
This is a preprint. The published version can be accessed at IEEE Transactions on Robotics. 1

Learning from Human Directional Corrections
Wanxin Jin, Todd D. Murphey, Zehui Lu, Shaoshuai Mou

Abstract—This paper proposes a novel approach that enables
a robot to learn an objective function incrementally from human
directional corrections. Existing methods learn from human
magnitude corrections; since a human needs to carefully choose
the magnitude of each correction, those methods can easily lead to
over-corrections and learning inefficiency. The proposed method
only requires human directional corrections — corrections that
only indicate the direction of an input change without indicating
its magnitude. We only assume that each correction, regardless
of its magnitude, points in a direction that improves the robot’s
current motion relative to an unknown objective function. The
allowable corrections satisfying this assumption account for half
of the input space, as opposed to the magnitude corrections
which have to lie in a shrinking level set. For each directional
correction, the proposed method updates the estimate of the
objective function based on a cutting plane method, which has a
geometric interpretation. We have established theoretical results
to show the convergence of the learning process. The proposed
method has been tested in numerical examples, a user study on
two human-robot games, and a real-world quadrotor experiment.
The results confirm the convergence of the proposed method
and further show that the method is significantly more effective
(higher success rate), efficient/effortless (less human corrections
needed), and potentially more accessible (fewer early wasted
trials) than the state-of-the-art robot learning frameworks.

Index Terms—Learning from corrections, human-robot phys-
ical interaction, motion planning, cutting-plane method, inverse
reinforcement learning, learning from demonstrations.

I. INTRODUCTION

FOR tasks where robots work in proximity to human
users, a robot is required to not only guarantee the

accomplishment of the task but also complete it in a way
that a human user prefers. Different users may have different
preferences about how the robot should perform the task.
Such customized requirements usually lead to a considerable
workload of robot programming, which requires human users
to have high expertise and skills.

To circumvent the above limitations of robot programming,
learning from demonstrations (LfD) empowers non-expert
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Fig. 1: An illustration of learning from directional corrections
proposed in this paper. The robot’s current motion ξθk

opti-
mizes an objective function parameterized by θk. A human
user applies a directional correction ak to ξθk

. Note that the
magnitude ‖ak‖ of this correction does not matter. After re-
ceiving ak, the robot updates its objective function parameter
to θk+1. This motion-correction-update process repeats until
the convergence of the objective function parameter.

users to program robots by providing demonstrations. In LfD
[1], a user first provides a robot with demonstrations in a one-
time manner, then the robot learns a control policy or objective
function offline from the demonstrations. While achieving the
notable success in various applications [2]–[4], the one-time
and offline nature of LfD could lead to some challenges. For
example, when the demonstration data is insufficient to infer
an objective function due to the low informativeness [5] or
deviation from optima [6], the demonstrations have to be re-
collected and the robot has to be re-trained. This is particularly
inconvenient for robots with high degrees of freedom.

A recent line of work [6]–[9] addresses the above challenges
of LfD by developing a scheme that enables a robot to learn
an objective function from user’s feedback or corrections.
Fig. 1 is an example of those learning schemes. At each
iteration, a human user does not need to provide optimal
demonstrations to the robot, but merely a correction which
is an incremental improvement to the robot’s current motion.
The robot then leverages the correction to update its objective
function. Compared to LfD, this incremental learning scheme
reduces the workload of a user, especially for those (such as
novices) who cannot provide the optimal demonstrations in a
one-time manner [10]. Despite its promise, the state-of-the-art
methods [6]–[9] still face some challenges as below.

First, providing a valid correction—the one that improves
the robot motion—can be nontrivial. To obtain a valid correc-
tion, the human user must carefully choose the magnitude of a
correction. As a robot gets closer to the ‘desired motion’ (i.e.,
the motion in the human’s perspective), the allowable range of
the magnitude of valid corrections gets smaller (see Section
II for the detailed explanation). Thus, the human can easily
over-correct a robot near the desired motion, i.e., giving too
large corrections that adversely drive the robot away from the
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desired motion. Such difficulty makes robot learning inefficient
(we will experimentally show this in Sections V-C and VI).

Second, most of existing methods [7]–[9] lack theoretical
guarantee for the learning performance. While [6] shows
that learning from human magnitude corrections can attain a
bounded regret [11], this regret bound still cannot explicitly
tell whether or not the learned objective function converges to
the true one induced by all corrections.

To address the above challenges, this paper proposes a new
learning method that enables a robot to learn an objective
function from human directional corrections with theoretical
convergence guarantee. We highlight the following new fea-
tures of the proposed method, as shown by Fig. 1.

(I) The proposed learning scheme only requires the user’s
directional corrections. A directional correction is a correction
that only concerns directional information and does not neces-
sarily need to be magnitude-specific. For instance, in teaching
a mobile robot, a directional correction can be simply as ‘go
left’ or ‘go right’ without dictating how far the robot should
go. Furthermore, unlike existing work [6]–[9], the proposed
approach can directly handle the sparse directional corrections
without a pre-processing step of creating a human ‘intended’
trajectory, which could introduce artifacts and unfavorably
affect the learning performance.

(II) We emphasize the theoretical foundations of the pro-
posed method. First, the learning process is based on cutting-
plane methods and thus has an intuitive geometric interpre-
tation; and second, we establish the theoretical guarantees to
show the convergence of our method towards finding the true
objective function induced by human directional corrections.

We have conducted extensive experiments to test the
proposed method, including various numerical examples, a
user study on two human-robot games, and a real-world
quadrotor experiment. The results show that the proposed
method is significantly more effective (higher success rate),
efficient/effortless (less human corrections needed), and po-
tentially more accessible (fewer early wasted trials) than the
state-of-the-art robot learning frameworks.

A. Related Work

1) One-time Learning from Demonstrations: To learn an
objective function from demonstrations, routine methods are
inverse optimal control [12]–[14] or inverse reinforcement
learning [15]–[17], where an objective function is learned from
optimal demonstrations and subsequently used for control or
planning. Successful LfD applications include autonomous
driving [2], robot manipulation [3], and motion planning [4].
Despite the notable success [18]–[20], LfD could be incon-
venient in practice. First, demonstrations in LfD are usually
collected in a one-time manner and the robot learning is offline.
In the case where demonstration data is insufficient to recover
an objective function, such as low data informativeness as
discussed in [5], or significantly deviating from the optima,
the data has to be re-collected and the training has to be
re-run. Second, existing LfD [13]–[17] normally requires the
optimality of demonstrations, which are challenging to collect
for robots with high degree-of-freedoms. For example, when

providing demonstrations for a humanoid robot, a user has to
account for the robot’s motion of all degrees of freedom in a
spatially and temporally consistent manner [6].

2) Incrementally Learning from Corrections/feedback:
Compared to one-time LfD, learning from corrections or feed-
back enables a user to incrementally improve robot motion,
making it more suitable for non-expert users who cannot pro-
vide optimal demonstrations in a one-time fashion [10]. The
key assumption is that robot motion after correction achieves a
higher reward (or a lower cost) than before correction. Under
this assumption, [6] develops a co-active learning method
to update the robot objective function using user feedback.
The user feedback includes a human either selecting the top-
ranked robot trajectory among all candidates or physically
demonstrating a preferred trajectory to the robot. By defining
a regret, which quantifies the average misalignment between
the value of robot motion and that of the desired motion under
the true objective function, [6] shows the convergence of the
regret. But since regret only considers values of an objective
function, it cannot directly tell and guarantee that the learned
objective function itself is converging towards the true one.
As we will show in Section V-C, the objective function can
converge to a local solution instead of a true one.

Recently, [7]–[9] handle learning from corrections through
the perspective of the partially observable Markov decision
process (POMDP). Here, human corrections are viewed as
observations about the unknown objective function parame-
ter. By approximating the observation model and applying
the maximum a posteriori estimation, they obtain a learning
formula similar to the co-active learning [6]. Along with this
perspective, some variants have been recently developed to
particularly account for the uncertainties of human corrections.
For example, [21] simultaneously estimates a rationality co-
efficient to characterize the rationality confidence of human
corrections. [9] fits the inverse reinforcement learning into a
Kalman filter framework to quantitatively capture the uncer-
tainty of the estimation.

Both the above co-active learning and POMDP-based learn-
ing require a human to carefully choose the magnitude cor-
rection that improves robot motion. As we will detail in
Section II, choosing a valid magnitude correction is difficult,
especially when a robot gets closer to the desired motion,
because the allowable magnitude of a correction has to lie
in a shrinking level set. Near the desired motion, a human
could easily over-correct the robot, i.e., applying too large
corrections that adversely drive the robot away from the
desired motion, making the algorithm diverge or even fail.
We will experimentally show this difficulty in Section V-C.
Moreover, due to the sparsity of human corrections, all the
above methods require a dedicated step to obtain a human
‘intended’ trajectory for each correction. In the co-active
learning, a robot needs to switch to a screening mode to
obtain a human preferred trajectory, and in the POMDP-based
method, a human intended trajectory is created by trajectory
deformation [22]. These pre-processing steps may not only
introduce more hyperparameters but also add some artifacts
that could undermine the learning performance [8]

Very recently, [23] directly learns a desired trajectory from
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human physical interactions, then a robot tracks the learned
trajectory using linear–quadratic regulator (LQR) controllers.
They minimize a trajectory distance loss, and the learning
update is based on the assumption that the direction of a
human correction is exactly aligned with the deepest gradient
descent of the distance loss. While that work is related to
our work in the sense that they both use the direction of a
human correction, our work, however, focuses on learning an
objective function instead of learning the desired trajectory
directly. Importantly, we do not restrict the direction of a
correction to be exactly aligned with the deepest gradient
descent, but any correction as long as it has a direction that
decreases the cost of robot motion. The above two distinctions
lead to a new method of our work, which has a strong
theoretical guarantee for learning convergence.

Finally, we want to mention that most of the existing
methods [7]–[9], [23] lack theoretical guarantee about the
learning performance. The only work that attempts to do so is
[6], where a regret bound is shown. As discussed previously,
such regret is an indicator of the misalignment of the values
of the objective function, and cannot directly tell or guarantee
the convergence of the objective function itself. In this paper,
we will directly characterize the convergence of the learned
objective function towards the true function that is induced by
human corrections.

B. Contributions

To give readers a high-level picture of the proposed method,
we show an overview in Fig. 2. We claim the following
contributions of the proposed method.

Robot motion 
planning with current 

objective function 𝐽 𝜃!

Update search space
𝛀!"# → 𝛀!

Compute the
cutting hyperplane: 
⟨ℎ!, ⟩𝜃 + 𝑏! < 0

While robot executes 
the planned motion 𝜉$!

A user applies
directional corrections .𝒂!

𝜉$!
.𝒂!

Choose 𝜃! from
search space 𝛀!"#

Trajectory
𝜉$!

.𝒂!⟨ℎ!, ⟩𝜃 + 𝑏! < 0

𝜉$!

𝛀!"#

𝜃!
𝛀!

𝜃! ∈ 𝛀!"#

Fig. 2: An overview of the proposed algorithm.

(I) The proposed method learns an objective function from
human directional corrections. It only requires that a cor-
rection, regardless of its magnitude, points in a direction
of improving robot motion. As we will show in Sections
II and V-C, the allowable corrections that satisfy this
requirement always account for half of the input space,
making it more flexible for users to choose corrections
from. Also, unlike existing methods, the proposed method
directly learns from sparse directional corrections without
a pre-processing step of creating an ‘intended’ trajectory.

(II) The proposed learning algorithm has strong theoretical
foundations. First, the proposed learning method is based
on the cutting plane technique, which has straightforward
geometric interpretations, as shown in Fig. 2. Second,
we have established the theoretical results to show the
convergence of the method towards finding the true
objective function induced by all corrections.

Numerical examples, a user study on two human-robot
games, and a real-world quadrotor experiment confirm the

efficacy and convergence of the proposed algorithm. The
user study and real-world experiment further show that the
proposed method is significantly more effective (higher suc-
cess rate), efficient/effortless (fewer corrections needed), and
potentially more accessible (fewer early wasted trials) than the
state-of-the-art methods.

