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On the Workspace of Electromagnetic
Navigation Systems

Quentin Boehler, Member, IEEE, Simone Gervasoni, Samuel L. Charreyron, Christophe Chautems,
and Bradley J. Nelson, Fellow, IEEE

Abstract—In remote magnetic navigation, a magnetic naviga-
tion system is used to generate magnetic fields to apply mechan-
ical wrenches to steer a magnetic object. This technique can be
applied to navigate untethered micro- and nanorobots, as well as
tethered magnetic surgical tools for minimally invasive medicine.
The design and characterization of these systems have been
extensively investigated over the past decade. The determination
of the region in space in which these systems can operate has
yet to be formalized within the research community. This region
is commonly referred to as the “workspace” and constitutes a
central concept for any class of robotic system. We focus on
magnetic navigation systems comprised of electromagnets and
propose a first set of definitions for a magnetic workspace, a
methodology to determine it, and evaluation metrics to analyse
its characteristics. Our methodology and tools are illustrated with
several examples of planar and spatial electromagnetic magnetic
navigation systems for both didactic and realistic navigation
scenarios.

Index Terms—Electromagnetic navigation system, workspace,
remote magnetic navigation.

I. INTRODUCTION

REMOTE magnetic navigation (RMN) is an actuation
technology in which magnetic fields are used to navigate

devices containing magnetic material [1]. This technology is
particularly promising for minimally invasive surgery, as it
allows soft and bio-compatible micro- and nanorobots to be
navigated remotely [2], [3]. The manipulation of magnetic
catheters in particular receives considerable research attention
primarily due to the potential for increased safety, reduced
invasiveness, and high dexterity in a broad variety of surgical
procedures [4]–[7]. New technologies for medical applications
of RMN are also being actively investigated, such as vari-
able stiffness features [8], in situ bio-printing of magnetic
catheters [9], and the development of advanced actuation
strategies [10]. Several companies have proposed the use of
RMN for the magnetic navigation of cardiac catheters in
clinics, including Stereotaxis Inc. [11] and Aeon Scientific
AG1, with more than 140,000 procedures completed so far
with this modality [12].

In RMN, the magnetic fields are generated by a mag-
netic navigation system (MNS). Electromagnetic navigation
systems (eMNS) are a class of MNS that are composed of
electromagnets, where the magnetic fields are modulated by
the amount of electrical current running through conductive

The authors are with the Multi-Scale Robotics Lab, ETH Zurich, Switzer-
land.

1Aeon Scientific AG is a former spin-off company of the Multi-Scale
Robotics Lab.
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Fig. 1. Workspace and magnetic tasks of an Electromagnetic Navigation
System. a) The CardioMag eMNS, an eight-coil pre-clinical prototype. b)
Magnetic-Feasible Workspace (colored area) evaluated at three different
heights of a cubic volume of side 0.1m, and condition number κ (see
definition of κ in section V-C, and detailed study in section VI-C1). c)
Available magnetic field generated at the center C of the volume. The blue
polyhedron represents the available field components bx, by and bz along the
axes x, y and z.

windings. The CardioMag, a pre-clinical prototype of eMNS
developed by Aeon Scientific AG, is depicted in Fig. 1a. It
is composed of eight coils that are arranged so that a porcine
model can fit on a patient bed between its coils. An example
of an eMNS composed of two electromagnets of currents i1
and i2 is depicted in Fig. 2a, and shows the magnetic field
lines generated by the electromagnets within their mid-plane.
The magnetic field interacts with the magnetic object to be
manipulated, producing magnetic forces and torques for its
navigation. As such, an eMNS is a type of robotic manipulator
that produces a given magnetic field at a position in space
by controlling the currents in its electromagnets. For clinical
systems, the electromagnets can be arranged near or around
the body of a patient to produce magnetic fields suitable for
a given navigation task.

While the modeling and design of eMNSs have been exten-
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sively discussed over the past decade [13]–[16], their evalua-
tion in a standardized manner has not been fully considered.
In [17], Pourkand et al. discuss different eight-coil system
designs and provide a critical analysis of the performance
of the system at a single position in space. However, there
seems to be no consensus or unified opinion on the evaluation
tools and metrics for an eMNS. The concept of workspace has
also not yet been clearly defined for an eMNS. This concept
is closely related to one’s ability to evaluate the capability
of the eMNS to perform its task at any position in space.
The design of eMNSs has been an active research area for
over 15 years, with many recent works putting considerations
related to the systems’ workspace and magnetic performances
at the center of their research. Several works thus investigated
different metrics and methods to study and design their own
eMNS for specific applications [18]–[24]. However, despite
the large variety of contributions of these works, it appears
to us that none have been trying to propose generic and
standardized definitions and metrics so far, which would
benefit this research community as a whole.

This paper proposes definitions for the workspace of an
eMNS together with the tools to evaluate its performance un-
der practical constraints, such as limitations on electromagnet
currents. These tools are designed to be easily re-used by
any designer and user of an eMNS to evaluate and control
their system and to describe its performance in a standardized
manner. Evaluation of the workspace is challenging as it is
related to the targeted application, namely manipulating a
magnetic object. We address this challenge by offering tools
that can be used for any robotic task, which is defined either in
terms of the magnetic fields or the mechanical wrenches that
the fields induce on a magnetic object. We believe that this
paper provides a seminal framework to standardize the analysis
of an eMNS and comprehensive examples of its application
to realistic systems and tasks.

The companion code to reproduce our results is available
on CodeOcean 2. In appendix A, we provide a description of
the elements in the code relevant to understand, implement
and reproduce the methods and results of the paper.

In section II, we introduce the terminology adopted in the
paper. In section III, we propose several definitions 3 for the
workspace of an eMNS. Section IV provides a methodology
to estimate the workspace, and section V proposes evaluation
metrics to analyse the performance of eMNSs for given tasks.
In section VI, we apply this methodology to numerous 2d and
3d examples, including the CardioMag eMNS, a pre-clinical
eight-coil prototype. We also provide experimental verification
of this approach on a new three-coil system called Navion
in section VII. Sections VIII and IX provide an extensive
discussion of our contributions and results and conclude our
work.

2https://doi.org/10.24433/CO.2090933.v1
3A summary of the acronyms and definitions introduced in this paper is

provided in appendix B.

II. TERMINOLOGY

A. Remote magnetic navigation

At each position p ∈ R3, an eMNS provides a mapping g
between the electrical currents i ∈ Rn running through the n
electromagnets (which we will refer to as coils in the rest of
the paper) and the magnetic field b ∈ R3.

b(p) = g(p, i). (1)

Forces and torques are generated on magnetic objects, which
interact with the magnetic field. In many cases, it is sufficient
to represent discrete magnets by single dipoles centered on
their center of mass and with the dipole moment m pointing
in the direction of their average magnetization. This cov-
ers several manipulation cases, including the manipulation
of untethered magnetic microrobots and magnetic catheters
composed of a permanent distal magnet at their tip. The
magnetic torques t and forces f applied on the magnetic dipole
are expressed as [1]

t = m× b (2)
f = (m · ∇)b (3)

where the field gradient ∇b is a 3 × 3 tensor. As the field
is both curl-free and divergence-free in free space, we usually
prefer to express the five independent components of the tensor

as the vector g =
[
∂bx
∂x

∂bx
∂y

∂bx
∂z

∂by
∂y

∂by
∂z

]T
with b =[

bx by bz
]T

when expressed in a reference base frame. The
previous equations can therefore be conveniently expressed in
the following forms

t = T(m,α, β)b (4)
f = F(m,α, β)g (5)

where α and β are angles that represent the orientation of m
in the reference frame and m = ||m||. The expressions
of T(m,α, β) and F(m,α, β) are provided in appendix C.

A linear relationship is usually assumed between the cur-
rents and the field and its gradient via an actuation ma-
trix A ∈ R8×n so that [1]

[
b
g

]
=

[
Ab

Ag

]
i = A i. (6)

We refer to Ab and Ag as the field and gradient actuation
matrix, respectively.

