair in V73, simultaneously is written

as
>t

TEM%(U)

V(u,v) € VYF. (11)

reMY (u)

When b, = 0, constraint also holds since both sides equal
0.

4) Temporal constraints: These constraints capture the
temporal orders between subtasks. We first introduce the
notions of the activation and completion time of a subtask.
Then, given a subtask e, there are three types of temporal
constraints associated with the activation and completion times
(see Definition [A.1] below), for the subtask e or between
subtasks.

Definition A.1: (Activation and completion time of a sub-
task or its starting vertex label) Given a subtask e = (vy, v3),
we define its activation time (equivalently, the activation time
of its starting vertex label) as the time instant when its vertex
label ~y(v1) becomes true. Similarly, we define the completion
time of a subtask (equivalently, the completion time of its
starting vertex label) as the time instant when its edge label
~(v1,v2) becomes true (or the last time its starting vertex label
~(v1) is true). The span of a subtask (or its starting vertex
label) is the time interval stating from the activation time and
ending at the completion time.

(a) Temporal constraints associated with one subtask:
These constraints capture the relation that the completion time
of a subtask should lie in the span of its starting vertex label,
or exactly one time step after the completion of its starting
vertex label. Intuitively, the “avoid” part of a subtask should
be maintained until the “reach” part is realized.

For this, we define the auxiliary variable . to denote the
completion time of the subtask e, i.e., time when its edge label
becomes true. We have

=3, D, tym

PEP re MY (vp)

(12)

where v, is randomly selected from MSS(e,1,p) due to
constraints (9) and (TT) that require that only one clause of an
edge label is true and all associated vertices are visited at the
same time.

When the starting vertex vy has a self-loop, and its label
~v(v1) is not T (if this is not the case, there are no vertices
in G associated with y(v1)), the temporal relation, VC; €
cls(y(v1)) and Yo € M$E(e, 0, p), can be written as

Z t;’r’ <t < Z t'jr +1+ Mmax(]' - bp) (13)
reMy (v) reMy (v)

If b, = 0, then by constraint (T0) no robot visits vertex v,
SO ZTGM%@) t.. = 0 < t., i.e., the left inequality in (I3)
holds. The right inequality in (T3] holds trivially. Only when
b, = 1, i.e., when the p-th clause in the vertex label is true,
does constraint (I3)) become active. Note that constraint (I3)

implies that the span of a subtask is not necessarily equal to the
span of its starting vertex label. On the other hand, when the
starting vertex v; does not have a self-loop, v is identical to
the initial vertex vy. Recall that in Section we remove all
vertices without self-loops except for the initial and accepting
vertices. Hence, in A, .., only vg and vuecepe are allowed
not to have self-loops but vyccep Cannot be the starting vertex.
Therefore, v; = vg. If v(vg) = L, constraint (T3) implies that
the edge label of subtask e should be satisfied at time instant
0, i.e.,

te =10, ify(vg)= L. (14)

(b) Temporal constraints associated with the completion
of two sequential subtasks: These constraints impose the
precedence relation that subsequent subtasks should be com-
pleted after prior subtasks are completed. Given the current
subtask e, we collect its prior subtasks in the set X S rather
than a larger set X2 (defined in Appendix . That is, we
consider subtasks that are covered by e due to the transitivity
property of the partial order. If X< is nonempty, we iterate
over subtasks in it. Given e € X< -» We can capture the
requirement that the subtask ¢’ is completed before the current
subtask e by the constraint

to +1<t, Ve € X°p, (15)

where the term 1 excludes the case where two edge labels
become true simultaneously, violating the precedence relation.

(c) Temporal constraints associated with the completion of
the current subtask and the activation of the subtask immedi-
ately following it: These constraints capture the precedence
relation that the current subtask e should be completed at most
one time step before the subtask immediately following it is
activated. Otherwise, progress in the sub-NBA induced from
the poset P will be trapped at subtask e if there is no subtask
immediately after it is activated. To capture this requirement,
we define | X p|-| X p—1| auxiliary binary variables b, for any
two different subtasks e, ¢’ € Xp, such that b..r = 1 if subtask
e’ occurs immediately after subtask e. Furthermore, we define
the set S5 = X¢ U Xy that collects all subtasks whose
activation can immediately follow the completion of subtask
e. In what follows, we proceed based on whether X¢ | # ().

(1) X, # (): In this case, there must exist a subtask that
occurs after e. Then, the constraint that there exists a subtask
in S% that occurs immediately after e can be written as

Z beor = 1.

e’'€S§

(16)

If the subtask e’ indeed occurs immediately after subtask e,
then it should be completed after subtask e, that is,

te+1<te 4+ Mp(1—beer), Ve €55 (17)

To establish the transition between subtasks, the subtask ¢’
that occurs immediately after subtask e should be activated at
most one time step after the completion of e. That is, Ve’ =

(v],vh) € S§,VC;(”D € cls(y(v})), Vv € MSE(e’,0,p), we

25

have

Dot Stet 1+ Muy(l
reMY (v)

— beer)- (18)

If the p-th clause in the vertex label ~y(v}) is true, con-
straint (L8] requires that the associated vertices are visited
at most one time step after the completion of e. Otherwise if
the p-th clause is false, the left side of @ becomes 0 and
the constraint (I8)) holds trivially. If y(vj) = T, the subtask
e’ can be viewed as being activated at time instant 0. Thus,
constraint (I18)) is satisfied trivially.

(2) X¢ , = 0: In this case, if subtask e is completed after
the subtasks in X i , then it is the last subtask to be completed
in Xp. Thus, there is no subtask to be activated any more.
Otherwise, if subtask e is not the last subtask, then there exists
a subtask that occurs after e, same as in case To determine
whether subtask e is the last subtask, we define | Xp|-|Xp —1]
auxiliary binary variables bgl for any two different subtasks
e,e’ € Xp, such that bgl =1 if and only if t. > te, ie., if
and only if subtask e is completed after €’. This implication
can be written as, Ve, e’ € Xp and e # €/,

b b8 =1,
—1) < te —te < Mpah —

(192)

Mo (5 (19b)

Constraints (T9) require that no two subtasks are completed at
the same time and that bz/ = 1if and only if ¢, > t./. Assume
to = to. From constraint (T9B), we get b = b¢, = 1, which
violates constraint (I9a). Although independent subtasks can
occur simultaneously, constraint (I9) requires that they occur
serially so that the solution to the MILP gives rise to a simple
pathin A, . that is a linear extension of the poset P. When
te > to, the right side of constraint (T9B) implies b = 1;
when . < t,s, the left side of constraint (TOB) implies b = 0.

Furthermore, we define z = | X _|. Observe that, for €’ €
X[, the term z — Doere Xt b = 0 if e is the last completed
task; otherwise it is positive. If subtask e is not the last subtask,
there should be a subtask in X ﬁp that occurs immediately after
e. This requirement can be written as

> bee <1, (20a)

e GX‘i
= D b = M Y b <0, (20b)

e EXc e EXC
> beer — Muax(z— Y bY) (20¢)

e EXc e GXE
If subtask e is completed after all subtasks in X e , then z —
Do ex; b¢" = 0, and constraint (20) gives Y, exg beer =
0, i.e., there is no subtask that follows e immediate fy. Con-

straint (20a) becomes 0 < 1 and (20b) becomes 0 < 0. Both
hold trivially. Otherwise, if subtask is not the last subtask, i.e.,

if 2= cxe b¢" > 0, then constraints (20a) and give
P

Do Xt beer = 1. Constraint (20c) holds trivially. Finally,

after determining the subtask e’ that occurs immediately after

e, we impose the same constraints as (I7) and (T8).

Note that constraints in[(T)]and[(2)] ensure that, for
a subtask in X p, except for the last one, there exists another
subtask that immediately follows it. However, it is possible that
two different subtasks are followed by the same subtask, which
cannot be excluded by constraint (T6)). To avoid this situation,
next we impose the constraint that except for the first subtask
to be completed in Xp, each subtask can only immediately
follow one subtask. Combined with constraints (L6)-(20),
we guarantee the one-to-one correspondence between any
two consecutive subtasks in a linear extension. Recall that
S5 = X<, UX|_. We proceed based on whether X¢ = 0
or not.

(3) X5, # (: In this case, subtask e cannot be the
first subtask to be completed, that is, it has to immediately
follow one subtask in S5. This requirement is captured by the

constraint
Z bere = 1. 1)
e’'€Ss
(4) X<, = 0: Inthis case, X¢ = 0, so there is no subtask

prior to e. Recall that the binary variable bg/ = 1 if subtask
e is completed after ¢’ and no two subtasks are completed
at the same time. Therefore, b = 0 if e is completed prior

to €', and further the term erexe bzl = 0 if e is the first
. . . i ”.P. .
completed task; otherwise it is positive. Then, the constraint

that each subtask in X ﬁp, except the first one, immediately
follows another subtask can be written as

> bee<1, (22a)
e EXe
Db~ M Y bere <0, (22b)
e GXe e GXe
Z be e max Z be < 0. (22C)
e GX6 e €Xe
When e is the first subtask, i.e., when >, y. bg/ = 0, then

IIp .
e'e = 0. Otherwise,

constraints and (22¢) give) ./ x i b
P

if e is not the first subtask, ie., if > . be’

e be > 0, then
constraints (22a) and 22b) give Ze’EXﬁ boe = 1
as (Z1). i

(d) Temporal constraints associated with the activation of
the first subtask: We analyzed the temporal constraints
on the completion of the current subtask and the activation
of subsequent subtasks above. However, if the subtask e is
the first subtask to be completed, there is no subtask whose
completion activates e, which should be activated at the
beginning. To determine the first subtask in Xp, let Pp,x be
the set that collects subtasks that can be the first ones to be
completed, which are referred to as the maximal elements in a
poset P. An element in a poset P is a maximal element if there
is no larger element in P than itself. That is, for any subtask
€ € P, we have X¢ = (. If the first completed subtask
e = (v1,v2) has a self-loop and the vertex label is not T (it is
activated at the beginning if v(v;) = T), we require that the
vertex label (v1) be activated at time 0, which implies that
the associated vertices in G should be visited at time 0, i.e.,

same

26

Ve e Pmax,VCg(vl) € cls(y(v1)), Vv € MS$E(e, 0, p),

St < MY

reMY (v) ¢/ € P\ {e}

b +1-b,). (23)

Only when e is the first subtask to be completed, i.e, when
D€ Pon\ fe} b = 0 and when the associated clause is true,
i.e., when b, = 1, should the vertices associated with the p-th
clause be V151ted by robots at time O ie,)¢ MY (v) tor <
0. When |Pp.x| = 1, constraint will be reduced to
ZreM}é(v) to, < Mmax(1 —byp). Note that if the vertex label
~v(v1) has no self-loop, then v; is identical to vy. We have
discussed this case in constraint (T4).

Recall that in cases [(2)] and [3)] in Appendix when
constructing the edges for vertex labels of subtasks in P, (a
subtask e is in Py if X& , = (), their leaving vertices fall into
two categories, location vertices and literal vertices associated
with immediately preceding subtasks. To satisfy condition [(b)|
in Definition [3.10] that the satisfied clause in the edge label
implies the satisfied clause in the end vertex label and the
same fleet of robots satisfy these two clauses, we require that
the starting vertex label of the first completed subtask in Ppax
should be satisfied by robots coming from location vertices in
Vinit» and the starting vertex label of the remaining subtasks in
Phax should be satisfied by robots coming from literal vertices
associated with edge labels of immediately prior subtasks. To
this end, we first define an auxiliary binary variable b such
that b7 = 1 if and only if subtask e is the first subtask in
Phax- Then, we define the following constraints

S b - Muw(1-07) <0 (24a)
e’ € Pnu\{e}
1=bf = Mpw > b <0 (24b)

e’ € P \{e}

Only when e is the first subtask, i.e., when } . cp (o be =
0, does constraint give b7 = 1. Then, for any clause in
the starting vertex label of e, the constraints specifying which
categories of leaving vertices robots should come from can be
written as, VC) € cls(y),

Z Z Z Z Typr <]\4mzl)<(1 - b:)7

q€Qp veEMF(e,0,p,q) ui(u,v)EEG re MY (v)

UG Vini

(25a)
>y S0 Tuer £ Mawdy
q€Qp vEM(e,0,p,9) u:(;év)iié’g reMY (v)

(25b)

When subtask e is the first one to be completed in Pp,x,
ie, when b = 1, then constraint (23a), combined with
constraint (T0), states that robots should come from location
vertices in Vi,;. However, when subtask e is not the first
subtask to be completed in Py, i.€., when b7 = 0, then
constraint (25b) requires that robots should come from literal
vertices associated with immediately prior subtasks.

5) Same-(i, j) constraints: Next, we encode the constraint
that some subtasks are executed by the same ¢ robots of type j,
which are indicated by the same nonzero connector x. Given a

nonzero connector y, we can identify all vertex or edge labels
that have literals with the same connector x by the mapping
MX(x). In an edge label (e,1) € MX(x) or a vertex label
(e,0) € MX(x), each clause has at most one literal ﬂfJX
with connector y and it is associated with i vertices in G. We
enumerate these i vertices and denote the b-th vertex by vl.
Then for any two labels 7,7 € MS(x) and any two clauses

C,) € cls(v) and C;,/ € cls(v’) that have literals ﬂﬁ}-x and Wﬁ;’x,
respectively, the constraint that the corresponding literals are
satisfied by the same ¢ robots of type j, Vb € [i] and Vr € K;,

can be written as

>

wi(u,0b)EEG

xuvzr + Mmax(bp - 1)

< Y @ygt,r + Miax(1 = b)), (262)
u:(u,v;,)egg
Z xu’uz,r + Mmax(bp/ - 1)
u:(u,vz/)efg
<Y T+ Muna(1=0y), (26b)

wi(u,0b)EEg

where %, is the b-th vertex associated with mF ;X Only

when b, = b,y = 1, does (26) become active. Then,
Zu:(u,vi)e‘gg xuvgr Eu:(u,vz,)ec‘:g xuvz,r’ Le.,, two b-th
vertices v? and v?, are visited by the same robot 7.

6) Constraints associated with the transition between the
prefix and suffix parts: Since we synthesize plans for the prefix
and suffix parts separately, to ensure that the final locations
of the prefix part seamlessly transition to the suffix part, we
impose constraints on the final locations of the prefix part,
which are determined by the satisfied clause in the edge label
of the subtask that is the last one to be completed.

To this end, we first find the set of subtasks, denoted by
Phin, in the poset P that can be the last ones to be completed,
which are referred to as the minimal elements in a poset. An
element in a poset P is a minimal element if there is no smaller
element in P than itself. Then, we iterate over subtasks in Py,
when formulating the MILP each time selecting a different
subtask e € Py, to be the last one, which can be written as

b =1,V € Xp\ {e}. (27)

€

After selecting the last subtask to be completed, we next select
one clause in its edge label ~ that needs to be satisfied. We
iterate over all clauses in the edge label of the last subtask
each time selecting a different clause C) € cls(y) to be true,
ie.,

b, = 1. (28)

If a path for Problem |I| cannot be detected when e is the last
subtask in the prefix part and its p-th clause is set to be true,
then we continue iterating over clauses in the edge label of e.
If a path for Problem [I] cannot be detected after iterating over
clauses in the selected edge label, we select another subtask
in P, to be the last one and repeat the same process.
Remark A.2: Assuming there is a feasible path 7 to Prob-
lem [T} the constraints (Z7)-(28) on the final locations of the

27

prefix part allow us to identify the same clause satisfied by
the final locations of the prefix part as that satisfied by the
assumed feasible path 7. This ensures the feasibility of the
suffix part and the completeness of our method; see also
Theorem [6.1] Note that the constraints (27)-(28) are necessary
for establishing the completeness of our proposed method.
However, there may exist multiple solutions to Problem |1} and
it will be computationally inefficient to try all possibilities for
the last subtasks and the corresponding clauses. We found that
often in practice, omitting constraints (27)-(28) did not make
Problem [I] infeasible. Therefore, constraints (27)-(28)) can be
initially omitted from the formulation of the MILP.

7) MILP objective: The objective is to minimize the
weighted sum of the travel cost and travel time, i.e.,

min o Y Y duTur+(1—a) Y te, (29)

(uﬂ))egg TGM%(’U) ecXp

where « is a user-specified parameter and d,,,, is the travel cost,
e.g., travel distance. Compared to Problem [T} objective ([29)
involves optimization of time. In practice, we observed that
without optimizing time, some scheduling variables can take
large values, which impacts the generation of the low-level
path. Note that travel cost, e.g., travel distance, and travel time
are typically non-conflicting objectives.