In what follows, Section II describes the problem formula-
tion. Section III outlines the main algorithm and presents its
geometric interpretation. Section IV provides the theoretical
results of the algorithm and its detailed implementation. Vari-
ous numerical examples and comparisons are given in Section
V. Section VI presents a user study and Section VII provides
a real-world experiment. Conclusions are drawn in Section
VIII. The appendix includes the proof, discussion, and possible
extension of this work.

II. PROBLEM FORMULATION

Consider a robot with the following dynamics and the initial
condition:

xt+1 = f(xt,ut), with x0, (1)

where xt ∈ Rn is the robot state, ut ∈ Rm is the control input,
f : Rn × Rm 7→ Rn is differentiable, and t = 1, 2, · · · is the
time step. As commonly used in objective learning methods
[5]–[10], [14]–[17], suppose that the robot cost function has
the following parameterized form:

J(u0:T ,θ) =
∑T

t=0
θTφ(xt,ut) + h(xT+1), (2)

where φ : Rn × Rm 7→ Rr is a vector of the pre-defined
features (basis functions); θ ∈ Rr is a vector of weights, which
are tunable; and h(xT+1) is the final cost on the robot final
state xT+1, such as penalizing the distance between xT+1

and a given goal state xgoal, h(xT+1) = ‖xgoal − xT+1‖2.
Note that depending on specific applications, the final cost
term h(xT+1) can be either absent, i.e., h(xT+1) = 0, or also
parameterized in a weighted-feature form with the weights to
be learned jointly with θ. The method developed in this paper
can sufficiently handle either cases with little modifications.
For a fixed choice of θ, the robot plans a sequence of inputs
u0:T over time horizon T by (locally) optimizing the cost
function (2) subject to (1), producing a trajectory

ξθ =
{
xθ0:T+1,u

θ
0:T

}
. (3)

In the following text, we occasionally write the cost function
(2) as J(θ) for ease of readability.

For a specific task, suppose that a human user expects
the robot to minimize an implicit cost function J(θ∗) in the
same form of (2) but with unknown θ∗. We call θ∗ the true
weight vector. In general, a human user may neither explicitly
write down the value of θ∗ nor demonstrate the corresponding
desired trajectory ξθ∗ , but the human user can tell whether the
robot motion trajectory is desired or not. A robot trajectory
is desired if it minimizes the implicit J(θ∗); otherwise, it is
not desired. In order for the robot to learn J(θ∗) (and thus
generate the desired trajectory ξθ∗ ), the human user is only
able to make corrections to the robot motion. After receiving
each human correction, the robot updates its guess θ towards
the true θ∗. This procedure has been shown in Fig. 1.
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Specifically, the process of a robot learning from human
directional corrections is iterative, as shown in Fig. 2. Each
iteration basically includes three steps: robot planning (&
execution), human correction, and robot update. Let k =
1, 2, 3, · · · , be the iteration index and let θk denote the robot’s
guess of the weight vector at iteration k. At k = 1, the robot is
initialized with an arbitrary guess θ1. At iteration k, the robot
first performs motion planning, i.e. solving ξθk

by minimizing
the cost function J(θk) in (2) subject to its dynamics in (1).
During the robot executing ξθk

, the human user observes ξθk

and applies a correction, denoted by atk ∈ Rm, to the robot in
its input space. Here, tk ∈ {0, 1, · · · , T} is called correction
time, indicating at which time step the correction atk is made.
After receiving atk , the robot updates its guess θk to θk+1

based on an update rule developed later.
One distinguishing feature of our method is that we assume

that each human correction atk satisfies〈
−∇J(uθk

0:T ,θ
∗), ak

〉
> 0, k = 1, 2, 3, · · · . (4)

Here,

ak =
[
0T · · · , aTtk , · · · ,0

T
]T ∈ Rm(T+1), (5)

with atk filled at the tkth entry and 0 ∈ Rm elsewhere. Here,
〈·, ·〉 is the dot product, and −∇J(uθk

0:T ,θ
∗) is the gradient-

descent of J(θ∗) with respect to u0:T evaluated at the robot
current trajectory ξθk

= {xθk

0:T+1,u
θk

0:T }. Note that (4) does not
require a specific value to the magnitude of atk but requires
its direction roughly around the gradient-descent direction of
J(θ∗). It means that the correction ak aims to guide the
robot motion ξθk

towards a lower cost under J(θ∗) unless the
trajectory is desired. Thus, we call atk a directional correction.

In practice, one always needs to account for human’s noisy
or imperfect corrections. Thus, we modify (4) as follows

Eak

〈
−∇J(uθk

0:T ,θ
∗), ak

〉
=
〈
−∇J(uθk

0:T ,θ
∗), Eak

(ak)
〉

=
〈
−∇J(uθk

0:T ,θ
∗), āk

〉
> 0, k = 1, 2, ...,

(6a)

where
āk = Eak

(ak). (6b)

Here, E(·) is the expectation with respect to the human
correction data ak. (6) says that the original assumption (4)
can be met in expectation; in other words, the robot can receive
and average human’s multiple directional corrections before
one update of the cost function is made. There are two ways
to implement multiple corrections. The most convenient way
is that a human user applies multiple directional corrections
at different time steps but all within the same execution of the
robot motion ξθk

, i.e., the robot executes the current plan ξθk

just once. The second way is that the multiple corrections
are applied in the multiple repetitions of the execution of
ξθk

, i.e., the robot executes the same plan ξθk
for multiple

times. Whichever implementation, by taking the expectation
of human’s multiple directional corrections āk = Eak

(ak),
(6) permits noisy and imperfect human directional corrections.
The similar strategies have also been adopted in [6].

The problem of interest in this paper is that given human
(averaged) directional corrections āk satisfying the assumption
(6), we aim to develop a rule to update the robot weight vector
guess θk such that θk converges to θ∗ as k = 1, 2, 3, ....

Remark 1. We assume that human corrections atk ∈ Rm
are in the robot input space, which means that atk can be
directly added to robot input utk . This can be readily fulfilled
in some applications such as autonomous vehicles, where a
user directly changes the steering angle of a vehicle. For
other cases where the corrections are not readily in the robot
input space, it could be met via some specific interfaces (or
computation), which map correction signals to the robot input
space. For example, when a human interacts with the end
effector of a robot manipulator, one can convert the task-space
contact force to the joint torques via Jacobian. Then, atk is
the mapped correction. The reason why we do not consider
the corrections in the state space is that 1) corrections in
input spaces may be easier to implement, as shown in our
later experiments, and 2) corrections in state spaces can be
infeasible for the under-actuated robot systems [24].

−∇𝐽

𝐽(𝑢!:# , 𝜃∗)

𝑢!:#
%!

!𝑎!
𝑢!:#$

∗

(a) Allowable region (green) of
magnitude corrections.

−∇𝐽

𝐽(𝑢!:# , 𝜃∗)

𝑢!:#
%!

!𝑎!
𝑢!:#$

∗

(b) Allowable region (green) of
directional corrections.

Fig. 3: Magnitude corrections v.s. directional corrections.
Contours (circles) and the desired trajectory uθ

∗

0:T (black dot)
of the true cost function J(θ∗) are plotted. (a) Green region (a
sub-level set) indicates all allowable magnitude corrections āk
that satisfy J(uθk

0:T + āk,θ
∗)<J(uθk

0:T ,θ
∗). (b) Green region

(half of the input space) indicates all allowable directional
corrections āk that satisfy 〈−∇J(uθk

0:T ,θ
∗), āk〉>0.

Remark 2. Assumption (4) on directional correction atk is
less restrictive than ones in [6]–[9] using magnitude correc-
tions, which assume the cost of the corrected robot trajectory
uθk

0:T +āk is lower than that of the robot original motion uθk

0:T ,
i.e., J(uθk0:T + āk,θ

∗)<J(u
θk
0:T ,θ

∗). As shown in Fig. 3, their
assumptions usually lead to the restriction of correction mag-
nitude. Specifically, to satisfy J(u

θk
0:T + āk,θ

∗)<J(u
θk
0:T ,θ

∗),
‖āk‖ has to be chosen from the J(u

θk
0:T ,θ

∗)-sublevel set of
J(θ∗), as shown by the green region in Fig. 3a. Furthermore,
this region will shrink as uθk

0:T gets close to the desired
trajectory uθ

∗

0:T (black dot), thus making ‖āk‖ more difficult
to choose. In contrast, the directional corrections satisfying
(4) always account for half of the input space, as shown by
the green region in Fig. 3b. A human user can choose any
correction as long as its direction lies in the half space of the
gradient descent of J(θ∗). Thus, (4) would be more likely to
be satisfied for non-expert users. We will experimentally show
this advantage later in Section V-C and Section VI.



This is a preprint. The published version can be accessed at IEEE Transactions on Robotics. 5

III. MAIN ALGORITHM OUTLINE AND ITS GEOMETRIC
INTERPRETATION

In this section, we will outline the proposed main algorithm
and present its geometric interpretation.

A. Hyperplane for Each Directional Correction

Before developing the main algorithm, we first show that the
condition (6) equals a linear inequality imposed on the true
θ∗. This has been formally stated by the following lemma.

Lemma 1. Suppose that the current guess of the weight vector
is θk, and the robot trajectory ξθk

={xθk

0:T+1,u
θk

0:T } is a result
of (locally) minimizing J(θk) in (2) subject to dynamics (1).
For ξθk

, given a human (averaged) directional correction ātk
satisfying (6), one has

〈hk,θ∗〉+ bk < 0, k = 1, 2, 3 · · · , (7)

with

hk = HT
1(xθk

0:T+1,u
θk

0:T )āk ∈ Rr, (8a)

bk = āTkH2(xθk

0:T+1,u
θk

0:T )∇h(xθk

T+1) ∈ R. (8b)

Here, āk is defined in (6b);∇h(xθk

T+1) is the gradient of the fi-
nal cost h(xT+1) in (2) evaluated at xθk

T+1;H1(xθk

0:T+1,u
θk

0:T )

and H2(xθk

0:T+1,u
θk

0:T ) are computed as:

H1(xθk

0:T+1,u
θk

0:T )=

[
F uF

−1
x Φx+Φu
∂φT

∂u
θk
T

]
∈ Rm(T+1)×r, (9a)

H2(xθk

0:T+1,u
θk

0:T )=

[
F uF

−1
x V

∂fT

∂u
θk
T

]
∈ Rm(T+1)×n, (9b)

with

F x=



I −∂fT

∂x
θk
1

· · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I −∂fT

∂x
θk
T -1

0 0 · · · I


, Φx=



∂φT

∂x
θk
1

∂φT

∂x
θk
2

...
∂φT

∂x
θk
T


, (10a)

F u=



∂fT

∂u
θk
0

0 · · · 0

0 ∂fT

∂u
θk
1

· · · 0

...
...

. . .
...

0 0 · · · ∂fT

∂u
θk
T -1

 , Φu=



∂φT

∂u
θk
0

∂φT

∂u
θk
1

...
∂φT

∂u
θk
T -1

 , (10b)

V =
[
0 0 · · · 0 ∂f

∂x
θk
T

]T
. (10c)

In above, the dimensions are F x ∈ RnT×nT , F u ∈ RmT×nT ,
Φx ∈ RnT×r, Φu ∈ RmT×r, V ∈ RnT×n. I is n×n identity.
For a general differentiable function g(x) and a fixed value
x∗, we denote ∂g

∂x∗ as the Jacobian of g(x) evaluated at x∗.