B. Robotic task

Classic robotic manipulators such as serial robot arms are
composed of motorized joints, where torques are controlled
to generate a mechanical wrench with its end-effector. A
manipulator linearly maps the joint torques (inputs) to the
mechanical wrench (output) via a Jacobian matrix. The output
of the system can be referred to as a task space, in the sense
that the role of the robot is to perform a task with its end-
effector, e.g. to generate a mechanical wrench.

https://doi.org/10.24433/CO.2090933.v1
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In a similar manner, the inputs of an eMNS are the currents
flowing through the windings of the coils, which are limited
by several practical factors including power consumption and
the maximum current capacity of the coils. The choice of
its output, or task, is made ambiguous by the fact that the
manipulation of a magnetic object ultimately comes from
the interaction between this object and the magnetic field
generated by the eMNS. It is thus relevant to specifically
consider two types of tasks:

• A magnetic task defined in terms of the magnetic field
and the gradient to be generated by the eMNS. It is
independent from the magnetic object to be manipulated.

• A wrench task defined in terms of magnetic torques and
forces to be applied on the magnetic object.

A magnetic task is related to the intrinsic properties of the
eMNS regardless of the nature of the object to be manipulated.
The wrench task is required to manipulate a specific magnetic
device, and is intrinsically dependent on a corresponding
magnetic task.

In order to provide consistent terminology for the paper, we
refer to the vector describing a task as a task vector and denote
it τ . The task vector can be composed of any component
or combination of components of

[
b g

]T
(resp.

[
t f

]T
)

for a magnetic task (resp. wrench task). We define the task
actuation matrix Aτ , which relates to the current vector to
the task vector as

τ = Aτ i. (7)

The matrix Aτ is composed of the lines, or the line
combinations of A for the corresponding components of the
task vector (e.g. if τ = b, then Aτ = Ab). Unlike the case of
a wrench task, this matrix is independent of the orientation of
the magnetic object for the magnetic task. More generally, we
consider any task that is independent of the magnetic object
to be navigated as a magnetic task.

The mapping between the input currents of an eMNS and a
magnetic task through Aτ is illustrated in Fig. 2b for a system
composed of two coils, and a two-dimensional magnetic task
defined here by the components of the magnetic field bx and by
in the plane x − y. Feeding the coils of the eMNS with
currents i1 and i2 generates a magnetic field. The field lines
are depicted in Fig. 2a in the plane x− y as an example.

C. Workspace and feasibility

The reachable workspace of a classic robotic manipulator
is usually defined as the set of positions in space that can
be reached by its end-effector [25]. This workspace is bound
by configurations where the robot is said to be singular [26].
However, this definition is not wholly applicable in the case of
an eMNS that interacts with the magnetic object and creates
the magnetic field remotely through non-moving coils. Due
to the lack of a proper kinematic chain, an eMNS does not
exhibit singular configurations as limit configurations, and the
concept of a reachable workspace is not appropriate for the
workspace of an eMNS.
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Fig. 2. A two-coil planar eMNS. a) Illustration of the system. b) Feasible
task at the position P (same as in Fig. 4a with θ = 90◦). The task consists
of the components of the magnetic field bx and by in the plane x− y.

A more promising approach is to use the concept of
a wrench feasible workspace that was originally developed
for cable-driven parallel robots (CDPRs) [27]. CDPRs are
composed of a platform whose position is controlled by a set
of cables in tension. Due to this particular mode of parallel
actuation, the platform must be able to counteract a set of
external wrenches, such as the weight of the platform, while
keeping its cables in tension. The concept of wrench feasibility
stems from the idea that for a given pose, the platform must
be able to achieve a desired set of tasks around the specific
constraints of its actuators [28]. These tasks are application
specific, and the constraints on the actuators usually stem from
practical considerations (e.g. the tension in the cables of a
CDPR must be positive and below a maximum value).

In a similar manner, an eMNS must be able to achieve
a user-defined desired set of tasks D, while the currents in
its coils must remain within a user-defined set of admissible
currents I. At any position p, one can determine an available
set of tasks A composed of the tasks that the eMNS can
perform under the constraints i ∈ I. At a position p, the set of
tasks D is then said to be feasible if the following condition
is met:

D ⊆ A (8)

meaning that all of the desired tasks can be achieved for ad-
missible currents at this position. The feasibility is illustrated
in Fig. 2b for the previously introduced two-coil system and
a two-dimensional magnetic task. This illustrates how the set
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of admissible currents I maps to the available set of tasks A.
In this example, the desired set of tasks D represented on the
right side of Fig. 2b is feasible, as it respects inclusion (8).

III. DEFINITIONS

A. Workspace of an eMNS

Our objective is to provide a useful set of tools to compare
and analyze the workspace of an eMNS in a standardized
manner. Although some previous work [15], [29] introduced
specific definitions based on application-specific considera-
tions, there is no generic propositions on these.

We propose to define the workspace of an eMNS as the
set of positions in space where a desired set of tasks are
feasible, given a set of admissible currents. In the case of
a given magnetic and wrench task as previously introduced,
we also provide the following specific definitions that may be
of interest for the standard analysis of an eMNS.

a) Definition 1: The magnetic-feasible workspace
(MFW) of an eMNS is defined as the set of positions where
a desired set of magnetic tasks is feasible, given a set of
admissible currents.

b) Definition 2: The wrench-feasible workspace (WFW)
of an eMNS is defined as the set of positions in space where a
desired set of wrench tasks is feasible, given a set of admissible
currents.

B. Admissible currents and desired tasks

The determination of the workspace therefore requires the
user to specify the set I of admissible currents and a desired
set of tasks D.

The set I can take different forms depending on the
requirements of the system. Two forms encompass most of
the uses required of an eMNS. If working under strict power
requirements, I is preferably formulated to limit the weighted
sum of the square of the currents 4. This formulation may,
however, be too conservative when the system is not limited
by its maximum power, but rather by the individual maximum
currents in the coils, as can be the case for smaller systems.
In this case, the infinity-norm of i, i.e. the maximum current
admissible in the coil, must be limited. This case defines I as

I = {i ∈ Rn | i ≤ i ≤ i} (9)

where i (resp. i) is the vector which components are the
minimum (resp. maximum) admissible currents in each coil.
An example of this type of set is illustrated in the case of the
two-coil eMNS in Fig. 2b with i =

[
i i

]T
and i =

[
i i

]T
.

The choice of the components of the task vector and D
depends on the intended use of the eMNS for a given applica-
tion. Set D is composed of the task vectors τ that the system
must achieve. For example, a typical desired set of magnetic
tasks for a three-coil eMNS is

4This defines I as the set of current vectors {i ∈ Rn | iT Zi ≤ P}
where Z is a diagonal matrix with the coil resistances on its diagonal, and P
is the limiting power.

D = {b ∈ R3 | ||b||2 ≤ b} (10)

where τ = b. This specifies that the system must be able
to generate a magnetic field b of a maximum magnitude b
in any direction in space. This approach is relevant when
one wants to steer a magnetic catheter with the eMNS and
formulates a requirement on the minimum magnetic field
magnitude that the system must achieve to steer it. With
this formulation, the magnetic field gradient is not taken into
account. This is relevant for catheter steering in which the
magnetic forces induced by the gradient usually have little
affect on the tool compared to the torques induced by the
magnetic field. Conversely, for a task composed only of the
gradient, a gradient within the available set of tasks do not
account for any requirements on the magnetic field direction
and magnitude.

An eMNS cannot perform a wrench task of a dimension
higher than five, because a torque cannot be applied along the
main axis of the magnetic body being manipulated. In [30], it
is shown that a minimum of eight coils is necessary to achieve
five degree-of-freedom (DOF) motion. For a magnetic task, the
dimension d of the task vector must satisfy d ≤ n.