B. Construction of the robot suffix path

In this section, we construct the robot path for the suffix
part. We assume that the high-level plan found in Section
for the prefix part has been used to generate low-level paths
as in Appendix which induces a run in A4 connecting
vo and Vaccepr- Thus, the final robot locations of the prefix
part are known. In what follows, we proceed depending on
whether the vertex vaccepe has a self-loop or not. If the vertex
Vaccept has a self-loop, we first examine whether the final
locations of the prefix part satisfy its label 74 (vVaccept). If yes,
we conclude that the prefix path we have found also satisfies
the specification ¢. Otherwise, we remove this self-loop since
it does not contribute to the identification of the suffix paths.
By treating the final locations of the prefix paths as the initial
robot locations of the suffix paths, the suffix paths aim to drive
the progress in Ay back to vertex vaccep: and send robots to the
initial locations of the suffix part to close the trajectories. The
basic idea is to view the simple cycle around vyccep as a simple
path, by treating the accepting vertex at the beginning of this
simple path as the initial vertex vy and the other accepting
vertex at the end as the goal to be reached. Then, starting
from the NBA A; in Section we can follow a procedure
similar to the prefix part to obtain paths for the suffix part.

1) Extracting subtasks and inferring the temporal order
from the NBA:

(a) Extraction of sub-NBA Agupask from Arelax: First, based
on the NBA A; we obtain the relaxed NBA Ay, as in
Section Then, to obtain the sub-NBA Aqubask, similar to
finding the shortest simple cycle around vyecepe in Section
we remove all other accepting vertices from A,x and all ini-
tial vertices if they do not have self-loops. Let v (Vpriors Vaccept)
denote the edge label corresponding to the last completed

e \\

[] vprlor
\ 7/

~r

§ cprior

Vo = Vaccept

+
prior

72 VC,
m Ve

prior

Uaccept

Fig. 11. A;blask for the suffix part when vaccept does not have a self-loop,
where 1, v2 and 3 are edge labels and C'; or 18 positive subformula that is

satisfied by final robot locations of the preé)x part; see Appendix [A-B7]

I T I Lt :wf:#w?jl‘
] T] [T] l]

Fig. 12. A_ .« for task (ii) obtained from Fig. A clause 71'%:% is added

to the edge label y(v2,v3); see Appendix

subtask in the prefix part. After generating the low-level paths
for the prefix part, the final robot locations of the prefix part
satisfy Y (Vprior, Vaccept) (see Fig. . Next, since vyecept does
not have a self-loop, we remove all outgoing edges from vaccept
(acting as vg) from Areiax if Vg (Upriors Vaccept) does not imply
its edge label in A,. Also, we remove all incoming edges to
Vaccept (ACHNG aS Vaccepr) from Apejay if the corresponding edge
label in A4 is not implied by 4 (Uprior; Vaccept)- BY condition
in Definition [3.8] these edges do not appear in any restricted
accepting run if the corresponding prefix part traverses the
edge (Uprior; Vaccept)- Also, if the set of restricted accepting runs
is nonempty, there exist accepting vertices in A, that have
outgoing edges and incoming edges for which this implication
holds. Note that the implication check is conducted in Ag.
Finally, we follow a similar process as that described in
Section to extract a SUb-NBA Agpusk from Apepax for
the pair vyecepe (acting as vp) and Vyecepr. The structure of
Agubtask 18 shown in Fig. [IT] where vy does not have a self-
loop. We also depict the vertex vpior in the prefix part for
better understanding. Then, we prune Agypnsk to obtain the

NBA A_ as in Section |[[V-B3

subtask?

Example 1: continued (Ag,o for the suffix part) The
suffix part for task only consists of the accepting vertex
Vaccept- The sub-NBA A, associated with the suffix part
for task is a cycle vs, v1,v2, v3; see Fig. [12]

(b) Inferring temporal order between subtasks in Ao
We collect all simple cycles around vaccep in the set ©.
Because the initial robot locations for the suffix part satisfy
v (Uprior; Vaccept)» they also satisfy the label of the last edge in
every simple cycle 6 € © since edges in Aj,x Whose labels
are not implied by 4 (Vprior, Vaccept) are removed from Arejax
when constructing Agpask- By following such a simple cycle
6, not only the transition is driven back to Uaccept, but further
robots are able to return to their initial locations to close the
trajectories. Finally, we infer a set of posets { Py} from simple

28

cycles in © and sort them as Section [[V-C

2) Finding the suffix path on A, Similar to the prefix
part, we find the suffix path that, combined with the prefix
path, satisfies the specification by iterating over the set of
posets {Pis}. By condition in Definition robots
need to return to their initial locations to close the suffix
loop and drive the transition in Ay back to Vaccepr. To ensure
that our method is complete, we achieve these two goals
separately. First, those robots participating in the satisfaction
of the positive subformula in 4 (Vprior, Unext) Teturn to regions
corresponding to their initial locations of the suffix part (not
necessarily returning to their initial locations), and at the same
time drive the transition in .44 back to vyccept. Then, all robots
return to their initial locations of the suffix part while not
violating the specification ¢. We also discuss how to achieve
these two goals above at the same time in Appendix

To achieve the first step, we find the satisfied clause, denoted
by Cprior, in the edge label g4 (Uprior; Unext); We denote by
C;ior and p_rim the positive and negative subformulas in Cprior,
respectively. Next, we find the set Py, of subtasks in Xp
that can be the last one to be completed. For each subtask
e = (v1,v2) € Pnn, we augment its edge label ~(vy,v2)
with the clause Ci.,, i.e., Y(v1,v2) = Y(v1,v2) V Cprigys see
also Fig. If e € Py is the last subtask to be completed,
we require that the clause C;ior is satisfied. We say that C;;ior
is satisfied if those robots involved in satisfying C;ior in the
prefix part return to regions including their initial locations.
For instance, in Fig. that shows A_ . for task in
Example [T we augment the label of the last edge with the
clause C;;ior = ﬂf} , which is the clause in the last edge label
of the prefix part; see Fig. Combined with the negative
subformula C;ior, if C;ior A Cprior 18 satisfied, the original edge
label 4 (v1, v2) will also be satisfied since, by condition [(f)] in
Definition the label Y (Vprior, Vaccept) implies the original
edge label ~4(v1,v2) (acting as 7¢(v}’)rior7vaccepl); see Fig. .
In this way, robots return to regions that contain their initial
locations and at the same time drive the transition in A, .
back t0 Vaccept- In what follows, we first construct the routing
graph and formulate the MILP for the first step, and then
design low-level paths so that the robots can return to their

initial locations while satisfying the specification ¢.

(a) Construction of the routing graph: Given the poset
P, we build a routing graph G = (Vg,Eq) following almost
the same steps as in Appendix The only differences
are related to the augmented clause C;;ior. When building
the vertex set Vg, each time we encounter a literal nﬁ}x in
lits™ (C;ior), we create ¢ vertices and let each vertex point to
the region /. Also, we build a one-to-one correspondence
between vertices and robots satisfying this literal in the prefix
part since these robots need to return to their initial regions.
We emphasize that each such vertex is associated with a single
robot instead of a type of robots. The mappings are created
as in Appendix

When building the edge set &g, there are no outgoing edges
from vertices associated with the literals in C;;ior since these
are the vertices where the robots will be located at the final

moment. To construct the incoming edges to these vertices we

treat Cpm,r as a regular clause in an edge label but with one
exception. Recall in Appendix [(D)] that identifies the leaving
vertices associated with prior subtasks. In this case, when
the number of leaving vertices is the same as the number of
end vertices, we randomly create one-to-one edges between
leaving vertices and end vertices since all robots visiting these
leaving vertices belong to the same type. However, here we
create edges from all leaving vertices to each vertex associated
with literal 7 ’JX in C;mr since each vertex associated with this
literal is only allowed to be visited by a specific robot of a

specific type.

(b) Formulation of the MILP problem: To find a high-
level plan, we formulate a MILP based on the routing graph
G by following a similar process as in the case of the prefix
part, but with the exception that at the end, some robots need
to return to their initial regions. The MILP formulation for
the suffix part results in the same constraints as (3)-(26) in
Appendix with the following two exceptions.

(1) Returning to initial regions: The first exception results
from the requirement that while driving transition back to
Vaccept» TObOLS need to return to regions corresponding to their
initial locations. To this end, we define binary variables b,
for each subtask in P,;, that can be the last one to be
completed, such that b, equaling 1 implies the satisfaction
of the augmented clause Cpnor, see Fig. First, we require
that one and only one b, can be true, i.e.,

> be=1.

€€ Prin

(30)

If b = 0 for a subtask e in Pp;,, then one of the remaining
clauses in the edge label of e must be satisfied according to
constraint (9), which is reduced to the case where Cpmr does
not exist.

Next, we encode the constraint that when completing the
last subtask in Pin, robots must return to their respective
regions. Recall that in Appendix [A-A] we defined the binary
variable be = 1 which equals 1 if subtask e is completed
after ¢’, i.e., t. > t... To determine this last satisfied subtask
in Pyin, we define z = |Ppin| — 1. Then, for any e € Py,
the term Ze’er;n\{e} bzl — z = 0 if e is the last subtask to
be completed. Thus, the requirement that some robots return
to their respective regions to complete the last subtask can be

written as
L+ My (Y b —2) <be
e/ € Puin\{e}
S1+Muw(z— Y b)), 6D

e’ €Puin\{e}

for any subtask e € P,. Only when e is the last subtask in
Pin, does b, = 1 come into effect.

Given a subtask e = (v1,v2) € Puyin, similar to con-
straint (10), the following constraint states that when b, = 1,
i.e., when subtask e is the last one to be completed, each vertex

in g associated with clause Cpmr of v(v1,v2) will be visited

29

4x1? in C-‘r

11,59 prior?

Y Y Tuw / i =be, (32)
(v)

u:(u,v)EEG 1y 7MV

by a specific robot, for the g-th literal o

>

veMSE(e,1,pe,q) v

where p, is the index of the clause C;ior in y(v1, v2) and robot
Ty 18 the specific robot that should visit vertex v.

(2) same-(i, j) constraints: The second exception relates
to the same-(i, j) constraints in Appendix The goal is
to ensure that the same ¢ robots of type j satisfy those atomic
propositions with the same non-zero connectors that appear
both in the prefix and suffix NBA. Specifically, after solving
the MILP for the prefix part, for any connector y # 0 that
appears in the specification ¢, we check whether any literal
that includes this connector was involved in the prefix part.
If yes, then these literals with the same nonzero connector
should be satisfied by the same (7, j). We denote by KX C IC;
the set of (i, j) that make these literals true and by r° the b-th
robot in the enumerated set CX. When dealing with the suffix

part, for any label v € MX(x) where literals with connector
X appear and any clause C) € cls(vy) that has literal =, ’JX, the
constraint that this literal is satisfied by the same (i, j) can be

written as

Z Lot ro = Dp, vrb e KX,

w:(u,08)EEg

(33)

where vk is the b-th vertex in the set of vertices in the routing
graph G that are associated with literal 7; *. If the clause C)
is true, i.e., 1f b, = 1, then the b-th vertex v? is visited by the
b-th robot rb € ICX. On the other hand, if KX = 0, that is, if
literals that share this y do not appear in the prefix part, we
turn to constraint (26) to impose the same-(i, j) constraints.

By condition [(f)] in Definition there is a clause C’ in
the edge label w(vl’mor, Vaccept) that is a subformula of Cpior.
Therefore, some robots returning to regions corresponding to
their initial locations will enable the positive subformula in
C' of (v pnor,vaccep[) and, at the same time ensure that any
positive literal in the clause C’ with nonzero connector uses
the same group of robots as the literal in the clause C;;or
of y(véﬁm,fuaccem) with the same connector. In other words,
when robots head back to their initial locations, the same-
(i,7) constraints over the last completed subtask are satisfied
automatically. Robots can safely return to their initial locations
without violating the same-(i, j) constraints.

(c) Closing the suffix loops: After solving the MILP for
the first step for the suffix part, we utilize the method in
Appendix [B] to obtain low-level paths that drive the transition
in Ay back to Vaccepr, and at the same time ensure that robots
involved in C';or return to regions corresponding to their
initial locations of the suffix part. Note that to generate the
low-level paths for the last completed subtask (v Uprior: Vaccept)s
we need to satisfy the augmented clause Cpror in the edge
label Y (V) iors Vaccept). By conditions and [(f)] in Defini-
tion we have 7¢(Uprioravaccept) - 'Yqﬁ(vacceptavnext) and
Ve (Vaccept> Unext) ==s Y¢(Unext)» thus the initial locations of
the suffix part satisfy the edge label ¢ (Vaccept; Unext) and the
vertex label 4 (vnext); so do the final locations in the low-

level paths that enable %(vl’)rior, Vaccept) Since they satisfy Cprior.
Next, to close the suffix loop, robots return to their initial
locations starting from the final locations in the low-level
paths, while satisfying the clause Cyrior €n route, thus satisfying
76 (Vnext)- Because those robots involved in C,f;, have returned
to their initial regions, and by Assumptlon each region
spans consecutive cells, they can return to their initial locations
by traveling inside these regions. In this way, the NBA Ay
remains at vertex vpex(, thus the specification ¢ is not violated.
The problem of finding the path that travels inside the regions
can be formulated as a generalized multi-robot path planning
problem; see Appendix

Remark A.3: Closing the suffix loops in two steps is im-
portant to show the completeness of our proposed method.
In a single step approach where robots return to their initial
locations in the suffix part at the same time that the NBA
Ay transitions to Vuecep, the robots return to their initial
locations to satisfy the last subtask (v pnor,vaccep[) However,
it is possible that the initial locations violate the vertex label
Y (Vprior) Of the last subtask. In this case, once the robots reach
regions corresponding to their initial locations (not necessarily
reaching initial locations), the edge label of the last subtask
is satisfied and the last subtask has to be completed since its
vertex label is violated. Nonetheless, it is possible that, at this
moment, robots have not reached their initial locations inside
these regions if some regions cover multiple cells. Therefore,
this single-step approach may fail in this case. In practice such
scenario rarely occurs. In fact, a single step approach generally
works well in practice. Nevertheless, the proposed two-step
method allows to guarantee completeness of our approach.

(d) Returning to initial locations in one step: To ensure that
the robots returning to their initial locations and progressing
towards the accepting vertex vaccep: in the NBA Ay is made
in one step, we first define a positive atomic proposition ¢
which is true if all robots return to their initial locations at the
end of the suffix paths. Then, we replace Cpmr on the edge
label of the last subtasks with m,;; see Fig. @ If i 18
satisfied, the original edge label Y (Vpyiors Vaccept) in Agp will
also be satisfied since the initial robot locations satisfy Cprior
in v, (Upri0r7 Uaccept) and vy (Upri()h Uaccepl) = ’Yqb(vf,rjora Uaccept)-
We adopt the first step in Appendix [A with all exceptions
related to the difference between 7y, and Cpmr That is, iy
requires all robots to return to their initial locations, whereas
C;;mr in the suffix part requires only those robots participating
in the satisfaction of C;m in the prefix part to return to regions
corresponding to their initial locations.

Recall that the vertex set Vi C Vg contains vertices
pointing to the initial robot locations. When building vertices
in Vg for the literal 7y, we create a copy of vertices in Vi
and associate these vertices with the literal 7, so that each
vertex points to one single cell which is the initial location
of a specific robot. The incoming edges of these vertices are
constructed by treating 7, as a regular clause (single literal
with connector xy = 0) of an edge label. Specifically, given
a subtask e € P, let robot 7, denote the specific robot
that should visit vertex v associated with its literal 7,;,. We
identify all vertices in Vg that are associated with robots of
the same type as r, and are related to initial locations (see

30

Appendix [(@)), prior subtasks of e (see Appendix or vertex
labels of the same subtask (see Appendix [(c)). Then, we create
an edge from each one of these vertices to vertex r,. No
outgoing edges exist for these vertices. The remaining steps to
build the routing graph are the same as those in Appendix [(a)|

When formulating the MILP, the only difference is in the
constraint (32), that is, m, is true if and only if each vertex
in G that is associated with 7,; is visited by a specific robot
among the whole fleet of n robots, i.e.,

Z Z Tyvr, / n = be, (34)
((u,v)EEG

veMi(e,1,pe,1) u
where robot r, is the specific robot that should visit vertex v.
Note that robots returning to their initial locations in one step
does not guarantee the completeness of our proposed method,
as discussed in Remark [A3]

C. Extensions of the MILP

One advantage of the proposed MILP for the prefix and
suffix parts is that it is associated with each subtask indi-
vidually, which allows us to impose additional constraints
on certain subtasks to address problem-specific requirements.
In this section, we present possible extensions of the LTLX
formula and introduce variations to the MILP formulation by
considering more interesting constraints.

