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Adaptive Bézier Degree Reduction and Splitting

for Computationally Efficient Motion Planning

Ömür Arslan and Aron Tiemessen

Abstract—As a parametric polynomial curve family, Bézier
curves are widely used in safe and smooth motion design of
intelligent robotic systems from flying drones to autonomous
vehicles to robotic manipulators. In such motion planning
settings, the critical features of high-order Bézier curves
such as curve length, distance-to-collision, maximum curva-
ture/velocity/acceleration are either numerically computed at a
high computational cost or inexactly approximated by discrete
samples. To address these issues, in this paper we present a novel
computationally efficient approach for adaptive approximation of
high-order Bézier curves by multiple low-order Bézier segments
at any desired level of accuracy that is specified in terms of a
Bézier metric. Accordingly, we introduce a new Bézier degree
reduction method, called parameterwise matching reduction, that
approximates Bézier curves more accurately compared to the
standard least squares and Taylor reduction methods. We also
propose a new Bézier metric, called the maximum control-point
distance, that can be computed analytically, has a strong equiv-
alence relation with other existing Bézier metrics, and defines
a geometric relative bound between Bézier curves. We provide
extensive numerical evidence to demonstrate the effectiveness
of our proposed Bézier approximation approach. As a rule
of thumb, based on the degree-one matching reduction error,
we conclude that an nth-order Bézier curve can be accurately
approximated by 3(n− 1) quadratic and 6(n− 1) linear Bézier
segments, which is fundamental for Bézier discretization.

Index Terms—Smooth motion planning, path smoothing, poly-
nomial trajectory optimization, path discretization, Bézier curves

I. INTRODUCTION

Safe and smooth motion planning is essential for many

autonomous robots. As a parametric smooth motion rep-

resentation, polynomial curves find significant applications

in safe robot motion design from flying drones [1]–[5] to

autonomous vehicles [6]–[9] to robotic manipulators [10]–

[13]. Polynomials expressed in different (e.g., monomial,

Taylor, and Bernstein) bases offer different useful functional

and geometric properties for computationally efficient motion

planning. While the monomial (a.k.a. power) basis yields

quadratic trajectory optimization objectives [1], polynomial

Bézier curves in Bernstein basis have useful convexity and

interpolation properties [4]: a Bézier curve is contained in

the convex hull of its control points (i.e., parameters), and it

smoothly interpolates between the first and last control point.

A well known challenge of motion planning with polynomial

and so Bézier curves is that the computational complexity

increases with increasing curve degree [6]. Because critical
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Fig. 1. Adaptive approximation of an 8th-order Bézier curve (black line)
by multiple (left) linear and (right) quadratic Bézier segments (red and
blue patches) whose length, maximum velocity/acceleration/curvature, and
distance to obstacles (dark gray) can be computed analytically. The Bézier
degree reduction and splitting is automatically performed by uniform matching
reduction and binary search for a maximum control-point distance of 0.1 units.

curve features such as curve length, distance-to-collision, and

maximum curvature/velocity/acceleration can be analytically

determined only for low-order (e.g., linear and quadratic)

polynomial curves and are numerically computed or inexactly

approximated using discrete samples for higher-order polyno-

mials, as summarized in Table I.

In this paper, we propose a new computationally efficient

approach for adaptive approximation of high-order Bézier

curves by multiple low-order Bézier segments at any desired

level of accuracy specified in terms of a Bézier metric, as

illustrated in Fig. 5. Our approach is based on an unexplored

functional property of Bézier curves in motion planning: dis-

tance between Bézier curves can be measured analytically in

terms of control points. Accordingly, we introduce a new ana-

lytic Bézier metric, called the maximum control-point distance,

that can be used to geometrically bound Bézier curves with

respect to each other, and defines tight upper bounds on other

existing Bézier metrics. We also propose a new Bézier degree

reduction method, called parameterwise matching reduction,

that allows preserving certain curve points (e.g., end points)

while performing degree reduction. Based on the degree-one

parameterwise matching reduction error, we conclude that an

nth-order Bézier curve can be accurately approximated by

3(n−1) quadratic and 6(n−1) linear Bézier segments, which

is a fundamental rule of thumb for Bézier discretization. In

TABLE I
COMPUTATION OF BEZIER CURVE FEATURES IN MOTION PLANNING

Bezier Curve Feature n≤ 2 n = 3 n > 3

Arc Length Analytic Numeric Numeric
Maximum Velocity Analytic Analytic Numeric
Maximum Curvature Analytic Numeric Numeric
Distance-to-Point Analytic Numeric Numeric
Distance-to-Line-Segment Analytic Numeric Numeric

http://arxiv.org/abs/2201.07834v1
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numerical simulations, we demonstrate the effectiveness of ap-

proximating high-order Bézier curves by linear and quadratic

Bézier segments for fast and accurate computation of common

curve features used in motion planning.

A. Motivation and Related Literature

Autonomous robots and people interacting with them enjoy

smooth motion in practice: jerky robot motion does not only

cause mechanical and electrical failures and malfunctions, but

also causes discomfort for the user. Most existing smooth

motion planning methods follow a two-step approach: first

find a piecewise linear path for a simplified version of the

system to achieve a simplified version of a given task; and

then perform path smoothing as post-processing to satisfy

the actual task and system requirements [14]. The first step,

piecewise linear motion planning, is well established with

many computationally effective (search- and sampling-based)

planning algorithms for the fully actuated kinematic robot

model [15]. The second step, path smoothing that aims to

convert a piecewise linear reference plan into a smooth dy-

namically feasible trajectory satisfying both system and task

constraints, is an active research topic, especially for real-

time operation requirements. Due to their compact parametric

form and functional properties, polynomial curves have re-

cently received significant attention with promising potentials

for computationally efficient path smoothing, especially for

differential flat systems [16] such as cars [7], [8], quadrotors

[1]–[3], and fixed-wing aircrafts [17], to name a few, whose

control inputs can be expressed as a function of flat system

outputs (represented by polynomials) and their derivatives. For

example, while polynomials of degree 3-5 are often used for

autonomous vehicles, polynomials of degree 5-10 are required

for quadrotors. The major reason for the use of relatively low-

order polynomials in practice is that the computational cost of

planning with polynomials increases with increasing degree

of polynomials [6], [14]. Our proposed approach enables

handling high-order polynomials efficiently by approximating

them with multiple low-order polynomial segments.

Convex optimization plays a key role in polynomial path

smoothing. In polynomial trajectory optimization, the standard

optimization objectives of total squared velocity, acceleration,

jerk, and snap (i.e., the first, second, third and fourth time

derivatives of the position) of a robotic system can be written

as a quadratic objective function of polynomial parameters [1],

[17]. In order to take the full advantage of quadratic program-

ming, the system and task constraints are often represented

as linear or quadratic inequalities. For example, a piecewise

linear reference plan can be used to construct a convex

safe corridor around the reference plan to represent planning

constraints as a collection of convex polytopes [18] or spheres

[3]. Accordingly, polynomial trajectory optimization is often

formulated as a quadratic optimization problem, for example,

by simply using a polynomial discretization [1], [2], [13]. This

naturally raises a question about polynomial discretization:

how many sample points along a polynomial are needed for a

proper and accurate representation of planning constraints. The

existing methods use either manual or heuristic approaches

to add extra samples if polynomial discretization fails [1],

[2]. In this sense, our results offer a systematic solution for

determining a proper discretization of polynomials to model

planning constraints at any desired level of accuracy.

In polynomial trajectory optimization, the convexity prop-

erty of Bézier curves makes them an attractive choice for

handling convex system constraints within quadratic program-

ming. Since Bézier curves are contained in the convex hull

of their control points, trajectory optimization constraints are

often enforced by constraining Bézier control points inside

convex constraint sets [4], [19], [20]. This approach is effec-

tively applied for smooth trajectory generation with Bezier

curves over safe corridors [18] in various application settings;

for example, for drone navigation in unknown environments

[4], [5], autonomous driving [7], [20], [21], multirobot co-

ordination [19], [22], and perception-aware navigation [23].

Although it performs reasonably well for low-order Bézier

curves in practice, this simple but conservative approach is

suboptimal for high-order Bézier curves since the convex hull

of Bézier control points significantly overestimates the small-

est convex region containing by the actual curve, especially for

higher-order polynomials. On the other hand, exact and fast

continuous constraint verification with polynomial curves is

possible based on the separation of polynomial extremes [24],

the sign change of polynomials [25], and their root existence

test based on Sturm’s theorem [26], but these methods result

in highly complex nonlinear optimization constraints. Our

approach for approximating high-order Bézier curves by low-

order Bézier segments allows one to use the convexity of

low-order Bézier curves in high-order polynomial trajectory

optimization in a less conservative way.

Another appealing feature of Bézier curves for smooth robot

motion design is that they smoothly interpolate between the

first and last control points. This interpolation property is

often leveraged for motion planning of nonholonomic sys-

tems with boundary conditions; for example, for waypoint

smoothing [9], [27], [28] and smooth steering control [29],

[30] in autonomous driving [31], [32], and path smoothing in

sampling-based motion planning [11], [33]–[35]. Continuous

curvature path smoothing with curvature constraints is applied

for increasing passenger comfort while ensuring dynamical

feasibility in autonomous vehicles for smooth lane change [36]

and urban driving [8], [37]–[39]. Although path smoothing

with curvature constraints can be performed analytically for

low-order Bézier curves [40], the maximum curvature is

numerically computed for high-order Bézier curves [21]. Thus,

one can use our adaptive Bézier approximation approach to

take the analytic advantages of low-order Béziers in path

smoothing with high-order Béziers.

As a smooth motion primitive, polynomial curves are also

used in search-based and sampling-based smooth motion

planning of nonholonomic systems [41], [42] and robotic

manipulators [13], [34], [42] as well as their reinforcement

learning [12]. A challenge of planning with polynomial mo-

tion primitives is finding an informative and computationally

efficient local metric for measuring the connectivity and travel

cost. A natural travel cost measure is the arc length of

polynomials, which can be analytically determined only for

linear and quadratic polynomials. Using the proposed Bézier
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approximation method, one can accurately and efficiently

measure the arc length of high-order polynomial curves by

dividing them into multiple low-order polynomial segments.

Bézier curves are widely used in computer graphics and

computer aided design (CAD) for efficiently representing

complex shapes with few parameters [43], [44]. Computa-

tionally efficient handling of complex shapes often requires

optimal reduction of Bézier curves based on different metrics

[45]–[47]. This motivates many alternative approaches for

degree reduction of Bézier curves [48] and their approximate

conversions [49] (with end point constraints [50]). This present

paper brings such CAD tools to the motion planning literature

with important additions which, we believe, also contribute

back to the CAD literature.

B. Contributions and Organization of the Paper

In this paper, we present a novel systematic approach

for adaptive discretization and approximation of high-order

Bézier curves by multiple low-order Bézier curves for com-

putationally efficient smooth motion planning with high-order

polynomials. In summary, our main contributions are:

• a new Bézier metric, called the maximum control-point

distance, that defines an analytic tight upper bound on

existing standard Bézier metrics such as the Hausdorff,

parameterwise maximum, and Frobenius-norm distances

of Bézier polynomials, and enables bounding Bézier

curves geometrically with respect to each other,

• a new Bézier degree reduction method, called param-

eterwise matching reduction, that approximates Bézier

geometry more accurately (e.g., by preserving end points)

compared to the least squares and Taylor reductions,

• a new adaptive Bézier approximation approach for rep-

resenting high-order Bézier curves by multiple low-order

Bézier segments at any desired level of accuracy that is

specified in terms of a Bézier metric,

• a new rule of thumb for accurately approximating high-

order Bézier curves with a fixed finite collection of linear

and quadratic Bézier curves.

With extensive numerical simulations, we demonstrate the

effectiveness of the newly proposed methods. At a more

conceptual level, this paper for the first time introduces the

use of Bézier metrics and degree reduction methods for local

low-order approximation of high-order Bézier curves in order

to enable computationally efficient smooth motion planning.

The rest of the paper is organized as follows. In Section II,

we provide a background overview of Bézier curves, and the

matrix representation, basis transformation and reparametriza-

tion of polynomial curves. In Section III, we describe how

to measure the distance between Bézier curves and introduce

a new Bézier metric. In Section IV, we present how to

(approximately) represent a Bézier curve with more or fewer

control points via degree elevation and reduction operations,

and introduce a new degree reduction method. In Section V,

we describe how to approximate high-order Bézier curves by

low-order Bézier curves at any desired accuracy level, and

present a rule of thumb for accurate Bézier approximations.

In Section VI, we present numerical results to demonstrate the

role of polynomial degree and the number of Bézier segments

on approximation accuracy. In Section VII, we conclude with

a summary of our research highlights and future directions.

II. BÉZIER CURVES

In this section, we first briefly introduce Bézier curves and

their important properties, and then continue with the matrix

representation, basis transformation and affine reparameteriza-

tion of polynomial Bézier, monomial and Taylor curves.

A. Characteristic Properties of Bézier Curves

Definition 1 (Bézier Curve) In a d-dimensional Euclidean

space Rd , a Bézier curve Bp0,...pn(t) of degree n∈N, associated

with control points p0, . . . ,pn ∈Rn, is a parametric polynomial

curve defined for 0≤ t ≤ 1 as1

Bp0,...,pn(t) :=
n

∑
i=0

bi,n(t)pi, (1)

where bi,n(t) denotes the ith Bernstein basis polynomial of

degree n that is defined for i = 0,1, . . . ,n as

bi,n(t) :=
(

n
i

)
t i(1− t)n−i. (2)

Key characteristics of Bézier and Bernstein polynomials are

their recursion, derivative and convexity properties [43], [44].