IV. WORKSPACE ESTIMATION

In the following, we provide a methodology to estimate the
MFW and the WFW. This includes the determination of A for
any desired set of magnetic tasks, and methods to evaluate the
feasibility of these tasks at any position in space.

We assume that the eMNS behaves in a linear manner,
and that one can estimate the actuation matrix Aτ at any
position in space after having calibrated the system using a
linear model, such as the one proposed in [13].

We only consider admissible current sets of the form (9),
which we find to be the most relevant type of set to evaluate
an eMNS, in general.

A. Feasibility of magnetic tasks

1) Available set of tasks: To evaluate the feasibility of
a magnetic task we must first estimate A given I. We
make use of a hyperplane shifting method to do this, as
previously applied for CDPRs [28]. This involves determining
a hyperplane representation of A given that the currents
are constrained as in (9). With this approach, the set A is
represented by a zonotope, a special class of convex polytopes
which number of vertices depends on the number of coils of
the eMNS 5.

Our method consists of the following steps 6:
1) Build a matrix M formed by d−1 linearly independent

columns extracted from the (d × n) matrix Aτ , and
build a vector v orthogonal to these columns. The linear
dependency of the extracted columns of Aτ can be
checked by computing the rank of M, and v can be

5More information on the mathematical tools this section relies on can be
found in [28] and in the companion code of our paper.

6In our companion code, this algorithm is implemented in the function
HyperPlaneShiftingMethod in utilities.ipynb.

utilities.ipynb
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obtained as the cross product of all of the column vectors
in M when d ≤ 3. For higher dimensions, this vector
can be obtained by picking any vector in the base of the
nullspace of MMT .

2) Build the vector n as

n = v/||v|| (11)

which is the unit vector perpendicular to the initial
hyperplane that includes these d− 1 columns.

3) Build the vector l as

l = WTn (12)

where W is a matrix whose columns are the remain-
ing n − d + 1 column vectors of Aτ , so that the
components li of l are the projection of these vectors
on n.

4) Build the support hyperplanes p+ and p− along n
and −n as

p+ = h+Aτ i (13)
p− = h−Aτ i (14)

with

h+ = max(

n−d+1∑
j=1

αj∆ij lj , αj ∈ {0, 1}) (15)

h− = min(

n−d+1∑
j=1

αj∆ij lj , αj ∈ {0, 1}) (16)

(17)

and ∆ij the components of ∆i defined as i − i. Note
that a combination matrix can be used to evaluate h+

and h−.
5) Compute the matrix Ni and the vector di as

Ni =
[
n −n

]T
(18)

di =
[
nTp+ −nTp−

]T
(19)

which constitute the hyperplane representation of the
current combination.

6) Repeat step 2 to 5 for all d − 1 combinations in Aτ .
Note that a permutation matrix can be used to exhaust
all of the d− 1 combinations of vectors in Aτ .

7) Build the matrix N and the vector d as the vertical
stacking of Ni and di obtained for all i ∈ J1 ; d− 1K.

With this hyperplane representation (N,d), the available set A
is expressed as the following set of task vectors

A = {τ ∈ Rd | Nτ ≤ d}. (20)

The hyperplanes are illustrated in a simple example in
Fig. 3. The vector p+ corresponding to the first hyperplane
is represented, as well as the scalar d1 (first component of

vector di) obtained from its projection on the hyperplane’s
normal n1. By comparing Fig. 2b and Fig. 3, it can be noted
that the number of hyperplanes which constitute the sides ofA,
depends on the number of coils of the eMNS (parallelogram
for the two-coil system, and octagon for the four-coil system).

A

n1

n2

n3

n4

n5
n6

n7

n8

p+
d1

(0,0)

bx

by

Fig. 3. Illustration of the normal vectors of the hyperplanes in the case of
a four-coil eMNS (position B for the system depicted in Fig. 5b). The task
consists of the components bx and by of the field in the plane. The hyperplanes
are normal to four pairs of opposite unit vectors.

2) Evaluation of the feasibility: Once the hyperplane rep-
resentation of A is known, the evaluation of the feasibility
consists in verifying the inclusion (8). This evaluation depends
on the nature of D. We introduce the three most common cases
in the following. These cases are thoroughly described in [28]
to compute available wrench sets for CDPRs. The interested
reader is encouraged to refer to this work for more details,
as we only provide limited explanations on these within the
scope of this paper. Detailed and commented implementations
of these functions are also available in our companion code
(see Appendix A).

a) Discrete set: if D is composed of a discrete set of task
vectors {τ 1 . . . τN}, the feasibility can be trivially derived
from the definition of A in (20) and is verified if the following
inequality stands for all i ∈ J1 ; NK

Nτ i ≤ d (21)

meaning that each τ i is a subset of A.
b) Polytope: if D is a convex polytope, the feasibility is

verified if the following inequality stands

NV ≤ d (22)

where V is a matrix whose columns are the vertices of the
polytope. An example of a feasible set of tasks D is illustrated
in the case of a two-coil eMNS in Fig. 2.

c) Ellipsoid: if D is an ellipsoid of half-axes (e1 . . . ed),
the feasibility is verified if all of the following task vectors τ i

are feasible

τ i = ±
diag(e21 . . . e

2
d)n

T
i√

(e1ni1)2 + · · ·+ (ednid)2
(23)

where ni =
[
ni1 . . . nid

]
is the i-th line of N.
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B. Feasibility of wrench tasks

Determining the feasibility of wrench tasks is much more
complex. This is due to the fact that feasibility must be verified
for any orientation of the magnetic object to be manipulated,
which leads to a high dimensional problem that is difficult to
address [15].

Here, we propose what we believe is a relevant approach
to later provide a conservative estimate of the WFW. The
overall idea is to formulate a specific desired set of magnetic
tasks D, whose feasibility constitutes a sufficient condition to
the feasibility of the desired wrench task. In the following, we
approach the problem independently for a 2-dimensional task
in torques and a 3-dimensional task in forces, which constitute,
in our opinion, to the two most interesting for broad use in
remote magnetic navigation.

1) Torque: As previously explained in (2), a magnetic
torque t is linearly mapped to the magnetic field b via a
skew-symmetric matrix T. In order to ensure that a torque task
can be performed for any orientation of the magnetic dipole,
one can see that T maps a unitary sphere into a circle of
radius m. The normal vector of the circle is along the axis
of the dipole moment. This can be easily verified through
the singular value decomposition of T for any orientation
described by the pair (α, β), and noticing that the singular
values are

(
m m 0

)
along the two orthogonal axes and the

longitudinal axis of the magnetic dipole, respectively. This is
consistent with the fact that one cannot apply a torque along
the magnetic dipole axis.

As a result, the feasibility of a magnetic task specified as
the set of magnetic fields b within a sphere of radius b is
sufficient to ensure that any torque along an axis orthogonal
to m can be generated up to a magnitude mb.

2) Force: In a similar fashion, we saw in (3) that a magnetic
force f is linearly mapped to the magnetic field gradient g
via a matrix F. We can observe that F maps a unitary 5-
dimensional sphere into a 3-dimensional ellipsoid. The lengths
of the semi-axes of this ellipsoid can be determined via the
singular values of F, and are proportional to the force that
can be applied on the magnetic dipole along the main axes
of the ellipsoid in this configuration. The minimum singular
value σ of F for (α, β) ∈ R2 is thus proportional to the force
magnitude that can be produced for any orientation of m and
in any direction in space, assuming g is in a 5-dimensional
sphere.

As a result, the feasibility of a magnetic task specified as
the set of magnetic field gradients g within a 5-dimensional
sphere of radius g is sufficient to ensure that any force can be
generated at least up to a magnitude σg for any orientation
of the magnetic dipole. For the matrix F introduced in the
appendix, the value of σ can be found as ≈ 0.707m.

C. Methodology for the determination of the workspace

The determination of a workspace consists of testing the
feasibility of a desired set of tasks at positions within a
given volume in space. Two main methods exist to do this.
The most common and intuitive one is to discretize the
space and test feasibility at each grid point. This method is

straightforward to implement, but has the disadvantage that it
does not guarantee feasibility between grid points, and may
consequently overlook holes in the workspace.