1) Requiring specific robots to participate in a subtask:
Given an atomic proposition 7rfC JX that appears in the LTLX
formula, we can require that a specific subset of robots,
denoted by IC; C K;, participates or not in the satisfaction
of this formula. Suppose the set of vertices in G that are
associated with this literal is M1(e, 0|1, p, ¢). Then for each
specific robot r € IC;., we have

>

w:(u,v)EEG

Vue MP(e,0/1,p,9) (39

Lyvr = Iv

where I € {0,1}. We set I to 1 if we require every robot in
KC’; to participate in the satisfaction of ’]X (where [KC}] < i)
and I =0 if no robot in K’ should be 1nvolved

2) Managing the number of participating robots: When
completing the task specified by the LTLX formula, it may
be desirable to dispatch as few robots as possible to keep the
whole system at a small scale. On the other hand, we may
want to dispatch as many robots as possible to enhance the
efficiency. This requirement can be handled by adding another
term to the MILP objective in (29) as follows

min oy Z Z AupTyor + 02 Z te

(u,w)€Eg re MY (v) e€Xp

VDS

VEVinir w:(v,w)EEG

(36)

Towr,

where a1 + as + ag = 1, 7, is the specific robot at vertex
v € Vinit, and the final term captures the number of robots that
leave their initial locations, equivalent to the number of robots
that are assigned to the desired subtasks. The positive sign in
the last term in objective (36) corresponds to the case where

fewer robots are needed while the negative sign corresponds
to the case where more diverse robots are needed.

3) Prohibiting the use of the same robots: In Definition 3.4
of the LTLX formula, we handled the requirement that two
atomic propositions with the same nonzero connector must
be satisfied by the same fleet of robots. Alternatively, we can
impose the restriction that some atomic propositions involving
the same robot type but different nonzero connectors must
be satisfied by two disjoint fleets of robots. For instance, the
formula Oﬁ i A <>7r§ff requires that the robots that visit region
¢, are different from those two robots that visit region {s.
Given such two atomic propositions that need to be satisfied
by different robots, suppose the sets of vertices in G that are
associated with these two literals are M\t (e,0[1,p,q) and
Mi(e’,0[1,p',¢'). Then, Vr € K;, this requirement can be

written as
> >

I'U/U’I”JF
veM(e,0]1,p,q) u:(u,v)EEg

2 2.

veMFE(e’,0[1,p’,q") ui(u,v)EEG

Tor < 1. (37)

Constraint (37) states that robot 7 of type j can visit at most
one vertex among the vertices that are associated with these
two literals.

APPENDIX B
DESIGN OF LOW-LEVEL PATHS THAT SATISFY THE
ORIGINAL LTL TASK

This section presents the correction stage that concretizes
the high-level plan obtained in Section to satisfy the
specification ¢. We first find a simple path from the NBA
A bask that connects vy and Vaeeepr, based on the time axis
and the time-stamped task allocation plan, and then find the
counterpart of this simple path from the NBA Ay. To satisfy
the specification ¢, while following the high-level plan, we
formulate a sequence of generalized multi-robot path planning
(GMRPP) problems to design low-level executable paths.

A. Extraction of the simple path from the sub-NBA A .«

Recall that each distinct time instant on the time axis ¢
obtained in Section [V-B|has a one-to-one correspondence with
subtasks in the set X p, and the sorted time axis generates a
linear extension of subtasks in X p that induces a simple path
in Ay that connects vy and Vaeepr. In this section, we
proceed along the time axis ¢ to extract this simple path using
a graph-search version of the backtracking search algorithm,
which is a variant of the depth-first search [63]]. In our graph-
search method, each vertex is searched at most once. The
outline of this algorithm is shown in Alg. [3

To this end, we define ¢ € N as the global counter
which keeps track of the progress made along the time axis
t. Specifically, ¢ is the index of the subtask that has been
completed most recently. Therefore, t_'(c+ 1) is the completion
time of the subtask, denoted by ¢’ = (v}, v5), that is the next
one to be completed. Let v; denote the vertex in A_, . thatis
the most recently reached. The set frontier is a last-in-first-
out queue that stores vertices that are available for expansion

31

subtask

Algorithm 3: Extract the simple path from A
Input: time axis £, sub-NBA A_

subtask
1 v =wvg,c =0, frontier = {(v1,)}, explored =)

while v1 # vVaiceept dO

2 Remove (v1,c¢) from frontier and add v; to
explored,
3 Obtain the subtask ¢’ = (v],v4) that is associated

with t(c + 1);
4 for (Ul,U2) € -As_ubtask do

5 if v(v1,v2) = y(v1,v3) and y(v1) = 7(v})
then
6 Determine (1) essential clause, (2) essential

robots, (3) negative clause, and (4)
sequence of vertices leading to va;

7 if vy not in frontier and explored then
8 | Add (v2,c+1) to frontier;

9 return the simple path leading to vy;

and the set explored stores vertices that have been expanded.
At each iteration, among all subtasks with the starting vertex
vy, we find the one (vy,vq) that is equivalent to subtask e’
[line |5, Alg . Then, after time instant £(c + 1), vertex vy
becomes the most recently reached vertex. We next increase
the global counter by 1 and add it to frontier, a last-in-first-
out queue [line [§] Alg. [3]l. The iteration will terminate when
the accepting vertex Uaccept 18 reached.

When a subtask (vq,v2) in Ay, ., is matched with the
subtask e’ that is completed at Z(c + 1), we keep track of the
following information: [(T)] the exact clauses that are satisfied
in the vertex label v(v1) and edge label y(vq, v2) since only
one clause in each label is true by constraint () in the MILP,
the subset of robots that participate in the satisfaction
of each literal in these clauses, @] the negative subformula
in Ag that is in conjunction with the satisfied clause found
in but is replaced with T during the relaxation stage in
Section [IV-Al and (4) the sequence of vertices in A_,,., that
have been visited up to vertex vs. This information will be
used to formulate the generalized multi-robot path planning
problems later. In what follows, we discuss [(D(3)] in further
detail and omit step (4) since it is straightforward.

(1) Essential clauses: Given the edge label or vertex label
Y = Vper Neo, waX of subtask (v1,vs) that is neither T
nor L, we refer to the unique satisfied clause as the essential
clause and denote it by 4. Recall that in Appendix we
define a binary variable b, representing the truth of the p-th
clause in a given label; see constraint @]) Thus, we find the
essential clause by locating the clause C) € cls(y) such that
b, = 1. On the other hand, when the vertex or edge label is
T, by default, we define the essential clause as T.

(2) Essential robots: We refer to the set of robots whose
collective behavior satisfies the positive literals in the essential
clause as the essential robots. Recall in Appendix that
the binary variable z..,, represents robot r visiting a vertex
v in the routing graph G. For the ¢-th literal 7rtk X in the
essential clause C) of a vertex or edge label of subtask (v1,v2),

we determine its essential robots by locating the associated
T, Whose value is 1. That is, for each associated vertex
v € MI¥(e,0[1, p, q), we identify the robot » € MY (v) such
that 3 (u,v) € &g, making x,,, = 1. On the other hand, if
the essential clause is T, there are no essential robots.

(3) Negative clause: The collective behavior of essential
robots satisfies the essential clauses in A, ... For an essential
clause that is not T, there exists a unique clause in the
NBA Ay that only differs from the essential clause in that
it may contain the conjunction of the negative literals that
were removed during the relaxation stage. We refer to this
conjunction of negative literals as the negative clause and
denote it by y~, which will be satisfied by the low-level
paths. By default, we define the negative clause as T, if the
corresponding clause in .44 does not have negative literals.
Finally, the conjunction v© A+~ of an essential clause and its
corresponding negative clause constitutes a complete clause
in A¢.

When the vertex label ~y(v;) or edge label ~y(vy,vs) of
subtask (v, vg) in A is T, the associated essential clause
is also T. However, the negative clause may not be T, which
happens when there exists a clause in the corresponding
label in A, that only includes negative literals. Note that by
condition [(b)] in Definition [3.10] the complete clause of the
vertex v; is implied by the complete clause of the edge that is
immediately preceding the current subtask (v1, v2). If the label
is the edge label ~(vi,vs2), we randomly select one among
the clauses that only include negative literals. Otherwise, if
the label is the vertex label (v1), and further if the current
subtask is not the first one, we select one as the negative clause
(acting as the complete clause), that is implied by the complete
clause in the edge that is immediately preceding the current
subtask (v1,v2). We can obtain this edge since in step (4) we
keep track of the sequence of vertices that lead to vertex vs.
This ensures that when the edge label (v1,v2) is enabled due
to the satisfaction of its complete clause, the complete clause
in its end vertex label can be satisfied automatically. On the
other hand, if the current subtask is indeed the first one, we
randomly select a negative clause that is satisfied by the initial
robot locations.

B. Generalized multi-robot path planning

Leveraging the correspondence between the NBA A, and
the sub-NBA A, .., we can find the counterpart in Ay of the
simple path in A_, . obtained in Appendix E We denote
by 64 this counterpart, which corresponds to a sequence of
temporally sequential subtasks. Our goal is to find a collection
of executable paths that induce the simple path 6, in Ag.
To achieve this, we formulate the execution of each subtask
in 64 into a generalized multi-robot path planning problem
(GMRPP). Compared to traditional multi-robot path planning
that, given an initial robot configuration, designs paths to
reach the target configuration, the GMRPP imposes additional
constraints on the intermediate configurations.

Observe that given the completion time of two consecutive
subtasks on the time axis 7, we can obtain the tightest span
of the second subtask’s vertex label;, see Definition [A.T]

32

Specifically, the activation time of the second subtask’s vertex
label is at most one time step after the completion time of
the first subtask; see also constraint (I8) in Appendix [A-A]
that captures the temporal relation between two subtasks.
On the other hand, the completion time of the vertex label
of the second subtask is at most one time step before the
completion time of the second subtask; see also constraint
in Appendix that captures the temporal relation for the
same subtask. To design the low-level paths, we let each robot
visit waypoints in its individual plan p;. ; sequentially, possibly
at different time instants than those in its timeline ¢, ;. This is
because the individual timeline is obtained using the shortest
travel time between regions (see scheduling constraints in
Appendix [A-AZ) and omitting collision avoidance between
robots, but the relative temporal relations with other robots
are kept. Also, we maintain the tightest span of the vertex
label of the considered subtask between completion time of
two consecutive subtasks.

To this end, for each robot [r,j] € R, we define a local
counter (,; € N that keeps track of how much progress has
been made along the individual plan p,. ;. Specifically, ¢, ; = a
indicates that the a-th waypoint in the plan p,; is the one
visited by robot [r, j] most recently. Furthermore, recall that
the global clock ¢ monitors the index of the most recently
completed subtask along the time axis ¢, which also captures
the execution progress along the simple path 64 since a one-
to-one correspondence exists between time instants in ¢ and
subtasks in 6. In what follows, we provide the ingredients
for the construction of GMRPP.

1) Ingredients of GMRPP: Consider a subtask e = (vy, vg)
generated by the simple path 6, that is the next one to be
completed. Let 7;” and 7, denote the essential and negative
clauses associated with the vertex label y4(v1), respectively.
Similarly, we define ;" and 7, for the edge label v (v, v2).
The goal of a GMRPP is to determine a collection of exe-
cutable paths such that robots complete the current subtask
(by satisfying the complete clause fyf: o A 71, at the end
while respecting the complete clause 7, A 7, en route) and
automatically activate the next subtask after completion since
the complete clause 'yf: o A\ 71 o implies the complete clause
associated with the starting vertex of the next subtask. We
refer to ~y; as the running constraint and v, , as the terminal
constraint. Next, we determine three types of robots that are
directly involved in the execution of the current subtask e.

(1) Essential robots associated with constraint v;": We
collect essential robots associated with essential clauses in ;"
in the set Rq, where robots need to remain at certain target
regions.

(2) Essential robots associated with target 71+7 5° We collect
essential robots associated with the essential clause fyf 5 in the
set R 2, where robots need to reach certain target regions.

(3) Robots associated with running and terminal constraints
v, and Vi2° The robots, in this case, are different from
the previous two types since they are related to negative
clauses v, or 7y, . These robots, unless they are involved
in the first two cases, navigate without specific targets, only
to satisfy the bound imposed by the negative literals on
the number of certain types of robots in some regions. We

collect them in the set /R—, which contains all robots that
belong to certain types involved in v, or 7y ,, ie, R™ =
{K;: ﬂﬂ'z’fj € lits™ (vy \/7{72)}.

Let Re = R1 UR12 UR™ denote the set that collects all
robots directly involved in the current subtask, and Rg = R \
R. collects the remaining robots. To formulate the GMRPP,
we define by X and X the sets of initial and target locations,
respectively, such that X;(r,j) € S and X (r,j) C S are the
initial and target locations of robot [r,j] € R. Specifically,
the initial robot locations are where the robots are at the end
of the subtask immediately preceding e. The target region of
robot [r,j] € Ri2 is determined by its associated literal in
’Y1+, o, which is also given by p, ;(¢(r,j) + 1). Similarly, the
target region of robot [r, j] € R can also be determined by its
associated literal in ;™. There are no specific target locations
for robots in R~ U Rg.

Finally, let 7, ; denote the path segment of robot [, j] €
R, where 7, ;(t) denotes the robot location at time ¢ for
t=0,...,T, where time instants 0 and T" correspond to the
completion time of the immediately preceding subtask and
the current subtask, respectively. Next, the generalized multi-
robot path planning problem, adapted from [64]], is defined as
follows.

Definition B.1: (Generalized multi-robot path planning)
Given a discrete workspace F, a set of robots R = R, U R
where R, = R1UR12UR™, a set of initial locations X7, a set
of target regions X, the running constraint 7, , the terminal
constraint 71_7 4, and the horizon T, find a collection of path
segments 7, ; for all robots [r,j] € R such that (i) every
robot [r, j| € Ry 2 starts from the initial location and arrives
at the target region at time instant 7', i.e., 7/ ;(0) = X (r, j)
and 7, ;(T) € Xg(r,j), V[r,j] € Ruz; (ii) every robot
[r,j] € Ry remains in the target region for all time except
0 and 7} ie., 7,;(0) = X;(r,7) and 7, (t) € X¢(r,j) for
all t =1,...,T — 1; and (iii) the paths {7, ;},V[r,j] € R™,
satisfy the running constraint ; for all times except at 0 and
T, and also satisfy the terminal constraint 7, , at time instant
T.

Fig. [[3] illustrates the time relation within one instance of
GMRPP. The paths do not need to satisfy Vfr and v, at time
instants O and T since the tightest span of the vertex label of
the current subtask can be one time step after the completion
of the immediately preceding subtask, which is indicated by
time 0, and one time step before the completion of the current
subtask, which is indicated by time 7. In Appendix [B-C| we
discuss how to solve the GMMPP with horizon T'. The paths
returned by this GMRPP complete the subtasks (vq,v2) and
meanwhile activate the vertex label of vs, i.e., the next subtask.

Remark B.2: In the formulation of the GMRPP, we did not
take into account collision avoidance between robots, which
will be addressed in Appendix

Remark B.3: Note that subtasks are executed sequentially
as discussed above since we only assign target regions to those
robots R1 U Ry 2 directly involved in the current subtask e.
Thus, we refer to this as the sequential execution. However,
robots that participate in subsequent subtasks can move to-
gether with the robots that participate in the current subtask e

33

Time span of the vertex label

| e
1 1 1 >
T-1 T T+1
J
Activation of
the next subtask

. SOy

[
1
0 1
L

Y

Completion of
Time span of the current subtask

the prior subtask

Fig. 13. The time relation within one GMRPP. The essential and negative
clauses are aligned with the time instants when they should be satisfied.