Property 1 (Recursion) A Bézier curve can be recursively

determined as a convex combination of two Bézier curves of

one degree lower as

Bp0,p1,...,pn(t) = (1− t)Bp0,...,pn−1
(t)+ tBp1,...,pn(t), (3)

with the base case Bp0
(t) = p0, which follows from the

recursive definition of Bernstein polynomials

bi,n(t) = (1− t)bi,n−1(t)+ tbi−1,n−1(t), (4)

with base cases b0,0(t) = 1 and bi,n(t) = 0 for i < 0 and i > n.

Property 2 (Derivative) The derivative of a Bézier curve is

another Bézier curve of one degree lower and given by

d

dt
Bp0,p1,...,pn(t) = nBp1−p0,...,pn−pn−1

(t), (5)

since the Bernstein derivatives satisfy

d

dt
bi,n(t) = n(bi−1,n−1(t)− bi,n−1(t)). (6)

Property 3 (Convexity) A Bézier curve is contained in the

convex hull, denoted by conv, of its control points, i.e.,

Bp0,...,pn(t) ∈ conv(p0, . . . ,pn) ∀t ∈ [0,1], (7)

because Bernstein polynomials are nonnegative and sum to

one, i.e., for any t ∈ [0,1]

bi,n(t)≥ 0, and
n

∑
i=0

bi,n(t) = 1. (8)

1The standard definition of Bézier curves is over the unit interval, and they
are mathematical well defined over all reals.
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Property 4 (Interpolation) A Bézier curve smoothly interpo-

lates between its first and last control point, i.e.,

Bp0,...,pn(0) = p0 and Bp0,...,pn(0) = pn, (9)

since Bernstein polynomials smoothly interpolates between

(b0,n(0), . . . ,bn,n(0)) = (1,0, . . . ,0), (10a)

(b0,n(1), . . . ,bn,n(1)) = (0, . . . ,0,1). (10b)

B. Matrix Representation of Polynomial Curves

To effectively handle high-order Bézier curves with a large

number of control points, it is convenient to use the matrix

representation of Bézier curves in the form of

Bp0,...,pn(t) = Pnbn(t), (11)

based on the control point matrix Pn :=[p0, . . . ,pn]∈Rd×(n+1)

and the Bernstein basis vector bn(t) ∈R
n+1 that is defined as

bn(t) :=




b0,n(t)
b1,n(t)

...

bn,n(t)


. (12)

Note that the Bernstein basis polynomials b0,n(t), . . . ,bn,n(t)
form a basis of n+ 1 linearly independent polynomials for

polynomials of degree n [43]. The two other widely used

basis functions of nth-order polynomials are the monomial and

Taylor basis vectors, respectively, defined as

mn(t) :=




1

t
...

tn


, and τn,to(t) :=




1

t− to
...

(t− to)
n


, (13)

where to ∈ R is the Taylor offset term. Accordingly, like

Bézier curves, one can define the monomial and Taylor curves,

associated with control points Q = [q0, . . . ,qn] ∈R
d×(n+1) and

Yn = [y0, . . . ,yn] ∈R
d×n+1, respectively, as

Mq0,...,qn(t) :=
n

∑
i=0

qit
i = Qnmn(t), (14a)

ϒy0,...,yn(t, to) :=
n

∑
i=0

yi(t− to)
i = Ynτn,to(t). (14b)

From their very similar forms in (13) one can observe that

the monomial and Taylor basis vectors (and so curves) are

strongly related, i.e.,

τn,to(t) = mn(t− to). (15)

Before continuing with the basis transformations of poly-

nomial curves, we find it useful to define the Bernstein,

monomial, and Taylor basis matrices associated with any set

of reals t0, . . . , tm ∈ R, respectively, as

bn(t0, . . . , tm) := [bn(t0), . . . ,bn(tm)], (16a)

mn(t0, . . . , tm) := [mn(t0), . . . ,mn(tm)], (16b)

τττn(t0, . . . , tm) := [τn(t0), . . . ,τn(tm)]. (16c)

An important property of square polynomial basis matrices

is nonsingularity.

Lemma 1 (Invertible Polynomial Basis Matrices) For any

pairwise distinct2 t0, . . . , tn ∈ R and any Taylor offset to ∈ R,

the polynomial basis matrices bn(t0, . . . , tn), mn(t0, . . . , tn) and

τττn,to(t0, . . . , tn) are all invertible.

Proof. See Appendix V-A. �

C. Basis Transformations of Polynomial Curves

As expected, alternative representations of polynomial

curves have their advantages (e.g., the convexity of Bezier

curves, the totally ordered basis3 of monomial curves, and the

local approximation feature of Taylor curves). Fortunately, one

can easily perform change of polynomial basis.

Lemma 2 (Change of Basis via Parameterwise Correspon-

dence) The basis transformation matrices between Bernstein,

monomial, and Taylor bases (with a Taylor offset to ∈R)

bn(t) = Tb
m(n)mn(t) = Tb

τ(n, to)τn,to(t), (17a)

mn(t) = Tm
b (n)bn(t) = Tm

τ (n, to)τn,to(t), (17b)

τn,to(t) = Tτ
b(n, to)bn(t) = Tτ

m(n, to)mn(t), (17c)

can be computed using any pairwise distinct2 t0, . . . , tn ∈R as

Tb
m(n) = Tm

b (n)
−1= bn(t0, . . . , tn)mn(t0, . . . , tn)

−1, (18a)

Tb
τ (n, to) = Tτ

b(n, to)
−1= bn(t0, . . . , tn)τττn,to(t0, . . . , tn)

−1, (18b)

Tm
τ (n, to) = Tτ

m(n, to)
−1= mn(t0, . . . , tn)τττn,to(t0, . . . , tn)

−1. (18c)

Proof. See Appendix V-B. �

It is useful to highlight that the elements of the basis trans-

formation matrices between monomial and Bernstein (Taylor,

respectively) bases can be explicitly determined and these ma-

trices are upper (lower, respectively) triangular with positive

diagonal elements, see Appendix I for details.

Lemma 3 (Polynomial Curve Equivalence) Bezier, monomial

and Taylor curves of degree n ∈ N (associated with a Taylor

offset to ∈R) are equivalent, i.e., for any t ∈ R

Bp0,...,pn(t) = Mq0,...,qn(t) = ϒy0,...,yn(t, to), (19a)

Pnbn(t) = Qnmn(t) = Ynτττn,to(t), (19b)

if and only if their respective control point matrices Pn =
[p0, . . . ,pn], Qn = [q0, . . . ,qn], and Yn = [y0, . . . ,yn] are related

to each other by the associated basis transformations as

Pn = QnTm
b (n) = YnTτ

b(n, to), (20a)

Qn = PnTb
m(n) = YnTm

τ (n, to), (20b)

Yn = PnTτ
b(n, to) = QnTτ

m(n, to). (20c)

Proof. See Appendix V-C. �

2For numerically stable matrix inversion, a proper choice of pairwise
distinct reals t0, . . . ,tn ∈ [0,1] is the uniformly spaced parameters over the
unit interval, i.e., ti =

i
n

for i = 0, . . . ,n.
3The monomial basis satisfies 1< t< t2< ...< tn and 1> t> t2> ...> tn.
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D. Reparametrization of Polynomial Curves

A common polynomial curve operation is the affine

reparametrization from one parameter interval to another; for

example, for proper time allocation in order to satisfy control

(e.g., velocity, acceleration, jerk) constraints [4], [51].

Lemma 4 (Polynomial Curve Reparametrization) Bézier,

monomial and Taylor curves of degree n ∈ N with respective

control point matrices Pn = [p0, . . . ,pn], Qn = [q0, . . . ,qn], and

Yn = [y0, . . . ,yn] (and a Taylor offset to ∈ R) can be affinely

reparametrized from interval [a,b] to [c,d] (with a < b and

c < d) as

Bp̂0,...,p̂n
(t) = Bp0,...,pn

(
b−a
d−c

t + ad−bc
d−c

)
, (21a)

Mq̂0,...,q̂n
(t) = Mq0,...,qn

(
b−a
d−c

t + ad−bc
d−c

)
, (21b)

ϒŷ0,...,ŷn
(t, t̂o) = ϒy0,...,yn

(
b−a
d−c

t + ad−bc
d−c

, to
)
, (21c)

with the corresponding reparametrized control point matrices

P̂n = [p̂0, . . . , p̂n], Q̂n = [q̂0, . . . , q̂n], and Ŷn = [ŷ0, . . . , ŷn] that

are given by

P̂n = Pnbn(t0, . . . , tn)bn(̂t0, . . . , t̂n)
−1, (22a)

Q̂n = Qnmn(t0, . . . , tn)mn(̂t0, . . . , t̂n)
−1, (22b)

Ŷn = Ynτττn,to(t0, . . . , tn)τττn,t̂o
(̂t0, . . . , t̂n)

−1, (22c)

where t0, . . . , tn ∈R are arbitrary pairwise distinct reals2, and

t̂i =
d−c
b−a

ti− ad−bc
b−a

for i = 0, . . . ,n, and t̂o =
d−c
b−a

to− ad−bc
b−a

.

Proof. See Appendix V-D. �

III. BÉZIER METRICS

Bézier curves can be compared using various distances [44].

In this section, we particularly consider Bézier distances that

define a true metric over the space of Bézier curves and can be

computed efficiently in terms of Bézier control points, which

is critical for computationally efficient and accurate Bézier

approximation later in Section V.

Definition 2 (Bézier Metric) A real-valued distance measure

d(Bp0,...,pn ,Bq0,...,qm) between two Bézier curves Bp0,...,pn(t)
and Bq0,...,qm (t) over the unit interval [0,1] is a true metric if

i) it is nonnegative, i.e.,

d(Bp0,...,pn ,Bq0,...,qm)≥ 0,

ii) it is zero only for Bezier curves that are identical, i.e.,

d(Bp0,...,pn ,Bq0,...,qm) = 0

⇐⇒ Bp0,...,pn(t) = Bq0,...,qm(t) ∀t ∈ [0,1],

iii) it is symmetric, i.e.,

d(Bp0,...,pn ,Bq0,...,qm) = d(Bq0,...,qm ,Bp0,...,pn),

iv) it satisfies the triangle inequality, i.e.,

d(Bp0,...,pn ,Bq0,...,qm)

≤ d(Bp0,...,pn ,Br0 ,...,rk
)+ d(Br0,...,rk

,Bq0,...,qm).

A. L2-Norm & Frobenius-Norm Distances of Bézier Curves

A widely used Bézier metric is the L2-norm distance which

can be analytically computed in terms of Bézier control points

[45], [46].

Definition 3 (Bézier L2-Norm Distance) The L2-norm dis-

tance of two Bézier curves Bp0,...,pn(t) and Bq0,...,qm(t) over

the unit interval [0,1] is defined as

dL2(Bp0,...,pn ,Bq0,...,qm) :=

(∫ 1

0
‖Bp0,...,pn(t)−Bq0,...,qm(t)‖2dt

)1
2

,

(23)

where ‖.‖ denotes the L2 (a.k.a. Euclidean) norm of vectors.

Proposition 1 (Analytic Form of Bezier L2-Norm Distance)

The L2-norm distance of nth-order Bézier curves Bp0,...,pn(t)
and Bq0,...,qn(t), with respective control point matrices Pn =
[p0, . . . ,pn] and Qn = [q0, . . . ,qn], is explicitly given by

dL2(Bp0,...,pn ,Bq0,...,qn) = tr
(
(Pn−Qn)Wn(Pn−Qn)

T
)1

2
, (24)

where tr and (.)T
denote the trace and transpose operators,

respectively, and the Bézier L2-norm weight matrix Wn ∈
R
(n+1)×(n+1) is defined as

[Wn]i+1, j+1 := 1
2n+1

(
n
i

)(
n
j

)
(

2n
i+ j

) , ∀i, j ∈ {0, . . . ,n}. (25)

Proof. See Appendix V-E. �

Hence, the L2-norm distance of Bézier curves is a weighted

Frobenius norm of their control point difference, which moti-

vates another standard Bézier metric.4

Definition 4 (Bézier Frobenius-Norm Distance) The

Frobenius-norm distance of nth-order Bézier curves

Bp0,...,pn(t) and Bq0,...,qn(t), with respective control point

matrices Pn = [p0, . . . ,pn] and Qn = [q0, . . . ,qn], is defined as

dF(Bp0,...,pn ,Bq0,...,qn) := ‖Pn−Qn‖F , (26a)

= tr
(
(Pn−Qn)(Pn−Qn)

T
) 1

2
, (26b)

=

√
n

∑
i=0

‖pi− qi‖2, (26c)

where ‖.‖F denotes the Frobenius norm of matrices.

It is useful to remark that any distance measure of nth-order

Bézier curves can be adapted to handle Bézier curves of

different orders via degree elevation (see Section IV-A).5

4Similarly, one can define alternative matrix-norm-induced distance metrics
for Bézier curves; however, we are particularly, interested in L2-norm and
Frobenius-norm distances because they are strongly related with the optimal
least squares reduction of Bézier curves discussed in Section IV-B.

5Let d(Bp0 ,...,pn ,Bq0 ,...,qn ) be a distance measure for nth-order Bézier curves.
It can be extended to any arbitrary Bézier curves Bp0 ,...,pn and Bq0 ,...,qm as

d(Bp0 ,...,pn ,Bq0 ,...,qm ) := d(B[p0 ,...,pn ]E(n,max(n,m)),B[q0 ,...,qm]E(n,max(n,m)))

where E(n,m) denotes the elevation matrix defined in Definition 7.
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B. Hausdorff and Maximum Distances of Bézier Curves

As an alternative to norm-induced algebraic Bézier metrics,

one can also compare Bezier curves based on set-theoretic

distance measures as follows.