Proof. We first derive the explicit form of ∇J(uθk

0:T ,θ
∗) in

(6), and then show that (6) can be re-written as (7).
Consider the robot current trajectory ξθk

={xθk

0:T+1,u
θk

0:T },
which satisfies the robot dynamics constraint (1). For any t =

0, 1, ..., T , define the infinitesimal perturbation pair (δxt, δut)
at the state-input pair (xθk

t ,uθk
t ). By linearizing the dynamics

(1) around (xθk
t ,uθk

t ), we have

δxt+1 =
∂f

∂x
θk
t

δxt +
∂f

∂u
θk
t

δut, (11)

where ∂f

∂x
θk
t

and ∂f

∂u
θk
t

are the Jacobians of f with respect to

xt and ut, respectively, evaluated at (xθk
t ,uθk

t ). By stacking
(11) for all t = 0, 1, ..., T and also noting δx0 = 0 (because
xθk
0 = x0 is given), we have the following compact form:

−ATδx1:T+1 +BTδu0:T = 0, (12)

with δx1:T+1=[δxT1 , · · · , δxTT+1]T, δu1:T=[δuT1 , · · · , δuTT ]T,

A =

[
F x −V
0 I

]
, and B =

F u 0

0 ∂fT

∂u
θk
T

 , (13)

with F x and F u defined in (10). Given δx1:T+1 and δu1:T ,
the increment of J(uθk

0:T ,θ
∗), denoted as δJ(θ∗), is

δJ(θ∗) = CTδx1:T+1 +DTδu0:T , (14)

with

C =

[
Φxθ

∗

∂hT

∂x
θk
T+1

]
and D =

[
Φuθ

∗

∂φT

∂u
θk
T

θ∗

]
, (15)

with Φx and Φu defined in (10). Since A is always invertible
(due to full rank), we solve for δx1:T+1 from (12) and submit
it to (14), yielding

δJ(θ∗) = CTδx1:T+1 +DTδu0:T ,

=
(
CT(A−1)TBT +DT

)
δu0:T . (16)

Thus, we have

∇J(uθk

0:T ,θ
∗) = BA−1C +D. (17)

The above (17) can be further written as

∇J(uθk

0:T ,θ
∗) = BA−1C +D

=

[
F u 0

0 ∂fT

∂u
θk
T

] [
F x −V
0 I

]−1 [Φxθ
∗

∂hT

∂x
θk
T +1

]
+

[
Φuθ

∗

∂φT

∂u
θk
T

θ∗

]

=

F uF−1x Φxθ
∗+Φuθ

∗+F uF
−1
x V

∂hT

∂x
θk
T+1

∂φT

∂u
θk
T

θ∗+ ∂fT

∂u
θk
T

∂hT

∂x
θk
T+1

 , (18)

where we have used Schur complement to compute the inverse
of the block matrix A. By the definitions in (9), (18) becomes

∇J(uθk

0:T ,θ
∗) = H1(xθk

0:T+1,u
θk

0:T )θ∗

+H2(xθk

0:T+1,u
θk

0:T )∇h(xθk

T+1). (19)

Substituting (19) into (6) and also considering the defini-
tions in (8), we obtain〈

−∇J(uθk

0:T ,θ
∗), āk

〉
= −〈hk,θ∗〉 − bk > 0, (20)

which leads to (7). This completes the proof.

We have the following remarks on the intuition of Lemma 1.
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Remark 3. The key result of Lemma 1 is the linear inequality
(7), which is associated with a hyperplane 〈hk,θ〉+ bk = 0.
The parameters hk and bk of this hyperplane, given in (8), are
both known and determined by human directional correction
āk and robot current trajectory ξθk

. In other words, Lemma 1
states that given robot motion ξθk

and the human directional
correction āk, one can write a hyperplane 〈hk,θ〉 + bk = 0
and a linear inequality (7) for the unknown θ∗.

Remark 4. Obtaining hk and bk requires computing the
matrices H1(x

θk
0:T+1,u

θk
0:T ) and H2(x

θk
0:T+1,u

θk
0:T ) in (9). In our

previous work [5], H1(x
θk
0:T+1,u

θk
0:T ) and H2(x

θk
0:T+1,u

θk
0:T ) are

called the ‘recovery matrix’. The Lemma 1 of [5] has shown
that the ‘recovery matrix’ can be iteratively computed by in-
tegrating each point (xθk

t ,uθk
t ), t = 0, 1, ..., T . This iterative

property of the recovery matrix facilitates the computation of
H1 and H2 by avoiding the inverse of F x in (9), significantly
reducing the computational burden. Please refer to Lemma 1
of [5] for the iteration formula.

B. Outline of the Proposed Algorithm
With Lemma 1, we are ready to develop the main algorithm

to learn θ∗. At each iteration k, we maintain a weight search
space, denoted by Ωk ⊂ Rr, such that θ∗ ∈ Ωk and θk ∈ Ωk

for all k = 1, 2, 3, .... This Ωk can be thought of as the possible
location of θ∗, and θk as the current guess to θ∗. Rather than
a direct rule to guide θk towards θ∗, we will develop a rule to
update Ωk to Ωk+1 such that a useful measure of the size of
Ωk will converge to 0. With this high-level idea, we outline
the proposed main algorithm below.

Main Algorithm (Outline)

Initialize the weight search space Ω0 to be

Ω0 = {θ ∈ Rr | −
¯
ci ≤ θ[i] ≤ c̄i, i = 1, 2, ..., r}, (21)

where constants
¯
ci ≥ 0 and c̄i ≥ 0 denote the lower bound

and upper bounds of the ith entry θ[i] in θ, respectively.
Here,

¯
ci and c̄i can be chosen large enough such that θ∗ ∈

Ω0. At iteration k = 1, 2, ..., the learning proceeds with
the following three steps:

Step 1: Choose a weight vector guess θk from the current
weight search space Ωk−1, i.e., θk ∈ Ωk−1(we
will discuss how to choose θk ∈ Ωk−1 in Section
IV).

Step 2: The robot restarts and plans its motion trajectory
ξθk

by solving a trajectory optimization with the
cost function J(θk) in (2) and the dynamics in
(1). While the robot is executing the plan ξθk

,
a human applies (averaged) directional correction
āk in (6b). Then, a hyperplane 〈hk,θ〉 + bk = 0
is computed in (7)-(8).

Step 3: Update the weight search space Ωk−1 to Ωk via

Ωk = Ωk−1∩{θ ∈ Rr | 〈hk,θ〉+ bk < 0} . (22)

We provide some remarks to the above outline of the pro-
posed algorithm. For the initialization (21), we allow different

entries of θ to have their own lower and upper bounds, which
may come from prior knowledge. Simply but not necessarily,
one could also initialize

Ω0 = {θ ∈ Rr | ‖θ‖∞ ≤ R}, (23)

where
R = max{̄ci, c̄i, i = 1, · · · , r}. (24)

In Step 1, a weight vector guess θk is chosen from Ωk−1. We
will (in (26) in Lemma 2) show that the true θ∗ always lies in
Ωk for any k = 1, 2, 3, .... Thus, we will expect θk to be closer
to θ∗ if a size measure of Ωk gets smaller. In fact, the weight
search space Ωk is always non-increasing as Ωk ⊆ Ωk−1 due
to (22) in Step 3. In the next Section IV, we will further focus
on how to pick θk ∈ Ωk−1 such that the size of Ωk is strictly
reduced as k increases. In Step 2, the robot trajectory ξθk

is planned by solving a trajectory optimization with the cost
function J(θk) in (2) and the dynamics constraint (1). This
can be done by any available trajectory optimization methods,
e.g., [25] and existing solvers [26]. After a human applies a
directional correction ātk to the executed ξθk

, a hyperplane
〈hk,θ〉+ bk = 0 can be computed via (7)-(8), which will be
used to update the search space by (22) in Step 3. The detailed
implementation of the above main algorithm will be described
in the next section.

Given the above proposed main algorithm, we next present
the following important lemma.

Lemma 2. Under the proposed main algorithm, one has

〈hk,θk〉+ bk = 0, ∀ k = 1, 2, 3, ... (25)

and
θ∗ ∈ Ωk, ∀ k = 1, 2, 3, ... (26)

A proof of Lemma 2 is given in Appendix A. Lemma 2 has
the following intuitive geometric explanations. First, (25) says
that the current guess θk is always located on the current
hyperplane 〈hk,θ〉+ bk = 0. Second, (26) says that although
the proposed algorithm directly updates the weight search
space Ωk via (22), the true (but unknown) weight vector θ∗

is always contained in the current Ωk. Thus, intuitively, the
smaller the search space Ωk is, the closer θ∗ is to θk.

C. Geometric Interpretation

In this part, we will provide an interpretation of the proposed
main algorithm through a geometric perspective. For simplicity
of illustrations, we assume θ ∈ R2 here.

𝛀!"#

𝜃!𝛀!

⟨ℎ! , ⟩𝜃 + 𝑏! = 0

𝜃∗

(a) At k-th iteration

𝛀!"#

𝜃!𝛀!
𝜃!"#

𝛀!"#

⟨ℎ! , ⟩𝜃 + 𝑏! = 0

⟨ℎ!"#, ⟩𝜃 + 𝑏!"# = 0

𝜃∗

(b) At (k + 1)-th iteration

Fig. 4: Illustration of updating Ωk.



This is a preprint. The published version can be accessed at IEEE Transactions on Robotics. 7

At the kth iteration shown in Fig. 4a, by Step 1 of
the main algorithm, a weight vector guess θk (red dot)
is picked from the current search space Ωk−1 (light blue
region), i.e., θk ∈ Ωk−1. By Step 2, we obtain a hyperplane
〈hk,θ〉 + bk = 0 (black dashed line), which cuts through
the weight search space Ωk−1 into two portions. By (25) of
Lemma 2, we know that θk always lies on this hyperplane
because 〈hk,θk〉 + bk = 0, as shown in Fig. 4a. By Step
3 of the main algorithm, we only keep one of the two cut
portions, which is the interaction between Ωk−1 and the
half space 〈hk,θ〉 + bk < 0, and the kept portion will be
used as the new search space for the next iteration, that is,
Ωk = Ωk−1 ∩ {θ ∈ Rr | 〈hk,θ〉+ bk < 0}, as shown by the
blue region in Fig. 4a. The above procedure repeats at the next
iteration k+1 in Fig. 4b, and finally produces a smaller search
space Ωk+1, as shown by the darkest blue region in Fig. 4b.
From (22), one has Ω0 ⊇ · · ·Ωk−1 ⊇ Ωk ⊇ Ωk+1 ⊇ · · · .
Moreover, by (26) in Lemma 2, we note that the true θ∗ (red
point) is always contained in Ωk whenever k is.

!"#$

%"

!"

⟨ℎ", ⟩% + +" = 0

(a) A large cut from Ωk−1

!"#$

%"

⟨ℎ", ⟩% + +" = 0

!"

(b) A small cut from Ωk−1

Fig. 5: Illustration of how different human directional correc-
tions āk affect the cut of the weight search space Ωk−1.

Besides the above geometric illustration, we also have the
following observations:

(1) The key idea of the proposed main algorithm is to cut
and remove the weight search space Ωk−1 as each human
directional correction āk becomes available. Thus, we always
expect that Ωk−1 can quickly shrink as k increases, because
thereby we can say that the guess θk is close to the true weight
vector θ∗. As shown in Fig. 4, the reduction rate of Ωk−1
depends on two factors: the human directional correction āk,
and how to choose θk ∈ Ωk−1, both discussed below.

(2) From (8), we note that human directional correction āk
determines hk, which is the normal vector of the hyperplane
〈hk,θ〉+ bk = 0. When fixing θk, we can think of the hyper-
plane rotates around θk with different āk, leading to different
removals of Ωk−1. This can be illustrated by comparing Fig.
5a and Fig. 5b.

(3) The choice of the guess θk ∈ Ωk−1 defines the specific
location of the hyperplane 〈hk,θ〉 + bk = 0, because the
hyperplane is always passing through θk by (25) in Lemma
2. Thus, θk also affects how Ωk−1 is cut and removed. This
can be illustrated by comparing Fig. 4a with Fig. 5a.

Based on the above observations, we know that the conver-
gence of the proposed main algorithm is determined by the
reduction of the weight search space Ωk−1. This reduction
depends on both the human directional correction āk and the

choice of the weight vector guess θk ∈ Ωk−1. In the next
section, we will present a way of choosing θk to guarantee
the convergence of the proposed main algorithm.