Interval analysis is an alternative method that can address
this disadvantage. This consists of testing the feasibility for
full boxes in space. Together with a bisection strategy, this
method can iteratively classify smaller and smaller boxes as
inside or outside the workspace [31]. The main drawback of
interval analysis is that it can be cumbersome to implement
and requires a very fine bisection of the boxes if the interval
evaluation is too conservative to successfully classify a box.

In this paper, we primarily propose to implement a dis-
cretization approach. In section VI-A3 however, we illustrate
the use of an interval analysis, which is an interesting alterna-
tive for problems in low dimensions and when the feasibility
within continuous regions of space must be guaranteed.

1) Magnetic Feasible Workspace: Once the components
of the task vector are defined, the methodology given in
Algorithm 1 can be followed to determine the MFW.

Algorithm 1 Determination of the MFW
D ← Desired magnetic tasks
i← Maximum admissible currents
i← Minimum admissible currents
Wt ← Positions to be tested
Win ← {} //Positions in the MFW

for p ∈ Wt do
Aτ ← ComputeTaskActuationMatrix(p)
A ← HyperplaneShifthingMethod(Aτ , i, i)
IsPositionFeasible← VerifyFeasibility(A,D)

if IsPositionFeasible then
Win ←Win∪{p} //Add position to the workspace

end if
end for

2) Wrench Feasible Workspace: We propose a method to
provide a conservative estimate of the WFW in three types of
wrench tasks. In all cases, the approach consists of defining
a corresponding set of magnetic tasks whose feasibility suf-
ficiently ensures the feasibility of the wrench tasks. The first
two cases are as follows:

1) The task of generating a torque up to a maximum
magnitude t along any direction perpendicular to m:
define D as the set of magnetic fields b within a sphere
of radius t/m.

2) The task of generating a force up to a maximum
magnitude f along any direction in space: define D as
the set of magnetic field gradients g within a sphere of
radius f/σ.

The third case is a combination of the first two, namely the
desired set of tasks corresponding to the five achievable DOFs
of the wrench task. In this case, one can define D as the set
of magnetic fields and magnetic gradient within an ellipsoid
of semi-axes t/m along the field components, and f/σ along
the gradient components.

Once D has been defined as a set of magnetic tasks,
determine the corresponding MFW (follow Algorithm 1). The
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attained MFW is included in the WFW. This estimation is
conservative as D overestimates the required magnetic field
and/or magnetic field gradient in some directions and in
some configurations to ensure that the desired wrench can be
achieved for any orientation of m. This is due to the fact
that the feasibility of D is sufficient, but not necessary for the
wrench task to be feasible.

V. EVALUATION METRICS

The workspace of a manipulator provides a measure of
feasibility of the task. It does not, however, provide any
indication of how well the task can be performed.

Several evaluation metrics have been proposed in the past to
characterize robotic systems within their workspace. Most are
based on the analysis of the singular values of their Jacobian
matrix. However in the case of an eMNS it is not trivial to
characterize it based on the singular values of an actuation
matrix due to the mixture of units composing the task [15].

Approaches to either optimize or compare the performance
of eMNS designs for specific tasks have been proposed,
mainly based on this analysis [29], [32]. For instance, in [33],
Thornley et al. proposed dimensionless performance indices
based on the Buckingham Π theorem to compare different
coil arrangements. In [34], Chen et al. also introduced several
metrics to characterize eMNSs, which include definitions of
the manipulability, as well as local and global indices. In the
following, we summarized the most common metrics already
introduced for the study of eMNSs, and propose a new criteria
based on our current methodology.

A. Minimum field and gradient gains

In [30], Petruska et al. proposed comparing systems using
the minimum singular values of AbNAg

(resp. AgNAb
)

with NX, the normalized nullspace of a matrix X. This is the
smallest field (resp. gradient) gain that has the capability of
independently specifying any gradient (resp. field). However,
these are limited to systems composed of at least eight coils.

B. Manipulability

The manipulability measure is a metric introduced in [35]
to quantify a manipulator’s dexterity. A direct analogy of
this principle for an eMNS considers the transformation of
a hypersphere in the coil currents space through the task
actuation matrix, as proposed in [32], [34]. The manipulability
measure µ is then computed as

µ =

√
|det(Âτ ÂT

τ )| (24)

with Âτ = SAτ . The matrix Âτ is a normalized version
of Aτ in order to account for the possible mixture of units
within the components of the task vector (namely either [T]
for magnetic field and [T/m] for magnetic field gradient). The
scaling matrix S is diagonal, and its i-th diagonal element is
the inverse of the maximum value that the i-th component of
the task vector can take in D. The metric µ is the product of the
singular values of Âτ , so that it is proportional to the volume

of the manipulability ellipsoid [35]. This index does not give
information on the shape of the ellipsoid, but only on its
volume. A high manipulability measure can, for example, be
reached at position where some directions can be dramatically
more amplified than others, leading to an important volume of
the ellipsoid in spite of the poor isotropy of the behavior.

C. Condition number

To evaluate the isotropy of the system, we usually consider
the condition number κ, which is an index to evaluate the
shape of the manipulability ellipsoid. It consists of compar-
ing the maximum and the minimum singular values of Âτ

denoted σa and σa, respectively [36]. It is computed as

κ =
σa

σa

. (25)

As the singular values of Âτ are equal to the length of the
manipulability ellipsoid’s half-axes, a condition number of 1
means that the system amplifies its currents equally for any
component of the task vector, in which case the system is said
to be isotropic [36].

D. Global conditioning index

The global conditioning index (CGI) extends the idea of the
condition number to the whole workspace to provide a global
metric rather than a local one. It corresponds to the average
value of 1/κ over a workspace W [36].

CGI =

∫
W
(1/κ) dW∫
W

dW
(26)

which can be approximated in a discretized case by

CGIa =

∑N
i (1/κi)

N
(27)

for N points regularly spaced in the investigated volume,
and κi is the condition number at the i-th position. This index
is between 0 and 1. The closer it comes to 1, the more isotropic
the system is within the tested workspace.

E. Margin between the desired and available sets of tasks

The inclusion (8) provides feasibility criteria to evaluate
whether a position belongs to the workspace or not. A way
to provide a finer evaluation of a position is to consider how
much this inclusion is valid. Analogous considerations have
been investigated in the context of CDPRs, and led to the
derivation of the capacity margin index (also called minimum
degree of constraint satisfaction) which consists in estimating
the margin between the desired wrench tasks and the capacity
of the robot [37].

In the context of our analysis of the eMNSs’ workspace, we
introduce a metric that we will call the D-A distance, which
measures the minimal margin between the desired set D, and
the available set A.
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Fig. 4. MFW of an eMNS composed of two coils in a planar arrangement (for the sake of simplicity, these examples do not consider any physical units for
the magnetic field magnitudes, the currents, and the distances). The positions within the MFW are represented in blue, and the dipole magnetic source of
the coils are represented by the orange arrows. The tested area is represented by the black squares with sides of 0.2. The discretization grid within this area
is 100 × 100. The admissible currents are i = −i =

[
1.0 1.0

]T and the maximum desired field is b = −b = 0.02. a) Influence of a variable opening
angle between the sources direction. b) Influence of the distance between two parallel sources. c) Condition number and D-A distance for the arrangement
with θ = 90◦.

We derive the D-A distance (denoted DA) from the generic
definition (20) of A as follows:

DA = min
τ∈D,j∈nh

dj −Njτ (28)

with Nj the j-th line of N, dj the j-th component of d, and nh

the number of hyperplanes used to represent A. The term Njτ
represents the projection of a task τ on the normal to the j-th
hyperplane, while dj represents the distance of this hyperplane
to the origin (see Fig. 3). The D-A distance corresponds to
the smallest component of d −Nτ for τ ∈ D, which is the
minimal distance from any task in D to the hyperplanes of A.