Algorithm 4: Executable multi-robot path planning

Input: Workspace F, robot team R, subtask sequence
64, waypoint sequence {p, ;}, time sequence
{tT;j}’ NBA 'A¢ and AsTJbtask
; > Initilization
17 =805 G =0,¥[rj]€R, c=0;
; > Sequential GMRPP solutions
for e = (v1,v2) € 6, do

2
3 | iff(1) =0 then
4 Grj=GCrj+ 1 V[l eRia;
5 c=c+1;
6 else
7 Formulate the GMRPP ;
8 Solve the GMRPP for horizon 7" as in
Appendix to obtain paths 7/,
V|r,jl € R;
; > Update
9 Concatenate paths:
Trg = Trj Tl i Te], Y jl € R;
10 Update individual timeline:

tT-,j (C) = tr,j(() + T — ({(C + 1) - {(C))’
V(> Vi jleR

11 Upadte time axis:
i) =) + T. — (ilc + 1) - o)),
Ve >ec+1;

12 Update local counter:
Grj=Grg+1, V[rjl € Rigz:

13 Update global counter: c =c+ 1 ;

The right-side time instant #{(c 4 1) in line |11|is the one before updates.

by heading toward some “intermediate” targets, so that after
the current subtask e is completed, these robots associated with
subsequent subtasks have already traveled part of their routes
towards finishing their respective subtasks. We will present
this simultaneous execution in Appendix [B-D2]

Remark B.4: We refer to the execution of the subtask e
discussed above as the full execution since it mobilizes all
robots in the workspace. However, most times not all robots
need to move for one specific subtask since only a subset
of robots are responsible for the satisfaction of this subtask.
In Appendix we discuss a partial execution where only
necessary robots in R, are allowed to move and the rest of the
robots stay put. The partial execution shares most similarity
with the full execution.

2) Sequential GMRPP solutions to find low-level paths that
induce the simple path 04: The GMRPP algorithm to design

executable paths under the full execution is outlined in Alg.
We initialize all local counters and the global clock to O [line[T}
Alg. []l. The algorithm terminates when iteration over the
subtasks in the simple path 6 is finished [line 2} Alg. A].

We first check whether the first time instant £(1) on the time
axis is 0. If £(1) = 0, then the first subtask in the simple path
04, i.e., the edge label of the first subtask, is satisfied by the
initial robot locations. Thus, we increase the local counters of
robots that participate and the global counter by 1 [lines |3
Alg. f]. Otherwise, we solve the correspondmg GMRPP as in
Appendix E B-C| We initialize T by #{c + 1) — (c) (by default
£(0) = 0), which is the difference between the completion time
of the immediately preceding subtask and the current one. We
denote by T, the final 7" when the GMRPP has a solution
[line [8] Alg. d]l. Given a solution to the generalized multi-
robot planning problem, Alg. [proceeds with the following
updates [lines QT3] Alg. @]

First, for each robot [r, j] € R, we append the path segment
7 ;(t), forall t = 1,...,T,, to its already-executed path 7,
[line 0] Alg.H]. Note that the final waypoints will be the initial

locations of the next instance of GMRPP. Moreover, for each
robot [r,j] € R, we increase the time instants in ¢, ; with
indices larger than or equal to ¢, ; by T, — (t tc+1) —t(c))
[line [10] u Alg. El] where i{c + 1) — #(c) is the time span
of the current subtask given by the high-level plan whereas
T, is the actual time span given by the low-level executable
path. Similarly, we increase the time instants in ¢ with indices
larger than or equal to ¢ + 1 by T, — ({(c + 1) — (c)). In
this way, the subsequent subtasks in the high-level plan that
have not been executed are shifted into the future by the
same amount in order to maintain the correct temporal relation
(precedence or simultaneity) between visits to waypoints in
{pr;}. Next, we increase the local counter by 1 for all robots
in Rq 2, which reflects local progress towards completing their
individual plans [line [I2] Alg. []. Similarly, we increase the
global counter ¢ by 1 [line [I3] Alg. [].

C. Solution to the generalized multi-robot path planning prob-
lem

Conventional multi-robot path planning problems find feasi-
ble or optimal paths for groups of robots starting from a set of
initial locations and ending at a set of desired target locations;
see, e.g., [64] and the references therein. To find executable
paths satisfying the subtasks, we generalize the multi-robot
path planning problem in several ways. First, we extend the
notion of a single target location to a target region such that
reaching any cell in the target region suffices. Second, the
path segments that complete the subtask satisfy the complete
clauses in the corresponding vertex label and edge label.
Third, in the partial execution, only a subset of robots directly
involved in the current or future subtasks are allowed to move.

In what follows, we adapt the method proposed in [64]]
to solve the GMRPP under the full execution with given
horizon T'. The key idea is to construct a time-expanded graph
Gr = (Vr,&r) of the workspace which contains 7' copies of
the free cells in the workspace E; see Fig.[T4] We organize the

34

===
N
><

0 1 PR T

Fig. 14. Time-expanded graph over horizon 7' (modified from [64])

Ut Ut41
=
Ut . . Ut+l
Fig. 15. Merge-split gadget for avoiding head-on collision (modified
from [64])

vertices and edges of this time-expanded graph G in a matrix
structure, so that each row corresponds to a free cell in the
workspace E and each column corresponds to a time instant
t € {0,...,T}. Then, a vertex u; € Vr that appears in the
t-th column of this matrix structure indicates whether the cell
u € F is occupied by a robot at time instant . The edges in
Gr capture adjacency relations between neighboring cells in
and consecutive time instants in {0,...,T}. Specifically, for
any two adjacent cells v and v in E, an “X”-shape structure,
referred to as a merge-split gadget, is created to capture the
transition from vertex u at time ¢ to vertex v at time ¢+ 1; see
also Fig. In this way, robots traveling along a given row
in the matrix structure corresponding to G effectively remain
idle at their current cell, while robots switching between
different rows in Gp transition between adjacent cells in FE.
We say that a sequence of transitions in Gy form ¢ = 0 to
t = T produces a robot path in the workspace FE.

Next, we formulate an Integer Linear Programming (ILP)
problem to solve the GMRPP. Let S,,r; € {0,1} be the
routing variable such that s,,,,,,; = 1 if robot [r,j] € R
traverses the edge (ut,viy1) € Ep. In what follows, we
describe the constraints and objective of this ILP.

1) Routing constraints: The constraint that each edge can
be traversed by at most one robot at a given time is given by

Z sutvt_HTj S]-7
[rjleR

for all ¢ = 0,...,T — 1. Furthermore, the flow conservation
constraint is written as,

Wi1:(Ve, W1)EET

wi—1:(ut—1,0¢)EET

V(Ut,’l)t+1) S ST, (38)

Sui_jverj — Svtwt+1rj7

(39)

for all robots [r,j] € R and all ¢t = 1,...,T — 1. This means
that every robot that arrives at a vertex in G has to leave that
vertex at the next time step. Next, the constraints at the initial

time are encoded as,

> Sugmr =1 (40a)
v1:(ug,v1)EET
> Suur =0, YweE\u, (40b)

v1:(wo,v1)EET

for all robots [r,j] € R, where ug is the vertex associated
with the cell u = X;(r,j) where robot [r, j] is at the initial
time. Constraints (@0) state that robot [r, j] has to depart from
its initial location. Note that this departure is in the graph Gp
and is associated with time rather than physical location.

2) Target constraint: The general constraints that robot
[r,j] in Ry and R4 arrives at a cell in the target region
Xq(r,) at certain time instant ¢ can be encoded as

2 2.

viveEXg(r,j) ut—1:(ur—1,v¢)EET

(41)

Sut—lvﬂ“j =1L

Specifically, ¢ in constraint (1) takes values ranging from
1,...,T — 1 when encoding the constraint that robot [r, j] €
R1 stays at the target region X(r, j) to maintain the truth of
the vertex label of the current subtask. For the constraint that
robot [r,j] € Ry arrives at a cell in Xg(r,j) at the time
instant 7' to complete the current subtask, we have t = 7" in
constraint (@)

3) Running and terminal constraints: The general running
and terminal constraints that negative literals —nrf’ ; should be
respected at certain time instant ¢ is written as

PO DD

[rglek; vely up_1:(us—1,v¢)EET

(42)

Sup_qvers <1 — 1.

The running constraint that all negative literals ﬁwl’f ; €
lits™ (y;) in the vertex label of the current subtask should be
respected (excluding time instants O and 7T), can be encoded
by assigning to ¢ in constraint (@2)), values ranging from 1 to
T — 1. Similarly, we encode the terminal constraint that the
negative literal -7/ ; in lits™ (77 ,) should be satisfied at the
time T by letting ¢ in constraint (42) take the value 7.

4) ILP objective: The ILP objective is to minimize the total

travel cost and is defined as

min Z Z

[r,j]eR te{0,....,T—1} (us,ve41)EET

(43)

duvsutvprlrja

where d,, € N is the travel cost between cells u and v.

When a solution does not exist for a given horizon 7', we
increment 1" and solve the ILP again. The solution provides a
collection of executable paths that satisfy the current subtask
as well as activate the next subtask at time 7.

D. Implementations of GMRPP

In this section, we present several implementations of the
GMRPP problem. We first address the collision avoidance be-
tween robots, then we show how essential robots of subsequent
subtasks can simultaneously move with those of the current
subtask, and finally show how only necessary robots move.

1) Collision avoidance: To handle collision avoidance, we
first introduce an additional step to pre-process the NBA Ay

35

(see Section [[II-D2), which removes infeasible clauses due to
limited size of regions:

(6) Violation of region size: For each clause C € cls(y),
let lits* (k) denote literals in lits™(C) that involve region ¢
We delete the clause C) (replacing it with L) if the required
total number of robots visiting region ¢ exceeds the number
of free cells it covers, i.e., if there exists k£ € [I] such that
wa}’;‘GIits*(k)i > |0l

Collision avoidance is addressed in the low-level path
planning component of our algorithm since the high-level plan
generation abstracts away the workspace. In aninstance of a
GMRPP, we say that the paths of any two distinct robots [r, j]
and [r’, j'] are collision-free if there does not exist a time
instant ¢ € [I'] such that 7, ;(t) = 7, ;/(t) (meet collision,
that is, two robots occupy the same cell at the same time) or
7. (t) =1 o (t=1)A1}, /() = 7, ;(t—1) (head-on collision,
that is, two robots at adjacent cells switch locations with each
other). Furthermore, in the case of the partial execution that
will be introduced in Appendix we treat those robots
that are not allowed to move as obstacles, giving rise to a
new workspace E’ = (S’, —g). In the case of full execution,
we have F/ = E. The time-expanded graph in Fig. that
captures the connectivity of the workspace is constructed based
on the new workspace FE’. Finally, we add the following
collision avoidance constraints to the ILP for the GMRPP.

Avoiding meet collisions, Vv € E’, can be captured by the
constraint

PSS

[rJlER wui:(ut,viqr1)EET

Sutthrl’r’j g 17 v(ut>vt+1) € 5T7

(44)

forallt =0,...,T—1. Moreover, avoiding head-on collisions
at every gadget, Vu,v € E’ with u # v can be captured by
the constraint

Z (Sutvt+1rj + Svtut+1rj) S 17 V(utavt+1) S gTa (45)
[rJlER

forallt=0,...,7 — 1.

2) Simultaneous execution: When identifying robots that
are involved in one instance of a GMRPP in Appendix
we only focused on robots R, = Rq URq2 U R that are
directly involved in the completion of the current subtask
(see [(DH3)). However, the rest of robots that are not involved
in the current subtask may concurrently move to begin the
execution of subsequent subtasks of the current subtask e.
Specifically, these robots can move towards waypoints as-
sociated with subsequent subtasks. In what follows, we find
essential robots associated with these subsequent subtasks.

(4) Essential robots associated with subsequent subtasks:
These robots move simultaneously with the first two types of
robots in[(DH(2)] towards waypoints associated with subsequent
subtasks of the current subtask e. We collect these robots in
the set R , and identify them in the following way. First, we
identify the completion time of the current subtask, which is
given by #{c + 1). Next, we iterate over the remaining robots
that are not in Ry U R12 since they have been assigned
target locations. For every robot [r,j] € R\ (R1 U R12),
the time when it should visit the next waypoint based on

its local counter ¢, ; is given by t,;((.; + 1). Note that
t,.;(¢ri+1) > t{c+1) since we proceed along the simple path
6, and the completion time of subtasks that have not been con-
sidered will be larger than that of the current subtask. Finally,
we calculate the time difference At = t,. (¢ ;j+1) —i{c+1)
and then check whether the robot [r, j] can arrive at the target
region p, ;((r,; + 1) within time At starting from its current
location by taking the shortest route. If not, robot [r, j] should
move simultaneously when completing the current subtask. In
this case, the set of robots that are involved in some subtasks
becomes R, = R1 UR12UR ,UR™.

Next, we determine the target location X (r,) for robot
[r,j] € R}, which is the location from where robot [r, j]
can reach the region p, ;({(r,j) + 1) within time At by
taking the shortest route in the new workspace S’ (obtained
by treating robots in the partial execution that do not move as
obstacles). To avoid collision, if the selected target location
of robot [r,j] has already been assigned to another robot
in Rj,, then we select another free cell on the shortest
route to be this robot’s target location, which is close to the
previously selected occupied cell and has not been assigned.
More importantly, if a negative literal —‘ﬂ'ﬁ ; exists in running
or terminal constraints y; V 7q o, the selected free cell for
robot [r,j] should not be inside region /. In the worst
scenario where such a free cell is not available for robot
[, j] € R} 5, then we do not assign a specific target location
to it, similar to the sequential execution. After determining the
target location, the requirement in Definition of GMRPP
on robot [r,j] € R}, is that it should arrive at the target
waypoint at time 7', that is, we need to design the path 7, j
such that 7, ;(0) = X;(r,j) and 7, ;(T) = X¢(r,j). Note
that the target X¢(r, j) for [r, j] € R} , is a single cell, other
than a region for robots in Ry 2. Similar to robots in R4 o that
complete the current subtask, this requirement can be encoded
by setting ¢ equal to 7" in constraint (41)) that handles the target
constraint.

3) Partial execution: In Appendix [B-BI} all robots are
involved in the formulation of GMRPP, which leads to a large
ILP in Appendix [B-C] when the size of robots is large. To
reduce the complexity, we introduce the partial execution in
which only necessary robots are allowed to move and the
remaining are treated as obstacles.

First, we identify robots that need to move, which in-
clude essential robots in Rq U Ri2 and R’LQ when si-
multaneous execution is adopted. These robots have target
locations. In the full execution, the set R~ is defined as
R~ = {K;: -} €lits (7 Vi,)}. which contains all
robots whose types are involved in the running and terminal
constraints. To shrink the size of R ™, for every negative literal
ﬂTrf-‘; ; €71 V1,2, we identify the number " of robots of type
j that is at region ¢; at time instant O in each instance of
GMRPP. If i’ < 4, we remove robots of type 7, i.e., K;, from
R~ and update this literal -7} ; to ~xF_, ;. Note that the case
+/ > 1 only happens when —wrf; ; € 71,2 since at each instance
of GMRPP robot locations at time instant O satisfy the starting
vertex label, thus also satisfy ;. In this case, we replace KC;
in R~ with ¢ — ¢ + 1 robots of type j that are at region £
and update this literal -7}, to —7f ;. In this way, we reduce

36

the number of robots in R~. Then, the robots that need to
move constitute the set R, = R U R 2 U R’LQ UR™, and
the remaining Ry = R \ R. are treated as obstacles, giving
rise to a new workspace E' = (S, = g/).

The formulation of ILP to solve the GMRPP remains the
same except that no variables are created corresponding to
unmoved robots. After obtaining a solution to the GMRPP,
we follow similar steps as in lines O}fI3] in Alg. [to update
relevant terms such as paths and timelines. The exception is
that in the full execution, we can concatenate paths for each
robot in R [line E]], while in the partial execution, the GMRPP
only finds paths for robots in R.. For other robots [r, j] € R,
we append T, times the last waypoint of the already-executed
Tr,j t0 T ; since they remain idle.

APPENDIX C
PROOF OF THEOREM [6.1]

To prove Theorem [6.1] that shows the completeness of
our proposed method, we first show the completeness of the
construction of the prefix part and then the completeness of
the whole algorithm. For each part, we analyze the feasibility
of the MILP for the time-stamped task allocation plans and
the feasibility of the GMRPP for the low-level paths. Before
presenting the main results, we first provide some necessary
notation.