IV. ALGORITHM IMPLEMENTATION AND CONVERGENCE
ANALYSIS

In this section, we detail the choice of θk ∈ Ωk−1, show the
convergence of the proposed algorithm, and present a detailed
implementation of the algorithm with a termination criterion.

A. Choice of Current Guess θk ∈ Ωk−1

In the proposed main algorithm, at iteration k, the weight
search space Ωk−1 is updated using (22), rewritten below:

Ωk = Ωk−1 ∩ {θ ∈ Rr | 〈hk,θ〉+ bk < 0} .

To show the reduction of a weight search space, it is straight-
forward to use the volume measure (length or area for one- or
two-dimension cases, respectively) of a (closure) search space
Ωk, denoted as Vol(Ωk). Zero volume implies the convergence
of the search space [27]. By (22), we know that Ωk ⊆ Ωk−1
and thus Vol(Ωk) is non-increasing. In the following we need
to further find a way such that Vol(Ωk) is strictly decreasing,
i.e., there exists a constant 0 ≤ α < 1 such that

Vol(Ωk) ≤ αVol(Ωk−1). (27)

From Fig. 5, we observe that for a fixed choice of θk ∈
Ωk−1, different human directional corrections āk can lead to
different reduction of Ωk−1. For example, Fig. 5a has a large
volume reduction from Ωk−1 to Ωk while Fig. 5b leads to
a very small reduction. Unfortunately, we cannot assume the
specific direction of a human correction āk (it is the discretion
of the user), but we can choose the current guess θk ‘smartly’
to avoid the very small reduction regardless of specific human
corrections. One intuitive choice of such θk is at some center
of the search space Ωk−1. Thus, we define the following center
of the maximum volume ellipsoid (MVE) inscribed in Ωk−1.

Definition 1 (Maximum Volume Inscribed Ellipsoid [28]).
Given a compact convex set Ω ⊂ Rr, the maximum volume
ellipsoid (MVE) inscribed in Ω, defined as E, is denoted by

E = {B̄θ + d̄ | ‖θ‖2 ≤ 1}. (28)

Here, B̄ ∈ Sr++ (i.e., a r× r positive definite matrix) and d̄ ∈
Rr is called the center of E. B̄ and d̄ solve the optimization:

maxd,B∈Sr++
log detB

s.t. sup‖θ‖2≤1 IΩ(Bθ + d) ≤ 0,
(29)

where IΩ(θ) = 0 for θ ∈ Ω and IΩ(θ) =∞ for θ /∈ Ω.

By Definition 1, let Ek denote the MVE inscribed in Ωk

and dk denote the center of Ek, k = 0, 1, .... For the choice
of θk+1 ∈ Ωk, we choose

θk+1 = dk, (30)

as illustrated in Fig. 6. Other choices of θk+1 using other types
of centers of the search space are discussed in Appendix C.



This is a preprint. The published version can be accessed at IEEE Transactions on Robotics. 8
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(b) Center of MVE in Ωk

Fig. 6: Illustration of choosing θk+1 as the center of MVE
Ek inscribed in the weight search space Ωk.

We now give a computational method to solve for dk, i.e.
the center of MVE Ek inscribed in Ωk. Recall that in the
main algorithm, the initial Ω0 is (21), which is equivalent to

Ω0 =

{
θ

∣∣∣∣∣ 〈ei,θ〉 − c̄i ≤ 0

−〈ei,θ〉 −
¯
ci ≤ 0

, i = 1, · · · , r

}
, (31)

where ei is a unit vector with the only ith entry as 1. Following
the update (22), Ωk is also a compact polytope, which is

Ωk =

θ
∣∣∣∣∣∣∣
〈ei,θ〉 − c̄i ≤ 0, i = 1, · · · , r;
− 〈ei,θ〉 −

¯
ci ≤ 0, i = 1, · · · , r;

〈hj ,θ〉+ bj < 0, j = 1, · · · , k

 . (32)

As a result, solving (29) for the center dk becomes a convex
program [28], stated in the lemma below.

Lemma 3. For a polytope Ωk in (32), the center dk of the
MVE Ek inscribed in Ωk can be solved via the following
convex optimization:

mind,B∈Sr++
− log detB

s.t. ‖Bei‖2 + 〈d, ei〉 ≤ c̄i, i=1, · · · r,
‖Bei‖2 − 〈d, ei〉 ≤

¯
ci, i=1, · · · r,

‖Bhj‖2+ 〈d,hj〉 ≤ −bj , j=1, · · · k.

(33)

The proof of Lemma 3 can be found in Chapter 8.4.2 in [28,
pp.414]. (33) can be efficiently solved by available convex
program solvers, e.g., [29]. In the implementation, since the
number of linear inequalities grows as k increases, the trick of
dropping some redundant inequalities in (32) can be adopted
[27]. Dropping redundant inequalities does not change Ωk and
its volume reduction (convergence). Please see how to identify
the redundant inequalities in [27].

B. Exponential Convergence and Termination Criterion

Now we analyze the convergence of the volume reduction
of Ωk and develop its termination criterion in implementation.
First, the convergence of the reduction of Vol(Ωk) is guaran-
teed by the following lemma.

Lemma 4. Let θk be chosen as the center dk−1 of the MVE
Ek−1 inscribed in Ωk−1 ⊂ Rr. Then, the update (22) has

Vol(Ωk)

Vol(Ωk−1)
≤ (1− 1

r
). (34)

Lemma 4 is a theorem directly from [30]. Lemma 4 indicates

Vol (Ωk) ≤ (1− 1

r
)k Vol (Ω0).

Thus, the convergence rate of Vol (Ωk) → 0 is as fast as
(1− 1

r )k → 0, as k = 0, 1, 2, ....
To implement the proposed main algorithm, we will not only

need the exponential convergence as established by Lemma 4
but also a termination criterion, which specifies the maximum
number of iterations needed for Vol (Ωk) below certain a given
threshold. Thus, we have the following theorem.

Theorem 1. In the main algorithm, suppose Ω0 is given by
(21), and at iteration k, θk is chosen as the center dk−1 of the
MVE Ek−1 inscribed in Ωk−1. Given a termination condition

Vol (Ωk) ≤ (2ε)r

with ε a user-specified threshold, the proposed main algorithm
runs for k ≤ K iterations, namely, the algorithm terminates
in at most K iterations, where

K =
r log(R/ε)

− log(1− 1/r)
, (35)

with R given in (24).

Proof. Initially, we have Vol (Ω0) ≤ (2R)r. From Lemma 4,
after k iterations, we have

Vol (Ωk) ≤ (1− 1

r
)k Vol (Ω0) ≤ (1− 1

r
)k(2R)r, (36)

which yields to

log Vol (Ωk) ≤ k log(1− 1

r
) + log(2R)r. (37)

When k = r log(R/ε)
− log(1−1/r) ,

log Vol (Ωk) ≤ −r log(R/ε) + log(2R)r. (38)

The above equation is simplified to

log Vol (Ωk) ≤ log(2ε)r, (39)

which means that the termination condition Vol (Ωk) ≤ (2ε)r

is satisfied. This completes the proof.

We have the following comments on the above Theorem 1.

Remark 5. Since Lemma 2 states that both θ∗ and θk are
in Ωk for any k = 1, 2, 3, ... , the user-specified threshold ε
in the termination condition Vol (Ωk) ≤ (2ε)r can also be
understood as an indicator for the distance between the true
θ∗ (usually unknown in practice) and the robot current guess
θk. ε is set based on the desired learning accuracy. 1

C. Detailed Implementation of Main Algorithm

With the termination criterion stated in Theorem 1 and the
choice of θk in (30) and Lemma 3, we present the detailed
implementation of the proposed main method in Algorithm 1.
The setting of the initial Ω0 in (21) and ε will be given in
Appendix B-D.

1In practice, it is usually easy to set ε with a small value, because the
empirical results in Sections VI and VII show that the robot motion trajectory
can converge (to the desired motion) more quickly than the objective function
itself. This means that one usually sees the convergence of the robot trajectory
before the termination condition is reached, as shown in Fig. 10. More
discussion about setting ε will be given in Appendix B-D.
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Algorithm 1: Learning from directional corrections
Input: Specify a termination threshold ε and use it to

compute the maximum iteration K by (35).
Initialization: Initial weight search space Ω0 in (21).
for k = 1, 2, · · · ,K do

Choose a weight vector guess θk ∈ Ωk−1 via Lemma 3;
Restart and plan a robot trajectory ξθk by solving a

trajectory optimization with the cost function J(θk) in
(2) and the dynamics in (1);

Robot executes the planned trajectory ξθk while receving
the human averaged directional correction āk in (6b);

Compute the matrices H1(x
θk
0:T+1,u

θk
0:T ) and

H2(x
θk
0:T+1,u

θk
0:T ), and then compute the hyperplane

and half space 〈hk,θ〉+ bk < 0 via (7)-(8);
Update the weight search space by
Ωk = Ωk−1 ∩ {θ ∈ Rr | 〈hk,θ〉+ bk < 0} via (22);

end
Output: θK .

V. NUMERICAL EXAMPLES

In this section, we will test the proposed method in numer-
ical simulations and make comparisons with the magnitude-
correction methods discussed in the previous related work.

A. Inverted Pendulum

The dynamics of a pendulum is

α̈ =
−g
l

sinα− d

ml2
α̇+

u

ml2
, (40)

with α being the angle between the pendulum and the direction
of gravity, u is the torque applied to the pivot, l = 1m, m =
1kg, and d = 0.1Ns/m are the length, mass, and damping
ratio of the pendulum, respectively. We discretize the dynamics
using the Euler method with a time interval ∆ = 0.2s. The
state and control input of the pendulum are x = [α, α̇]T and
u = u, respectively. The initial condition is x0 = [0, 0]T. In
the cost function (2), we set the feature and weight vectors as

φ = [α2, α, α̇2, u2]T ∈ R4,

θ = [θ1, θ2, θ3, θ4]T ∈ R4,
(41)

respectively, and the final cost h(xT+1) = 10(α−π)2+10α̇2,
as our goal is to swing up the pendulum. The discrete time
horizon is T = 30.

For numerical analysis, we ‘simulate’ the human directional
corrections instead of using real human corrections. The
simulated corrections are generated as follows. Suppose that
the true weight vector is known: θ∗=[0.5, 0.5, 0.5, 0.5]T. At
iteration k, a simulated correction atk is generated using the
sign of the gradient of the true cost function J(θ∗), i.e.,

atk = −sign
(
∇J(uθk

0:T ,θ
∗) [tk]

)
∈ R. (42)

Here, ∇J(uθk

0:T ,θ
∗) [tk] denotes the tkth entry of ∇J , and the

correction time tk is randomly drawn from the a uniform dis-
tribution over horizon [0, T ]. Obviously, the above simulated
directional corrections satisfies the assumption (4).
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Fig. 7: Learning from simulated directional corrections for
the pendulum. The upper panel shows the weight error eθ =
‖θ − θ∗‖2 versus iteration. The bottom shows the simulated
directional correction atk (positive or negative sign) at each
iteration k; here, the value in each bar is tk, which is randomly
drawn from a uniform distribution over horizon [0, 30].

The initial weight search space is set as Ω0 = {θ | 0 ≤
θ[i] ≤ 5, i = 1, 2, 3, 4}. In Algorithm 1, we set the termina-
tion threshold ε = 10−1, and the maximum learning iteration
solved via (35) is K = 55. We apply Algorithm 1 to learn
the true θ∗. To illustrate results, we define the weight error
eθ = ‖θ−θ∗‖2 and plot eθ versus iteration k in the top panel
of Fig. 7. In the bottom panel of Fig. 7, we plot the simulated
directional correction atk at each iteration k, where +1 and
−1 bar denote the positive and negative sign (i.e., direction) of
correction atk in (42), respectively; the number inside the bar
denotes the correction time tk randomly drawn from [0, T ].

From the results in Fig. 7, we can see that as the learning
iteration k increases, the weight vector guess θk converges to
the true θ∗ = [0.5, 0.5, 0.5, 0.5]T. This shows the efficacy of
the method, as guaranteed by Theorem 1.