The evaluation of the metric depends on the type of desired
tasks set D as presented in IV-A2. For a discrete set of tasks,
each task in the set must be tested individually to find the
minimum in (28). A similar case can be constructed for an
ellipsoid using (23). For a polytope, the tasks to be tested are
composed of the vertices of the polytope.

VI. APPLICATIONS

We illustrate the methodology through a series of examples
both in 2d and 3d. The examples described in sections VI-A
and VI-B are provided for an intuitive understanding of the
shape of the workspace depending on the arrangement of the
coils, and as a guide to use the evaluation metrics. For the
sake of simplicity in these examples, each coil is modeled as
a single dipole source, and all sources exhibit the same dipole
coefficient. We did not consider any physical units to simplify
our presentation. In section VI-C, we applied our methods to
the CardioMag eMNS, an eight-coil system, using a magnetic
model calibrated with experimental data, to show a more

realistic and practical case study following these simplified
examples.

A. 2d systems

We first consider 2d systems, where all of the coils lie in the
same plane, and we analyse the performance of the system in
this plane only. We consider a 2-dimensional magnetic task,
composed of the components bx and by of the magnetic field
within the plane of the sources, and focus on the computation
of the MFW for admissible currents in the form of (9), and a
desired set of tasks of the following shape:

D = {(bx, by) ∈ R2 | b ≤ (bx, by) ≤ b} (29)

where the scalar values b and b represent the minimum and
maximum desired field magnitude to be achieved respectively.

In the following examples, the tested area is a square
with sides of 0.2. We use a discretization grid within this
area of 100 × 100, and the maximum desired field is chosen
as b = −b = 0.02. The admissible currents are i = −i = 1.

1) Two-coil systems: We investigate two situations that
are of interest to understand the shape of the MFW for the
arrangement of two coils in a plane and located at 0.15 from
the center of the tested area: 1) the influence of the relative
orientation of two coils at equal distance from the center of
the tested area, 2) the influence of the distance between two
parallel coils. The results for an eMNS composed of two coils
in a planar arrangement are represented in Fig. 4.

In Fig. 4a, the MFW is illustrated for four different angles
between the coils that are at equal distance from the center
of the analysed area represented by the black square. The
MFW gradually splits into two distinct regions. This can
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be intuitively understood through the extreme case for 180◦,
where the generation of a magnetic field along the diagonal
perpendicular to the coil axes is significantly hampered. In-
deed, as the magnetic field produced by a dipole source along
its main axis is co-linear to this axis, this arrangement is highly
unfavorable to generate a field perpendicular to these axes
near the center of the region under consideration. The MFW
is symmetric to the angle bisector for the first three angle
values. These are essentially explained by the symmetry of
the coils arrangement along the diagonal of the square region
being analysed, and the symmetry of the desired set of tasks.
The sets I, D and A at the position P:

(
0.025 0.025

)
are

illustrated in Fig. 2.
In Fig. 4b, the MFW is illustrated for four different distances

between two parallel coils. The MFW gradually splits into
two distinct regions after the third case. There seems to be an
optimal arrangement around the second case where the MFW
is the largest. Due to the symmetrical arrangement of the coils
and the desired set of tasks, the MFW is symmetric to the
horizontal line equidistant to the two coils axes.

In this simple case study, the use of the local and global
evaluation metrics are illustrated in the arrangements depicted
in Fig. 4a. The condition number and the D-A distance within
the MFW for the arrangement with θ = 90◦ are depicted in
Fig. 4c. We can observe that the condition number is higher
near the sources and along their main axis, because the field is
relatively high along the source direction. With this in mind,
it is understandable that the system is not as well conditioned
at these positions, because this component is much easier to
generate than those near the source. The D-A distance is zero
at the border of the workspace. This is because the limits
of the workspace are composed of the positions where the
inclusion (3) no longer holds, meaning that at least one of
the tasks in D is not in A, so that the distance to one of the
hyperplane of A becomes negative.

Finally, the CGIa for the configurations θ =
{45, 90, 135, 180}◦ are, respectively, {0.30, 0.35, 0.44, 0.50}.
This result is not necessarily intuitive; we would expect that
the arrangements with the lower angles intrinsically provide
a better dexterity overall, so that the CGI would decrease
rather than increase with the angle. However, it is important
to remember that the index is evaluated among the positions
that are within the MFW, and that this is smaller for the
higher angles due to the arrangement of the coils. In practice,
in order to use the CGI to perform a fair comparison between
two systems, the set of evaluated poses should be the same.

2) Four-coil systems: We investigate two arrangements of
coils, with two pairs of co-linear and parallel coils, respec-
tively. The co-linear arrangement is for example considered
in [38] to manipulate magnetic suture needles, and has been
shown as a possible arrangement to generate magnetic fields
in a plane in [32]. The results for an eMNS composed of four
coils in a planar arrangement is represented in Fig. 5.

We can observe that when the coils are co-linear (Fig. 5a),
each quadrant within the square region (e.g. region denoted Q
on the figure) has a similar shape as the two-coil system with
an orthogonal arrangement (θ = 90◦ in Fig. 4a) up to a 90◦

rotation. This can be explained by the fact that the behavior

a) b)

1

2

3

4

Q

D-A distanceCondition number 
c)

B

κ DA

0.
20.15

Fig. 5. MFW of an eMNS composed of four coils in a planar arrangement (for
the sake of simplicity, these examples do not consider any physical units for
the magnetic field magnitudes, the currents, and the distances). The positions
within the MFW are represented in blue, and the dipole magnetic source
of the coils are represented by the orange arrows. The tested area are the
black squares with sides of 0.2 that is discretized with a 100 × 100 grid.
The admissible currents are i = −i =

[
1.0 1.0 1.0 1.0

]T and the
maximum field is b = −b = 0.02. a) An eMNS composed of two pairs
of co-linear coils. b) An eMNS composed of two pairs of parallel coils. c)
Condition number and D-A distance for the arrangement with co-linear coils.

in each quadrant is mainly governed by the closest pair of
orthogonal coils, and is barely affected by the more distant
opposite pairs. For instance, the behavior in region Q is mainly
governed by coils 1 and 2, and is barely affected by coils 3
and 4. Note the 4-fold symmetry in both cases. The shape
of A at position labeled B in Fig. 5b is depicted in Fig. 3.

3) Interval analysis: As introduced in IV-C, interval anal-
ysis is a good alternative to discretization as a method to
estimate the workspace of an eMNS. Interval analysis consists
of testing the feasibility of full boxes in space rather than
single positions as in the discretized method. For this we
use the Rohn theorem, which allows us to make conclusions
on the feasibility of an infinite number of linear systems of
equations by testing the feasibility of only a finite number of
equations [31]. We will now provide an application of this
method and compare it to the results obtained via discretiza-
tion. The interval analysis algorithm used here is adapted from
the method introduced in [31] for cable-driven parallel robots.
We consider the case of the two-coil planar system depicted
in Fig. 4a for θ = 90◦ to illustrate this method. As an in-depth
description of this method is outwith the scope of the paper,
we will only explain the basic principles of interval analysis
for this application. We encourage the interested reader to
refer to the related reference and to our companion code
(see appendix A) for more information on the details and
implementation of this method.
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We first perform the interval evaluation of the actuation
matrix for a given region (also called box). The interval matrix
obtained captures the range in which each component of the
matrix evolves within each box. The interval matrix is then
used to evaluate the feasibility of the box. For a task of
dimension d, one must perform 2d feasibility tests. Unlike
the discretized case, feasibility tests in the context of interval
analysis can lead to an inconclusive result, meaning that the
box cannot be classified as either completely in or completely
out of the workspace. In this case, the box is classified as
undetermined until it is further bisected. Additionally, due
to a so-called wrapping effect, the interval evaluation can
also lead to an overestimation of the interval matrix which
favors inconclusive results as well, even though the box could
theoretically be properly classified with a more precise interval
evaluation.