Definition 5 (Bézier Haussdorff & Maximum Distances) The

Haussdorff and (parameterwise) maximum distances between

two Bézier curves Bp0,...,pn(t) and Bq0,...,qm(t) over the unit

interval [0,1] are, respectively, defined as

dH(Bp0,...,pn ,Bq0,...,qm)

:= max




max
tp∈[0,1]

min
tq∈[0,1]

‖Bp0,...,pn(tp)−Bq0,...,qm(tq)‖,

max
tq∈[0,1]

min
tp∈[0,1]

‖Bp0,...,pn(tp)−Bq0,...,qm(tq)‖


, (27)

dM(Bp0,...,pn ,Bq0,...,qm):=max
t∈[0,1]

‖Bp0,...,pn(t)−Bq0,...,qm(t)‖. (28)

Unfortunately, both the Haussdorff and maximum distances

of Bézier curves do not accept an analytic solution in terms

of control points in general, but can be analytically bounded

above by the maximum distance of Bézier control points.

C. Control-Point Distance of Bézier Curves

We introduce a new analytic Bézier metric that defines a

relative geometric bound between Bézier curves, see Fig. 2.

Definition 6 (Bezier Control-Point Distance) The maximum

control-point distance of nth-order Bézier curves is defined as

dC

(
Bp0,...,pn ,Bq0,...,qn

)
:= max

i=0,...,n
‖pi− qi‖. (29)

Proposition 2 (Bézier Distance Order) The Frobenius, Haus-

dorff, and parameterwise & control-pointwise maximum dis-

tances of nth-order Bézier curves satisfy

dH(Bp0,...,pn ,Bq0,...,qn)≤ dM(Bp0,...,pn ,Bq0,...,qn), (30a)

≤ dC(Bp0,...,pn ,Bq0,...,qn), (30b)

≤ dF(Bp0,...,pn ,Bq0,...,qn), (30c)

≤
√

ndC(Bp0,...,pn ,Bq0,...,qn). (30d)

Proof. See Appendix V-F. �

Proposition 3 (Relative Bézier Bound) In the d-dimensional

Euclidean space R
d , an nth-order Bézier curve is contained

in the dilation of an another nth-order Bézier curve by their

maximum control-point distance, i.e.,

Bp0,...,pn([0,1])

⊆ Bq0,...,qn([0,1])⊕Bd(dC(Bp0,...,pn ,Bq0,...,qn)), (31)

⊆ conv(q0, . . . ,qn)⊕Bd(dC(Bp0,...,pn ,Bq0,...,qn)), (32)

where Bd(r) :=
{

x ∈ R
d
∣∣‖x‖ ≤ r

}
denotes the d-dimensional

closed Euclidean ball of radius r ≥ 0 centered at the origin.

Proof. See Appendix V-G. �

The ordering (a.k.a. equivalence) relation of Bézier distances

in Proposition 2 makes the maximum control-point distance

a computationally efficient tool for discriminative comparison

of Bézier curves independent of their degree n, whereas the

Frobenius-norm distance tends to increase with increasing n.

Moreover, similar to the convexity property in Property 3, the

relative bound of Bézier curves via the maximum control-

point distance in Proposition 3 offers an alternative way of

(a) (b) (c) (d) (e) (f)

Fig. 2. The maximum control-point distance defines a geometric bound on a Bézier curve (black) relative to another Bézier curve (blue, green, red), for
example, its degree reduction. (top) Degree-one, (middle) degree-two and (bottom) degree-three reduction based on (a, d) Taylor reduction, (b, e) least squares
reduction, (c, f) uniform matching reduction. Here, the reduced Bézier curves are elevated again to have the same number of control points.
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constraining Bézier control points for safety and constraint

verification in motion planning. We continue below with how

different Bézier metrics behave under Bézier degree elevation

and reduction operations.

IV. BEZIER DEGREE ELEVATION & REDUCTION

In this section, we briefly summarize the degree elevation

and reduction operations of Bézier curves for (approximately)

representing them with more or fewer control points. In

particular, degree reduction is another building block of high-

order Bézier approximations with multiple low-order Bézier

segments. Accordingly, we introduce a new degree reduction

method for approximating Bézier geometry more accurately.

A. Degree Elevation

Degree elevation generates an exact representation of Bézier

curves with more control points, as illustrated in Fig. 3.

Definition 7 (Degree Elevation) A Bézier curve Bq0,...,qm of

higher degree m with control points q0, . . . ,qm is said to be

the degree elevation of another Bézier curve Bp0,...,pn of lower

degree n≤ m with control points p0, . . . ,pn if and only if the

curves are parameterwise identical, i.e.,

Bq0,...,qm(t) = Bp0,...,pn(t) ∀t ∈ R. (33)

Bézier degree elevation can be analytically computed as:

Proposition 4 (Elevated Control Points) A Bézier curve

Bq0,...,qm of degree m is the degree elevation of a Bézier curve

Bp0,...,pn of degree n ≤ m if and only if the control point

matrices Qm = [q0, . . . ,qm] and Pn = [p0, . . . ,pn] satisfy

Qm = PnE(n,m), (34)

where the degree elevation matrix E(n,m) is defined as

E(n,m) := Tb
m(n)I(n+1)×(m+1)T

m
b (m), (35)

and In+1×(m+1) is the (n+ 1)× (m+ 1) rectangular identify

matrix with ones in the main diagonal and zeros elsewhere.

Proof. See Appendix V-H. �

Observe that (35) leverages the change of basis between

Bernstein and monomial bases because degree elevation of

monomial curves is trivial.

Higher-order Bernstein basis vectors can also be obtained

from lower ones via degree elevation, which offers another

way of determining the elevation matrix.

Proposition 5 (Elevated Bernstein Basis) For any n≤ m, the

elevation matrix E(n,m) relates Bernstein basis vectors as

bn(t) = E(n,m)bm(t) ∀t ∈R. (36)

Hence, E(n,m) can be determined as

E(n,m) = bn(t0, . . . , tm)bm(t0, . . . , tm)
−1, (37)

where t0, . . . , tm ∈ R are an arbitrary selection of pairwise

distinct curve parameters, i.e., ti 6= t j for all i 6= j.

Proof. See Appendix V-I. �

Fig. 3. Degree elevation represents Bézier curves exactly by more control
points that asymptotically converge to the curve itself as the amount of degree
elevation goes to infinity.

In fact, the elements of the degree elevation matrix can be

determined explicitly [44], [45]:

Proposition 6 (Elevation Matrix Elements) For any n ≤ m,

the elements of the elevation matrix E(n,m) are given by

[E(n,m)]i+1, j+1 =





(n
i)(

m−n
j−i )

(m
j)

, if m− n≥ j− i≥ 0

0 , otherwise,

(38)

where i = 0, . . . ,n and j = 0, . . . ,m.

Proof. See Appendix V-J. �

1) Important Elevation Matrix Properties: The degree ele-

vation matrices are full rank and have unit column sum [45].

Proposition 7 (Full Rank Elevation Matrix) For any n ≤ m,

the elevation matrix E(n,m) ∈ R
(n+1)×(m+1) is full rank of

n+ 1, i.e., rank(E(n,m)) = n+ 1.

Proof. See Appendix V-K. �

Proposition 8 (Elevation Matrix Row & Column Sum) For

any n ≤ m, the sum of each column of the elevation matrix

E(n,m) is one, whereas each of its rows sums to m+1
n+1

, i.e.,

11×(n+1)E(n,m) = 11×(m+1), (39a)

E(n,m)1(m+1)×1 =
m+1
n+1

1(n+1)×1. (39b)

where 1n×m denotes the n×m matrix of all ones.

Proof. See Appendix V-L. �

2) Bézier Metrics under Degree Elevation: Different Bézier

metrics behave differently under degree elevation: while the

L2-norm distance stays constant, the Frobenius norm distance

might increase, whereas the maximum control-point distance

is nonincreasing under elevation.

Proposition 9 (Invariance of Bézier L2-norm distance under

degree elevation) The L2-norm distance of Bézier curves,

Bp0,...,pn(t) and Bq0,...,qm(t) over the unit interval [0,1], are

preserved under degree elevation, i.e.,

dL2(B[p0,...,pn]E(n,k),B[q0,...,qm]E(m,h)) = dL2(Bp0,...,pn ,Bq0,...,qm),
(40)

for any k≥ n and h≥ m.

Proof. See Appendix V-M. �
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(a) (b) (c) (d) (e) (f)

Fig. 4. Degree reduction approximately represents Bézier curves with fewer control points. (a, d) Taylor degree reduction with a Taylor offset to = 0.5, (b,
e) Least squares reduction, (c, f) Uniform matching reduction with uniformly spaced parameters t0, . . . ,tm over the unit interval, i.e., ti =

i
m

for i = 0, . . . ,m.

Proposition 10 (Elevated Frobenius Distance) Under degree

elevation, the Frobenius distance of nth-order Bézier curves

satisfies for any m≥ n ∈ N that

dF(B[p0,...,pn]E(n,m),B[q0,...,qn]E(n,m))
2

≤ m+1
n+1

dF(Bp0,...,pn ,Bq0,...,qn)
2. (41)

Proof. See Appendix V-N. �

Proposition 11 (Nonincreasing Elevated Control-Point Dis-

tance) The maximum control-point distance of nth-order Bézier

curves is non-increasing under degree elevation, i.e.,

dC(B[p0,...,pn]E(n,m),B[q0,...,qn]E(n,m))≤ dC(Bp0,...,pn ,Bq0,...,qn),
(42)

for any m≥ n ∈ N.

Proof. See Appendix V-O. �

Thus, the ordering relation of Bézier distances in Proposition

2, the relative geometric bound of Bézier curves in Proposition

3, and the nonincreasing property under degree elevation in

Proposition 11 make the maximum control-point distance an

analytic and intuitive metric for comparing Bézier curves.

Finally, it is useful to note that as elevation degree goes to

infinity, one has all Bézier curve points as its control points.

Proposition 12 ([44]) (Asymptotic Behavior of Degree Ele-

vation) As the elevation degree goes to infinity, the elevated

Bézier control points become the Bézier curve points, i.e.,

lim
m→∞

[p0, . . . ,pn]E(n,m) =
[
Bp0,...,pn(t)

]
0≤t≤1

. (43)

B. Degree Reduction

As opposed to degree elevation, Bézier degree reduction

aims to approximately represent a Bézier curve with fewer

control points, as illustrated in Fig. 4. Hence, degree reduction

is naturally defined as the inverse of degree elevation.6

Definition 8 (Degree Reduction) A Bézier curve Bq0,...,qm of

lower degree m with control points Qm = [q0, . . . ,qm] is said

to be a degree reduction of another Bézier curve Bp0,...,pn of

higher degree n ≥ m with control points Pn = [p0, . . . ,pn] if

and only if the control points are related to each other by

Qm = PnR(n,m), (44)

where R(n,m)∈R(n+1)×(m+1) denotes a degree reduction ma-

trix that is a right inverse of the elevation matrix E(m,n), i.e.,

E(m,n)R(n,m) = I(m+1)×(m+1). (45)

That is to say, the degree elevation from m to n followed by

a degree reduction from n to m preserves Bézier curves; but,

the reverse is not correct in general. Also note that the right

inverse of the elevation matrix is not unique, which allows

many alternative ways of constructing a reduction matrix.

1) Least Squares Reduction: A standard choice for degree

reduction is the pseudo-inverse of the elevation matrix [44].

Definition 9 (Least Squares Reduction) The least squares

reduction matrix RL2(n,m) is defined as the pseudo-inverse

of the elevation matrix E(m,n) that is explicitly given by

RL2(n,m) = E(m,n)T(E(m,n)E(m,n)T)−1. (46)

Note that E(m,n)E(m,n)T
is invertible for any m ≤ n ∈ N

because E(m,n) is full rank (Proposition 7), which implies

E(m,n)RL2(n,m) = I(m+1)×(m+1). An example of least squares

reduction is presented in 4(b,e), where the Bézier end-points

are not preserved after degree reduction.

The least squares degree reduction is known to be optimal in

the sense of the L2- and Frobenius-norm distances [45], [52].

Proposition 13 (Optimality of Least Squares Reduction) With

respect to the L2-norm and Frobenius-norm distances, the

optimal mth-order Bezier curve Bq0,...,qm(t) with control points

Qm = [q0, . . . ,qm] that is closest to a higher nth-order Bézier

curve Bp0,...,pn(t) with control points Pm = [p0, . . . ,pn] is given

by the least squares reduction, i.e.,

Qm = argmin
q0,...,qm∈Rd

dL2(Bp0,...,pn ,B[q0,...,qm]E(m,n)), (47a)

= argmin
q0,...,qm∈Rd

dF(Bp0,...,pn ,B[q0,...,qm]E(m,n)), (47b)

= PnRL2(n,m). (47c)

Proof. See Appendix V-P. �

2) Taylor Reduction: Another classical degree reduction is

Taylor approximation that preserves local derivatives.

Definition 10 (Taylor Reduction) The Taylor reduction matrix

Rτ,to(n,m) for approximating an nth-order Bezier curve around

to ∈ R by a lower mth-order Bezier curve is defined as

Rτ,to(n,m) := Tb
τ (n, to)I(n+1)×(m+1)T

τ
b(m, to), (48)

where Tb
τ and Tτ

b are the Taylor-to-Bernstein and the Bern-

stein-to-Taylor basis transformation matrices in Lemma 2.

6Many existing notions of Bézier degree reduction methods that are defined
in terms of different Bézier distances (possibly with end-point constraints) can
be unified using the inverse of degree elevation [48].
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In other words, Taylor reduction perform a basis transforma-

tion from Bernstein to Taylor basis, and ignores some higher-

order Taylor basis elements, and then comes back to Bernstein

basis.7 Hence, it has a strong bias and local expressiveness

around the Taylor offset to, as illustrated in Fig. 4(a,d).