B. Two-link Robot Arm System

Here, we test the proposed method on a two-link robot arm.
The dynamics of the robot arm system (moving horizontally)
is M(q)q̈ + c(q, q̇) = τ , where M(q) is the inertia matrix,
c(q, q̇) is the Coriolis and centrifugal term; q = [q1, q2]T is
the vector of joint angles, and τ = [τ1, τ2]T is the vector of
joint toques. The state and control input are x = [q, q̇]T ∈ R4

and u = τ ∈ R2, respectively. The initial condition of the
robot arm is set as x0 = [0, 0, 0, 0]T. All physical parameters
in the dynamics are units. We discretize the dynamics using
the Euler method with a time interval ∆ = 0.2s. In the cost
function (2), we set the feature and weight vectors as

φ = [q21 , q1, q
2
2 , q2, ‖u‖2]T ∈ R5, (43a)

θ = [θ1, θ2, θ3, θ4, θ5]T ∈ R5, (43b)

respectively, and the final cost h(xT+1) = 100
(
(q1 − π

2 )2 +
q22 + q̇21 + q̇22

)
, as the robot arm aims to reach and stop at the

pose of q = [π2 , 0]T. The discrete-time horizon is T = 50.
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We still ‘simulate’ directional corrections. Suppose that we
know the true θ∗ = [1, 1, 1, 1, 1]T. At each iteration k, the
simulation generates a directional correction atk using the sign
of gradient of the true J(θ∗):

atk = −sign
(
∇J(uθk

0:T ,θ
∗) [2tk : 2tk + 1]

)
∈ R2, (44)

where ∇J(uθk

0:T ,θ
∗) [2tk : 2tk + 1] are the entries at the lo-

cations from 2tk to 2tk + 1 in ∇J (because u ∈ R2),
and the correction time tk is randomly drawn from (uniform
distribution) time horizon [0, T ]. sign is applied entry-wise.

0 10 20 30 40 50
Iteration k

0

2

4

6

e

Fig. 8: Learning from simulated directional corrections for the
robot arm. The plot is eθ = ‖θ − θ∗‖2 versus iteration. The
corrections are given in Fig. 9.

The initial weight search space is Ω0 = {θ | 0 ≤ θ[i] ≤
4, i = 1, 2, ..., 5}. We set the termination threshold ε = 10−1,
and the maximum learning iteration is K = 83 by (35). We
apply Algorithm 1 to learn the true θ∗. We define the weight
error eθ = ‖θ − θ∗‖2 and plot eθ versus iteration in Fig. 8.
We also plot atk = [atk,1, atk,2]T at each iteration k in Fig. 9,
where the value labeled on each bar marks the correction time
tk. The results in Fig. 8 show that as the iteration increases,
θk converges to the true θ∗, which again confirms Theorem 1.
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Fig. 9: Simulated directional correction atk = [atk,1, atk,2]T at
each iteration k for the robot arm. The number inside the bar
is the correction time tk randomly drawn from range [0, 50].

C. Comparison with Magnitude-Correction Methods

We compare the proposed method with two related works
[6], [7], both of which learn an objective function from
magnitude corrections. The comparison is conducted on the
inverted pendulum used in Section V-A. According to [7],
given a magnitude correction, the trajectory deformation [8]
is used to obtain a human intended trajectory. Specifically,
suppose the robot trajectory is ξθk

= {xθk

0:T+1,u
θk

0:T }. Given

a correction āk, the human intended trajectory, denoted as
ξ̄θk

= {x̄θk

0:T+1, ū
θk

0:T }, is solved as

ūθk

0:T = uθk

0:T +M−1āk, (45)

where M is a matrix to propagate a single-time-step correction
āk (5) along the rest of the robot trajectory [22], and x̄θk

0:T+1

in ξ̄θk
is obtained via rolling out the robot dynamics (1) given

ūθk

0:T . The learning update used in both [6] and [7] is

θk+1 = θk + η
(
φ(ξ̄θk

)− φ(ξθk
)
)
, (46)

where φ(ξ̄θk
) and φ(ξθk

) are the feature vectors of the human
intended trajectory ξ̄θk

and the uncorrected robot trajectory
ξθk

, respectively. Here, we set M as the finite differencing
matrix [8] and η = 0.0002 (for best performance).

In comparison, we use the simulated corrections atk , which
are generated from the true θ∗, as in (42). We set the magni-
tude ‖atk‖ to three levels: ‖atk‖ = 0.00125, ‖atk‖ = 0.001,
and ‖atk‖ = 0.0008, because we want to see how sensitive the
magnitude-correction methods [6], [7] are to the magnitudes
of corrections. Here, the correction time tk for different mag-
nitude levels is different random draws. To illustrate results,
we measure the following three aspects for all methods.
• Weight Error, defined as ‖θk − θ∗‖2. This is to measure

the error between the learned θk and the true θ∗.
• Cost Regret [6], defined as (θ∗)T

(
φ(ξθk

)−φ(ξθ∗)
)
. This

is to measure the misalignment of the costs between robot
current trajectory ξθk

and the desired trajectory ξθ∗ , eval-
uated under the true cost function J(θ∗) = (θ∗)Tφ(ξ).

• Trajectory error, defined as ‖ξθk
− ξθ∗‖2, which mea-

sures the distance between the robot current trajectory
ξθk

and the desired trajectory ξθ∗ .
Given the simulated corrections atk , we run Algorithm 1

and the method [6], [7] (i.e., updating the weight vector via
(46)). We show the results in Fig. 10, where the results of
our method are in orange and the results of the magnitude-
correction method [6], [7] are in blue. Each column in Fig.
10 corresponds to one level of correction magnitudes (recall
that we want to see how robust a method is against different
magnitudes of corrections). In each magnitude level (each
column), the first row shows the weight error versus iteration,
the second row shows the cost regret versus iteration, and the
third row shows the trajectory error versus iteration. Based on
the results in Fig.10, we make the following comments.

For the magnitude-correction methods [6], [7] (in blue lines)
in Fig. 10, comparing different columns, we note that larger
magnitude leads to faster convergence. However, as shown by
the left and middle panels in the first row, the magnitude-
correction method converges to a local weight vector but not
θ∗. This is not a surprise, because the magnitude-correction
method can only guarantee the convergence of the cost regret,
as shown by [6], not necessarily the convergence of the cost
function itself. One conjecture to the above results could be
that the local weight vector (different from the true θ∗) results
in the same robot trajectory and the same optimal cost as θ∗

does. This conjecture has been evidenced in the second row
and third row in Fig. 10, where the left and middle panels
show that the magnitude-correction methods, although having
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Fig. 10: Comparison between the proposed method (in orange
lines) and the magnitude-correction methods [6], [7] (in blue
lines). Each column corresponds to a different level of correc-
tion magnitude, and correction time tk in different magnitude
levels are different random draws. For each magnitude level
(each column), the first row shows the weight error versus
iteration; the second row is the cost regret versus iteration; and
the third row is the trajectory error versus iteration. Detailed
analysis is given in the text.

learned a different weight vector, have both the cost regret and
trajectory error converging to zero.

Also for the magnitude-correction methods [6], [7] (in blue
lines), when ‖atk‖ = 0.00125 (first column), we observe that
there is a sharp increase of the cost regret and trajectory error
near convergence after 30 iterations. This could be because the
magnitude-correction methods [6], [7] are not robust against
the large magnitude of corrections near the desired trajectory.
Specifically, after 30 iterations near convergence, a relatively
larger magnitude, say ‖atk‖ = 0.00125, can be an over-
correction and thus violating J(ūθk

0:T ,θ
∗) < J(uθk

0:T ,θ
∗). This

explanation has been supported by the second column of Fig.
10, where with a smaller magnitude ‖atk‖ = 0.001, there is
no such over-correction phenomenon.

Combining all three columns in Fig. 10, one can conclude
that for the magnitude-correction methods [6], [7], large cor-
rection magnitude, such as ‖atk‖ = 0.00125, will have faster
convergence, but it can lead to over-corrections, as shown
in Fig. 10a, making the learning process unstable. Smaller
correction magnitude, such as ‖atk‖ = 0.0008, can avoid
the over-correction issue, but it leads to slow convergence,
as shown in Fig. 10c. Notice that the magnitude change from
‖atk‖ = 0.00125 (unstable) in Fig. 10a to ‖atk‖ = 0.0008
(stable) in Fig. 10c is very small, which could suggest that the
magnitude-correction methods are sensitive to the selection of
correction magnitudes. Thus, it could be difficult in practice
to provide a valid correction magnitude. We will further show
and analyze this in our following user study in Section VI.

In contrast, Fig. 10 has shown that the proposed method
consistently learns the true θ∗ and achieves a zero cost regret
and zero trajectory error regardless of the correction magnitude
levels. Also, compared to the magnitude-correction methods
[6], [7], the proposed method requires less learning iterations
(corrections) for convergence. Since the proposed method only
leverages the direction of atk regardless of ‖atk‖, there is
no over-correction issues near convergence. In practice, the
choice of directional corrections is more flexible than choosing
magnitude corrections, as analyzed in Fig. 3 in Section II. We
will continue to show this advantage in the following user
study in Section VI.

VI. USER STUDY

To show the effectiveness of the proposed method for
learning from real human directional corrections, we have de-
veloped two human-robot simulation games based on which a
user study is conducted. One game is robot arm reaching (Fig.
11) and the other is 6-DoF quadrotor maneuvering (Fig. 12). In
each game, a human participant observes the visualization of
robot motion, while applying directional corrections through
a keyboard. The goal of each game is to teach a robot to learn
an objective function, such that it can successfully navigate
through an environment without the knowledge about the envi-
ronment obstacles. We have released the accompanying codes
of those two games for the readers to try themselves: https://
github.com/wanxinjin/Learning-from-Directional-Corrections.

In what follows next, Sections VI-A and VI-B describe the
designs of the two games. Section VI-C provides the details of
human participants and the procedure of the user study. The
outcomes of the user study are presented in Section VI-D and
detailed analysis is given in Section VI-E.

A. Robot Arm Reaching Game

2 0 2
Y (m)
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X 
(m

)
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O
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cl

e

Robot Manipulator Game

Fig. 11: The robot arm reaching game. A human participant
teaches the robot arm to learn a cost function by applying
directional corrections via a keyboard (see the instructions in
Table I). The goal is to let the robot arm successfully move
from the initial pose (the pose in the figure) to reach the target
(the star) while avoiding the obstacle. Note that we have no
knowledge about the location and size of the obstacle.

1) Robot Setup: The dynamics of a robot arm and its
physical parameters follow Section V-B. The robot initial state
is x0=[−π2 , 0, 0, 0]T, as in Fig. 11. The parameterized cost
function J(θ) in (2) is

φ = [q21 , q1, q
2
2 , q2, ‖u‖2]T ∈ R5, (47a)

https://github.com/wanxinjin/Learning-from-Directional-Corrections
https://github.com/wanxinjin/Learning-from-Directional-Corrections
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θ = [θ1, θ2, θ3, θ4, θ5]T ∈ R5. (47b)

Here, θTφ is a general second-order polynomial. It is worth
noting that in practice if prior knowledge about good features
is not available, general polynomial features are a good option.
The final cost h(xT+1) in (2) is

h(xT+1) = 100
(
(q1 −

π

2
)2 + q22 + q̇21 + q̇22

)
, (48)

as the robot arm aims to finally reach and stop at the target
pose: qtarget

1 = π
2 and qtarget

2 = 0, marked in Fig. 11. The time
horizon of the game is set as T = 50 (that is, 50∆ = 10s).
Since we choose the polynomial features (47a), θ will dictate
how the robot reaches the target (i.e., the specific trajectory to
the goal). By default, the initial search space Ω0 is set

Ω0={θ | θ1, θ3 ∈ [0, 1], θ2, θ4 ∈ [−3, 3], θ5 ∈ [0, 0.5]}. (49)

Without human corrections, the robot with a random θ0 will
move and crash into the obstacle in Fig. 11. The goal of the
game is to let a human participant teach the robot arm to learn
a cost function, such that it can move from the initial condition
and reach the target pose while avoiding the obstacle. Note that
we have no knowledge about the obstacle.