Inside the workspace

Outside the workspace

Undetermined

a) Interval analysis b) Discretization

Fig. 6. Comparison between the use of interval analysis (a), and discretization
(b) in the example of the workspace of a two-coil planar system depicted in
Fig. 4a for θ = 90◦ (discretization grid of 100× 100).

The tested boxes are bisected iteratively until their feasibil-
ity evaluation leads to a conclusive result, or their size are
smaller than a minimum box size. Should the box not be
classified by then, it will be considered as undetermined by
the end of the procedure.

The results are depicted in Fig. 6. The discrete case consid-
ered a 100×100 grid. In contrast, the interval analysis method
classified a total of 1735 boxes (448 inside, 315 outside, 972
undetermined) after 578 bisections, with a minimum box size
set to 5.0×10−3, and starting with an initial box consisting of
the whole tested area (outer black square). As can be expected
when using interval analysis, the workspace boundary is
surrounded by undetermined boxes. This is due to the fact
that the interval evaluation of the actuation matrix around this
region does not allow for a conclusive classification of the
box.

The performance of the method is strongly dependent on
how well the interval matrix can be evaluated. This in turn
determines how intensively the bisection must be performed
around the workspace boundaries, to obtain box sizes that lead
to a decisive result from the feasibility test. In our opinion,
this constitutes the main disadvantage of this method.

This method allows the presence of holes in the workspace
to be determined in the discrete case. We can confirm that both
the inside and outside regions classified via interval analysis
are indeed free of any holes when compared to the discrete
case.

B. 3d systems

1) Three-coil system on a triangle base: We first illustrate
the use of our method on an eMNS composed of three parallel
coils on a triangular base. This configuration provides an open
accessible volume while providing 3d field manipulation ca-
pability, as we later demonstrate with our experimental three-
coil Navion eMNS in section VII. This also provides a natural
extension in three dimensions of the 2d system illustrated in
Fig. 4b, and gives a first comprehensive example of a 3d
system with a simple arrangement yet with an interesting and
non-trivial behavior.

In this example, we determine that admissible currents are
between −3.0 and 3.0 and the desired magnetic task D =
{b ∈ R3 | ||b||2 ≤ b} with b = 0.02. The results are depicted
in Fig. 7.

We notice a similar separation of the workspace as the
previous planar arrangement, with two parallel coils depicted
in Fig. 4b. The MFW has a 3-fold symmetry due to the
arrangement of the coils on a triangular base and the desired
set of tasks.

2) Eight-coil system: We illustrate the MFW for three
different magnetic tasks for an eMNS composed of eight
coils, namely a task in a magnetic field, in a magnetic field
gradient, and in a combination of both. This coil configuration
is considered for several small- and medium-scale systems,
such as the MiniMag or the OctoMag eMNS [15], [39] and
is known to provide good 5-DOF navigation capabilities, as
already demonstrated for various applications. We determine
the admissible currents are between −1.0 and 1.0 in each coil
and we considered three cases of desired set of tasks:

• D = {b ∈ R3 | ||b||2 ≤ 0.09}
• D = {g ∈ R5 | ||g||2 ≤ 0.5}
• D = {(b,g) ∈ R8 | ||b||2 ≤ 0.01 , ||g||2 ≤ 0.05}
The results are depicted in Fig. 8 where the coils are

represented by the orange cylinders.
Note that the MFW has a 4-fold symmetry due to the

arrangement of the coils and the desired set of tasks.

C. Applications to the CardioMag eMNS

The CardioMag eMNS is composed of eight water-cooled
electromagnets that can generate up to 35A, for a total power
of 30 kW. The system weights 7500 kg. In the following, we
calibrated the CardioMag (see Fig. 1a) using the approach
proposed in [13], which uses a magnetic multipole expansion.
The calibration process consists of placing a set of dipole
sources that represent the contribution of each coil to the
magnetic field. The model considered eight dipole sources per
coil in order to account for cross-coupling between them.
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z
x-y plane at z = 0 y-z plane at x = 0 z-x plane at y = 0

Fig. 7. MFW of an eMNS composed of three coils, represented by the orange cylinders, arranged on a triangular base. The feasibility is tested within seven
horizontal slices, and two vertical slices of the cubic volume represented by the gray wire-frame on the 3d view on the left, each slice being discretized with
a 100× 100 grid. The color-scale represents the altitude z of the positions.

y-z plane at x = 0 y-z plane at x = 0 y-z plane at x = 0

a) b) c)

d) e) f)
DA DA DA

Fig. 8. MFW of an eMNS composed of eight coils. The feasibility is tested within three horizontal slices, and one vertical slice of the cubic volume
represented by the gray wire-frame on the 3d view on the left, each slice being discretized with a 100× 100 grid. The color-scale represents the altitude z
of the positions (see Fig. 7). a) MFW for a magnetic task D = {b ∈ R3 | ||b||2 ≤ 0.09}, b) D = {g ∈ R5 | ||g||2 ≤ 0.5}, and c) D = {(b,g) ∈
R8 | ||b||2 ≤ 0.01 , ||g||2 ≤ 0.05}, d)-f) D-A distance within the MFWs in the y − z plane at x = 0 for a)-c) respectively.

1) MFW and available magnetic field: We first illustrate
the MFW obtained for a magnetic task τ = b, and a desired
task set D = {b ∈ R3 | ||b||2 ≤ b} with b = 80mT.
We show in Fig. 1b that a cube of side 0.1 m above the
patient bed is entirely included within the MFW, meaning that
a magnetic field of 80mT in magnitude can be generated in
any direction within this volume. The shape of the available
magnetic field A at the center C of this cube is depicted in
Fig. 1c. As a consequence of the hyperplane shifting method,
the resulting shape of A is a polyhedron composed of eight
pairs of parallel faces corresponding to the sixteen hyperplanes
generated by each coil (one for the maximum and one for

the minimum current). We can also see that the condition
number κ increases significantly in the coils closer to the
patient bed, thus indicating that the system is less isotropic
within this region.

2) Case-study for cardiac catheter steering: In order to
illustrate a practical use for our method, we consider the
realistic task of steering a single-magnet magnetic catheter
using the CardioMag eMNS. The navigation of a magnetic
catheter consists of applying a magnetic torque to the magnet
located at its tip in order to deform the flexible body of
the catheter. In this case-study, we also want to ensure that
this task can be performed without applying any additional
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0.
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m

a) b) c) DA

Fig. 9. Workspace analysis of the CardioMag eMNS for magnetic catheter navigation. a) Top view of the CardioMag eMNS. b) Isolines of the maximum
achievable magnetic field magnitude in T within a 0.3m side square at the level of the patient bed. c) Conservative estimate of the WFW (colored area),
where a one-magnet cardiac catheter can be deflected up to 120◦ without a magnetic gradient (the maximum achievable magnetic field magnitude is overlaid
on the same figure). The D-A distance is represented by the colorscale.

magnetic forces on the magnet.
We consider the following constant curvature model that

relates the magnetic torque magnitude t acting on a magnet
of magnetic dipole magnitude m to the deflection θ of the
catheter tip

t =
θ

l
EI (30)

where E is the Young modulus of the catheter constitutive
material, l its length, and I the second moment of area
of the catheter’s circular cross-section of diameter d. We
consider the task of deflecting the catheter with a maximum
tip angle θ = 120◦ for any orientation of its proximal axis.
The feasibility of this task is ensured if the desired task D =
{(b,g) ∈ R8 | ||b||2 ≤ t/m , g ∈ {05}} is feasible, where t
is the maximum torque to be generated on the catheter in order
to achieve the tip deflection θ according to (30). We consider
the values l = 40mm, d = 2.3mm, d = 22mNmT−1,
and E = 15MPa that correspond to a realistic one-magnet
cardiac catheter.