Proposition 14 (Taylor Reduction as Elevation Inverse) The

Taylor reduction matrix Rτ,to(n,m) is a right inverse of the

elevation matrix E(m,n), i.e., for any m≤ n ∈N

E(m,n)Rτ,to(n,m) = I(m+1)×(m+1). (49)

Proof. See Appendix V-Q. �

It is important to observe in Fig. 4 that both the least-squares

and Taylor reduction methods offer less freedom in controlling

the resulting shape of Bézier approximations; for example, the

end points of the original curve are not preserved after degree

reduction, which is essential for path smoothing with boundary

conditions [14].

3) Parameterwise Matching Reduction: In order to accu-

rately approximate curve shape and geometry, we propose a

new parameterwise matching reduction method that preserves

a finite set of curve points after degree reduction.

Definition 11 (Parameterwise Matching Reduction) For

Bézier degree reduction from a higher degree n to a lower

degree m ≤ n, the parameterwise matching degree reduction

matrix Rt0,...,tm(n,m) associated with pairwise distinct param-

eters t0, . . . , tm ∈ R (i.e., ti 6= t j for all i 6= j) is defined as

Rt0,...,tm(n,m) := bn(t0, . . . , tm)bm(t0, . . . , tm)
−1, (50)

where bn(t0, . . . , tm) is the Bernstein basis matrix in (16).

For example, a numerically stable choice of t0, . . . , tm over the

unit interval is the uniformly spaced parameters in [0,1], i.e.,

ti =
i
m

for i = 0, . . . ,m. We call the corresponding reduction

operation as the uniform matching reduction.

As expected, the parameterwise matching reduction of

Bézier curves keeps curve points unchanged at t0, . . . , tm.

Proposition 15 (Preserved Points of Matching Reduction)

For any pairwise distinct t0, . . . , tm ∈ R, a Bézier curve

Bp0,...,pn(t) of degree n and its parameterwise matching re-

duction Bq0,...,qm(t) of degree m≤ n with control points

[q0, . . . ,qm] = [p0, . . . ,pn]Rt0,...,tm(n,m) (51)

match at the curve parameters t0, . . . , tm, i.e.,

Bq0,...,qm(t) = Bp0,...,pn(t) ∀t = t0, . . . , tm. (52)

Proof. See Appendix V-R. �

7The Taylor reduction matrix can be derived as follows:

Bp0 ,...,pn (t) = [p0, . . . ,pn]bn(t) = [p0, . . . ,pn]T
b
τ (n,to)τn,to(t)

≈ [p0, . . . ,pn]T
b
τ (n,to)I(n+1)×(m+1)τm,to (t)

= [p0, . . . ,pn]T
b
τ (n,to)I(n+1)×(m+1)T

τ
b(m,to)bm(t)

= [q0, . . . ,qm]bm(t) = Bq0 ,...,qm (t)

Proposition 16 (Matching Reduction as Elevation Inverse)

For any m ≤ n and pairwise distinct reals t0, . . . , tm ∈ R, the

parameterwise matching degree matrix Rt0,...,tm(n,m) is a right

inverse of the elevation matrix E(m,n),

E(m,n)Rt0,...,tm(n,m) = I(m+1)×(m+1). (53)

Proof. See Appendix V-S �

Another interesting connection between degree elevation

and matching reduction is their shared matrix form.

Proposition 17 (Shared Form of Matching Reduction and

Elevation Matrix) For any n,m ∈ N and any pairwise distinct

reals t0, . . . , tm ∈ R, the Bernstein basis matrices satisfy8

bn(t0, . . . , tm)bm(t0, . . . , tm)
−1=

{
E(n,m) , if n≤ m,

Rt0,...,tm(n,m), if n≥ m,
(54)

where E(n,n) = Rt0,...,tm(n,n) = I(n+1)×(n+1).

Proof. It follows from Proposition 5 and Definition 11. �

A critical property of matching reduction is that the degree-

one reduction error can be determined analytically.

Proposition 18 (Degree-One Matching Reduction Error) For

any pairwise distinct t0, . . . tn ∈ R, the difference between a

Bézier curve Bp0,...,pn+1
(t) and its parameterwise matching

degree reduction Bq0,...,qn(t), with control points

[q0, . . . ,qn] = [p0, . . . ,pn+1]Rt0,...,tn(n+ 1,n), (55)

is given by

Bp0,...,pn+1
(t)−Bq0,...,qn(t) = ∆p

n

∏
i=0

(t− ti), (56)

where

∆p =
n+1

∑
i=0

(−1)n+1−i
(

n+1
i

)
pi. (57)

Proof. See Appendix V-T. �

It is important to observe that the degree-one matching re-

duction difference vector ∆p is independent of the selection

of matching parameters t0, . . . , tn where the reduction error is

zero.9 Moreover, the polynomial product form of the degree-

one matching reduction error, illustrated in Fig. 6, plays a

key role in determining how many local low-order Bézier

segments are needed for approximating high-order Bézier

curves accurately, as discussed below in Section V.

8It is important to highlight that for any distinct t0, . . . ,tn ∈ R, the inverse
of the Bernstein matrix can be computed analytically using the Bernstein-to-
monomial basis transformation bn(t0, . . . ,tn) = Tb

mm(t0, . . . ,tn) as

bn(t0, . . . ,tn)
−1 = mn(t0, . . . ,tn)

−1Tm
b (n)

since the inverse of the monomial (a.k.a. Vandermonde) matrix is analytically
available [53], and the elements of Bernstein-to-monomial basis transforma-
tion Tm

b (n) can be determined explicitly, see Appendix V-B.
9Finding optimal matching parameters that minimize the peak reduction

error is an open research problem and outside the scope of this paper. We
observe from Fig. 6 that optimal matching parameters should be nonuniformly
spaced with a bias towards the ends points. In this paper, we consider the
uniformly spaced matching parameters and their adaptive selection based on
binary search in Section V.
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Fig. 6. Scaled degree-one reduction error function εn(t) for uniform matching

reduction of Bézier curves that is defined as εn(t) =
∏

n
i=0 t− i

n

∏
n
i=0

1
2n−

i
n

.

V. ADAPTIVE DEGREE REDUCTION AND SPLITTING

OF BÉZIER CURVES

In this section, we consider the problem of approximating

high-order Bézier curves by multiple lower-order Bézier seg-

ments. We first describe how Bézier approximations can be

performed over a given finite partition of the unit interval, and

then propose linear and binary search methods for adaptive

approximation of high-order Bézier curves by lower-order

Bézier segments at any desired accuracy level. We also present

a rule of thumb for accurate Bézier discretization.

A. Bézier Approximation over a Partition of the Unit Interval

Consider an nth-order Bézier curve Bp0,...,pn(t) with con-

trol points Pn = [p0, . . . ,pn] defined over the unit interval

[0,1]. Suppose T = [t0, . . . , tk] is an ordered list of distinct

parameters that defines a partition of the unit interval into

k splits, i.e., 0 = t0 < t1 < .. . < tk−1 < tk = 1. Accordingly,

the Bézier curve Bp0,...,pn(t) can be locally approximated over

each parameter subinterval [ti−1, ti] by a lower mth-order Bezier

curve Bq0,i,...,qm,i(t) whose control points Qm,i = [q0,i, . . . ,qm,i]
is obtained based on a choice of a degree reduction matrix

R(n,m) (see Definition 8) as

Qm,i = DegreeReduction(Pn,i,m) := Pn,iR(n,m), (58)

Algorithm 1: Bézier Approximation over a Partition

of the Unit Interval

Input: Pn ∈ R
d×n: Bezier Control Points

m ∈N: Reduction Degree

T = [t0, . . . , tk]: Partition of the Unit Interval

Output: Qm,1, . . .Qm,k: List of Reduced Control Points

where BQm,i
([0,1]) approximates BPn([ti−1, ti])

1: k← length(T )− 1 // Number of Segments

2: for i← 1 to k do

3: Pn,i← Reparametrize(Pn, [ti−1, ti])
4: Qm,i← DegreeReduction(Pn,i,m)

5: return Qm,1, . . . ,Qm,k

using the reparametrization Bp0,i,...,pn,i(t) of Bp0,...,pn(t) from

[ti−1, ti] to the unit interval [0,1] with new control points Pn,i =
[p0,i, . . . ,pn,i] (see Lemma 4) that are obtained as

Pn,i = Reparameterize(Pi, [ti−1, ti]), (59)

:= bn

(
0, 1

n
, . . . , n−1

n
,1
)
bn

(
si(0),si(

1
n
), . . . ,si(

n−1
n
),si(1)

)−1
,

(60)

where si(t) = Bti−1,ti(t) = ti−1(1− t)+ ti t is the Bézier param-

eter scaling function. Hence, as described in Algorithm 1, the

high-order Bézier curve Bp0,...,pn([0,1]) can be approximated

by a collection of low-order Bézier segments Bq0,i,...,qm,i([0,1])
constructed over each partition element [ti−1, ti] such that

BQm,i
([0,1]) approximates BPn([ti−1, ti]).

In Fig. 5, we illustrate approximating an 8th-order Bézier

curve with linear and quadratic Bézier segments over the

uniform partitions of the unit interval using Taylor, least

squares, and uniform matching reductions. As seen in Fig.

5, the uniform matching reduction performs better in approx-

imately representing the original curve shape than the least

squares reduction which performs better than Taylor reduction.

Also notice that the end points of the original curve are kept

unchanged only under the uniform matching reduction.
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Fig. 5. Approximation of a Bézier curve of degree n = 8 by (a, b, c) linear and (d, e, f) quadratic Bézier segments using (top) Taylor, (middle) least squares,
and (bottom) uniform matching reduction. The Taylor offset is set to be 0.5, and a uniform partition of the unit interval is used with (a) 2(n−1), (b) 4(n−1),
(c) 6(n− 1) partition elements for linear approximations, and (d) (n− 1), (e) 2(n− 1), (f) 3(n− 1) partition elements for quadratic approximations. Bézier
approximation rule: An nth-order Bézier curve can be approximated accurately by 3(n−1) quadratic and 6(n−1) linear uniform matching Bézier curves.
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B. Bézier Approximation Rule

A practical question of approximating high-order Bézier

curves by a finite number of low-order Bézier segments is

what the required number of local Bézier segments is for

an accurate Bézier discretization. As expected, the answer

depends on the desired level of approximation accuracy and

the degree of Bézier curves. In this part, we provide an answer

based on the structural form of the Bézier approximation error

of degree-one matching reduction (Proposition 18), and the

numerical analysis of Bézier approximations in Section VI.

A Rule of Thumb for Bézier Approximations An nth-order

Bézier curve can be accurately approximated by 3(n− 1)
quadratic and 6(n− 1) linear Bézier curves obtained via

uniform matching reduction.

According to Proposition 18, an nth-order Bézier curve can

be written as the sum of an (n− 1)th-order reduced Bézier

curve and a degree-one matching reduction error which is a

polynomial of order n in the product form. Note that the (n−
1)th-order reduced Bézier curve can be better approximated

with the same number of low-order Bézier segments than the

original nth-order Bézier curve. Hence, one can determine the

required number of low-order Bézier segments for accurately

approximating high-order Bézier curves by exploiting the

functional form of the reduction error. As seen in Fig. 6,

the degree-one matching reduction error of nth-order Bézier

curves has (n− 1) extreme (local maximum and minimum)

points. This implies that a proper approximation of nth-order

Bézier curves structurally requires at least (n− 1) quadratic

Bézier curves which has a single extremum. Because of the

asymmetry of the approximation error around each extreme

point, one needs at least 2(n−1) quadratic segments. Since the

uniform matching reduction uses uniformly spaced parameters

for approximation, we observe in our numerical studies in

Section VI that the asymmetry around each extreme point can

be better handled with 3(n−1) quadratic patches in practice.

Our numerical analysis also shows that approximating nth-

order Bézier curves by 3(n− 1) quadratic segments ensures

a normalized (i.e., scale invariant) approximation error below

the order of 10−3 for computing important curve features

such as curve length, distance-to-point/line, and maximum

velocity/acceleration. Similarly, since a quadratic polynomial

structurally requires at least two linear curve segments for a

proper representation of its unique extremum, we also observe

from our numerical studies that approximating nth-order Bézier

curves by 6(n−1) linear Bézier segments yields a normalized

approximation error in the order of 10−3.

C. Adaptive Bézier Approximation via Bézier Metrics

The Bézier approximation rule above holds for any Bézier

curve in general, and ensures a proper structural representation

of high-order Bézier curves at a certain level of accuracy. How-

ever, high-order Bézier curves might have redundant control

points, for example, consider the degree elevation of Bézier

curves in Fig. 3, and also different application settings might

require different levels of approximation accuracy. Hence, it

is desirable to perform Bézier approximation that is tailored

to individual Bézier curves and can adaptively select the

required number of Bézier segments and the partition of the

unit interval based on the desired level of accuracy. In this part,

we extend Bézier approximations over a given partition of the

unit interval by incorporating a search strategy to automatically

determine a partition of the unit interval in order to achieve a

desired level of measurable approximation accuracy.