TABLE I: Keyboard interface for the robot arm game.

Keys Directional correction Interpretation of correction

up a = [1, 0] counter-close-wise torque to Joint 1
down a = [−1, 0] close-wise torque to Joint 1
left a = [0, 1] counter-close-wise torque to Joint 2
right a = [0,−1] close-wise torque to Joint 2
* When implementing [6], [7], to allow magnitude corrections via the same
interface, we additionally detect the key pressing duration δt and interpret
the correction magnitude u to be proportional to δt with saturation umax;
i.e., u = min{βδt, umax} with β = 2 and umax = 1. The magnitude
correction using the above interface is u = ua. The correction time tk
is the beginning time of the key press.

2) Interface: In the robot arm game, we use a keyboard
as the interface for a human participant to apply directional
corrections. We customize (up, down, left, right) keys and
associate them with corresponding directional corrections as
listed in Table I. During the game, at each learning iteration,
a human participant is allowed to press one or multiple keys
from (up, down, left, right), and the interface is listening to
which key(s) the human player hits and recording the timing
of the keystroke(s). The recorded information is translated into
the directional correction atk as per Table I. For example, at
iteration k, while the robot is executing the motion trajectory
ξθk

, a human player hits the up and left keys simultaneously at
the time step 10; then the corresponding correction information
is translated into atk = [1, 1]T with tk = 10 according to
Table I. We obtain averaged āk from atk via (5) and (6b).

B. 6-DoF Quadrotor Maneuvering Game

1) Robot Setup: The dynamics of a quadrotor is

ṙI = v̇I , (50a)
mv̇I = mgI + f I , (50b)

q̇B/I =
1

2
Ω(ωB)qB/I , (50c)
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Fig. 12: The 6-DoF quadrotor game. A human participant
teaches the quadrotor to learn a cost function by applying
directional corrections through a keyboard (see the instruction
in Table II). The goal is that the quadrotor can fly from the
initial position (in the bottom left), go through a gate (colored
in brown), and land on the target (in the upper right). Note
that we have no knowledge about the gate.

JBω̇B = τB − ωB × JBωB . (50d)

Here, the subscripts B and I denote the quantities expressed
in the quadrotor’s body frame and world frame, respectively;
m is the mass of the quadrotor; rI ∈ R3 and vI ∈ R3 are the
position and velocity, respectively; JB ∈ R3×3 is the moment
of inertia; ωB ∈ R3 is the angular velocity; qB/I ∈ R4 is the
unit quaternion [31] describing the attitude of the quadrotor’s
body frame with respect to the world frame; (50c) is the time
derivative of the quaternion with Ω(ωB) being the matrix form
of ωB for quaternion multiplication [31]; τB ∈ R3 is the
torque vector applied to the quadrotor; and f I ∈ R3 is the total
force vector applied to the center of mass (COM). The total
force magnitude ‖f I‖ = f (along the z-axis of the quadrotor’s
body frame) and the torque τB = [τx, τy, τz]

T are generated
by four rotor thrusts [T1, T2, T3, T4]T as follows: fτxτy

τz

 =

 1 1 1 1
0 −lw/2 0 lw/2

−lw/2 0 lw/2 0
κ −κ κ −κ


T1

T2

T3

T4

 , (51)

with lw denoting the wing length of the quadrotor and κ a fixed
constant, here κ = 0.1. In dynamics (50), the gravity constant
‖gI‖ is set as 10m/s2 and the other physical parameters are
units. We define the state vector of the quadrotor as

x =
[
rI vI qB/I ωB

]
∈ R13, (52)

and the control input vector as

u =
[
T1 T2 T3 T4

]T ∈ R4. (53)

We discretize (50) by the Euler method with interval ∆ = 0.1s.
To achieve SE(3) maneuvering, we define the attitude error
between the quadrotor attitude q and target qtarget as [32]

e(q,qtarget) =
1

2
trace(I −RT(qtarget)R(q)), (54)

where R(q) ∈ R3×3 is the rotation matrix corresponding to q.

In the cost function (2), we set the final cost term as

h(xT+1) = ‖rI − rtarget
I ‖2 + 10‖vI‖2+
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100e(qB/I , q
target
B/I ) + 10‖wB‖2, (55)

because the quadrotor aims to finally land on a target position
rtarget
I with a target attitude qtarget

B/I . Here, rI = [rx, ry, rz]
T is

the position of the quadrotor expressed in the world frame.
We set the weight-feature cost term as

φ =
[
r2x rx r2y ry r2z rz ‖u‖2

]T ∈ R7, (56a)

θ =
[
θ1 θ2 θ3 θ4 θ5 θ6 θ7

]T ∈ R7. (56b)

Here, feature vector φ consists of general polynomial features
and θ will determine the specific trajectory of the quadrotor
to the target. By default, the initial weight search space is

Ω0={θ | θ1, θ3, θ5 ∈ [0, 1],

θ2, θ4, θ6 ∈ [−8, 8], θ7 ∈ [0, 0.5]}. (57)

As in Fig. 12, the goal of this quadrotor game is to let a
human participant teach the quadrotor to learn a cost function,
such that the quadrotor can successfully fly from the initial
position rI(0) = [−8,−8, 5]T (in the bottom left), go through
a gate (in brown color), and finally land on a target position
rtarget
I = [8, 8, 0]T (in the upper right) with the target attitude
qtarget
B/I = [1, 0, 0, 0]T. The initial attitude of the quadrotor is
qB/I(0) = [1, 0, 0, 0]T and initial velocities zeros. The time
horizon for this game is T = 50, that is, T∆ = 5s. Note that
we have no knowledge about the gate.

TABLE II: Keyboard interface for 6-DoF quadrotor game.

Keys Directional correction Interpretation of correction

‘up’ T1=1, T2=1,
T3=1, T4=1

Upward force applied at COM

‘down’ T1=−1, T2=−1,
T3=−1, T4=−1 Downward force applied at COM

‘w’ T1=0, T2=1
T3=0, T4=−1 Negative torque along body-axis x

‘s’ T1=0, T2=−1
T3=0, T4=1

Positive torque along body-axis x

‘a’ T1=1, T2=0
T3=−1, T4=0

Negative torque along body-axis y

‘d’ T1=−1, T2=0
T3=1, T4=0

Positive torque along body-axis y

* When implementing [6], [7], to allow magnitude corrections via the same
interface, we additionally detect key pressing duration δt and interpret
the correction magnitude u to be u = min{βδt, umax} with β=2 and
umax=1 in our implementation. Thus, the magnitude correction using the
above interface is u = u[T1, T2, T3, T4]T. The correction time tk is the
beginning time of the key press.

2) Interface: The keyboard interface for applying direc-
tional corrections is in Table II. Specifically, we customize the
(‘up’, ‘down’, ‘w’, ‘s’, ‘a’, ‘d’) keys and map them to specific
directional correction signals. During a learning iteration, a
human participant is allowed to press one or multiple keys in
Table II. The interface listens to the keystrokes and translates
the keystrokes into the directional corrections based on Table
II. The time step at which a key is hit is the correction time tk.
For example, if a human participant presses ‘s’ key at time step
5; then, the directional correction will be atk = [0,−1, 0, 1]T

with tk = 5. Based on (5) and (6b), we obtain āk from atk .

C. Participants and Procedure

A total of 17 volunteers from Purdue College of Engineering
have participated in our user study. Among these 17 partici-
pants, 1 was female and 16 male, with ages from 20 to 37 years
old (25.812±3.936). 5 of those 17 participants had no robotics
or related background, and all participants were novices to the
two games. This user study had been reviewed and approved
by the Institutional Review Board (IRB) of Purdue University,
and all participants had signed the consent forms.

Each participant was instructed to play the above two
games. In each game, a participant played 5 successive rounds
with the proposed method and 5 successive rounds with the
magnitude-correction method [6], [7]. A game round is defined
as a complete run of a learning method until the success or
failure of the round. A failure of a game round is identified
if the robot fails to accomplish the task after the total number
of human corrections has exceeded the maximum correction
count. In our user study, the maximum correction count is 20
for the robot arm game and 15 for the quadrotor game. We
set the maximum correction count because the participants
are expected to try their best to teach the robot with as few
corrections as possible.

We used a within-subjects design: the order of the two
games (i.e., which game goes first) and learning methods used
(i.e., which method is used first) were counterbalanced across
all participants in our user study. Also, the participants were
not informed which methods were being used for the current
game. Before starting a game, each participant was instructed
how to play the game and was given one hands-on game
round to get familiar with the interface before the experiment
recording starts. After the games, each participant was asked to
finish a post-game survey about her/his opinions of the game
experience (which will be reported in Section VI-E4).

D. Outcome Measurements

For each game (robot arm or quadrotor) with each learning
method (the proposed method or magnitude-correction method
[6], [7]), we measure the following outcomes for one partici-
pant in his/her 5-successive game rounds.
• Success rate. This is the ratio of successful game rounds

over all rounds attempted (which is 5 here). This outcome
indicates the efficacy of a learning method.

• Total number of corrections for a successful game round.
This measures how many human corrections are needed
for a successful game round. This measure can show
the efficiency/effortlessness of a learning method—fewer
corrections mean less human effort in teaching a robot.

• Early wasted rounds. This is to measure how many early
rounds of a game are wasted (failed) before a participant
begins to constantly play successful game rounds. This
can show the accessibility of a learning method—fewer
early wasted rounds indicate a more accessible experience
for a participant to successfully teach a robot.

The outcomes of all participants are organized according to the
method type (the proposed method and magnitude-correction
method [6], [7]) and the game type (robot-arm and quadrotor).
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Fig. 13: The outcomes of all 17 participants for playing different robot games (robot-arm or quadrotor) using different learning
methods (the proposed method and magnitude-correction method [6], [7]). (a) shows the success rate, i.e., the ratio of successful
game rounds over total 5 rounds attempted; (b) shows the total number of human corrections needed for one successful game
round; and (c) shows the number of the early wasted (failed) game rounds before a participant constantly play successfully.
The bars denote the mean values over all participants, and the top line segments are the standard deviations. Analysis based on
statistical tests (with significance level α = 0.05) is in Section VI-E. One illustrative round for the robot arm game from one
participant is in Fig. 14 and Table III, and one illustrative quadrotor game round from a participant is in Fig. 15 and Table IV.

We report all outcomes in Fig. 13 and provide a detailed
analysis of the results based on statistical tests.

E. Results and Analysis

The statistics of three outcomes over all 17 participants are
shown in Fig. 13. Each outcome is presented with respect to
each learning method (the proposed method or magnitude-
correction method [6], [7]) on each game (robot arm or
quadrotor). All three outcomes here are averaged over all
participants with the error bar denoting the standard deviation
over all participants. We have the following analysis of the re-
sults based on statistical tests with significance level α = 0.05,

1) Success Rate: In Fig. 13a, for the robot arm game,
the proposed method obtains a success rate of 97.65% ±
6.64% compared to the magnitude-correction method [6], [7]’s
80.00%±31.62%. The proposed method yields a significantly
higher success rate than the magnitude-correction method with
t-score t = 2.25 and p-value p = 0.031 < α. For the quadrotor
game in Fig. 13a, the proposed method attains 94%± 12.8%
versus the magnitude-correction method’s 82%±20.9%. It also
shows a significantly higher success rate than the magnitude-
correction method [6], [7], with t-score t = 2.24 and p-value
p = 0.032 ≤ α.

We provide the following comments for the above results.
Recall that the magnitude-correction method [6], [7] assumes
J(u

θk
0:T + āk,θ

∗)<J(u
θk
0:T ,θ

∗), while the our method assumes
〈−∇J(uθk

0:T ,θ
∗), āk〉>0, regardless of magnitude ‖āk‖. As

shown in Fig. 3, the allowable region of directional corrections
is much larger than that of magnitude corrections. Since all
participants are novices to both games, giving valid magnitude
correction could be difficult for them. By contrast, novice par-
ticipants are more likely to give valid directional corrections.
This leads to higher success rate and lower variance for the
proposed method than the magnitude-correction method.