A. Notation

Given a NBA A, e.g.,, Ay, Arelax and Aguprask, we define
by Lg(A) the set of words in £(A) that can be realized by
robot paths. Recall that we can always map a run in A to
its counterpart in Ag,. If A = Ay, then the counterpart of a
run is the run itself. We define by E%(.A) the set of words in
Lz(A) such that for any word w € L (A) that induces an
accepting run in A, the counterpart of this accepting run in A,
is a restricted accepting run. In words, if A = A, ., and if
a path 7 generates a word w in £% (A, .) € L5(ALyua)
and w induces a run p in A, connecting a pair vg and
Uaccept> then, we can obtain the corresponding run pg in Ag
that is the counterpart of the run p in A, .. This motivates
us to modify the path 7 that satisfies A_, . to get another
path that can produce this run p, in Ag. Additionally, let
L9 (A) C LE(A) collect those words in £3,(.A) that can be
generated by paths that satisfy Assumption [3.11]

Next, we consider the prefix and suffix parts separately.
Given a pair of initial and accepting vertices, vp and Usccept,

let C%UOW“C“"‘(A) be the set that collects finite realizable
words that can generate a run in .4 connecting vy and
Vaccept> and further the corresponding run in A4 satisfies the
requirements on the prefix part of a restricted accepting run
(see conditions [(@)}{(d)] in Definition [3.8). Recall that when
building the sub-NBA A_, .. for the suffix part, we rely on
the last subtask (Uprior; Vaccept) 1 Agypag fOr the prefix part to
extract the sub-NBA Agupask for the suffix part. That is, we
remove all outgoing edges from wvyecepe (acting as wvg) from
Aretax 1f Y (Vpriors Vaccept) does not imply its edge label in
Ag. Also, we remove all incoming edges to Uaccep: (acting
as Uaceept) from Arepax if the corresponding edge label in Ag

is not implied by 4 (Vprior; Vaccept); see Appendix Also,
we rely on final robot locations of the prefix part, denoted
by Sprior, to interpret the augmented clause C;;ior. That is,
C;ior is satisfied if those robots involved in satisfying C;;ior
in the prefix part return to regions including their initial
locations in spror; see Appendix Therefore, we define
by £%U“m"‘w“‘ep‘(¢4;sprior,vprior) the set that collects finite
realizable words that can generate runs in A starting from
Vaccept aNd ending at Vuecepr Whose corresponding runs in Ay
are the suffix parts of restricted accepting runs. Furthermore,
the path generating a word in this set starts from Spgor and
the prefix part of this restricted accepting run visits vprjor right
before vaccept-

Finally when the context is clear, we refer to the suffix
MILP as the MILP in which robots returning to their initial
locations and progressing towards the accepting vertex in the
NBA A, is made in two steps (see Appendix and the
extensions in Appendix to account for specific needs are
not considered, and refer to the GMRPP as the GMRPP in
which various implementations in Appendix collision
avoidance, simultaneous execution and partial execution, are
not considered. In what follows, we present the main results.

B. Existence of feasible paths in the sub-NBA A_

subtask

The following proposition states that paths exist that can
induce accepting runs in the pruned sub-NBA A_, ... This

result will be used to show the feasibility of the MILP for the
time-stamped task allocation plan.

Proposition C.1: (Feasible paths for the sub-NBA A_,.«)
Given a workspace satisfying Assumption [3.5] and a valid
specification ¢ € LTLX, if there exists a path 7 = 7Pr[rsuf]
inducing a restricted accepting run p = pPe[p]w =

) . .
V0, -« - 5 Upriory Vaccept ['Unexta -+ Uptiors vaccept}w n -A¢7 and this
path satisfies Assumption then there exists another
path 7 = 7P°[FU]« guch that 7P generates a word in

AP, V0* Vaceept 1 g — .

Ly (A b)) 7 0. Ij(l;rthermore, if Vaccept 7 Unext> then
—suf : s Vaccept™ Vaccept — . . .

72U generates a word in L (Agbtask’ Spriors Uprior) 7

(), where Sprior are the final robot locations of the prefix path
TPre,

To prove Proposition [C.I] we recall the main steps to
obtain the sub-NBA A_, . in Sections and and
characterize the relations between the different NBAs; see
Lemmas The first lemma shows that the pruning steps
in Section do not affect the set of restricted accepting
runs in A4 that can be incuded by realizable words.

Lemma C.2: (Ay and A;) The pruning steps in Sec-
tion satisfy E%(A;) = L2(Ay).
The proof can be found in Appendix Note that any
word in £ (Ay) induces a restricted accepting run in Ag. A
direct consequence of Lemma [C.2]is that, any path generating
aword w € E%(.A;) satisfies ¢ since the word w also belongs
to E% (Ag). The following lemma shows that ignoring negative
literals expands the set of realizable words accepted by Ajeax
compared to that of A

37

Lemma C.3: (A; and A.x) The relaxation stage that
replaces all negative literals with T in Section satisfies
ﬁd}; (A;) - E% (ArelaX)-

The proof can be found in Appendix Lemma [C.3]
implies that a word in £3,(Areiax) may not belong to £%(A;)
Hence, a path generating a word in E%(.Arelax) may not satisfy
the specification ¢ since Aax ignores the negative literals.
Next, we consider the prefix part. The following two lemmas
show that extraction and pruning of the sub-NBA Aguptask
for the prefix part do not empty the subset of words in
L0 wbask) that can be generated by feasible paths
satisfying Assumption [3.11] The detailed proofs can be found

in Appendices
Lemma C.4: (Areax and Aaprask) The extraction of the sub-
NBA Agbask in Section [IV-B2| satisfies L%UOW“””"‘(Are]aX) =
‘b)UO*Uaccep!
EE (Asubtask) .

Lemma C.5: (Aswpask __ and — Agp.g) The pruning
. . . >V0? Vaccept —
steps in Section [[V-B3| satisfy L (Agpask) S

E%UOWWP‘(Asubmk). Additionally, if there exists a path
7 = 7P« inducing a restricted accepting run in Ay,
and this path satisfies Assumption then there exists a
path 7P, modified from 7P, that can generate a word in

7,00 Vacee — . 7,00 Vacee —
[:E ’ p[(subtask)’ Le., LE ’ p[("Ltsubtask) 7é @

The following corollary is a direct consequence of the proof
of Lemma [C.5] which implies that we can construct a sub-
NBA A_ based on Sprior and vprior Obtained from the sub-

subtask
NBA A for the prefix part.

subtask
Corollary C.6: (Spior and vp,,) The final configuration of
the path 7P is spror, same as the final configuration of the

prefix path 7P, and the induced run visits vyror right before
Vaccept» Same as the induced run pP™.

The following proposition draws conclusions similar to

Lemma [C.4] and [C.5] for the suffix part; see Appendix

for the proof.

Lemma C.7: (Agubtask and A biask) The ex-
traction and pruning steps in Appendix
: f £¢«,Uaccepﬁvaccept ./4 . . . _
satisty E (relax ; Sprior» Uprlor) =

E%U“m"‘ww‘"(Asubtask; Spriors Uprior). Additionally, if there
exists a path 7 = 7P®[7*"1]% inducing a restricted accepting
run in Ay and this path satisfies Assumption [3.11] then
there exists a path 7 modified from 7, that can
generate a word in Zﬁ%v“c“"‘wm"‘(A;ubtask; Spriors Uprior); 1.€.,
E%Uaccepﬁvaccem (ASubasks Spriors Uprior) 7 0.

Finally, Proposition can be established by combining
Lemmas and

C. Completeness

1) Completeness of the prefix part synthesis: The following
proposition states that, with mild assumptions, we can find a
path that induces a run in A, connecting vy and Vaceepts Which
ensures the completeness of our method for specifications in
LTLX that can be satisfied by finite-length paths.

Proposition C.8: (Completeness of the synthesis method for
the prefix part) Assume a workspace that satisfies Assump-
tion and a valid specification ¢ € LTLX. If there exists
a path 7 = 7P°[7*U1]% that induces a restricted accepting run
p = pe [psuf]w = V0, -+ - » Uprior; Vaccept [Unext7 . aUrjoﬁ Uaccept]
in Ay and this path satisfies Assumption then the
proposed synthesis method can find a robot path 7P that
generates a word wP™ that induces a run P in 44 connecting
the pair vy and Vaccept-

We first provide the following three lemmas and then com-
bine with Proposition to conclude the proof of Proposi-
tion [C.8] Lemma [C.9|states that, if the poset P is inferred from
a set of simple paths that includes a simple path associated
with a feasible prefix path, then the MILP in Appendix [A-A]
associated with this poset P is feasible; Lemma |C.10] states
that a simple path in A_, . can be extracted from the solution
to the MILP and discusses the temporal properties associated
with this path, and Lemma [C.T1]| states that the sequence of
GMRPP in Section associated with the extracted simple
path is feasible.

Lemma C.9: (Feasibility of the prefix MILP) If there exists a
path 77 generating a finite word WP € £ (A,),
and the word @ induces a simple path & in Abiask that
belongs to the set of simple paths that generate the poset P,
then the prefix MILP in Appendix [A-A] associated with this

poset P is feasible.
The detailed proof can be found in Appendix The

key idea is that, the path 7P generating the word wP™ can

give rise to a high-level plan satisfying constraints (3)-(28) in
Appendix [A-A]

Lemma C.10: (Properties of the simple path) If the MILP
for the prefix path in Appendix associated with the
poset P produces a solution, then a simple path 6 designed
in Appendix that belongs to the set of simple paths
that generate the poset P, can be extracted from the sub-
NBA A_ ..« Additionally, the following properties hold for
subtasks in the simple path 6:

(a) The first subtask in the simple path 0 is activated at time
0;

(b) For any subtask e € 0, if its starting vertex has a self-
loop, then the completion time of the subtask e is no earlier
than the activation of its starting vertex label, and at most one
time step after the completion of its starting vertex label;

(c) For any two consecutive subtasks e, e’ € é, the latter sub-
task €’ is activated at most one time step after the completion
of the former subtask e.

The detailed proof can be found in Appendix
Property [(a)] guarantees the initialization of the sequence of
subtasks in 6, property ensures that each subtask in 0
is correctly executed, and property prevents gaps when
transitioning between consecutive subtasks. Combined these
three properties establish that once the first subtask is activated
at time 0, each subsequent subtask is completed successfully
and inter-subtasks transitions occur seamlessly, until the com-
pletion of the last subtask. Note that the extracted simple

38

path 0 may not be identical to the one induced by the word
whe e E%’Uowa°°ep'(A;bmsk) in Lemma The following
lemma states that low-level paths can be generated from the

solution to the prefix MILP in Appendix the proof can
be found in Appendix

Lemma C.11: (Feasibility of the GMRPP in Appendix [B-B)
Assume that the workspace satisfies Assumption [3.5] Then, the
sequence of the GMRPP in Appendix that constructs the
simple path 6 from the solution to the MILP in Appendix
is feasible. That is, every GMRPP is feasible for a time horizon
T.

Combining Proposition with Lemmas we con-
clude the proof of Proposition [C.8] on the completeness of
the proposed synthesis method for the prefix part. Note that
Proposition |C.§| assumes the existence of a feasible path. By
Proposition Lo (Az i) 7 0, therefore a path
7P exists that generates a word WP € £ (AT).
Because in Section we iterate over all pairs of initial
and accepting vertices whose total length is not infinite, we can
focus on the NBA A_, . associated with a pair that produces
a feasible path, as required in Proposition [C.8] Moreover, since
in Section we create posets for all subsets of equivalent
simple paths connecting the pair vg and vaecept, by iterating
over all these posets we are guaranteed to eventually formulate
the MILP over the poset that includes the simple path induced
by the path 7P. According to Lemma this MILP has
a solution. Then, by Lemma we get that a path 7P
can be obtained by concatenating paths from each GMRPP
since the final and initial locations of consecutive GMRPPs
are identical, which completes the proof.

2) Completeness of the overall algorithm: Similar to
Lemma we show the feasibility of the suffix MILP in

Appendix see Appendix for the detailed proof.

Lemma C.12: (Feasibility of the suffix MILP) Assume a
valid specification ¢ € LTLY and let Sprior and vprior denote the
final configuration of the path 7P* and the vertex before vaccept
in the run pP", respectively. If there exists a path 74 generat-
ing a finite word w*"! € £ G et Bneeent | ubtask Spriors Uprior)» and
the word w**f induces a simple path 7" belonging to the set of
simple paths that generate the poset P, then the suffix MILP
associated with this poset P, composed of constraints (3)-(26)

in Appendix [A-A] and constraints (30)-(32) in Appendix [(b)]
is feasible.

Note that the results in Lemmas [C.10] and developed
for the prefix part can also be applied to the suffix part.
Combined with Lemma we can obtain an equivalent
statement of Proposition [C.8| for the suffix part. Finally, com-
bining Proposition [C.8]|for the prefix part with Proposition|C.1]
we can establish completeness of our proposed method; see
Appendix

Remark C.13: Note that Lemma focuses on LTL®
specifications. The prefix path 7P in Proposition is
obtained by solving the prefix MILP in Appendix which
may allocate a different fleet of robots than 7P to satisfy
the same induced atomic propositions. Since robots also need

to return to initial locations, this may affect the existence of
a suffix path and further the satisfaction of the same-(i, j)
constraint (33) in Appendix [(b)] Therefore, we restrict the
specification to the class LTL? in the statement.

D. Detailed proofs

1) Proof of Lemma[C.2} The basic idea is that the pruning
steps in Section do not affect any restricted accepting
runs. First, removing infeasible transitions and unreachable
vertices will not exclude any realizable words. Therefore, the
set of realizable words Lg(A,) does not change after this
operation. Second, according to condition [(c)]in Definition 3.8}
any restricted accepting run does not contain vertices without
self-loops except for initial and accepting vertices. Thus,
removing such vertices will not affect the set of restricted
accepting runs in A. Third, by condition any edge whose
label does not strongly imply its end vertex label, except for
the case that the end vertex is an accepting vertex, can not
appear in any restricted accepting run. Thus removing such
edges does not affect the set of restricted accepting runs, either.
We conclude that the operations in Section do not affect
the set of restricted accepting runs in A, that can be induced
by the realizable words in £%(A¢,). Moreover, these restricted
accepting runs are also accepting runs in A;, which implies
that L’%(A;) = E%(Aas), completing the proof.

2) Proof of Lemma|C.3} The inclusion is straightforward in
that, given a clause C in A;, the clause C’ in A..x Obtained
by replacing negative literals in C with T is a subformula
of the original clause C. In other words, the satisfaction of
the original clause C implies the satisfaction of C’, which
implies that any realizable word w in Lg(A;) belongs to
LE(Arerax)- Thus, any word w € E%(A;) C EE(A;) belongs
to EE(Arelax)-

Next, we prove that indeed any word w € ﬁ%(A;) belongs
to ﬁ%(Arelax) is also in Lg (A). Because @ € E%(A;), it
can induce a run in A; whose corresponding run in Ay is a
restricted accepting run. Also because w is in £ g (Ayelx) and
clauses in A..x are the subformulas of the clauses in A;,
w can induce the same run in A as the run in A; (same
sequence of vertices). Additionally, these two runs correspond
to the same restricted accepting run in .A;. Therefore, w €
E%(Arelax), ie., L%(A;) - E%(Arelax), completing the proof.

3) Proof of Lemma [C.4} Given the pair of initial and
accepting vertices, vo and Vaccept, the corresponding sub-NBA
Asubtask 18 composed of all vertices and edges in Ax that
belong to some paths that connect v and vaecepr With two
exceptions. The first exception is that all other initial and
accepting vertices other than vg and vyccep: are removed, and
the second exception is that the self-loop of vg (if exists)
is removed if the initial robot locations do not satisfy its
corresponding vertex label in Ay, and the outgoing edges of
the initial vertex are also removed if the initial robot locations
do not satisfy their corresponding edge labels in Ag; see
Section

To show this result, note first that, according to condition
[(B)]in the Definition [3.8] the prefix part does not include more

39

than one initial vertex and more than one accepting vertex.
Since E%Uowa“ep' (Arerax) are related to the initial and accepting
vertices vg and Vueeept, removing other initial and accepting
vertices does not affect E%vmvm‘“ (Arelax)-

Second, any word w that at the beginning satisfies the
label of the initial vertex vy whose self-loop is removed
or labels of outgoing edges that are removed, cannot be
generated by feasible paths since initial robot locations violate
these labels. Therefore, any such word w does not belong to
E%U”W““"‘(Amﬂx), meaning that removing the self-loops and
outgoing edges does not affect C%UUW“C“‘C"‘(AWMX), completing
the proof.

4) Proof of Lemma [C.5} The inclusion relation is straight-
forward since A_, ., is obtained by removing edges from
Asubask that are decomposable according to the sequential
triangle property (see Definition . In what follows, we
focus on the non-emptiness of L5 "™ (A). We first
show that the given prefix path 7P can generate a word in
[Z%’UOWWP‘(ASUWS](), and then show that based on 7P another

prefix path 7P can be synthesized to generate a word in

N‘z)aUO*'Uaccepl —
L E (sublask) .