As discussed in Section V-A, an nth-order Bézier curve

Bp0,...,pn(t) can be locally approximated by mth-order Bezier

segments over each element of a k-partition T = [t0, . . . , tk]
of the unit interval by applying curve reparametrization and

degree reduction as

Pn,i = Reparameterize(Pi, [ti−1, ti]), (61)

Qm,i = DegreeReduction(Pn,i,m), (62)

Hence, one can measure the quality of approximating

Bp0,i,...,pn,i(t) by Bq0,i,...,qm,i(t) using a Bézier metric dB (Defi-

nition 2) and degree elevation (Proposition 4) as

BezierDistance(Pn,i,Qm,iE(m,n))

:= dB(Bp0,i,...,pn,i ,B[q0,i,...,qm,i]E(m,n)). (63)

Accordingly, in Algorithm 2 and Algorithm 3, respectively,

we present a linear- and a binary-search approach for au-

tomatically finding a proper partition T = [t0, . . . , tk] of the

unit interval (and the associated control points Qm,1, . . . ,Qm,k

of local Bézier segments) where the distance between the

actual curve and its degree reduction is below a certain desired

approximation tolerance ε > 0. Note that linear search assumes

uniform partitions of the unit interval whereas binary search

might result in a nonuniform partition of the unit interval

depending on the shape of the input Bézier curve. As a result,

as illustrated in Fig. 7, binary search often achieves the same

level of approximation quality as linear search by using a

Algorithm 2: Adaptive Degree Reduction and Splitting

via Linear Search

Input: Pn ∈ R
d×n: Bezier Control Points

m ∈N: Reduction Degree

ε > 0: Approximation Tolerance

Output: T = [t0, . . . , tk]: Split Intervals

Qm,1, . . .Qm,k: List of Reduced Control Points

where BQm,i
([0,1]) approximates BPn([ti−1, ti])

1: k← 1 // Number of Segments

2: T ← [0,1] // Initial Partition

3: while k < length(T ) do

4: for i← 1 to k do

5: Pn,i← Reparametrize(Pn, [ti−1, ti])
6: Qm,i← DegreeReduction(Pn,i,m)
7: if BezierDistance(Pn,i,Qm,iE(m,n))> ε then

8: T ← [0, 1
k+1

, . . . , k
k+1

,1]
9: break

10: k← k+ 1

11: k← length(T )− 1 // Number of Segments

12: return T,Qm,1, . . . ,Qm,k
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Algorithm 3: Adaptive Degree Reduction and Splitting

via Binary Search

Input: Pn ∈ R
d×n: Bezier Control Points

m ∈N: Reduction Degree

ε > 0: Approximation Tolerance

Output: T = [t0, . . . , tk]: Split Intervals

Qm,1, . . .Qm,k: List of Reduced Control Points

where BQm,i
([0,1]) approximates BPn([ti−1, ti])

1: k← 1 // Segment Counter

2: T ← [0,1] // Initial Partition

3: while k < length(t) do

4: Pn,k← Reparametrize(Pn, [tk−1, tk])
5: Qm,k←DegreeReduction(Pn,i,m)
6: if BezierDistance(Pn,k,Qm,kE(m,n))> ε then

7: T ← [t0, . . . , tk−1,
tk−1+tk

2
, tk]

8: else

9: k← k+ 1

10: k← length(T )− 1 // Number of Segments

11: return T,Qm,1, . . . ,Qm,k

significantly less number of Bézier segments. Another impor-

tant observation in Fig. 7 is that although uniform matching

still outperforms least squares and Taylor approximations, the

quality of adaptive Bézier approximation is less dependent on

the choice of a reduction method. Finally, as expected, the

required number of Bézier segments increases exponentially

with the increasing approximation quality, which is further

discussed in the following Section VI.

VI. NUMERICAL ANALYSIS OF BÉZIER APPROXIMATIONS

In this section, we provide numerical evidence to show

the effectiveness of uniform matching reduction over least

squares and Taylor reductions by investigating how Bézier

approximation accuracy depends on the number of curve

segments. We also demonstrate how the automatically adjusted

number of curve segments in adaptive Bézier approximation

depends on Bézier degree and approximation tolerance.

A. Approximation Accuracy vs. Number of Segments

To investigate the role of number of segments in approxi-

mation accuracy, we consider the following Bézier features:

• Curve Length: The arc length of Bézier curves is an

essential criterion in optimal motion planning to find

motion trajectories that reduce travel distance.

• Distance-to-Point: The distance of a Bézier curve to a

point is often used in constrained motion planning for

determining parameterwise Bézier intersections and the

maximum velocity/acceleration along Bézier curves.

• Distance-to-Line: The distance of a Bézier curve to a line

segment (or a polyline/polygon) is a common distance-

to-collision measure in safe motion planning.

• Maximum Curvature: Curvature-constrained motion plan-

ning of nonholonomic systems requires an efficient com-

putation of maximum curvature of Bézier curves.

The aforementioned Bézier features can be determined an-

alytically only for linear and quadratic Bézier curves. For

high-order Bézier curves, we suggest computing these curve

features efficiently using Bézier approximations by linear and

quadratic Bézier segments. Since these curve features are

nonnegative, to determine the approximation quality, we define

the normalized approximation error of a Bézier feature using

its actual and approximate calculations as

Approximation Error =
|FeatureApprox−FeatureActual|
FeatureApprox +FeatureActual

, (64)

where the actual curve features are computed using a dense

discrete samples of Bézier curves.

To determine approximation error statistics, we randomly

generate Bézier control points that are uniformly distributed

over the unit box [0,1]× [0,1]. For the distance-to-point

criterion, we select the origin as the point of interest; and
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Fig. 7. Adaptive approximation of a 8th-order Bézier curve (black dashed line) by (a, b, c) linear and (d, e, f) quadratic Bézier curve segments (red and
blue patches) that are automatically obtained via (top, middle) linear and (bottom) binary search based on (a, d) Taylor approximation, (b, e) least squares
reduction, and (c, f) uniform matching reduction. The Bézier splitting is automatically done based on a desired approximation tolerance ε > 0 specified in
term of the Bézier maximum control-point distance: (top) ε = 0.5 units, (middle, bottom) ε = 0.1 units.
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(a) (b) (c) (d) (e) (f)

Fig. 8. Normalized length error statistics of approximating nth-order Bézier curves by (a, b, c) quadratic and (d, e, f) linear Bézier segments: (a, d) n = 5,
(b, e) n = 7, (c, f) n = 9, where the mean and the standard deviation of the error are presented by a line and a shaded region, respectively.

(a) (b) (c) (d) (e) (f)

Fig. 9. Normalized distance-to-point error statistics of approximating nth-order Bézier curves by (a, b, c) quadratic and (d, e, f) linear Bézier segments: (a,
d) n = 5, (b, e) n = 7, (c, f) n = 9, where the mean and the standard deviation of the error are presented by a line and a shaded region, respectively.

(a) (b) (c) (d) (e) (f)

Fig. 10. Normalized distance-to-line error statistics of approximating nth-order Bézier curves by (a, b, c) quadratic and (d, e, f) linear Bézier segments: (a,
d) n = 5, (b, e) n = 7, (c, f) n = 9, where the mean and the standard deviation of the error are presented by a line and a shaded region, respectively.

(a) (b) (c)

Fig. 11. Normalized maximum curvature error statistics of quadratic approx-
imations of Bézier curves for different number of segments: (a) n = 5, (b)
n = 7, (c) n = 9, where the mean and the standard deviation of the error are
presented by a line and a shaded region, respectively. Note that for numerical
stability we set an upper bound of 1000 units on the maximum curvature, and
any sample case with a larger maximum curvature is rejected.

for distance-to-line, we select the horizontal side of the unit

box (i.e., the line segment joining the origin (0,0) to point

(1,0)). In Fig. 8-11, we provide sample statistics (mean and

standard deviation) of normalized approximation errors of

curve length, distance-to-point, distance-to-line, and maximum

curvature versus the number of segments. It is visibly clear that

the Bézier approximation with uniform matching reduction

achieves significantly better performance in capturing curve

length, distance-to-point and distance-to-line compared to the

least squares and Taylor approximations. Especially, the end-

point preservation property of uniform matching reduction

plays a key role for its superior performance for the distance-

to-point/line criteria presented in Fig. 9-10. We observe in Fig.

8 that Bézier approximations with linear segments have com-

parable accuracy for all three reduction methods, which can be

explained by the limited representation power of linear curve

segments. On the other hand, uniform matching reduction

shows a superior performance for Bézier approximations with

quadratic segments. Finally, as illustrated in Fig. 11, we see

that all Bézier degree reduction methods perform equally well

for approximating the maximum curvature of Bézier curves.

This can be explained by the limited expresiveness of quadratic

segments for approximating the first and second derivatives of

Bézier curves since curvature is a function of the first and

second curve derivatives.

B. Number of Segments vs. Bézier Degree and Tolerance

In this part, we numerically study how the number of

segments automatically determined in adaptive Bézier ap-

proximation depends on the order of the Bézier curve and

the approximation tolerance (specified in terms of the maxi-

mum control-point distance). We consider randomly generated

Bézier control points over the unit box [0,1]× [0,1]. To

ensure scale invariance, we rescale Bézier control points to

have a sample variance of unity. In Fig. 12 we present the

average number of segments used in adaptive approximation

of Bézier curves of different orders. For a fixed choice of

an approximation tolerance, we observe that the number of

segments grows linearly with the Bézier degree for linear

search whereas the grow rate is sublinear for binary search.

This is strongly aligned with the Bézier approximation rule

proposed in Section V-B. Finally, as illustrated in Fig. 13,

the average number of segments used in adaptive Bézier

approximation grows exponentially with the negated order of

magnitude of approximation tolerance ε , because the higher

the accuracy the higher the spatial resolution.
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(a) (b) (c) (d) (e) (f)

Fig. 12. Relation between the number of segments and Bézier degree in adaptive Bézier approximation by (top) linear and (bottom) quadratic segments using
(a, b, c) linear and (d, e, f) binary search. Here, the approximation tolerance is measured by the maximum control-point distance and set to be (a, d) 0.1, (b,
e) 0.01, and (c, f) 0.001 units.

(a) (b) (c) (d) (e) (f)

Fig. 13. Relation between the number of segments and approximation tolerance in adaptive Bézier approximation by (top) linear and (bottom) quadratic
segments using (a, b, c) linear and (d, e, f) binary search for Bézier order (a, d) n = 5, (b, e) n = 7, and (c, f) n = 9. Here, the approximation tolerance is
measured by the maximum control-point distance.

VII. CONCLUSION

In this paper, we introduce a novel adaptive Bézier ap-

proximation method that automatically splits and performs

degree reduction on high-order Bézier curves to approximately

represent them by multiple low-order Bézier segments at any

given approximation tolerance measured by a Bézier met-

ric. Accordingly, we propose a new maximum control-point

distance for efficient and informative comparison of Bézier

curves. We show that the maximum control-point distance

defines a tight upper bound on standard Bézier metrics such

as Hausdorff, parameterwise maximum, and Frobenious-norm

distance of Bézier curves and can be used to geometrically

bound Bézier curves with respect to each others. To better

maintain the original curve shape, we also propose a new

parameterwise matching reduction method that allows one to

preserve a certain set of curve points (e.g., end points) after

degree reduction. The matching reduction shows a superior ap-

proximation performance compared to standard least squares

and Taylor approximations. Based on the explicit form of

degree-one matching reduction error, we also suggest a rule of

thumb for approximating nth-order Bézier curves by 3(n− 1)
quadratic and 6(n− 1) linear Bézier segments. Our extensive

numerical studies demonstrates the effectiveness of the pro-

posed methods and the validity of our Bezier approximation

rule. Work now in progress targets applying these Bézier

approximation tools in sensor-based reactive motion planning

and trajectory optimization of nonholonomically constrained

mobile robots and autonomous vehicles [54].

APPENDIX I

POLYNOMIAL BASIS TRANSFORMATION MATRICES

In this part, we provide the explicit formulas for the

elements of polynomial basis transformation matrices.

Lemma 5 ([43]) (Monomial & Bernstein Basis Transfor-

mation) The transformation matrices between monomial and

Bernstein basis vectors, i.e.,

mn(t) = Tm
b (n)bn(t), (65a)

bn(t) = Tb
m(n)mn(t), (65b)

are explicitly given by10

[
Tb

m(n)
]

i+1, j+1
=

{
(−1)( j−i)

(
n
j

)(
j
i

)
, if i≤ j

0, otherwise,
(66a)

[Tm
b (n)]i+1, j+1 =





( j
i)
(n

i)
, if i≤ j

0, otherwise,
(66b)

where i, j ∈ [0,1, . . . ,n], and they are the inverse of each other

Tm
b (n)

−1 = Tb
m(n). (67)

10The transformation matrices between monomial and Bernstein bases are
upper triangular with positive diagonal elements and so are invertible.
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Lemma 6 (Monomial-Taylor Basis Transformation) The

transformation between monomial and Taylor bases, i.e.,

mn(t) = Tm
τ (n, to)τn,to(t), (68a)

τn,to(t) = Tτ
m(n, to)mn(t), (68b)

are explicitly given by11

[Tτ
m(n, to)]i+1, j+1 =

{(i
j

)
(−to)

i− j , if i≥ j

0 , otherwise,
(69a)

[Tm
τ (n, to)]i+1, j+1 =

{(i
j

)
(to)

i− j, if i≥ j

0 , otherwise,
(69b)

where i, j ∈ {0, . . . ,n}, and they are the inverse of each other,

Tm
τ (n, to)

−1 = Tτ
m(n, to). (70)

Proof. See Appendix V-U. �

Accordingly, the transformation matrices between the Bern-

stein and Taylor bases, i.e.,

τn,to(t) = Tτ
b(n, to)bn(t), (71a)

bn(t) = Tb
τ(n, to)τn,to(t), (71b)

can be determined using the monomial basis as

Tτ
b(n, to) = Tm

b (n)T
τ
m(n, to), (72a)

Tb
τ(n, to) = Tm

τ (n, to)T
b
m(n), (72b)

where Tτ
b(n, to)

−1 = Tb
τ(n, to).

APPENDIX II

ON REPARAMETRIZATION OF POLYNOMIAL CURVES

In this part, we show how affine reparametrization of poly-

nomial curves can be performed explicitly via Taylor basis.