The difficulty of giving valid magnitude corrections can also
be seen from the number of early wasted/failed rounds in Fig.

13c. For the magnitude method, before a participant masters
a game, 0.82 ± 1.42 early game rounds are wasted/failed for
the robot arm game, and 0.24 ± 0.56 early rounds are failed
for the quadrotor game. In contrast, the proposed method has
0 ± 0 early wasted rounds in both games. This means that a
novice participant needs more practice to master the skill of
giving valid magnitude corrections.

2) Total Number of Corrections for Successful Game:
In Fig. 13b, for a successful robot arm game, the proposed
method needs a total of 3.66 ± 2.29 corrections, while the
magnitude-correction method [6], [7] requires 11.21 ± 3.62
corrections. Thus, the proposed method requires significantly
fewer corrections than the magnitude-correction method, with
t-score t = 7.27 and p-value p = 2.94 × 10−8 ≤ α. In the
quadrotor game, the proposed method takes a total of 3.27±
1.88 corrections for a successful round, while the magnitude-
correction method needs 12.20± 2.02 corrections. This again
shows that the proposed method is significantly more efficient
(fewer corrections) than the magnitude-correction method,
with t-score t = 13.32 and p-value p = 1.35× 10−14 < α.

We have the following interpretations for the above results.
Recall that the assumption for a valid magnitude correction
āk is J(uθk

0:T + āk,θ
∗)<J(uθk

0:T ,θ
∗). Since all participants

are novice to the games, the magnitude corrections made by
a participant were not always valid in a game round; in other
words, some magnitude corrections can be over-correction.
Because of those invalid corrections, the magnitude-correction
method takes longer (more corrections) to succeed. In contrast,
the proposed method only leverages directional corrections,
which are more likely to satisfy 〈−∇J(uθk

0:T ,θ
∗), āk〉>0; it

requires fewer human corrections (effort).

Since the total number of corrections for a successful game
indicates how much effort a participant needs to successfully
teach a robot. Thus, the above results in Fig. 13b show that
the proposed method is significantly more effortless than the
magnitude-correction method [6], [7].
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Fig. 14: One illustrative round for the robot arm game from one participant. At each iteration k, the robot weight vector guess
θk and the participant directional correction atk are reported in Table III.

TABLE III: An illustrative round for the robot arm game from one participant.

Iteration k Current weight vector guess θk A participant’s directional correction atk and correction time tk

k = 1 θk = [0.50, 0.00, 0.50,−0.00, 0.25]T atk = [0, 1] (i.e., left key pressed) and tk = 11

k = 2 θk = [0.50, 0.00, 0.50,−1.50, 0.25]T atk = [0, 1] (i.e., left key pressed) and tk = 16

k = 3 θk = [0.50, 0.00, 0.34,−2.03, 0.25]T atk = [−1, 0] (i.e., down key pressed) and tk = 34

k = 4 θk = [0.50, 1.48, 0.36,−2.00, 0.25]T Game success!
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(c) Iteration k = 4
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Fig. 15: One illustrative round for the quadrotor game from one participant. At each iteration k, the quadrotor weight vector
guess θk and the participant directional correction atk are in Table IV. Iteration k = 1 is shown in Fig. 12.

TABLE IV: An illustrative round for the quadrotor game from one participant (Iteration k = 1 is shown in Fig. 12).

Iteration k Current weight vector guess θk A participant’s directional corrections atk and correction time tk

k = 1 θk = [0.50, 0.00, 0.50,−0.00, 0.50, −0.00, 0.25]T atk = [1, 1, 1, 1] (i.e., up key pressed) and tk = 8
atk = [1, 1, 1, 1] (i.e., up key pressed) and tk = 20

k = 2 θk = [0.50, −0.00, 0.50,−0.00, 0.50, −3.99, 0.25]T atk = [−1,−1,−1,−1] (i.e., down key pressed) and tk = 14

k = 3 θk = [0.50, −1.70, 0.50,−1.70, 0.52, −1.89, 0.25]T atk = [0,−1, 0, 1] (i.e., ’s’ key pressed) and tk = 13

k = 4 θk = [0.50, −2.76, 0.50,−2.45, 0.60, −2.22, 0.25]T atk = [0,−1, 0, 1] (i.e., ’s’ key pressed) and tk = 19

k = 5 θk = [0.50, −3.11, 0.50, 4.89, 0.65 − 2.67, 0.25]T Game success!

3) Early Wasted Rounds: In Fig. 13c, in the robot arm game
(5 rounds in total), the early wasted (failed) rounds is 0 ± 0
for the proposed method and 0.82 ± 1.42 for the magnitude-
correction method [6], [7]; thus, the proposed method requires
significantly fewer rounds of practice (thus is more accessible)
than the magnitude-correction method, with t-score t = 2.38
and p-value p = 0.02 < α. For the quadrotor game (5 rounds
in total), a participant wasted 0 ± 0 early rounds using the
proposed method, while 0.24 ± 0.56 early rounds using the
magnitude-correction method. The early wasted rounds of the
proposed method are not significantly lower than that of the
magnitude-correction method, with t-score t = 1.73 and p-
value p = 0.09 > α.

We have the following explanations for the above results.

For the magnitude-correction method, since not all magnitude
corrections are valid, a participant needs more early trials to
realize the effects of correction magnitude on the robot motion
and how to apply valid magnitude. Instead, for the proposed
method, a participant only gives directional commands, which
can be more intuitive, as shown in Fig. 14 and Fig. 15. Fig. 13c
shows that the proposed method is potentially more accessible
than the magnitude-correction method [6], [7]

4) Other Observations and Subjective Survey: We also ob-
serve that the number of the directional corrections in the user
study is generally smaller than that in the simulation cases in
Section V. This is because the convergence of the robot motion
trajectory (to the desired motion in the human’s perspective)
is empirically faster than the convergence of the cost function



This is a preprint. The published version can be accessed at IEEE Transactions on Robotics. 16

weight vector (to the true θ∗). This has been shown in Fig.
10, where the convergence of ‖θk − θ∗‖2 requires around 20
iterations, while the convergence of ‖ξθk

− ξθ∗‖2 requires
only 10 iterations. Since a game is deemed successful as long
as the robot motion can successfully navigate through the
environment, thus a participant usually takes fewer corrections.
We also find that there is no unique solution for the choice of
directional corrections and that different participants applied
different corrections to manage the games.

We have also performed a post-game survey about how
participants perceived the two learning methods. 10 out of
17 participants said that they felt the robot with the proposed
method is much ‘smarter’ than the robot with the magnitude-
correction method [6], [7]. Those opinions are also consistent
with the results in Fig. 13, as we have analyzed above.

5) Summary: In summary of all statistical analysis above,
we conclude that compared to the state-of-the-art magnitude-
correction method [6], [7], the proposed method is
• significantly more effective (p < 0.033) — it attains

higher success rate for teaching robots,
• significantly more efficient (p < 10−7) — fewer human

corrections are needed for successful robot learning,
• potentially more accessible (p ≤ 0.09) for human users

— a novice human user takes fewer trials before con-
stantly providing successful corrections to a robot.

The post-game survey reports that a majority of the user-study
participants indicated that a robot with the proposed method
is much ‘smarter’ than with the magnitude-correction method.

VII. REAL-WORLD EXPERIMENT

In this section, we test the proposed method in a real-world
experiment using a Parrot Mambo quadrotor.
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Fig. 16: The setup of the real-world experiment. A human user
teaches the quadrotor to fly from an initial position (red circle),
go through the gate (with yellow label), and finally, land on a
target position (green circle). Without human corrections, the
quadrotor is initialized with a random cost function and fails
to accomplish the task. Note that we have no knowledge about
the gate.

A. Experiment Setup and Procedure

Our real-world experiment is a Parrot Mambo quadrotor task
shown in Fig. 16. The goal of the experiment is to let a human
user teach the quadrotor to accomplish the following task:
starting from the initial position (red circle), flying through

the gate (labeled in yellow), and landing on the target position
(green circle). Without human correction, the quadrotor with a
random initial cost function fails to accomplish the task. The
procedure of learning from human directional corrections is
as follows:

• First, perform the quadrotor motion planning in a remote
computer by solving a trajectory optimization with the
current cost function;

• Second, the quadrotor executes the plan (tracking con-
trol), at the same time a human user watches the quadro-
tor’s motion and applies directional corrections via the
keyboard of the remote computer.

• Third, update the quadrotor’s cost function in the remote
computer according to Algorithm 1; then repeat the above
steps until the success of the task.

In the above procedure, the interface for a human user
to apply directional corrections is still a keyboard, following
Table II. The communication frequency between the quadrotor
and the remote computer is around 10Hz. Note that because
the cost function in some learning iterations may lead the
quadrotor to collide with the gate during execution, we have
included a collision stop mechanism: if the quadrotor detects
that it is too close to the gate, an emergence stop is triggered.
In the iteration where an emergence stop is triggered, human
corrections, if applied before an emergence stop, can still count
for updating the cost function for the next iteration. We will
discuss the damage protection of robot learning in details in
Appendix B-C.

We have invited a human user (not the co-authors them-
selves), who is a novice to our work, to perform the above
experiment. The human user first had a successful warm-up
training in our previous quadrotor game in order to get familiar
with the interface (Table II), and then successfully conducted
this real-world quadrotor experiment in just one run.

B. Results and Analysis

The results in all learning iterations are in Fig. 17. At each
iteration, the quadrotor’s trajectory is highlighted in the red
lines, and the human directional corrections are labeled in the
green arrows. The initial and target positions are also marked.
We provide the following analysis for the results in Fig. 17.

In the first iteration in Fig. 17a, since the quadrotor was
initialized with a random cost function, the planned and
executed trajectory (labeled in the red line) are off the gate—
the quadrotor missed the gate and flew from its right side.
Thus, when observing the quadrotor’s motion, the human user
applied a directional toque to correct the quadrotor, which is
in the direction of the negative x-axis, as shown by the green
arrow in Fig. 17a. After receiving the correction, the quadrotor
updated its cost function and planned a new trajectory for the
next iteration in Fig. 17b. In the second iteration in Fig. 17b,
while the quadrotor was executing the new motion, the human
user observed that its motion was too below the gate and thus
applied a directional force in the positive z-axis. Using this
directional correction, the quadrotor updated its cost function
for the third iteration in Fig. 17c.
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Fig. 17: Results of a real-world quadrotor learning from human directional corrections. Here, the quadrotor trajectory is marked
in red lines. The initial position (red circle) and target position (green circle) are also marked. In (a), during the quadrotor
flying, the human user applied a torque correction in the opposite of the x-axis, shown by the green arrow. In (b), during the
quadrotor flying, the human user applied a upward thrust correction (in green arrow) in z-axis. In (c), the quadrotor detected
a potential collision with the left pillar of the gate and thus triggered an emergence stop. But before the emergence stop,
the human user had already applied a positive x-axis (in green arrow) torque to correct the quadrotor. In (d), the quadrotor
successfully learned a cost function to fly from the initial position, go through the gate, and finally reach the target position.

In the third iteration in Fig. 17c, while executing the planned
motion, the quadrotor detected a potential collision with the
left pillar of the gate and thus immediately triggered an
emergence stop. However, because humans are able to predict
the potential collision, the human user had already applied
a directional torque in the positive x-axis (the green arrow)
before the emergence stop. Thus, although the quadrotor had
stopped in emergence, the directional correction still counted
in the update of the cost function. In the fourth iteration in
Fig. 17d, the quadrotor successfully flew through the gate and
reached the target position.

Thus, it took only three human directional corrections for
the quadrotor to learn a cost function to accomplish the task
in an unknown environment. Based on the above results and
analysis, we can conclude that the proposed method is effective
and efficient for learning an objective function for desired
robot motion from human directional corrections.