To show that the given prefix path 7P'¢ can generate a
word in £~¢’Uowa°°ep‘(u45ubtask), we show that the results in
Lemmas can be applied to languages £(-) that sat-
isfy Assumption [3.T1] Note that Assumption [3.11] describes
how a restricted accepting run is implemented by robots.
Specifically, if an accepting word belonging to two languages
E%(Al) and [,%(.Ag) can be generated by robot paths that
satisfy Assumption then this word should also belong to
the languages £%(A;) and £%(As). Therefore, the specific
implementation of an accepting word is implemented does
not affect the relation between languages. We can get that
LY(A;) = L3 (Ay) by Lemma [C2L £3,(A;) € L (Areiar)
by Lemma C.3] £5"""™ (i) = L5 (Agprask) by
Lemma and £ Gl (A) C ﬁ%vowmm(Asubtask) as
discussed in the beginning of this proof.

Next, because the accepting word w = wP®[w™]* gen-
erated by the path 7 = 7P°[r%]“ induces a restricted
accepting run and this path satisfies Assumption 3.11] i.e.,
w e L9(Ay), we have that w € E%(A;) and further wP™ €
E%U“w““e"‘ (Arelax). Therefore, wP™ € ﬁ%vmvw"' (Asubtask) that
is, 7P generates a word in E%UW%“S‘"(Asubtask). In what
follows, we synthesize another prefix path 7P based on 7P™.

First, consider 3 different vertices vq,v2,v3 in Agprask
that satisfy the ST property. Assume Agpsk 1S currently at
the vertex v;. We show that, given robot configuration s
in a path that completes the subtask (vq,vs), i.e., a path
that drives the transition to vertex vs, we can simply repeat
this robot configuration one more time so that the sub-NBA
A pask Teaches vg by traversing edges (v1,v2) and (v, v3).
Specifically, according to Definition [£.3] of ST property, since
the robot configuration s satisfies the edge label y(vq, v3) and
v(v1,v3) = Y(v1,v2) A y(ve,v3), it also satisfies the edge
label y(v1,v2). Thus, s can drive the transition to vertex vo
from v;. At the next time step, if robots remain idle, the edge
label ~y(v2,v3) can be satisfied since the robot configuration s
satisfies y(v1,v3) and ~y(v1,v3) implies 7y (ve, v3). Therefore,

by simply repeating this robot configuration, the sub-NBA
Agbusk traverses edges (vi,v2) and (vg,v3) to reach ws,
without satisfying the vertex label ~(v2).

Based on this observation, we continue showing the non-
emptiness of Ly (A,). With a slight abuse of
notation, let pP denote the run in Agpsk induced by the
word wP™. We assume the run pP™ traverses an edge (vy,v3)
in Agpask corresponding to a composite subtask, which will
be removed according to ST property. Otherwise, the run pP™
will persist in A_, When the run pP* traverses a composite
edge, we locate the robot configuration s in 7P that enables
this composite subtask, let the robots remain idle for one
time step as discussed above, and then continue along the
path 7P, Let 7P denote the new path, which also satisfies
conditions [(@)}j(b)] in Definition 3.10] since the robots remain
idle for one time step. Furthermore, the path 7P generates a
word WP that induces a run pP*® in A_, . traversing the two
elementary edges (v1,v2) and (vs,vs).

Next, we prove that since pP™ is a prefix part that satisfies
the conditions in Definition (3.8} so does the run
that corresponds to the run pP™. Observe that pP* differs from
PP only in that pP'™® traverses edge (v1,v3) while pP traverses
edges (v1,v2) and (ve,vs) consecutively. Obviously, the run
ﬁz)re satisfies conditions in Definition ﬂ Furthermore,
Yo (v1,v2) =5 Yp(v2) and 7 (v2,v3) == Y (v3); other-
wise, they would be pruned in Section Thus, the run
75 satisfies condition [(d)} that is, the word W™ generated by

7P belongs to £ (A) completing the proof.

5) Proof of Lemma [C.7} This proof is similar to the
proofs of Lemmas [C.4] and [C.5] Recall from Appendix
that to obtain the sub-NBA Ak, We remove all other
accepting vertices from A, all initial vertices without
self-loops, all outgoing edges from vccep if the corresponding
label is not implied by the label g (Uprior; Vaccept), Which
is the edge label in the NBA A, that corresponds to the
last completed subtask in the prefix part, and all incoming
edges 0 Vaccept if the corresponding label is not implied
by the label %(vprior,vaccept). According to conditions
and in Definition the suffix part does not traverse
these removed vertices and edges. Therefore, removing
them does not affect L%"i‘“eplwmm(Arelax; Spriors Uprior)»
ie., E%Uacccpﬁvacccpl (Arelax; Sprior Uprior) =
E%Uaccemwaooem (Asubtask§ Sprior» Uprior) .

To prove that ﬁ%v"m‘“w“““"’(subtask Spriors Uprior) 7 0, we
follow similar steps as those in the proof of Lemma [C.3]
First, the suffix path 7" can generate a word in

A, >Vacc
C% e (A ubtask s Spriors Uprior), Same as 7P can generate

a word in ﬁ%”ow“”p‘(Awbmk). Second, the path 7 can be
obtained from 7°%f by repeating the robot configuration that
completes a composite subtask one more time, so that the
resulting run traverses two elementary edges successively. This
drives the transition to the same vertex as that reached by
traversing a composite edge. Since Vyccepr does not have a
self-loop, when v3 = vUyccept, We do not remove the com-
posite edge (vi,vs) from A, . for the suffix part (see
Definition @ Thus, we can reuse the robot configuration
that enables the edge (v1, Vaceept), Which satisfies condition

40

in Definition that robots return to Spor, completing the
proof.

6) Proof of Lemma @ Consider a path 7P that generates
a finite word @ € L5 (A) inducing a simple
path 6" in A bask- Then, for two consecutive subtasks in
the simple path 6 , it is possible that their edge labels are
satisfied by two consecutive symbols in the word wP™. In this
case, the starting vertex label of the second subtask is not
satisfied by the path 7P, We first show that 7P can be used
to construct a new path such that this new path can also induce
the simple path 7" in A s> and the starting vertex label,
if exists, of each subtask in the simple path 0" is satisfied by
the new path at least once. This is because constraint (9) states
that any vertex or edge label of any subtask in a simple path
must be satisfied. Since the new path is similar to the original
path 7P, with a slight abuse of notation, we still use 7P to
denote the new path. Given the new path 7P, our goal is to
show that 7P can generate a time-stamped task allocation plan
that can also be generated by a solution to the prefix MILP
in Appendix To this end, we first obtain an essential
word w* based on the word wP™® generated by the path 7P,
such that the path 7P can also generate the essential word
and the essential word w* is the tightest word that can induce
the same run pP™ as WP does; see Appendix Then, we
show that the essential word w* can produce a graph that is
a subgraph of the routing graph G built in Appendix
see Appendix [(b)} Finally, we show that this subgraph can be
viewed as a graphical solution to the MILP; see Appendix

The construction of new path is straightforward. According
to condition @ in Definition for any subtask e in the
simple path 6" that is not the first one to be completed, its
starting vertex label is strongly implied by the edge label of the
subtask e’ immediately preceding e. Therefore, when the edge
label of subtask e’ is enabled, robots can remain idle for one
time step to satisfy the starting vertex label of subtask e. Also,
the satisfied clause in the edge label of ¢’ implies the satisfied
clause in the starting vertex label of subtask e. On the other
hand, if subtask e is the first subtask in the simple path épre,
and also the vertex vy has a self-loop, then the initial robot
locations satisfy the label of vy. Similarly robots can remain
idle to make the label of vy true at least once. We still use
7P to denote the new path as the only change is the idleness
of robots. The new path 7P™ still generates a word belonging
to ﬁ%vom‘““‘“(brask) and induces the same simple path 6

.. —pre . . .
as the original path. Note that #" is a linear extension of the
poset P based on which, the prefix MILP in Appendix is
formulated. No two subtasks are completed at the same time
in the path 7P,

(a) Construction of the essential word: Given the path 7P
that induces the simple path &, let WP = 04010 ...0%
denote the generated finite word in E%Uowmp‘ (A prask)» and
PP = VU1V . .. Vaceepr denote the induced run in A, .
Next we obtain an essential word, denoted by w* =
000105 ...0y, such that of C oy is the tightest subset of
atomic propositions that enables a clause of label v(v;, v;41),
where v; and v;; 1 are consecutive vertices in the run pP®, so
that removing any atomic proposition from o violates this

Fig. 16. The divided essential word w*.

clause. We identify the satisfied clause in the label y(v;, v;11)
and add all positive literals in this clause to o;. If two sets of
atomic propositions o; and o; correspond to the same vertex
label, then o = o7 since by condition [(a)| in Definition [3.10]
it is always the same clause that is satisfied in a vertex label.
Furthermore, if o; corresponds to an edge label and o,
corresponds to the immediate following vertex label, then
oi 1 C o] since by condition the satisfied clauses in the
edge labels implies the satisfied clauses in the immediately fol-
lowing vertex labels. By default, o = {T}if v(v;, vi41) = T.
In this way, we have that w* € L5""™“™ (AL,) since it
induces the same run pP* as wP* does, and that the path 7P*
generating the word wP™ can generate the word w*.

(b) Construction of a subgraph of the routing graph G:
In this part, we construct a routing graph G,,» based on the
essential word w* which is a subgraph of the routing graph
G built in Appendix Given the essential word w*, we
can divide it into parts by locating the components where
edges in the induced run pP° in A_, ., are enabled. Fig.
demonstrates such a partition where green columns represent
single time instants when edges are enabled, i.e., subtasks are
completed, e.g., time instants t.. and t. where €’ is the subtask
that is completed immediately preceding e, and the white areas
between any two green columns represent the time intervals,
e.g., [ter +1,t. — 1], when the vertex labels are satisfied. Note
that t, — 1 > t. + 1 since we adjusted the path 7P so that
each starting vertex label is satisfied at least one. In this way,
the time interval [t.s + 1,¢. — 1] and the time instant ¢, make
up the time span of the subtask e in the simple path 6. Thus,
given the path 7P, we can obtain an array of time spans of
subtasks in 6" such that consecutive time spans are disjoint
with others and subtasks are completed sequentially. In what
follows, we build a graph G« based on the essential word
w*. We begin with the vertex set.

(1) Construction of the vertex set:

(1a) Location vertices associated with initial robot loca-
tions: First, we create the vertex set Viy; that corresponds to
initial robot locations, as in Appendix [(a)|for G. We assign visit
time t,, = th = 0 to each vertex v € Vy,i;, Where robot r is
the specific robot that is associated with v. In what follows, we
also create vertices associated with clauses in edge or vertex
labels that are satisfied by the path 7P™.

(1b) Literal vertices associated with edge labels: Consider
a time instant ¢, when the edge ¢ = (v1,v3) in 7 s
enabled. The set o of atomic propositions contains all literals
appearing in the single clause satisfied in the edge label
y(v1,v2). If y(vi,v2) = T, then of = {T} and we do
not create any vertices, as in Appendix Otherwise, for
each atomic proposition Tri JX in o} , we know that there are
robots of type j at region {j in the t.-th configuration of the
path 7P, and we also know which these i robots are. Similar

41

to the construction of the routing graph G in Appendix
we construct ¢ vertices pointing to region ;. Recall that we
associated all robots of type j with each of these ¢ vertices
in G. However, for G,+, we know which specific i robots
of type j visit region ¢j, at time t. by checking the path 7P™.
We create a one-to-one correspondence between these ¢ robots
with these ¢ vertices. In this way, each vertex is visited by one
specific robot. These robots are referred to as the essential
robots in Appendix Furthermore, the time a specific
robot r visits its assigned vertex v is t., which is denoted
by t.. =t} = t.. Continuing this way, we create vertices for
other atomic propositions in o , which only correspond to a
single clause satisfied in ~y(v1,v2). Recall that when building
the vertex set of G in Appendix [(b)] we build such vertices
for each clause in the given edge label. Therefore, the set of
vertices in G, corresponding to the edge label satisfied at ¢,
is a subset of the vertex set in G for the same edge label.

(Ic) Literal vertices associated with vertex labels: Fol-
lowing the same logic, we build the vertex set for the sat-
isfied clause in the starting vertex label of e. We proceed
depending on whether e is the first completed subtask. If e
is not the first completed subtask in the simple path 7,
according to Definition[3.10] the clauses satisfied in this vertex
label remain the same, that is, o} s remain the same for all
t =te +1,...,t. — 1 where €’ is the subtask immediately
preceding e. Also, it is the same fleet of robots that satisfy
this clause. Likewise, we can associate each vertex with one
single robot, and the visit time interval is set as [ter +1,t. —1].
That is, the robot r remains at its assigned vertex v within this
time interval, denoted by t,,. =t + 1 and ¢}, = t. — 1. This
vertex set also exists in G since vertices are created for any
starting vertex label in Appendix Otherwise, if e is the
first completed subtask in the path 7P™ and its starting vertex
has a self-loop, then, we create vertices for the satisfied clause
as usual and associate them with time interval [0, t. — 1]. That
is, t,,, = 0 and ¢, = t. — 1. Recall also that, the routing
graph G contains vertices for all clauses in all starting vertex
labels. Furthermore, we do not create vertices for T or L
labels, similar to the case in Appendix Therefore, we can
conclude that the vertex set of G, is a subset of that of G.

(2) Construction of the edge set: Next, we prove that
the edge set in G« is also a subset of the edge set in G.
Consider the edge label that is satisfied at the time instant ¢..
For a vertex v among those associated with this edge label, we
already know the robot 7 that visits v. Our goal is to determine
the unique vertex in G,,~ from which robot r comes. Let 7. ;
denote the path of robot r of type j. Going backward from
the (t. — 1)-th waypoint in 7, ; (included), we identify the
most recent time instant t < ¢, — 1 when robot r takes part in
the satisfaction of a literal 7rf ;¢ that appears in the set o} of
atomic propositions, that is, participate in a certain subtask.

(2a) Time instant t does not exist: 1In this case, subtask e is
the first subtask that robot 7 participates in, and we can create
an edge starting from the vertex u that is associated with the
initial location of robot 7 and ending at vertex v. We assign
the travel time T, = t. to the edge (u,v), which is obtained
by Tuy =t —tf, = t. — 0. In Appendix |(a)| the edge (u,v)

is also created in G.

(2b) Time instant t exists: In this case, let ¢/ denote the
subtask that the literal Wi JX corresponds to. If e # €, ¢’ occurs
before e in the given path 7P since the time spans of subtasks
are disjoint and ¢ < t.. Thus, ¢’ € X2 U Xﬁp. We identify
the vertex u in G,,~ that is associated with this literal 772 ‘X and
is visited by robot 7, then create an edge starting from u and
ending at v. Furthermore, we assign the weight ¢, — ¢\ to
this edge (where ¢, = t.), which is the travel time of robot
r between these two consecutive subtasks. We emphasize that
the edge (u,v) also exists in G since vertices u and v are
associated with the same robot type, and w is associated with
a prior subtask ¢’ of e. In Appendix that discusses leaving
vertices from prior subtasks, the edge (u,v) exists in G.

(2¢) ¢’ = e: In this case, the vertex w that robot r visits is
associated with the starting vertex label of the same subtask
e. We create the edge (u,v) and assign the travel time T, =
t,. — tt.. This edge is also created in G in Appendix
Therefore, all edges in G,,« with end vertices associated with
edge labels also exist in G.

Following the same logic, we create edges associated with
the starting vertex label of subtask e. Given a vertex v in G«
that is associated with the vertex label -y(v1) of subtask e, we
find the associated specific robot r of type j.