Lemma 7 The Bernstein, monomial and Taylor basis vectors
of degree n (associated with a Taylor offset to ∈ R) can be
affinely reparametrized from interval [a,b] to [c,d] (with a < b
and c < d) as

bn(t) = Tb
τ (n, t̂o)diag

(
mn(

b−a
d−c

)
)

Tτ
b(n, to)bn

(
b−a
d−c

t + ad−bc
d−c

)
, (73a)

mn(t) = Tm
τ (n, t̂o)diag

(
mn(

b−a
d−c

)
)

Tτ
m(n, to)mn

(
b−a
d−c

t + ad−bc
d−c

)
,(73b)

τn,t̂o
(t) = diag

(
mn(

b−a
d−c )

)
τn,to

(
b−a
d−c t + ad−bc

d−c

)
, (73c)

where diag denotes the diagonal matrix with diagonal entries

specified with its argument, and the reparametrized Taylor

offset is given by the associated affine transformation as

t̂o =
d−c
b−a

ta− ad−bc
b−a

. (74)

Proof. See Appendix V-V. �

Lemma 8 (Polynomial Curve Reparametrization) Bézier,

monomial and Taylor curves of degree n ∈ N with respective

control point matrices Pn = [p0, . . . ,pn], Qn = [q0, . . . ,qn], and

Yn = [y0, . . . ,yn] (and a Taylor offset to ∈ R) can be affinely

11The transformation matrices between monomial and Taylor bases are
lower triangular with all ones in the main diagonal and so are invertible.

reparametrized from interval [a,b] to [c,d] (with a < b and

c < d) as

Bp̂0,...,p̂n
(t) = Bp0,...,pn

(
b−a
d−c

t + ad−bc
d−c

)
, (75a)

Mq̂0,...,q̂n
(t) = Mq0,...,qn

(
b−a
d−c

t + ad−bc
d−c

)
, (75b)

ϒŷ0,...,ŷn
(t, t̂o) = ϒy0,...,yn

(
b−a
d−c

t + ad−bc
d−c

, to
)
, (75c)

with the corresponding reparametrized control point matrices

P̂n = [p̂0, . . . , p̂n], Q̂n = [q̂0, . . . , q̂n], and Ŷn = [ŷ0, . . . , ŷn] that

are given by

P̂n = PnTb
τ (n, to)diag

(
mn(

d−c
b−a

)
)
Tτ

b(n, t̂o), (76a)

Q̂n = QnTm
τ (n, to)diag

(
mn(

d−c
b−a

)
)
Tτ

m(n, t̂o), (76b)

Ŷn = Yndiag
(
mn(

d−c
b−a

)
)
, (76c)

where t̂o =
d−c
b−a

to− ad−bc
b−a

.

Proof. See Appendix V-W. �

APPENDIX III

MATCHING REDUCTION IN MONOMIAL BASIS

The matching reduction matrix can be explicitly computed

using the monomial basis.

Lemma 9 (Matching Reduction in Monomial Basis) For any

n ≥ m ∈ N and distinct t0, . . . , tm ∈ R, the parameterwise

matching reduction matrix Rt0,...,tm(n,m) can be computed

using monomial basis as

Rt0,...,tm(n,m) = Tb
m(n)mn(t0, . . . , tm)mm(t0, . . . , tm)

−1Tm
b (m),

= Tb
m(n)




I(m+1)×(m+1)

α1(t0, . . . , tm)
...

αn−m(t0, . . . , tm)


Tm

b (m), (77)

with row vectors αi(t0, . . . , tm) = [αi,0, . . . ,αi,m] that are recur-

sively defined as

αi+1,k = αi,k−1 +αi,mα1,k, (78)

where base conditions of αi,−1 = 0 and α1,k satisfying

tm+1−
m

∑
k=0

α1,ktk =
m

∏
k=0

(t− tk). (79)

Proof. See Appendix ??. �

APPENDIX IV

ANALYTIC PROPERTIES OF QUADRATIC BÉZIER CURVES

Motion planning with Bézier curves (around obstacles)

requires determining critical geometric curve properties such

as arc length, maximum absolute curvature, distance to a

point or a line segment, and intersection with a halfspace.

Fortunately, the low-degree of quadratic Bézier curves allows

for simple analytic expressions of these curve properties en-

abling computationally efficient constrained motion planning,

because quadratic bezier curves and derivatives have simple

forms,

Bp0,p1,p2
(t) = (p2− 2p1+ p0)t

2 + 2(p1− p0)t + p0, (80a)

B′p0,p1,p2
(t) = 2(p1− p0)+ 2t(p2− 2p1+ p0), (80b)

B′′p0,p1,p2
(t) = 2(p2− 2p1 + p0). (80c)
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Proposition 19 ([55]) The arc length of a quadratic Bézier

curve Bp0,p1,p2
(t) over an interval [t1, t2] is given by

L(Bp0,p1,p2
([t1, t2])) = 2(I(t2)− I(t1)) (81)

where I(t) =
∫

R(t)dt is the integral of R(t) =
√

at2 + bt+ c

that is given for a > 0 as [56]

I(t) =
2at + b

4a
R(t)+

4ac− b2

8a
√

a
ln |2
√

aR(t)+ 2at+ b| (82)

with

a = ‖p2− 2p1+ p0‖2 (83a)

b = 2(p1− p0)
T(p2− 2p1+ p0) (83b)

c = ‖p1− p0‖2 (83c)

Otherwise (i.e., a = 0), one has I(t) =
√

ct = ‖p1− p0‖t.
Proof. By definition, the arc length of a curve is given by the

integral of the norm of its rate of change, i.e.,

L(Bp0,p1,p2
([t1, t2])) =

∫ t2

t1

‖B′p0,p1,p2
(t)‖dt (84)

=

∫ t2

t1

2‖(p1− p0)+ t(p2− 2p1+ p0)‖dt (85)

= 2

∫ t2

t1

√
at2 + bt + cdt (86)

where a,b,c are defined as in (83). Also note that a = 0

implies b = 0, and so
∫ √

at2 + bt + cdt =
√

ct. Hence, the

result follows. �

Proposition 20 ([57], [58]) The maximum absolute curvature

of a planar quadratic Bézier curve Bp0,p1,p2
(t), associated with

p0,p1,p2 ∈ R
2, over an interval [t1, t2] satisfies

max
t∈[t1,t2]

|κ(t)|=




|κ(t1)| , if t∗κ < t1
|κ(t∗κ)| , if t1 ≤ t∗κ ≤ t2
|κ(t2)| , if t∗κ > t2

(87)

where the quadratic Bézier curvature κ(t) is given by

κ(t) =
det([p1− p0,p2− p1])

2‖(p1− p0)(1− t)+ (p2− p1)t‖3
, (88)

and the optimal curve parameter t∗κ and the maximum absolute

curvature |κ(t∗κ)| over t ∈R are

t∗κ = argmax
t∈R

|κ(t)|= (p0− p1)
T (p2− 2p1+ p0)

‖p2− 2p1+ p0‖2
, (89)

|κ(t∗κ)|=
‖p2− 2p1+ p0‖3

2det([p1− p0,p2− p1])2
. (90)

Proof. The quadratic Bézier curvature can be determined as

κ(t) =
det
([

B′p0,p1,p2
(t),B′′p0,p1,p2

(t)
])

‖B′p0,p1,p2
(t)‖3

(91)

=
det [(p1− p0)+ t(p2− 2p1 + p0),(p2− 2p1+ p0)]

2‖(p1− p0)+ t(p2− 2p1+ p0)‖3
(92)

=
det [(p1− p0),(p2− 2p1+ p0)]

2‖(p1− p0)+ t(p2− 2p1+ p0)‖3

+ t
det [(p2− 2p1+ p0),(p2− 2p1 + p0)]

2‖(p1− p0)+ t(p2− 2p1+ p0)‖3

︸ ︷︷ ︸
=0

(93)

=
det [(p1− p0),(p2− 2p1+ p0)]

2‖(p1− p0)+ t(p2− 2p1+ p0)‖3
(94)

Hence, the maximum absolute curvature |κ(t)| is achieved

when ‖(p1 − p0) + t(p2 − 2p1 + p0)‖2 is minimized, which

is a convex function of t and its unique minimum can be

determined by setting its derivative to zero as

0 =
d

dt
‖(p1− p0)+ t(p2− 2p1 + p0)‖2 (95)

= 2(p2− 2p1 + p0)
T((p1− p0)+ t(p2− 2p1 + p0)) (96)

which corresponds to (89). Hence, due to the convexity

of quadratic ‖(p1 − p0) + t(p2− 2p1 + p0)‖2, the maximum

absolute curvature is realized at t∗κ if t∗κ ∈ [t1, t2]; otherwise,

the maximum value is at the closest boundary of the interval

[t1, t2] to t∗κ as described in (87).

Finally, using the fact that det([a,b])2 = ‖a‖2‖b‖2−
(
aTb
)2

for any a,b ∈ R
2, one can verify that

|κ(t∗κ)|= |det([p1−p0,p2−p1])|‖p2−2p1+p0‖3

2‖(p1−p0)‖p2−2p1+p0‖−
(p0−p1)

T(p2−2p1+p0)(p2−2p1+p0)
‖p2−2p1+p0‖

‖3

(97)

= |det([p1−p0,p2−p1])|‖p2−2p1+p0‖3

2
(
‖p1−p0‖2‖p2−2p1+p0‖2−(p1−p0

T(p2−2p1+p0))
2
) 3

2

(98)

= |det([p1−p0,p2−p1])|‖p2−2p1+p0‖3

2|det([p1−p0,p2−p1])|3
(99)

= ‖p2−2p1+p0‖3

2det([p1−p0,p2−p1])
2 (100)

which completes the proof. �

Proposition 21 The distance of a quadratic Bézier curve

Bp0,p1,p2
(t) to the origin over an interval [t1, t2] satisfies

min
t∈[t1,t2]

‖Bp0,p1,p2
(t)‖= min

t∈Tp0 ,p1,p2

‖Bp0,p1,p2
(t)‖, (101)

where the finite set of time instances is given by12

Tp0,p1,p2
([t1, t2]) =

{
t ∈ [t1, t2]

∣∣∣∑
3

i=0
cit

i=0
}
∪{t1, t2}, (102)

with

c0 = (p1− p0)
T

p0, (103a)

c1 = (p2− 2p1+ p0)
T
p0 + 2‖p1− p0‖2, (103b)

c2 = 3(p2− 2p1 + p0)
T(p1− p0), (103c)

c3 = ‖p2− 2p1+ p0‖2. (103d)

Proof. One can verify using (80) that the critical points of

‖Bp0,p1,p2
(t)‖ over R satisfy the following cubic equation

0 = Bp0,p1,p2
(t)T

B′p0,p1,p2
(t) = 2(c3t3 + c2t2 + c1t + c0) (104)

where the coefficients c0,c1,c2,c3 are defined as in (103).

Hence, the quadratic bezier distance to the origin is realized

in one of the critical points in [t1, t2] or on the boundary. �

12The roots of a cubic equation can be determined analytically [59].
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Remark 1 The distance of a bezier curve Bp0,...,pn(t) to a point

q ∈ R
d or another bezier curve Bq0,...,qn(t) (with parameter-

wise correspondence) can be formulated as its distance to the

origin because

Bp0,...,pn(t)− q = Bp0−q,...,pn−q(t) (105)

Bp0,...,pn(t)−Bq0,...,qn(t) = Bp0−q0,...,pn−qn(t) (106)

Proposition 22 The distance of a quadratic Bézier curve

Bp0,p1,p2
(t) defined over the internal [t1, t2] to a linear Bézier

curve Bq0,q1
(k) defined over the interval [k1,k2] can be ana-

lytically determined as

min
t∈[t1,t2]

min
k∈[k1,k2]

‖Bp0,p1,p2
(t)−Bq0,q1

(k)‖

= min
t∈T̂

‖Bp0,p1,p2
(t)−Bq0,q1

(k∗(t))‖ (107)

using a finite set of critical time instances T̂ defined in terms

of T in (102) as

T̂ = Tp0−q0,p1−q0,p2−q0
([t1, t2])

∪Tp0−q1,p1−q1,p2−q1
([t1, t2])

∪Tp̂0,p̂1,p̂2
([t1, t2]) (108)

and the optimal line parameter k∗(t) that is given by

k∗(t) = min
(

max
(

k1,
(q1−q0)

T

‖q1−q0‖2

(
Bp0,p1,p2

(t)− q0

))
,k2

)
.

(109)

where

p̂i =

(
I− (q1− q0)(q1− q0)

T

‖q1− q0‖2

)
(pi− q0). (110)

Proof. Due to convexity, for any t ∈ R, the line parameter

k(t) = (q1−q0)
T

‖q1−q0‖2

(
Bp0,p1,p2

(t)− q0

)
(111)

minimizes ‖Bp0,p1,p2
(t)−Bq0,q1

(k)‖ over R, i.e.,

0 = (q1− q0)
T
(
Bp0,p1,p2

(t)− q0− k(t)(q1− q0)
)
. (112)

Hence, the optimal solution k∗(t) over the interval [k1,k2]
is given by (109) since the optimal solution of a quadratic

optimization problem is realized at k(t) if k(t) ∈ [k1,k2];
otherwise, the optimum is at the closest interval boundary.