The results for the WFW under these conditions are depicted
in Fig. 9. Additionally, we represent the isolines of the max-
imum achievable magnetic field magnitude in every direction
in the absence of gradient. This was computed using our
feasibility method within a dichotomy algorithm to determine
the maximum value of b for D to be feasible. We investigate
the feasibility in a single plane on the patient bed within a
square of side 0.3m, as depicted in Fig. 9b. The WFW is
represented in Fig. 9c by the colored area. The border of the
obtained WFW is close to the isoline of 50mT. Its shape does
not exhibit a perfect symmetry. This is because the calibration
is a result of an experimental process that does not constrain
any symmetry in the placement of the dipole sources modeling
the coils.

VII. EXPERIMENTAL VALIDATION

We provide an experimental validation of some of the
previously introduced concepts on the Navion eMNS that is
illustrated in Fig. 10a. Navion is a 450-kg eMNS composed
of three liquid-cooled electromagnets arranged on a triangular
base. The maximum power of the system is 32 kW, with a
maximum current of 35A in each coil. The system has been
primarily developed for magnetic remote endovascular naviga-
tion using soft magnetic tools. It provides suitable accessibility
to the patient and for the integration of fluoroscopic imaging
technologies. The system is calibrated using the approach
proposed in [13].

We experimentally verify the maximum value of b within a
calibrated region of the Navion eMNS, for a task τ = b, and
a desired task set D = {b ∈ R3 | ||b||2 ≤ b}. The maximum
value of b at a given position, denoted bmax in the following,
corresponds to the largest magnitude magnetic field that can
be generated in any direction in space at this position. We
determine that each coil can produce a current of up to 35A
in intensity, so that the set of admissible currents I can be
represented as a cube of 70A side depicted in Fig. 10c.

A. Approach

We consider the evaluation of bmax and A obtained with
our methodology act as a ground truth. These are based
on a magnetic model of the eMNS that can be evaluated
at any position in a calibrated space. Our objective in this
section is to estimate these experimentally. In the following,
we denote b̃max and Ã the experimental estimates of bmax

and A respectively.
The value bmax can be seen as the largest norm of magnetic

field that can fit in A for any orientation of the field, or in
other words the radius of the largest sphere that can be fully
included in A. Thus bmax can be determined as the smallest
distance from the boundary of A to the origin of the magnetic
frame (bx, by, bz). Recalling that our method generates A of
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Fig. 10. Experimental validation on the Navion eMNS. a) Measured magnetic field with a 11 × 11 magnetometers’ array for the current vector ivert =[
35 35 −35

]T
A at the height z = 0. b) Experimental validation of the maximum field magnitude b̃max obtained at 121 positions. The isolines

represent bmax in mT using the magnetic model of the Navion eMNS, and the colored scatter plot represents b̃max at the 121 sensors’ positions. c)
Admissible currents. d) Estimated available magnetic fields Ã at three different positions represented in b). e) Evaluation of b̃max at 121 positions and at
five different heights (colored scatter plot). The isolines represent bmax in mT.

the form of convex polytopes (see for example Fig. 2), this
distance corresponds to the distance of the closest face of A
to the origin of the magnetic frame (bx, by, bz).

To evaluate b̃max, it is thus necessary to estimate Ã first.
To do so, we assume that Ã is a convex polytope as well, so
that it can be obtained as the convex hull of its vertices, which
map to the vertices of the admissible current set through the
task actuation matrix. With this approach, the determination
of Ã necessitates to generate the currents corresponding to
the 8 vertices of I, and to measure the corresponding magnetic
fields at the positions in space where we want to compare b̃max

to bmax (see colored vertices in Fig. 10c and d).

B. Setup

The magnetic field generated by the eMNS is measured
by an 11 × 11 magnetometer array, where the 121 sensors
(ALS31300, Allegro MicroSystems Inc.) are connected on an
I2C bus and arranged along a regular grid of 0.26 × 0.26 m
in size. The array measures the 3d magnetic field at each grid
position with an acquisition rate of 2.5Hz. The coil currents
are controlled via a computer running a Linux O.S. (Ubuntu
20.04), and using a Robotic Operating System interface (ROS
Noetic) that communicates with the embedded computer of
the eMNS via a TCP/IP protocol. The data are collected via
ROS and include the target and measured currents in the coils,
and the magnetic field measured by the magnetometer array.
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An example of measurement is depicted in Fig. 10a on a
customized ROS Vizualisation interface (RViz). The orange
arrows represent the 3d magnetic fields measured by the
magnetometers of the array for the current vector ivert (see
Fig. 10c).

C. Protocol

For each position, the determination of b̃max consists of
the following protocol:

1) Generate the current targets corresponding to the vertices
of I (colored corner-points in Fig. 10c).

2) Measure the 3d magnetic field corresponding to the
vertices of Ã (colored corner-points in Fig. 10d).

3) Determine Ã as the convex hull of the measured vertices
(blue envelopes in Fig. 10d).

4) Determine b̃max as the distance from the closest poly-
gon of the convex hull to the origin of the magnetic
frame (bx, by, bz).

Each current target was maintained for 5 s to ensure that
steady-state was reached. The data were post-processed using
Python scripting. An example of the measurements collected
with the magnetometer array is depicted in Fig. 10a. In
this example, the magnetic field is produced by the current
vector ivert =

[
35 35 −35

]T
A (see corresponding vertex

in Fig. 10c).

D. Results

The scatter plot in Figure 10b shows the values of b̃max

at each of the sensors’ grid positions (the measures are at
the center of the square marker). These results are in line
with the values estimated via the magnetic model depicted
by the isolines on the same figure. The available magnetic
fields at three different positions within this grid are also
illustrated in Fig. 10d. One can note that the system exhibits
a symmetry which comes from the axial symmetry of the coil
arrangement. This also explains why positions 1 and 3 exhibit
a similar value for b̃max, with their respective shape of Ã being
mirrored along the plane of symmetry of the eMNS 7. The
measurements are repeated at 5 different heights (z-direction),
and the results are depicted in Fig. 10e.

The values of b̃max at these 605 positions (11 × 11 grid
points in 5 different planes) match the prediction of the
magnetic model with a mean absolute error of 0.6mT. The
absolute estimation error |b̃max − bmax| at four different
heights at the magnetometers’ positions is depicted in Fig. 11.
This gives a comparison between the values obtained in
simulation with the magnetic model, and their experimental
estimation at the positions of the magnetometers. The error
ranges from 1.0 × 10−3 to 1.3mT and appears to be higher
on average when z increases.

7The shape of the available set of tasks obtained here can be compared to
the shape obtained for a similar magnetic task with the CardioMag eMNS as
depicted in Fig. 1c, which exhibits a polyhedron with many more facets due
to the higher number of coils of the eMNS.
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Fig. 11. Absolute estimation errors |b̃max − bmax| at the 121 positions of
the magnetometers’ array for four different heights of the array for the Navion
eMNS. Measurements are compared with the linear magnetic model used for
the calibration.

VIII. DISCUSSION

The algorithm introduced in section IV-A1 to evaluate
the available set of tasks is suitable for an eMNS that can
be modeled using linear magnetic models. This provides an
efficient way to compute A, which is useful regardless of the
definition or even the concept of workspace. It can indeed be
used to quickly determine at a given position what the eMNS
is able to perform as a task, and even evaluate the feasibility
of a position in real-time for control purposes. For tasks of
dimensions lower or equal to three, this also constitutes as
a useful method to provide a spatial representation of an
available set in a convenient manner as the example depicted in
Fig. 1c for the CardioMag eMNS. Our method to evaluate the
feasibility, as well as the various definitions of the workspace
introduced in this paper are generic, and can be applied to
eMNSs with arbitrary number of coils 8.