(2d) Subtask e is the first completed subtask in the path 7P°™:
If the starting vertex vy of subtask e has a self-loop, then the
initial locations should satisfy the starting vertex label of e.
We locate the vertex u associated with the initial location of
robot r of type j, create an edge starting from vertex u and
ending at v, and assign the travel time T, = 0. This edge
also exists in cases [(I)] or [(2)] in Appendix

(2e) Subtask e is not the first completed subtask: We
move backwards from the t..-th waypoint (the subtask e’
immediately precedes e) in the path 7, ; to find the most
recent time instant ¢ that this robot has participated in another
subtask preceding e. Condition [(b)] in Definition [3.10] states
that all the robots satisfying the starting vertex label of a given
subtask belong to the robots that satisfy the edge label of
the subtask immediately preceding the given subtask, which
implies that ¢ should be identical to t., since the path 7P*
satisfies condition [(b)] We locate the vertex u associated with
the edge label of subtask e’ that robot r visits, create an edge
between u and v, and assign the travel time T, = t,, —t} to
the edge. This edge is also created in case|(2)|in Appendix
Thus, the edge set of G, is a subset of the edge set of G.
Finally, we conclude that the graph G- constructed from the
essential word w* is a subgraph of the routing graph G used
to formulate the prefix MILP in Appendix [A-A]

The graph G, has the property that there are no cycles and
any two paths in G,,~, starting from vertices pointing to initial
robot locations and ending at vertices without outgoing edges,
do not share the same vertex since each path is associated
with a specific robot. Therefore, every vertex except for the
starting and end vertices in one path has indegree 1 (number of
incoming edges) and outdegree 1 (number of outgoing edges).
Moreover, vertices in G,,« are assigned the tightest visit time
intervals for the specific robot. Consequently, starting from the
vertex corresponding to the initial location of robot r of type j,

42

we can extract a high-level plan p,. ; for this robot by traversing
along edges, which is a concise description of the low-level
path 7, ;. Observe that, given a feasible solution to the prefix
MILP in Appendix [A-A] we can build a subgraph of G by
removing any vertices and edges that are not visited by any
robots and assigning robots and visit times to the remaining
vertices. In this sense, such a subgraph of G can be viewed as
the graphical depiction of the solution to the MILP. In what
follows, we show that the graph G~ is such a graph. That is,
it gives rise to a feasible solution that satisfies constraints (3))-
(28) in Appendix

(c) Satisfaction of the prefix MILP constraints in Ap-
pendix [A-A}

(1) Routing constraints: Any vertex in G« is visited
by a single robot of certain type, thus, constraint that each
vertex is visited by at most one robot of certain type is satisfied
as follows. Given a vertex v € G,,«, its associated robot r and
unique vertex u that is connected to v, we set x,,, = 1 and
Ty = 0 for other robots r’ of the same type as r. In what
follows, we omit the detailed assignment when it is clear to
recognize. Furthermore, each vertex not in Vi is either a sink
vertex (indegree is 1, outdegree is 0) or a vertex with indegree
equal to its outdegree. Therefore, the flow constraint (@) is
satisfied. For each vertex in Vip; of G, its outdegree is either
0 or 1, thus, constraint (5d) is satisfied. Each vertex in Vi is
associated with a unique robot, which satisfies constraint @I)

(2) Scheduling constraints: ~ Since the visit time of each
vertex is non-negative and the visit time associated with the
vertices in Vi is set to ¢, = ¢}, = 0 (see case in
Appendix [(b)), constraints (6) and are trivially satisfied.
When creating edges in G-, we denote the travel time T,
between connected vertices w and v in G, by t,. — t},
which is the actual time robot r needs to travel between
regions associated with « and v. Obviously, Ty, is no less
than the shortest travel time 7, between these two regions,
ie., T, < Tyy. When u € Vigg or u <p v or (u,v) € Xp
and when robot r travels along the edge (u,v), i.., Typr = 1,
constraint holds since ¢}, + T, <t} 4Ty, = t,,.. Next,
we show that, when ul||pv, constraint can be satisfied
if all robots remain idle for one time step within the time
interval [t;}. ¢,]. More importantly, the elongated path can
still generate a word belonging to Z%vowm‘"(<ubtask)- This
analysis proceeds depending on the types of NBA vertices
that vertices u and v are associated with.

(2a) Starting vertex u in Gy~ is associated with a vertex
label in Ay, Recall that we assign t. — 1 to ¢} when
constructing the vertex set which is the time instant right be-
fore the subtask is completed (see case in Appendix [(b)).
Thus, at the time instant ¢, the run pP™ has not left the NBA
vertex in A, that vertex u is associated with. We can
repeat one more time the locations of all robots in the path
TP at the time instant ¢ so that the run visits the same NBA
vertex one more time. In this way, the travel time assigned to
the edge (u,v) becomes Ty, + 1, where T, is the time robot
r takes in the path 7P and 1 is the extra time it takes when all
robots remain idle for one time step. Therefore, constraint
is satisfied.

(2b) End vertex v is associated with a vertex label in

A bask: Recall that we assign ¢ +1 to ¢, when constructing
the vertex set which is the time instant rlght after a subtask is
completed (see case in Appendix [(b)). The vertex label
is satisfied at ¢, since the label of each vertex in the simple
path 7" is satisfied at least once according to the construction
of the path 7 at the beginning of Appendix Thus, we
can repeat one more time the locations of all robots in the
path 7P at the time instant ¢, so that the run visits the same
NBA vertex one more time. Same as before, the travel time
assigned to the edge (u,v) becomes Ty, + 1.

(2¢) Both u and v in G~ are associated with an edge
label in Ay, .- These two vertices must correspond to
two different subtasks. Furthermore, there must be an NBA
vertex with a self-loop between these two subtasks in_the
simple path 6. This is because according to condition |(c)|in
Definition [3.8] only initial and accepting vertices are allowed
not to have self-loops but these vertices cannot be between
two edges in the path & if they do not have self-loops. In
this case, robots can remain idle for one more time when this
vertex label is true. Same as before, the travel time assigned
to the edge (u,v) becomes T, + 1.

Therefore, constraint @ is satisfied in these three cases.
We emphasize that the path 7P after modification still pro-
duces the prefix part of a restricted accepting run since the only
result of idleness is that a vertex in the run pP* is visited for
one more time step. Thus, requiring that all robots remain idle
for a period of time does not affect the satisfaction of other
constraints. In what follows, we still focus on the path 7P*
since if it satisfies the others constraints, so does the modified
path.

(3) Logical constraints: Each set o of atomic propositions
in the essential word w™ collects all literals inside one clause,
and all o}’s that are associated with the same vertex label
collect literals of the same clause. Therefore, constraint (9)
that one and only one clause is true is satisfied. Although the
path 7P can simultaneously satisfy more than one clauses in
a label, we construct the essential word w* by selecting only
one clause, and build the graph G~ based on w*. In this sense,
we can state that only one clause is true on the graph G,«.
Moreover, because every vertex in G, associated with the
same clause is visited by one robot, constraint (T0) is satisfied.
When constructing the vertex set of G« associated with edge
labels (see case[(Ib)]in Appendix[(D)), we associate each vertex
v corresponding to the same edge label with tlme t. =t} =
te. Therefore, the simultaneous visit constraint (1 1)) is satisfied.

(4) Temporal constraints:

(4a) Temporal constraints on one subtask: As discussed
before, each vertex v in G~ associated with the same edge
label is assigned time ¢,, = t}, = t., and only one clause is
true. Therefore, constraint specifying the completion time
is satisfied. In case in Appendix [(b)] we associate each
vertex v corresponding to the same vertex label (neither L nor
T) with the same arriving time ¢, = t.r + 1 and the same
leaving time ¢ = t. — 1, where ¢, is the completion time of
the subtask that the vertex label corresponds to and ./ is the
completion time of the subtask immediately preceding e. Since
subtasks in the simple path 9" are sequentially completed,
t,, = te +1 < t., thus the left side of constraint @ is

43

satisfied. The right side is satisfied trivially since t, = t. — 1+
1 =t} +1. Next, if the initial vertex does not have a self-loop,
and if the outgoing edge in the simple path 6" is labeled with
T, there is no vertex in G, that corresponds to this edge. In
this case, we can define the completion time of this edge label
as 0, as stated by (T4). Otherwise, if the outgoing edge label is
not T, the initial robot locations satisfy this edge label, that is,
the set o} of atomic propositions include literals that appear in
the satisfied clause in the edge label. Therefore, vertices are
created in G~ for these literals and the assigned visit time
corresponds to the index of of, i.e., 0. Thus, in this case (I4)
also holds.

(4b) Temporal constraints on the completion of two sequen-
tial subtasks: Since the simple path 7™ in A piasks induced
by the path 7P, is a linear extension of the poset P, we have
that the temporal order of subtasks in [respects the partial
order in the poset P. Thus given a subtask e in the simple path
7 , any subtask e’ € 6" with ¢ <p e is completed before
e in the path 7P, Therefore, ¢t + 1 < t., which satisfies
constraint (I3).

(4c) Temporal constraints on the completion of the current
subtask and the activation of subsequent subtasks: For
each subtask e except for the last one in the simple path
7", the subtask ¢’ immediately following it belongs to the
set X¢ UXf . If e € XZ, # 0 as in case [(1)] in
Appendix since the only subtask in the simple path 6"
that immediately follows e is subtask ¢, constraint (T6) holds.
The completion time of subtasks e’ immediately following e
in the simple path is larger than the completion time of e by
at least 1. Therefore, constraint is satisfied. Furthermore,
we associate each vertex v associated with the edge label of
subtask e’ with the arrival time ¢, = ¢, + 1, which satisfies
constraint (T8). Since the simple path 6" is a linear extension
of the poset P, no subtasks are completed at the same time,
which satisfies constraint (T9). If X¢ = 0 as in case [(2)] in
Appendlx | then ¢’ € X . Because subtask ¢’ follows

e, ie., bz = 0, and subtask e is not the last completed one,
constraints (20a)-(20c) are satisfied by setting b..r = 1. If e
is the last subtask in the simple path, b, = 0 and bf;/ =1
in constraints (20a))-(20d).

On the other hand, any subtask e in the simple path 6"
except for the first one, immediately follows a subtask €',
which should be in X¢ _ UX¢ . If e’ € X¢ _ +# 0, since the

H
only subtask in the simple path 6" that immediately precedes
e is subtask ¢/, constraint @) holds. Otherwise, if X¢ =0,
then e € X¢ . As subtask e’ precedes e, i.e., be 1 and
subtask e is not the first completed one, constraints
are satisfied by setting b,/ = 1. If e is the first subtask in the
simple path, b, = 0 and b = 0 in constraints ([22a)-22c).
(4d) Temporal constraints on the activation of the first
subtask: Consider the first completed subtask e in the
path 7P, If its starting vertex has a self-loop, and also the
vertex label is not T, then this vertex label is satisfied at
least once by the construction of the path 7P, and there are
vertices in G- associated with the satisfied clause in this
vertex label. Since the assigned time ¢, to these vertices is 0

(see case[(Ic)in Appendix [(D)), constraint (23) is satisfied. For

the first subtask e, since there is no subtask before it, the robots
visiting vertices associated with the starting vertex label of e
come from vertices in Viy. Thus, constraint (253) is satisfied
for subtask e. For subtasks in P, other than e, the vertices
associated with their vertex labels are connected to vertices
associated with the edge labels of subtasks that are completed
immediately before them (see case in Appendix [(b)).
Therefore, constraint (25b) is satisfied.

(5) Same-(i,j) constraints: Any two vertex subsets in
G.~ that are associated with two literals that share the same
nonzero connector are visited by the same fleet of robots
since the essential word w* belongs to 5 (AL). We
enumerate these two vertex subsets such that there is a one-
to-one correspondence between vertices in these two subsets
and the matched pair of vertices are visited by the same robot.
In this way, constraint (26)) is satisfied.

(6) Constraints on the transition between the prefix and
suffix parts: Since we iterate over all subtasks that can be the
last to be completed and also iterate over all clauses in the edge
label of the selected last subtask, we can formulate a prefix
MILP in Appendix [A-A]in which the selected last subtask and
the clause are the same as that induced by the feasible path
7P, Therefore, constraints and are satisfied, which
completes the proof.

7) Proof of Lemma ' To prove that a simple path 9
can be extracted from the sub-NBA A_, ., we show that
the solution to the MILP in Appendix gives rise to a
simple path in the set of simple paths © from which the
poset P is inferred. Then, since the graph-search version of
the depth-first search on finite graphs is complete and since
the backtracking search is a form of a depth-first-search [63]],
such a simple path can be found in A_, . In the prefix MILP
in Appendix [A-A] we define a variable for each subtask in X p
which indicates its completion time (see Appendix and
require that the completion times of two subtasks are different
(see constraint (T9)). Thus, we can sort the subtasks in Xp in
an ascending order with respect to their completion time. The
sorted subtasks respect the partial order in P since precedence
relations among subtasks are captured by constraint (I3)),
which means that the sequence of sorted subtasks is a linear
extension of the poset P. Furthermore, the set of simple paths
© is equivalent to the set of linear extensions of the poset P,
which is ensured in Section Therefore, the sequence of
sorted subtasks corresponds to a simple path in ©, which is
in As_ubtask'

In what follows, we prove the three properties of this simple
path g as stated in Lemma First, if the initial vertex vg
of the initial subtask in the simple path 6 does not have a
self-loop, according to constraint (T4), it must be completed
at time 0. Thus, the activation time is also 0. Otherwise, if vy
has a self-loop and also the vertex label in A_, .., is T, then it
can be activated at anytime, including O; else if vy has a self-
loop for which the label is not T, according to constraint (23)),
the activation of the vertex label is 0. Therefore, property
in Lemma [C.10] holds.

Second, for any subtask e in the simple path 6, if its
starting vertex label has a self-loop and the vertex label is T,
property [(b)] in Lemma [C.10] holds trivially. Otherwise, if the

44

vertex label is not T, constraint ensures that property
in Lemma holds.

Finally, for any two consecutive subtasks e and e’ in the sim-
ple path 6, we prove that it is exactly ¢’ € 5§ = X¢ U Xﬁp
that makes b..r = 1 in constraint (I6). If so, according
to constraint (I8), subtask e’ is activated at most one time
step after the completion of e. Therefore, property in
Lemma holds. To see this, we use induction.

Consider eg and e; to be the first two subtasks in the simple
path 6. Because e; is completed immediately after ey, we
have that e; € X, UX7. ThElS, eo € X5, U X[, Since
subtask e; is not the first one in 6, it must immediately follow
a subtask. By constraints ZI)-(22), there must exist a subtask
e € X9, UX such that b.., = 1. Assume that e # e.
By constraint , subtask e must be completed before e,
but it is only subtask eg that occurs before e; in the simple
path 6, a contradiction. Therefore, e = ey, i.e., it is exactly
subtask e; that makes b.,., = 1. Next, assume that for any
two consecutive subtasks e;_; and e; in the simple path é,
it holds that b., ,., = 1. Given the next two subtasks e;
and e;1, assume that e;;; immediately follows subtask ¢’
but ¢’ # e;. By constraint (T7), ¢’ is completed before ;.
However, e’ cannot be any subtask in e, ..., e;_1, since this
will contradict constraint (T6) that the immediately following
subtask of any subtask in eg,...,e;—; is unique. Therefore,
e’ = e;, completing the proof.

8) Proof of Lemma ' Given a subtask e = (v1,v2) in
the simple path 0, the goal of the GMRPP in Appendix is
to design paths for the robots to reach locations that satisfy the
complete clause fyff 2 A1 in the edge label vy(v1,vq) so as
to complete the current subtask and activate the next subtask,
while respecting the complete clause 'yf' Ay; in the starting
vertex label «(v1) en route. Starting from the first subtask in
the simple path 0, we proceed along the simple path to prove
that each GMRPP instance with initial locations generated by
the previous instance is feasible.

Consider the first subtask (vq,v2) with v; = vo. We first
discuss the case where the initial vertex vy has a self-loop
in the sub-NBA A_ . ., which implies that the initial robot
locations satisfy the label v4(vg) in the NBA Ay, otherwise
we remove its self-loop (see Sections [[V-BI| and TV-B2). We
continue based on whether the sets of essential robots R and
R1,2 are disjoint.

(@) Ry N Ri2 = 0: According to property in
Lemma the complete clause ;" A+, can only become
false when ’yf: 2 A\ 712 becomes true. At the initial time 0,
according to property [(a)] in Lemma [C.I0] the robot locations
satisfy v;” A 7, including those robots in R; 2. Thus, all
robots can move around safely within their respective regions
without violating v; . By Assumption there is a label-free
path between any two regions, and between any label-free cells
and any regions. Thus, the robots in R 2 can move to label-
free cells without passing through other regions, and, therefore,
they can travel along label-free paths to reach label-free cells
that are adjacent to their target regions. This process does not
violate the negative clause ;. Also, 'yf' is satisfied due to
R1NRi2 = 0. At this point, the essential clause 'yfg can
be satisfied in one time step. If, at this time, there are robots

in R~ \ R1,2 that violate V12 (robots in R o stay at label-
free cells now), then without passing through other regions,
these robots move to locations within their respective regions
from where they can reach the label-free cells in one time
step. This process also respects the complete clause v;" A .
Finally, at the same time, the robots in Ri 2 move to their
target regions and the robots in R~ \ Ry o that violate M2
move from their regions to label-free cells. As a result, the
complete label vi 2 A1 o 1s satisfied. Note that robots moving
to target regions to satisfy 7{ 5 do not violate the negative
clause 7 5 since infeasible clauses are removed during the
pre-processing step [(4)] in Section

(b) RiNR1,2 # 0: In this case, for a robot r € R1NRq 2,
the shortest travel time between its source region and target
region is less than or equal to 1 since by constraint (T3) in
Appendix [A-A] the completion time of a subtask is at most
one time step after the completion time of its starting vertex
label. This implies that its source region and target region
are identical or adjacent. Same as in Appendix where
R1NRi2 = 0, the robots in Ry 2 \ Ry move to label-free
cells from where they can reach their target regions in one time
step, while the robots in R1 2 N R1 move to locations within
their respective source regions from where they can reach
the target regions and leave the source regions in one time
step. Without pass through other regions, the complete clause
v1 A1 remains satisfied. Next, similar to Appendix |(a)| where
R1NRi2 = 0, the robots in R~ \ Ry 2 move to locations
within their respective regions from where they can reach the
label-free cells in one time step. In this way, vff 9 AN Y12 can
be satisfied at the next time step.