Similarly, the optimal bezier parameter is either related with
a boundary point q0 and q1 of the line segment (corresponding
to Tp0−q0,p1−q0,p2−q0

([t1, t2]) and Tp0−q0,p1−q0,p2−q0
([t1, t2])) or

the minimum of ‖Bp0,p1,p2
(t)−Bq0,q1

(k(t))‖ where

Bq0,q1
(k(t)) = q0 +

(q1−q0)(q1−q0)
T

‖q1−q0‖2 (Bp0,p1,p2
(t)−q0)

(113)

Bp0,p1,p2
(t)−Bq0,q1

(k(t)) =
(

I− (q1−q0)(q1−q0)
T

‖q1−q0‖2

)
(Bp0,p1,p2

(t)−q0)

(114)

= Bp̂0,p̂1,p̂2
(t) (115)

which completes the proof. �

Proposition 23 The intersection of quadratic Bézier curve

Bp0,p1,p2
(t) defined over an interval [ta, tb] with a halfspace

Ha,b =
{

x ∈R
d |aT(x− b)≤ 0

}
satisfies

{
t ∈ [ta, tb]

∣∣aT(Bp0,p1,p2
(t)− b)≥ 0

}

=
⋃{

[ti, ti+1]|1≤ i < |T |,Bp0,p1,p2
(
ti + ti+1

2
) ∈ Ha,b

}

(116)

where (t1, t2, . . . , t|T |) is the ascendingly ordered tuple of

T =
{

t ∈ [ta, tb]
∣∣aT(Bp0,p1,p2

(t)− b) = 0
}
∪{ta, tb} (117)

where aT(Bp0,p1,p2
(t)− b) = 0 is a quadratic equation.

Proof. By definition, the roots of aT(Bp0,p1,p2
(t)− b) deter-

mines the Bezier parameters over R where the curve inter-

sects the halfspace boundary. Hence, the ascendingly sorted

elements of T define a partition of the interval [ta, tb] whose

consecutive pairs define the part of the bezier curve on the op-

posite sides of the halfspace. Therefore, the result follows. �

APPENDIX V

PROOFS

A. Proof of Lemma 1

Proof. The result follows from that nth-order Bernstein poly-

nomials, as well as monomials and Taylor polynomials of

degree less than or equal to n, define a basis of n+1 linearly

independent polynomials for nth-order polynomials [43].

Alternatively, one can verify the result using polynomial

basis transformations as follows. The monomial basis ma-

trix mn(t0, . . . , tn), by definition, equals to the Vandermonde

matrix, which is nonsingular for distinct t0, . . . , tn [53]. The

Bezier and Taylor basis matrices are also nonsingular due to

the change of basis relation, i.e.,

bn(t0, . . . , tn) = Tb
m(n)mn(t0, . . . , tn), (118a)

τττn,to(t0, . . . , tn) = Tb
τ (n, to)mn(t0, . . . , tn), (118b)

where Tb
m(n) and Tb

τ (n, to) are invertible triangular basis

transformation matrices (see Lemmas 5 & 6). �

B. Proof of Lemma 2

Proof. Consider the basis transformation matrix Tb
m(n) from

monomial to Bernstein basis. It follows by definition that

bn(t0, . . . , tn) = Tb
m(n)mn(t0, . . . , tn). (119)

Since the monomial basis matrix mn(t0, . . . , tn) is invertible for

any distinct t0, . . . , tn ∈ R (Lemma 1), we obtain

Tb
m(n) = bn(t0, . . . , tn)mn(t0, . . . , tn)

−1. (120)

Similarly, the result can be verified for any change of basis

between Bernstein, Taylor and monomial bases, which com-

pletes the proof. �
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C. Proof of Lemma 3

Proof. Let us focus on the equivalence of Bézier curves to

monomial curves. The equivalence of Bézier and monomial

curves means that for any distinct t0, . . . , tn ∈R one has

Bp0,...,pn(t0, . . . , tn) = Mp0,...,pn(t0, . . . , tn) (121)

Pnbn(t0, . . . , tn) = Qnmn(t0, . . . , tn) (122)

= QnTm
b (n)bn(t0, . . . , tn). (123)

Since the Bernstein basis matrix bn(t0, . . . , tn) is invertible for

any distinct t0, . . . , tn (Lemma 1), one can conclude that

Pn = QnTm
b (n) (124)

which can be similarly extended for other polynomial curve

equivalence relations. �

D. Proof of Lemma 4

Proof. For any t0, . . . , tn ∈ R, by definition, affine Bezier

reparametrization satisfies for t̂i =
d−c
b−a

ti− ad−bc
b−a

that

P̂nbn(̂t0, . . . , t̂n) = Pnbn(t0, . . . , tn). (125)

Hence, we have the result since Bernstein basis matrices are

invertible for any distinct parameters (Lemma 1), which also

extends in a similar way to Taylor and monomial curves. �

E. Proof of Proposition 1

Proof. Using the following properties of Bernstein polynomi-

als [44],

∫ 1

0
bi,n(t)dt = 1

n+1
, and bi,n(t)b j,m(t) =

(
n
i

)(
n
j

)
(

n+m
i+ j

) bi+ j,n+m(t)

one can verify the result as

dL2(Bp0,...,pn ,Bq0,...,qn)
2 =

∫ 1

0
‖Bp0−q0,...,pn−qn(t)‖2dt, (126)

=
n

∑
i=0

n

∑
j=0

(pi− qi)
T(p j− q j)

∫ 1

0
bi,n(t)b j,n(t)dt, (127)

=
n

∑
i=0

n

∑
j=0

(pi− qi)
T(p j− q j)

(
n
i

)(
n
j

)
(

2n
i+ j

)
∫ 1

0
bi+ j,2n(t)dt, (128)

=
n

∑
i=0

n

∑
j=0

1

2n+ 1

(
n
i

)(
n
j

)
(

2n
i+ j

) (pi− qi)
T(p j− q j), (129)

= tr
(
(Pn−Qn)Wn(Pn−Qn)

T
)
, (130)

which completes the proof. �

F. Proof of Proposition 2

Proof. By Definition 5, the Bézier parameterwise-maximum

distance defines an upper bound on the Bézier Haussdoff

distance, i.e.,

dH(Bp0,...,pn ,Bq0,...,qn)≤ dM(Bp0,...,pn ,Bq0,...,qn). (131)

Similarly, the equivalence relation of the Frobenius distance

and the control-point distances is evident from Definition 4

and Definition 6 as

dC(Bp0,...,pn ,Bq0,...,qn) = max
i=0,...,n

‖pi− qi‖, (132)

≤ dF(Bp0,...,pn ,Bq0,...,qn) =
√

∑
n

i=0
‖pi− qi‖2, (133)

≤
√

ndC(Bp0,...,pn ,Bq0,...,qn). (134)

Hence, the result follows from Jensen’s equality for the

squared Euclidean distance because

‖Bp0,...,pn(t)−Bq0,...,qn(t)‖2 = ‖Bp0−q0,...,pn−qn(t)‖2, (135)

= ‖
n

∑
i=0

bi,n(t)(pi− qi)‖2 ≤
n

∑
i=0

bi,n(t)‖pi− qi‖2, (136)

≤max
i
‖pi− qi‖2. (137)

Note that the Bernstein polynomials sum to one over t ∈ [0,1],
i.e., ∑

n
i=0 bi,n(t) = 1 for all t ∈ [0,1] (Property 3). �

G. Proof of Proposition 3

Proof. The ordering relation of Bézier metrics in Proposition

2 and the convexity of Bézier curves in Property 3 imply that

min
t′∈[0,1]

‖Bp0,...,pn(t)−Bq0,...,qn(t
′)‖ ≤ ‖Bp0,...,pn(t)−Bq0,...,qn(t)‖,

≤ dM(Bp0,...,pn ,Bq0,...,qn)≤ dC(Bp0,...,pn ,Bq0,...,qn), (138)

and so the result follows. �

H. Proof of Proposition 4

Proof. The sufficiency of elevated control points in (34) can

be verified as

Bq0,...,qm(t) = Qmbm(t) (139a)

= PnE(n,m)bm(t), (139b)

= PnTb
m(n)I(n+1)×(m+1)T

m
b (m)bm(t), (139c)

= PnTb
m(n)I(n+1)×(m+1)mm(t), (139d)

= PnTb
m(n)mn(t), (139e)

= Pnbn(t) = Bp0,...,pn(t). (139f)

To show the necessity of parameterwise coincidence, con-

sider distinct parameters t0, . . . , tm ∈R with ti 6= t j for all i 6= j.

Since square Bernstein basis matrices of distinct parameters

are invertible (Lemma 1), using the coinciding curve points at

t0, . . . , tm, i.e.,

Pnbn(t0, . . . , tm) = Qmbm(t0, . . . , tm), (140)

one can obtain an explicit expression for E(n,m) as

Qm = Pnbn(t0, . . . , tm)bm(t0, . . . , tm)
−1, (141)

= PnE(n,m), (142)

which can be further simplified using the Bernstein-to-

monomial basis transformation as

E(n,m) = bn(t0, . . . , tm)bm(t0, . . . , tm)
−1, (143)

= Tb
m(n)mn(t0, . . . , tm)mm(t0, . . . , tm)

−1Tm
b (m), (144)

= Tb
m(n)I(n+1)×(m+1)T

m
b (m), (145)

which completes the proof. �



TECHNICAL REPORT, JANUARY 2022 19

I. Proof of Proposition 5

Proof. By definition in (35), we have

E(n,m)bm(t) = Tb
m(n)I(n+1)×(m+1)T

m
b (m)bm(t) (146)

= Tb
m(n)I(n+1)×(m+1)mm(t) (147)

= Tb
m(n)mn(t) = bn(t). (148)

Therefore, the result follows since the Bernstein basis matrix

bm(t0, . . . , tm) is invertible (Lemma 1). �

J. Proof of Proposition 6

Proof. We below provide a proof by induction.

• Base Case: (n ≤ m≤ n+ 1): If m = n, then one trivially

has E(n,n) = I(n+1)×(n+1). If m = n+ 1, then

[E(n,n+ 1)]i+1, j+1 =





1− j
n+1

, if j = i,
j

n+1
, if j = i+ 1,

0 , otherwise,

(149)

which follows from (36) and the following degree-one eleva-

tion property of Bernstein polynomials [43]

bi,n(t) =
(
1− i

n+1

)
bi,n+1(t)+

i+1
n+1

bi+1,n+1(t). (150)

Also note that
(

n
j

)
/
(

n+1
j

)
= 1− j

n+1
and

(
n

j−1

)
/
(

n+1
j

)
= j

n+1
.

Hence, the result holds for the base case.

• Induction Step (m > n+1): Suppose the results holds for

E(n,m− 1), then one can determine E(n,m) as

E(n,m) = E(n,m− 1)E(m− 1,m), (151)

because the degree elevation operation preserves the original
Bézier curve exactly. Hence, it follows from (149) that

[E(n,m)]i+1, j+1 =
m

∑
k=0

[E(n,m−1)]i+1,k+1[E(m−1,m)]k+1, j+1,(152)

= [E(n,m−1)]i+1, j[E(m−1,m)] j, j+1

+[E(n,m−1)]i+1, j+1[E(m−1,m)] j+1, j+1, (153)

= j
m
[E(n,m−1)]i+1, j +

(
1− j

m

)
[E(n,m−1)]i+1, j+1. (154)

Note that [E(n,m− 1)]i+1, j+1 6= 0 iff 0≤ j− i≤m−n−1; and

[E(n,m− 1)]i+1, j 6= 0 iff 1≤ j− i≤m−n. Hence, we complete

the induction step by checking the following cases:

◦ If j− i > m−n or j− i < 0, then [E(n,m− 1)]i+1, j+1 = 0

and [E(n,m− 1)]i+1, j = 0, and so

[E(n,m)]i+1, j+1 = 0. (155)

◦ If j− i = m− n, then [E(n,m− 1)]i+1, j+1 = 0 and so

[E(n,m)]i+1, j+1 =
j

m
[E(n,m− 1)]i+1, j =

j
m

(
n
i

)
(

m−1
j−1

) =
(

n
i

)
(

m
j

) .

(156)

◦ If j− i = 0, then [E(n,m− 1)]i+1, j = 0 and so

[E(n,m)]i+1, j+1 =
(

1− j
m

)
[E(n,m− 1)]i+1, j+1, (157)

=
(

1− j
m

) (
n
i

)
(

m−1
j

) =
(

n
i

)
(

m
j

) . (158)

◦ Otherwise (i.e., 0 < j− i < m− n), we have

[E(n,m)]i+1, j+1 =
j

m
[E(n,m− 1)]i+1, j

+
(

1− j
m

)
[E(n,m− 1)]i+1, j+1, (159)

= j
m

(
n
i

)(
m−n−1
j−i−1

)
(

m−1
j−1

) +
(

1− j
m

)(n
i

)(
m−n−1

j−i

)
(

m−1
j

) , (160)

=

(
n
i

)(
m−n−1
j−i−1

)

m
j

(
m−1
j−1

) +

(
n
i

)(
m−n−1

j−i

)

m
m− j

(
m−1

j

) , (161)

=

(
n
i

)
(

m
j

)
((

m− n− 1

j− i− 1

)
+

(
m− n− 1

j− i

))
, (162)

=

(
n
i

)(
m−n
j−i

)
(

m
j

) , (163)

which completes the proof. �

K. Proof of Proposition 7

Proof. The result can be verified using either (35) or (37) with

the fact that if a square matrix B is full rank (i.e., invertible),

then rank(AB) = rank(A) for any matrix A that is conformable

for the multiplication AB [60]. �

L. Proof of Proposition 8

Proof. The column-sum property of the elevation matrix fol-

lows from Proposition 5,

E(n,m) = bn(t0, . . . , tm)bm(t0, . . . , tm)
−1, (164)

and the convexity of Bernstein polynomials (Property 3),

11×(n+1)bn(t0, . . . , tm) = 11×(m+1), (165)

11×(m+1)bm(t0, . . . , tm) = 11×(m+1)bm(t0, . . . , tm)
−1, (166)

= 11×(m+1), (167)

where t0, . . . , tm ∈R are any distinct reals.

The row-sum property of the elevation matrix can be proven

by induction as follows.