In section VII, an experimental protocol inspired by this
principle was derived in order to estimate the maximum mag-
netic field magnitude that can be generated in any direction in
space. For an eMNS behaving in a linear manner, the available
magnetic field can be determined as the convex hull of the
magnetic fields generated at the vertices of the admissible
current set. This was experimentally demonstrated on a three-
coil eMNS, with an error lower than 1.3mT compared to the
estimation provided by a state-of-the-art linear model (less
than 6% of the maximum field magnitude in the investigated
region). The estimation error and its distribution over space
depicted in Fig. 11 can be mainly explained by registration
errors during the placement of the sensors array in front of
the system. It can also be explained by the calibration errors
of the magnetic model of the Navion eMNS, which are in the
order of magnitude of the estimation errors reported in this

8under the restrictions discussed in [30] on the minimum number of coils
needed to perform given tasks.
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work. The results show that our method is able to estimate
the maximum achievable field of the system in a consistent
manner throughout space, and are in line with the theoretical
values obtained by simulation (see Fig. 10b). Although the
admissible error is highly dependent on the targeted appli-
cation, we believe the present results are acceptable for the
endovascular navigation of magnetic catheters, which is our
main application target with the Navion eMNS. In this case,
the required fields magnitude are of 25mT and above, and
the maximum estimation error represents less than 5% of the
field used for navigation.

Throughout this paper, we assume that the eMNS behaves
in a linear manner. For systems with large ferromagnetic cores
and high current densities, the magnetization response to coil
current is, however, often significantly nonlinear, since the
ferromagnetic material comprising the electromagnets exhibits
magnetic saturation. In this case, nonlinear magnetic models,
such as the ones introduced in [14], can be considered. The
methodology introduced in IV-A1 is then only applicable
for the analysis of these systems within their linear regime.
In general, magnetic saturation and other effects leading to
nonlinear behavior are limiting the performance of an eMNS
as they reduce the maximum achievable field produced by
a coil for a given current. For this reason, nonlinearities
are expected to reduce the size of the workspaces defined
in this work compared to systems operating with similar
currents densities but free of these effects. Besides, the choice
of the admissible set of currents in the coils in practice is
constrained by the thermal losses in the coil’s windings due
to Joule heating. This can lead to high operating temperature of
the coils, and limits the maximum achievable fields as well.
For these reasons, for systems above a certain power, heat
must usually be removed using additional fluid or air cooling
systems.

As illustrated in section VI-A3, the use of interval analysis
to iteratively estimate the workspace of an eMNS is an
interesting alternative to the limitations of the discretized
approach. The main advantage of interval analysis in this case,
is to be able to verify whether a region in space is fully
inside or outside of the workspace, thus discarding any issue
related to holes in a given region that could be missed by
discretization. The method is limited by the wrapping effect
that usually prevents the accurate identification of the borders
of the workspace where the boxes’ classification remains
undetermined. It is also quite cumbersome to apply to a non-2d
case. We believe that the relevant use of the interval analysis
lies in its combination with a discretization approach to test
critical regions where the presence of holes must be avoided.

IX. CONCLUSION AND PERSPECTIVES

The definition of workspace for electromagnetic navigation
systems, and its determination, are key aspects for further
exploiting and comparing these robotic systems for medical
applications. The determination of the feasibility of robotic
tasks at a given set of positions is a central feature, and has
been proposed here based on previous work on cable-driven
parallel robots. Evaluation metrics introduced in this work

provide both local and global indicators of their performance.
These metrics allow for a fair and standardized comparison
between different system designs, which can be used both for
bench-marking and design optimization.

The code used to produce this work is available as a capsule
on CodeOcean, and can be used and adapted to assess any
calibrated system in a generic manner. The interested reader
can also refer to appendix A for a more thorough explanation
on which part of the code can be used to reproduce the results
of this paper.

We believe that the definitions, methodology, and evaluation
metrics presented in this paper constitute an important step
toward a more unified framework for the design, comparison,
and evaluation of eMNSs within the robotics research com-
munity.
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APPENDIX A
DESCRIPTION OF THE SHARED CODE

The companion code to reproduce our results is avail-
able on CodeOcean (https://doi.org/10.24433/CO.2090933.
v1). The CodeOcean capsule corresponds to the release
v1.0.0 of the GitHub repository https://github.com/ethz-msrl/
Workspace eMNS where our code is hosted. In the following,
the locations of the files are provided within the folder
/code/Workspace eMNS/ of the repository:

• Figure 1c: the available magnetic field depicted in the
figure is computed in 01 available magnetic field.ipynb.

• Section IV-A1: the hyperplane shifting
method is implemented in the function
HyperPlaneShiftingMethod in utilities.ipynb.

• Section IV-A2: the evaluation of the feasibility of the
different types of set are implemented in the functions
VerifyFeasability* in utilities.ipynb.

• Section VI-A: the examples with two and four coils are
implemented in 02-00 2d systems.ipynb, and the inter-
val analysis of the two-coil system in 02-01 interval
analysis.ipynb.

• Section VI-B: the examples with three and eight coils
are implemented in 03 3d systems.ipynb.

• Section VI-C: the application to the CardioMag eMNS
is implemented in 04 cardiomag application.ipynb.

• Section VII: the application to the Navion eMNS is im-
plemented in 05 navion application.ipynb and uses the
experimental data stored in the folder /experimental data
for the comparison with the simulations.

• Geometries of the eMNSs and magnetic models: the
magnetic models used for the different systems are avail-
able as *.yaml files in the folder /models. These files can
be interpreted using the mag manip Python package, and

https://doi.org/10.24433/CO.2090933.v1
https://doi.org/10.24433/CO.2090933.v1
https://github.com/ethz-msrl/Workspace_eMNS
https://github.com/ethz-msrl/Workspace_eMNS
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the arrangement of the coils displayed with the functions
Coils2DPatch and PlotCoils3D in utilities.ipynb.

APPENDIX B
ACRONYMS AND DEFINITIONS

A. Acronyms

RMN Remote Magnetic Navigation
eMNS(s) Electromagnetic Navigation System(s)
CDPR(s) Cable-Driven Parallel Robot(s)

MFW Magnetic-Feasible Workspace
WFW Wrench-Feasible Workspace

B. Definitions

• Magnetic task: a task defined in terms of magnetic field
and gradient to be generated by the eMNS.

• Wrench task: a task defined in terms of magnetic torques
and forces to be applied on a magnetic object.

• Set of admissible currents (I): (user-defined) set of
currents restricting the value of the coil’s currents.

• Desired set of tasks (D): (user-defined) set of tasks that
an eMNS must be able to achieve.

• Available set of tasks (A): set composed of the tasks
that can be achieved by the eMNS for a given set of
admissible currents.

• Tasks feasibility: a desired set of tasks D is feasible by
an eMNS if it is included in its available set of tasks A
for a given set of admissible currents I.

• Magnetic-Feasible Workspace: set of positions where a
desired set of magnetic tasks is feasible, given a set of
admissible currents.

• Wrench-Feasible Workspace: set of positions in space
where a desired set of wrench tasks is feasible, given a
set of admissible currents.

APPENDIX C
MATRIX FORMS FOR THE MAGNETIC FORCES AND

TORQUES MAPPING

We consider that the magnetic dipole m of magnitude m is
oriented in the base reference frame with the inclination and
azimuth angles α and β (see Fig. 12), so that its coordinates
in this frame are m

[
sαcβ sαsβ cα

]T
.

x

y

z

mα

β

Fig. 12. Orientation of a dipole m in a base reference frame with inclination
angle α and azimuth angle β.

The torques and forces that m experiences due to the
magnetic field and its gradients are computed as

t = T(m,α, β)b (31)
f = F(m,α, β)g (32)

with the following matrices

T = m

 0 −cα sαsβ
cα 0 −sαcβ
−sαsβ sαcβ 0

 (33)

F = m

sαcβ sαsβ cα 0 0
0 sαcβ 0 sαsβ cα
−cα 0 sαcβ −cα sαsβ

 (34)

where sa and ca abbreviate the sine and cosine of an angle a,
and α and β are the inclination and azimuth angle of the
vector m in the reference frame, and m is the magnitude of
the dipole moment.
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