We have shown the feasibility of GMRPP when the initial
vertex vo in Ay, . has a self-loop. In the case where vy
does not have a self-loop in A . the initial robot locations
satisfy the complete clause 7,5 A 77, in the edge label;
otherwise, the edge is removed (see Sections [[V-BI| and
I[V-B2). We do not formulate the GMRPP in this case; see
line 2] in Algorithm [4]

Whether or not vy has a self-loop, the complete clause
Vi 9 A1 is satisfied at last. By conditionin Definition
and condition [(b)]in Definition [3.10] the complete clause in the
end vertex label 7,(v2) can be satisfied automatically, which
activates the next subtask, as per property [(c)]in Lemma [C.10|
states that the next subtask is activated at most one time
step after the current one. We can apply the same logic
in Appendices where R1 N Ry12 = 0 and where
R1NRi2 # 0 to the remaining subtasks in the simple path
6 since each subtask being activated by the previous subtask
is similar to the first subtask being activated by initial robot
locations, completing the proof.

9) Proof of Lemma [C.I2} The MILP in Appendix
for the suffix part shares most constraints with that for the
prefix part, so we can follow the same procedure as in
Appendix

First, we construct an essential word w* based on the given
path 7%, as in Appendix Note that the essential word is
constructed with respect to the sub-NBA A_, . in Fig.
where we add a clause C;ior to each edge label of subtasks
that can be the last to be completed. By condition in

45

Definition all robots return to Sprior at last while driving
the transition back t0 Vaccepr. This implies that those robots
involved in the clause C;;ior Of ¥ (Uprior, Vaccept) Teturn to regions
corresponding to their initial locations. By Assumption [3.3]
any region spans consecutive cells. Therefore, the last way-
point in 7 must satisfy the clause C;;ior, and further the
last set of atomic propositions in w* is C;;ior. Following steps
similar to Appendix we can construct a graph G, that is
also a subgraph of the routing graph G.

Next, since the MILP in Appendix [(b)| for the suffix part
includes constraints (3)-(26) in Appendix [A-A]for prefix MILP,
our analysis for these constraints is the same as that in
Appendix Thus, we focus on constraints (30)-(33) from
Appendix First, no two subtasks are satisfied at the same
time in the given path 7f. Thus, constraints (30) and (31)
are satisfied. Each vertex in G~ associated with clause C’;ior
of the last subtask is visited by a specific robot. Therefore,
constraint (32)) is satisfied.

10) Proof of Theorem 6.1 We emphasize that we discuss
the class LTL® of formulas in this proof. Because LTL®
C LTLX, Proposition and Lemma |C.12| apply also to the
class LTLY. Proposition ensures that we can find a feasible
prefix part 7P that induces a run pP*® connecting v and Vaccept-
Therefore, our goal is to prove that a corresponding suffix part
7 exists.

We divide the proof into two cases depending on whether
the suffix part p* of the run induced by the assumed path
T = 7Pe[rU]% in Theorem is a single vertex or not.
When ps“f only consists of the accepting vertex vaccept, W€
next show that condition [(¢)] in Definition [3.§] can be satisfied.
If v (Vaccept) = T, this condition is satisfied automatically.
Otherwise, if 74(Vaccep) 7 T, because in condition (c) in
Definition [4.3] we do not remove any composite edges leading
t0 Vaecept and in constraints and (28) in Appendix E]
we iterate over subtasks that can be the last to be completed,
eventually we can formulate a prefix MILP where the edge
label of the last subtask implies the label of vertex vsccept
Therefore, condition [(¢)]in Appendix[A-Alis met, which means
that the final locations of the prefix path 7P™ satisfy the vertex
label 4 (Vaccept). Combined with Proposition we can find
a path that induces a run in A4 connecting vy and Vyeeepr and
ensures that the NBA A, remains at vaceep forever, satisfying
the specification ¢.

Next, we discuss the case where the suffix part p*! includes
more than one vertices. Recall that sy and vpor are the
last waypoint in the prefix path 7P and the last vertex
before vuecepr in the induced run pP. We denote by Spior
and Tprior the last waypoint in the found prefix path 7P and
the last vertex before Uaccepe in its induced run, respectively.
By Proposition there exists a suffix path 7 generating
a word in E%v““"‘w"mep‘(A;u%ask; Sprior; Uprior). However, this

A P 3 Vaccept™ Vacce, — ~ ~
word may not belong to Ly "™ (A o Spriors Uprior)»
since the pair Spror and vpior May not be same as the pair
Sprior and Upror. In what follows we show that a feasible
suffix path 7 modified from 7, exists that generates

: = @, Vaceept® Vaccept — ~ ~
a finite word W € L77rT (A5 Spriors Dprior) and
satisfies conditions [(a)] and [B)] in Definition [3.10} Then, we

rely on Lemma [C.12] to prove the ﬁnal result. Note that
the word T belongs to language £5"**""*" instead of
£¢ s Vaccept ™ Vaccept

since the path 7% does not satisfy condition
in Definition B.T0l

First, we show that eventually we have Uprior = Vprior and
Sprior and Sprior satisfy the same clause Cpror. As we iterate
over subtasks that can be the last to be completed in the
prefix part (see constraint in Appendix [A-A6), we can
eventually formulate a prefix MILP whose solution gives rise
to a run with ¥prior = Vprior- Furthermore, as we iterate over
clauses in the selected last subtask (see constraint (28)), we
can obtain the final configuration 8o such that Sprior and Sprior
satisfy the same clause Cpyior in the edge label Y (Uprior; Vaccept)-
Note however that it is possible that different robots in Spior
and spror satisfy the positive subformula C;;or Based on Spor
and vprier, We can obtain a sub-NBA A_, . for the suffix
part (see Appendix [A-BT), which differs from the sub-NBA
obtained based on Spior and vpror only in the interpretation of
the clause Cpmr, that is, on those robots that return to their
respective regions; these regions are identical for Spior and
Sprior Since they satisfy the same clause C;;ior. In other words,
these two sub-NBAs are graphically equivalent. We denote by
A brask (Sprior» Uprior) the sub-NBA based on Sprior and vpior-

Next, based on the fact that 7' generates a word w*"' €
C}gUmpﬁvwi(A;lbtask, Sprior; Uprior), We construct another fea-
sible path 7%, modified from 7%, that generates a word
wsuf S £¢7vaccwﬁvmem (Abubtask’spl’l‘)f’vpl‘lof) The path U pe-
gins with the final locations Spror of the found prefix part
7P in Proposition By condition in Definition
Yo (Upri()h Uaccepl) = 7 (Uaccept7 Unext), therefore, gpri()r and
Sprior satisfy the same clause in label ¢ (Vaccept; Unext) Since they
satisfy the same clause Cprior i Vg (Uprior, Vaccept). MoOrEOver,
by conditions @ and @] in Definition @ Sprior and Sprior
satisfy the same clauses in the edge label 74 (Vaccept Vnext)
and vertex label *y¢(vnext), respectively. Therefore, Spior and
Sprior Satisfy the same clause in 7y(vnext) in the sub-NBA
A bask (Spriors Uprior). Note that, at the time when the sub-NBA
A brask (Sprior> Uprior) Temains at the verteX vnex, robots can
start from Sp0r and reach a configuration Spyo, that is almost
identical to spor except for the specific robots at the specific
cells. In other words, if we consider robots in the same type to
be indistinguishable, Spqr is identical to spror. To show this,
we construct a one-to-one correspondence between robots in
Sprior and TObOLS in Sprior.

Specifically, for a literal ¥ "; in the satisfied clause of
V(Unext) in A We identify ¢ robots of type j in con-
figuration S0 that satisfy this literal and another 4 robots
of type j in Spior. Then we construct a random one-to-one
correspondence between these two sets of robots, i.e., ¢ pairs
of robots, such that every robot from the ¢ robots associated
with Spror Starts from its location in Sprior, travels inside region
¢;, and reaches the location in spror Where its paired robot is.
This maintains the satisfaction of (vpex). This point-to-point
navigation is feasible since those 7 robots associated with Spior
and their corresponding robots associated with S0 are all in
region /), and, according to Assumption [3.5]every region spans
consecutive cells. Enumerating other robots of type j in Sprior

46

that do not participate in the satisfaction of v(vpex), We can
construct another one-to-one correspondence between them
and those of type j in Spror that do not participate in the sat-
isfaction of (¥nex). Such robots in Sprier, by Assumption
can leave their regions corresponding to their locations in Sprior
to go to label-free cells without passing through other regions,
then travel along label-free paths to the regions where their
paired robots are located in spior and finally reach the specific
cells inside these regions. Robots traveling inside regions do
not violate the label ~y(vnext) SiNCe Sprior and Sprior satisfy
¥ (Unext)- In this way, robots reach a configuration Spy, While
the NBA A_ o (3priors Uprior) Temains at the vertex vpex.

When robots reach the configuration Syor from Sprer, con-
ditions [(a)] and [(b)] in Definition [3.10] are not violated since
these robots in Sprer that participate in the satisfaction of a
clause in 7 (vnext) do not leave their respective regions. We
append this path segment from Spgor 10 Sprior to the current
7 Note that Sprior and Sprior are identical if robots that
belong to the same type are indistinguishable. After reaching
the configuration Sycr, €very robot travels along the suffix
path in 7 (both beginning with and ending at Sprior) that
its paired robot does. Appending this path to the currrent 75
concludes the construction of 75", At last, the transition in the
sub-NBA A (8priors Vprior) 18 driven back to vaccepi. Note
that the last configuration in 75 is not identical to Sprior» that
is, robot trajectories are not closed yet. Thus, condition in
Definition [3.10] is not met. However, in the last configuration
of 71 those robots participating in the satisfaction of Cf;,
return to their respective regions since 7*! at last returns to
Sprior> and Sprior and Spror satisfy the same positive subformula

Ct‘or Therefore, we can construct a path 7 that satisfies

cond1t10ns and [(b)] in Definition and generates a word
Wl g LTI (A Spriors vprmr) More importantly,
those robots participating in the satisfaction of Cprlor return to
regions corresponding to their initial locations.

Subsequently, from Lemma [C.12] we conclude that we can
obtain a low-level path and we denote it by 7*/"*. We note that
Lemma|C.12]assumes that a path exists satisfying condition
in Definition which requires robots to return to their
initial locatlons Whlle in 7% only those robots participating
in satisfying C;;lor return to their respective regions. Even so,
it suffices to establish the feasibility of the MILP (excluding
constraint (33)) in Appendix [(b)| for the suffix part since in the
MILP, the clause needed to be satisfied in the last completed
subtask is C;mr (see Fig. [11)), i.e., robots are not required to
return to their initial locatlons After obtaining the path 751,
the run in Ay induced by 74! is a cycle around the accepting

VerteX Vaccept-

Finally, we prove that closing the trajectories in Ap-
pendix [(c) is feasible. The last configuration in the low-level
path 7sub1 gatisfies the clause Cprior» and so do the initial loca-
tions Sprior- Also, the robots in the last configuration of 75!
participating in the satisfaction of C;m are identical to those
in Sprior. Therefore, they can return to their initial locations in
Sprior inside the same regions, while maintaining the truth of
C;;mr The rest of the robots can return to their initial locations
by leaving their regions in the last configuration to go to

label-free cells, then traveling along the label-free paths to
the regions where their initial locations in 8o, are located,
and finally returning to initial locations inside these regions.
This respects the negative subformula Cp:ior since both the last
configuration in 7sub1 and Sprior satisfy Cprior. We denote by
7592 the path segment from the last configuration of 75! to
Sprior» Which satisfies the clause Cprior, and further satisfies the
label ¥ (Vprior, Unext) and Y (Unext) according to conditions
and [(T)| in Definition Therefore, the NBA A4 can remain
at vertex vyey While robots execute the path segment 72, In a
nutshell, we leverage the vertex vnext to reach Spror from Sprior
in order to reuse the suffix path 7%/, and similarly we leverage
the vertex vney to deviate from the path 7% in order to return
t0 Sprior Finally, we can obtain the suffix path by concatenating
b with 762 je., 7 = Fublzsul2 - which gives rises
to a path 7 = FPe[FU]w that satisfies the specification ¢,
completing the proof.

47

	I Introduction
	I-A Related work
	I-B Contributions

	II Preliminaries
	II-A Linear temporal logic
	II-B Partially ordered set

	III Problem Definition
	III-A Transition system
	III-B Task specification
	III-C Problem definition
	III-D Assumptions
	III-D1 Workspace
	III-D2 Nondeterministic Bchi Automaton (NBA)
	III-D3 Robot paths

	III-E Outline of the proposed method

	IV Extraction of Subtasks from the NBA and Inferring their Temporal Order
	IV-A Pruning and relaxation of the NBA
	IV-B Extraction of sub-NBA Asubtask from Arelax
	IV-B1 Sorting the pairs of initial and accepting vertices by path length
	IV-B2 Extraction of the sub-NBA Asubtask
	IV-B3 Pruning the sub-NBA Asubtask

	IV-C Inferring the temporal order between subtasks in Asubtask-

	V Design of High-Level Task Allocation Plans and Low-Level Executable Paths
	V-A Construction of the prefix routing graph
	V-A1 Construction of the vertex set
	V-A2 Construction of the edge set

	V-B Construction of the robot prefix plans
	V-B1 Time axis
	V-B2 High-level robot plans

	V-C Design of low-level prefix paths
	V-D Obtaining the best prefix-suffix path

	VI Theoretical Analysis
	VII Numerical Experiments
	VII-A Case study i: Suboptimality
	VII-B Case study ii: Quality of the first solution
	VII-C Case study iii: Scalability
	VII-C1 Comparison with the BMC method
	VII-C2 Full vs. partial GMRPP execution

	VIII Conclusion
	Appendix A: Time-Stamped Task Allocation
	A-A Construction of the prefix MILP
	A-A1 Routing constraints
	A-A2 Scheduling constraints
	A-A3 Logical constraints
	A-A4 Temporal constraints
	A-A5 Same-i,j constraints
	A-A6 Constraints associated with the transition between the prefix and suffix parts
	A-A7 MILP objective

	A-B Construction of the robot suffix path
	A-B1 Extracting subtasks and inferring the temporal order from the NBA
	A-B2 Finding the suffix path on Asubtask-

	A-C Extensions of the MILP
	A-C1 Requiring specific robots to participate in a subtask
	A-C2 Managing the number of participating robots
	A-C3 Prohibiting the use of the same robots

	Appendix B: Design of Low-Level Paths that Satisfy the Original LTL Task
	B-A Extraction of the simple path from the sub-NBA Asubtask-
	B-B Generalized multi-robot path planning
	B-B1 Ingredients of GMRPP
	B-B2 Sequential GMRPP solutions to find low-level paths that induce the simple path

	B-C Solution to the generalized multi-robot path planning problem
	B-C1 Routing constraints
	B-C2 Target constraint
	B-C3 Running and terminal constraints
	B-C4 ILP objective

	B-D Implementations of GMRPP
	B-D1 Collision avoidance
	B-D2 Simultaneous execution
	B-D3 Partial execution

	Appendix C: Proof of Theorem 6.1
	C-A Notation
	C-B Existence of feasible paths in the sub-NBA Asubtask-
	C-C Completeness
	C-C1 Completeness of the prefix part synthesis
	C-C2 Completeness of the overall algorithm

	C-D Detailed proofs
	C-D1 Proof of Lemma C.2
	C-D2 Proof of Lemma C.3
	C-D3 Proof of Lemma C.4
	C-D4 Proof of Lemma C.5
	C-D5 Proof of Lemma C.7
	C-D6 Proof of Lemma C.9
	C-D7 Proof of Lemma C.10
	C-D8 Proof of Lemma C.11
	C-D9 Proof of Lemma C.12
	C-D10 Proof of Theorem 6.1