• Base Case (n ≤ m ≤ n + 1): If m = n, then one has

E(n,n) = I(n+1)×(n+1) and so the result holds. For m = n+ 1,

[E(n,n+ 1)]i+1, j+1 =





1− i
n+1

, if j = i,
i+1
n+1

, if j = i+ 1,
0 , otherwise.

(168)

Hence, the row sum of E(n,n+ 1) is n+2
n+1

, i.e.,

n+1

∑
j=0

[E(n,n+ 1)]i+1, j+1 = 1− i
n+1

+ i+1
n+1

= n+2
n+1

. (169)

• Induction (m > n+ 1). Suppose that the result holds for
E(n,m− 1). Hence, using E(n,m) = E(n,m− 1)E(m− 1,m),
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one can conclude that the row sum of multiplication of two
matrices is the multiplication of the their row sums, i.e.,

m

∑
j=0

[E(n,m)]i+1, j+1

=
m

∑
j=0

m−1

∑
k=0

[E(n,m−1)]i+1,k+1[E(m−1,m)]k+1, j+1, (170)

=

(
m−1

∑
k=0

[E(n,m−1)]i+1,k+1

)(
m

∑
j=0

[E(m−1,m)]k+1, j+1

)
, (171)

=
m

n+1

m+1

m
=

m+1

n+1
, (172)

which completes the proof. �

M. Proof of Proposition 9

Proof. The result directly follows from Definition 3 of the

L2-norm distance because degree elevation exactly represents

Bézier curves with more control points (Definition 7). �

N. Proof of Proposition 10

Proof. Using the column- and row-sum property of the ele-

vation matrix in Proposition 8, one can obtain the result by

applying Jensen’s inequality as

dF(B[p0,...,pn]E(n,m),B[q0,...,qn]E(n,m))

= ‖(Pn−Qn)E(n,m)‖2
F , (173)

=
m

∑
j=0

‖(Pn−Qn)E(n,m) j+1‖2, (174)

≤
m

∑
j=0

n

∑
i=0

[E(n,m)]i+1, j+1‖pi− qi‖2, (175)

=
n

∑
i=0

‖pi− qi‖2
m

∑
j=0

[E(n,m)]i+1, j+1, (176)

= m+1
n+1

dF(Bp0,...,pn ,Bq0,...,qn)
2, (177)

where E(n,m) j+1 denotes the ( j+1)th-column of E(n,m). �

O. Proof of Proposition 11

Proof. Let E(n,m) = [e0, . . . ,em]. Then, the result can be
verified using Jensen’s inequality and the unit column sum
property of the elevation matrix (Proposition 8) as follows:

dC(B[p0,...,pn]E(n,m),B[q0,...,qn]E(n,m)) = max
i=0...m

‖(P−Q)ei‖, (178)

≤ max
j=0,...,n

‖p j−q j‖= dC(Bp0,...,pn
,Bq0,...,qn

), (179)

where the Jensen’s inequality and 1Tei = 1 imply that

‖(P−Q)ei‖ ≤ max
j=0,...,n

‖p j− q j‖ (180)

and this completes the proof. �

P. Proof of Proposition 13

Proof. Using the following matrix identities [61]

∂

∂X
tr(XA) = AT, and

∂

∂X
tr
(

XAXT
)
= X(A+AT), (181)

and the explicit form of the L2-norm distance in Proposition
1, one can verify the optimality of the least squares reduction
with respect to the L2-norm distance as follows

∂

∂Qm
dL2(Bp0,...,pn

,B[q0,...,qm]E(m,n))
2

=
∂

∂Qm
tr
(
(Pn−QmE(m,n))Wn(Pn−QmE(m,n))T

)
, (182)

= 2(QmE(m,n)−Pn)Wn, (183)

which equals to zero for Qm = PnR(n,m). Thus, the global

optimality follows from the convexity of the squared L2-norm

distance.

Similarly, due to its strong relation with linear least squares,

the Frobenius-norm distance of Bézier curves

dF(Bp0,...,pn ,B[q0,...,qm]E(m,n)) = ‖Pn−QmE(m,n)‖F , (184)

is minimized via the pseudo-inverse E(m,n)+ of E(m,n) at

Qm = PnE(m,n)+ = PnRL2(n,m), (185)

which completes the proof. �

Q. Proof of Proposition 14

Proof. The result can be verified using (35) and (48) as

E(m,n)Rτ ,to(n,m)

= Tb
m(m)I(m+1)×(n+1)T

m
b (n)T

b
τ (n, to)I(n+1)×(m+1)T

τ
b(m, to), (186)

= Tb
m(m)Im×nTm

τ (n, to)In×m︸ ︷︷ ︸
=Tm

τ (m,to)

Tτ
b(m, to), (187)

= Tb
m(m)Tm

τ (m, to)T
τ
b(m, to), (188)

= Tb
m(m)Tm

b (m) = I(m+1)×(m+1). (189)

which completes the proof. �

R. Proof of Proposition 15

Proof. Since b(t0, . . . , tm)
−1bm(t0, . . . , tm) = I(m+1)×(m+1), we

have for any ti ∈ {t0, . . . , tm} that

Bq0,...,qm(ti) = [q0, . . . ,qm]bm(ti), (190a)

= [p0, . . . ,pn]Rt0,...,tm(n,m)bm(ti), (190b)

= [p0, . . . ,pn]bn(t0, . . . , tm)bm(t0, . . . , tm)
−1bm(ti), (190c)

= [p0, . . . ,pn]bn(ti) = Bp0,...,pn(ti). (190d)

Thus, the matching reduction preserves the curve at ti. �

S. Proof of Proposition 16

Proof. Consider some additional distinct parameters
tm+1, . . . , tn ∈ R that are different from t0, . . . , tm. Then
the result can be verified using Proposition 5 as

E(m,n)Rt0,...,tm(n,m) = E(m,n)bn(t0, . . . , tm)bm(t0, . . . , tm)
−1, (191)

= bm(t0, . . . , tm)bm(t0, . . . , tm)
−1, (192)

= I(m+1)×(m+1), (193)

which completes the proof. �
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T. Proof of Proposition 18

Proof. The matching reduction matrix Rt0,...,tn(n+1,n) can be
expressed in the monomial basis using the basis transformation
between Bernstein and monomial bases as

Rt0,...,tn(n+1,n) = bn+1(t0, . . . , tn)bn(t0, . . . , tn)
−1, (194)

= Tb
m(n+1)mn+1(t0, . . . , tn)mn(t0, . . . , tn)

−1Tm
b (n), (195)

= Tb
m(n+1)

[
I(n+1)×(n+1)[

tn+1
0 , . . . , tn+1

n

]
mn(t0, . . . , tn)

−1

]
Tm

b (n). (196)

Hence, the degree-one matching reduction difference can be
written for Qn = [q0, . . . ,qn] and Pn+1 = [p0, . . . ,pn+1] as

Bp0 ,...,pn+1
(t)−Bq0 ,...,qn (t) = Pn+1bn+1(t)−Qnbn(t), (197)

= Pn+1Tb
m(n+1)mn+1(t)

−Pn+1Tb
m(n+1)

[
I(n+1)×(n+1)[

tn+1
0 , . . . ,tn+1

n

]
mn(t0, . . . ,tn)

−1

]
Tm

b (n)bn(t), (198)

= Pn+1Tb
m(n+1)

(
mn+1(t)−

[
I(n+1)×(n+1)[

tn+1
0 , . . . ,tn+1

n

]
mn(t0, . . . ,tn)

−1

]
mn(t)

)
,

(199)

= Pn+1Tb
m(n+1)




0

.

.

.
0
1



(
tn+1− [tn+1

0 , . . . ,tn+1
n ]mn(t0, . . . ,tn)

−1mn(t)
)
. (200)

Now observe that for any distinct t0, . . . , tn ∈ R one has

tn+1− [tn+1
0 , . . . , tn+1

n ]mn(t0, . . . , tn)
−1mn(t) =

n

∏
i=0

(t− ti), (201)

which is zero at t = t0, . . . , tn. We also have from Lemma 5
[
Tb

m(n+1)
]

i+1,n+2
= (−1)n+1−i

(
n+1

n+1

)(
n+1

i

)
, (202)

= (−1)n+1−i

(
n+1

i

)
. (203)

Hence, the matching reduction difference is given by

Bp0,...,pn+1
(t)−Bq0,...,qn

(t)=

(
n+1

∑
i=0

(−1)n+1−i

(
n+1

i

)
pi

)
n

∏
i=0

(t− ti),

(204)

which completes the proof. �

U. Proof of Lemma 6

Proof. The monomial-to-Taylor basis transformation Tτ
m di-

rectly follows from the binomial formula,

(t− to)
i =

i

∑
j=0

(
i
j

)
(−to)

i− jt j. (205)

Similarly, the Taylor-to-monomial basis transformation Tτ
m

can be obtained using the binomial formula as

t i = (t− to + to)
i =

i

∑
j=0

(
i

j

)
t i− j
o (t− to)

j. (206)

Finally, the monomial-to-Taylor and Taylor-to-monomial

transformations are inverses of each other since they are lower

triangular matrices with all ones in the main diagonal (i.e.,

det(Tτ
m(n, to)) = det(Tm

τ (n, to)) = 1), and

mn(t) = Tm
τ (n, to)τn,to(t) = Tm

τ (n, to)T
τ
m(n, to)mn(t) (207)

τn,to(t) = Tτ
m(n, to)mn(t) = Tτ

m(n, to)T
m
τ (n, to)τn,to(t) (208)

hold for all t ∈R. �

V. Proof of Lemma 7

Proof. For Taylor basis reparametrization, the result follows

from the definition of monomial and Taylor basis because
(

b−a
d−c

t + ad−bc
d−c
− to

)k
=
(

b−a
d−c

)k(
t− d−c

b−a
to +

ad−bc
b−a

)k
(209)

=
(

b−a
d−c

)k(
t− t̂o

)k
(210)

For Bernstein basis reparametrization, the results can be ver-

ified using the change of basis between Bernstein and Taylor

bases as

bn(t) = Tb
τ(n, t̂o)τn,t̂o

(t) (211)

= Tb
τ (n, t̂o)diag

(
mn(

b−a
d−c

)
)
τn,to

(
b−a
d−c

t + ad−bc
d−c

)
(212)

= Tb
τ (n, t̂o)diag

(
mn(

b−a
d−c

)
)
Tτ

b(n, to)bn

(
b−a
d−c

t + ad−bc
d−c

)
(213)

which also extends to the monomial basis reparametrization

in a similar way and so completes the proof. �

W. Proof of Lemma 8

Proof. For Bézier curve reparametrization, the result follows

from the Bernstein basis reparametrization in Lemma 7 as

Bp0,...,pn

(
b−a
d−c

t + ad−bc
d−c

)
= Pnbn

(
b−a
d−c

t + ad−bc
d−c

)
(214)

= PnTb
τ(n, to)diag

(
mn(

d−c
b−a

)
)
Tτ

b(n, t̂o)bn(t) (215)

= P̂nbn(t) (216)

which similarly extends to the monomial and Taylor curve

reparametrization as well. �

X. Proof of Lemma 9

Proof. It follow from the Bernstein-to-monomial basis trans-

formation that

Rt0,...,tm(n,m) = bn(t0, . . . , tm)bm(t0, . . . , tm)
−1, (217)

= Tb
m(n)mn(t0, . . . , tm)mm(t0, . . . , tm)

−1Tm
b (m), (218)

= Tb
m(n)




I(m+1)×(m+1)[
tm+1
0 , . . . , tm+1

m

]
mm(t0, . . . , tm)

−1

...[
tn
0 , . . . , t

n
m

]
mm(t0, . . . , tm)

−1


Tm

b (m). (219)

To complete the proof, we show below that the rows of

the middle matrix following the identity matrix satisfy the

recursion in (78) with the base case of (79). Hence, we first

consider the base case where

[α1,0, . . . ,α1,m] =
[
tm+1
0 , . . . , tm+1

m

]
mm(t0, . . . , tm)

−1, (220)
[
tm+1
0 , . . . , tm+1

m

]
= [α1,0, . . . ,α1,m]mm(t0, . . . , tm), (221)

which can be equivalently written as

tm+1−
m

∑
k=0

α1,ktk = 0 ∀t = t0, . . . , tm. (222)

Since parameters t0, . . . , tm are distinct, ∏
m
k=0(t − tk) is the

unique polynomial of order m+ 1 whose roots are t0, . . . , tm
with the unity coefficient of the monomial tm+1. Therefore,

we obtain the base case in (79) as

tm+1−
m

∑
k=0

α1,ktk =
m

∏
k=0

(t− tk). (223)
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Now consider the (m+ i+ 1)th-row,

[αi+1,0, . . . ,αi+1,m] =
[
tm+i+1
0 , . . . , tm+i+1

m

]
mm(t0, . . . , tm)

−1,
(224)

[
tm+i+1
0 , . . . , tm+i+1

m

]
= [αi+1,0, . . . ,αi+1,m]mm(t0, . . . , tm),

(225)

which is equivalent to

m

∑
k=0

αi+1,ktk = tm+i+1 = tm+it, (226)

= t
m

∑
k=0

αi,ktk = αi,mtm+1 +
m−1

∑
k=0

αi,ktk+1, (227)

=
m

∑
k=0

(αi,mα1,k +αi,k−1)t
k, (228)

where αi,−1 = 0. This implies the recursion relation in (78)

and so the result follows. �
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based on piecewise Bézier curve for autonomous vehicle,” in IEEE Int.

Conf. on Vehicular Electronics and Safety, 2013, pp. 17–22.

[37] R. Cimurs, J. Hwang, and I. H. Suh, “Bézier curve-based smoothing
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tion,” Bulletin of the Australian Mathematical Society, vol. 56, no. 3, p.
507–515, 1997.

[46] M. Eck, “Least squares degree reduction of Bézier curves,” Computer-
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