VIII. CONCLUSION

This paper has proposed a new method to enable a robot to
learn an objective function from human directional corrections.
A human directional correction can be any input change to the
robot as long as it is in a direction that improves the robot’s
current motion relative to an implicit objective function. The
proposed learning method only uses the direction of a cor-
rection to update the estimate of the objective function. The
learning process is based on the cutting plane method and has
straightforward geometric interpretations. We have established
the theoretical results to show the convergence of the estimate
of the objective function towards the true one induced by all
human corrections. The proposed approach has been validated
by numerical examples, a user study on two human-robot
games, and a real-world quadrotor experiment. The results
confirm the convergence and efficacy of the proposed method
and show that the proposed method is significantly more ef-
fective (higher success rate), efficient/effortless (less correction
needed), and potentially more accessible (fewer early wasted
trials) than the state-of-the-art human-robot learning methods.
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APPENDIX A
PROOF OF LEMMA 2

First, we prove (25). From Step 2 in the main algorithm, we
know that the robot’s current trajectory ξθk

= {xθk

0:T+1,u
θk

0:T }
is a result of minimizing the cost function J(θk) subject to
dynamics constraint in (1). This means that ξθk

must satisfy
the optimality condition (i.e., first order condition). Following
a similar derivation from (12) to (19) in the proof of Lemma
1, we can obtain the optimality condition

0 = ∇J(uθk

0:T ,θk) = H1(xθk

0:T+1,u
θk

0:T )θk+

H2(xθk

0:T+1,u
θk

0:T )∇h(xθk

T+1). (58)

It is worth mentioning that the above optimality condition (58)
is also derived in [5]. As a result,

0 =
〈
∇J(uθk

0:T ,θk), āk

〉
(59)

=
〈
H1(xθk

0:T+1,u
θk

0:T )θk, āk

〉
+
〈
H2(xθk

0:T+1,u
θk

0:T )∇h(xθk

T+1), āk

〉
(60)

= 〈hk,θk〉+ bk, (61)

where the third equality is due to the definition of hyperplane
in (8). This completes the proof of (25).

Next, we prove (26) by induction. In the main algorithm,
we know θ∗ ∈ Ω0 for k = 0. Assume that θ∗ ∈ Ωk−1 holds
at the (k−1)-th iteration. By Step 3 in the main algorithm, we
have

Ωk = Ωk−1 ∩ {θ ∈ Rr | 〈hk,θ〉+ bk < 0} . (62)

In order to prove θ∗ ∈ Ωk we only need to show that

〈hk,θ∗〉+ bk < 0, (63)

which is true according to (7) in Lemma 1. Thus, θ∗ ∈ Ωk

also holds at the kth iteration. Thus, we conclude that (26)
holds. This completes the proof of Lemma 2.
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APPENDIX B
DISCUSSION

A. Learning Non-convex Cost Functions

In our problem formulation and method development, we
have not imposed any restriction on the convexity of the cost
function (2). However, the proposed method can sufficiently
handle both convex and non-convex cost functions. But for
non-convex cost functions, we have the following comments.

For a general non-convex cost function (2), the robot desired
motion can be a local minimum of this non-convex cost
function. As long as all human corrections aim to drive the
robot towards the same local minimum (i.e., the same desired
motion), all theories and methods developed in the paper still
apply. In the otherwise case, human corrections may not have
a consistent goal. For example, in one iteration the human
intends to drive the robot towards one local minimum, while
in the other iteration, the human aims to drive the robot to a
different local minimum—a different desired motion. In those
inconsistent cases, the assumption (4) would be violated, thus
potentially leading to the failure of the proposed method.

In sum, if the cost function (2) is non-convex, the desired
robot motion ξθ∗ can be a local minimum of the non-convex
cost function J(θ∗). The proposed method in this paper still
applies if all human corrections aim to drive the robot towards
the same local minimum ξθ∗ .

B. On-the-fly Implementation of the Proposed Method

In the previous experiments, each learning iteration requires
a robot to start over the task. However, this is not necessary,
and one can readily implement the proposed method in an
on-the-fly manner. An on-the-fly implementation is given in
Algorithm 2, where the changes compared to Algorithm 1 are
highlighted in red. Specifically, in Algorithm 2, after the robot
receives a human directional correction atk at time step tk,
instead of starting over the task (i.e., returning to the very early
initial condition x0), we can update the robot cost function
immediately and plan the motion by starting from the robot
current state xtk (on which the correction atk is made). Thus,
the robot will continue to execute the task from the latest state
without starting over. For this on-the-fly implementation, all
theories and other properties of our method remain unchanged.

C. Damage Prevention During Learning

Since an intermediate cost function during learning itera-
tions can lead a robot to collision or damage, we briefly discuss
how to avoid such scenarios.

One effective way to prevent damage and collision during
robot learning is to add emergence stop mechanisms in the
robot’s lower-level control, as we have adopted for our real-
world quadrotor experiment in Section VII. Fortunately, as
long as a human user applies directional corrections before the
emergence stop, those corrections still count for the update of
the cost function. Based on the previous user study and real-
world experiment, we observe that humans usually have a good
ability to predict potential collisions and are able to make
preemptive corrections before the robot triggers emergence

Algorithm 2: Learning from directional corrections
(an on-the-fly implementation version)

Input: Specify a termination threshold ε and use it to
compute the maximum iteration K by (35).

Initialization: Initial weight search space Ω0 in (21), and
initial robot state xt0 with t0 = 0

for k = 1, 2, · · · ,K do
Choose a weight vector guess θk ∈ Ωk−1 by Lemma 3;
Starting from the current robot state xtk−1 , plan a new

robot motion ξθk by solving a trajectory optimization
with the cost function J(θk) and dynamics (1);

Starting from xtk−1 , the robot executes the planned
motion trajectory ξθk while receving human directional
corrections ātk ;

Compute the matrices H1(x
θk
0:T+1,u

θk
0:T ) and

H2(x
θk
0:T+1,u

θk
0:T ), and then compute the hyperplane

and half space 〈hk,θ〉+ bk < 0 by (7)-(8);
Update the weight search space by
Ωk = Ωk−1 ∩ {θ ∈ Rr | 〈hk,θ〉+ bk < 0} by (22);

end
Output: θK .

stop. Thus, it is a usual case that a robot has already received
human directional corrections before triggering an emergence
stop, and hence, the update of the cost function continues. This
has been shown in Fig. 17c in our real-world experiment in
Section VII.

D. Choice of Ω0 and ε in Algorithm 1

The initial weight search space Ω0 in (21) should include
any possible true θ∗, i.e., θ∗ ∈ Ω0. Although this is hard to
verify as θ∗ is usually unknown in practice, a good practice is
to choose as large Ω0 as possible (note that Ω0 also needs
to ensure the existence of solution ξθ; this is the reason
why in our experiments, the range of weights of the second-
order terms in a polynomial is always positive). Alternatively,
one can also use a trial-and-error procedure to set the initial
Ω0: first, try a small Ω0; under this small Ω0 if the final
(converged) robot motion is not desired, increase the size
of Ω0 and repeat this process until satisfied. Our previous
experiment experience has shown that choosing a good Ω0

is not difficult. This is because even a small size of Ω0 has
enough expressiveness power to represent a good variety of
robot motions. This empiricism is consistent with the recent
results of learning implicit models [33]–[35] in the machine
learning community, where it shows that simple objective or
energy functions can have enough representation power.

In Algorithm 1, ε determines the accuracy of weight vector
convergence, as stated in Theorem 1. The choice of ε depends
on specific accuracy requirements, and a large ε will terminate
the algorithm early. In fact, it is always easy to set ε using
a reasonably small value, because our previous experiment,
such as in Fig. 10, has shown that the convergence of the
robot motion trajectory is much faster than the convergence
of the objective function itself. This means that it is a usual
case that one observes a good convergence of robot motion
trajectory before the convergence of cost function reaches
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termination condition. This empiricism has also been reported
in the literature on inverse optimal control such as [4].

E. Free from Noisy Robot Execution

Finally, we would point out that in implementation, the
noise in robot states and controls cannot directly enter into
the proposed algorithm. Specifically, as stated in Algorithm
1 and our real-world experiment, the proposed algorithm
decouples motion planning (i.e., plan ξθk

by solving a tra-
jectory optimization) and the robot execution of ξθk

. The
noise of the robot states and inputs can only enter into the
robot execution stage, not the motion planning stage. While a
human observes the robot’s noisy execution of ξθk

and gives
directional corrections āk, the proposed algorithm updates the
cost function using the noise-free ξθk

taken from the motion
planner instead of from the robot’s execution. Thus, during
the entire learning process, the noise in the robot’s actual
execution will never enter into the algorithm, thus will not
influence the learning results.

APPENDIX C
OTHER CHOICES OF θk

For the weight search space Ωk−1 ⊂ Rr, we choose θk
as the center of Maximum Volume Ellipsoid (MVE) inscribe
Ωk−1. Other choices for θk could be the center of gravity
[36], the Chebyshev center [37], the analytic center [38], etc.

1) Center of Gravity: The center of gravity for a polytope
Ω is defined as

θcg =

∫
Ω
θdθ∫

Ω
dθ

. (64)

Following [39], the volume reduction rate using the center of
gravity is

Vol(Ωk+1)

Vol(Ωk)
≤ 1− 1

e
≈ 0.63, (65)

which may lead to faster convergence than the rate (1− 1/r)
using the center of MVE. However, for a polytope described
by a set of linear inequalities, it is more expensive to compute
the center of gravity in (64) than to compute the center of
MVE [27].

2) Chebyshev Center: The Chebyshev center is defined as
the center of the largest Euclidean ball that lies inside the
polytope Ω. Chebyshev center for a polytope can be efficiently
computed by solving a linear program [28]. But Chebyshev
center is not affinely invariant to the transformations of coor-
dinates [27]. Thus, a linear mapping of features may lead to
an inconsistent weight vector estimation.

3) Analytic Center: Given a polytope Ω = {θ | 〈hi,θ〉 +
bi < 0, i = 1, · · · ,m}, the analytic center is defined as

θac = min
θ
−
∑m

i=1
log(bi − hTi θ). (66)

As shown by [40], [41], the analytic center achieves a good
trade-off in terms of simplicity and practical performance.
However, it might not be friendly for analyzing the volume
reduction compared to using the center of MVE.
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[5] W. Jin, D. Kulić, S. Mou, and S. Hirche, “Inverse optimal control
from incomplete trajectory observations,” The International Journal of
Robotics Research, vol. 40, no. 6-7, pp. 848–865, 2021.

[6] A. Jain, S. Sharma, T. Joachims, and A. Saxena, “Learning preferences
for manipulation tasks from online coactive feedback,” The International
Journal of Robotics Research, vol. 34, no. 10, pp. 1296–1313, 2015.

[7] A. Bajcsy, D. P. Losey, M. K. O’Malley, and A. D. Dragan, “Learning
robot objectives from physical human interaction,” Conference on Robot
Learning, vol. 78, pp. 217–226, 2017.

[8] J. Y. Zhang and A. D. Dragan, “Learning from extrapolated corrections,”
in International Conference on Robotics and Automation. IEEE, 2019,
pp. 7034–7040.

[9] D. P. Losey and M. K. O’Malley, “Including uncertainty when learning
from human corrections,” in Conference on Robot Learning, 2018, pp.
123–132.

[10] A. Jain, B. Wojcik, T. Joachims, and A. Saxena, “Learning trajectory
preferences for manipulators via iterative improvement,” in Advances in
neural information processing systems, 2013, pp. 575–583.

[11] P. Shivaswamy and T. Joachims, “Online structured prediction via
coactive learning,” in International Conference on Machine Learning,
2012, pp. 59–66.

[12] P. Moylan and B. Anderson, “Nonlinear regulator theory and an inverse
optimal control problem,” IEEE Transactions on Automatic Control,
vol. 18, no. 5, pp. 460–465, 1973.

[13] A.-S. Puydupin-Jamin, M. Johnson, and T. Bretl, “A convex approach
to inverse optimal control and its application to modeling human
locomotion,” in International Conference on Robotics and Automation,
2012, pp. 531–536.
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