
1

Long-Horizon Multi-Robot Rearrangement Planning
for Construction Assembly

Valentin N. Hartmann1,2, Andreas Orthey2, Danny Driess2, Ozgur S. Oguz1,3, Marc Toussaint2

Abstract—Robotic assembly planning enables architects to
explicitly account for the assembly process during the design
phase, and enables efficient building methods that profit from
the robots’ different capabilities. Previous work has addressed
planning of robot assembly sequences and identifying the feasi-
bility of architectural designs. This paper extends previous work
by enabling planning with large, heterogeneous teams of robots.

We present a planning system which enables parallelization of
complex task and motion planning problems by iteratively solving
smaller subproblems. Combining optimization methods to solve
for manipulation constraints with a sampling-based bi-directional
space-time path planner enables us to plan cooperative multi-
robot manipulation with unknown arrival-times. Thus, our solver
allows for completing subproblems and tasks with differing
timescales and synchronizes them effectively. We demonstrate the
approach on multiple case-studies to show the robustness over
long planning horizons and scalability to many objects and agents
of our algorithm. Finally, we also demonstrate the execution of
the computed plans on two robot arms to showcase the feasibility
in the real world.

Index Terms—Manipulation Planning, Task Planning, Robotics
and Automation in Construction, Multi-Robot Systems.

I. INTRODUCTION

AS ROBOTS become ubiquitous in manufacturing and
production processes, more robust algorithms to co-

ordinate their work are needed. When multiple robots are
employed to achieve a desired goal, two main problems have
to be solved: (i) assigning tasks to individual robots, and (ii)
coordinating movements of robots to allow effective execution
of those tasks. Combined task and motion planning (TAMP)
approaches provide a suitable framework to jointly solve such
problems. Scaling these methods to robotic teams consisting
of multiple agents and to long-horizon problems remains a
major challenge.

We focus on multi-robot planning problems in the context
of building construction: As one of the largest industries
worldwide, building construction can benefit from autonomous
robots and planning processes [1], and the increased efficiency
they bring. While robotic construction processes have gained
more use in this industry [2], [3], particularly in off- and on-
site prefabrication, an integrated autonomous decision-making
and robot motion planning approach is missing.

This research has been supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy
– EXC 2120/1 – 390831618.

1Machine Learning & Robotics Lab, University of Stuttgart, Germany
{firstname}.{lastname}@ipvs.uni-stuttgart.de

2Learning and Intelligent Systems Group, TU Berlin, Germany
3Department of Computer Engineering, Bilkent University, Turkey

Fig. 1: Six mobile manipulators (red) assembling a well (blue).
We visualize the end-effector path of each robot as a red curve.

Previous work on autonomous assembly planning showed
promising results in problems such as furniture assembly [4]–
[6] or building construction [7]–[9]. Although TAMP formu-
lations are theoretically suitable for such problems, existing
approaches do not scale well with an increasing number of
robots [7], [8] and/or are only demonstrated on problems
spanning short time-horizons [10], [11].

(Construction) Assembly planning can be thought of as
rearrangement planning [12], [13] with additional difficulties:
(i) The ordering of objects is crucial to finish a task, since
the feasibility to place a part is highly dependent on previ-
ously placed objects [7], [14] (e.g., for stability-reasons, or
object availability). (ii) Objects and object orderings might
impose constraints on the robots (e.g., if an object can not
be transported by a single robot or temporary support of the
intermediate structure is necessary). Using multiple robots to
parallelize the process, these dependencies are amplified due
to the non-sequential assembly process.

This paper extends prior work [8], [15] in robotic assembly
planning to provide effective coordination of potentially het-
erogeneous robotic teams in long-horizon settings. We frame
the problem as a TAMP problem and use the framework of
logic-geometric programming (LGP) [10] to formalize it.

Our algorithm decomposes the overall planning problem
by sequentially considering smaller, limited horizon problems
with only a subset of robots to enable scalability. These
subproblems aim to solve the task sequencing and motion
planning while keeping previously planned robot trajectories
fixed. A heuristic prioritizes the order in which subproblems
are solved. The path planning for one subproblem needs to

ar
X

iv
:2

10
6.

02
48

9v
3

 [
cs

.R
O

]
 7

 M
ar

 2
02

2

2

account for the previously computed, concurrent motion of
other robots. We present a novel bi-directional space-time
embedded RRT method that allows planning to an unknown
arrival time and enables accounting for previously planned
robot-trajectories. The goals for path planning are generated
using an optimization-based approach that jointly solves for
all manipulation constraints within the subproblem.

Our contributions are:
• a way to decompose the assembly problem into limited

horizon subproblems for only a subset of agents, while
accounting for the constraints implied by previously
solved subproblems, both in time and space,

• a time-embedded keyframes optimization that samples
time embeddings of manipulation constraints and em-
ploys optimization methods to jointly solve for them in
the limited horizon subproblems,

• a novel bi-directional space-time motion planner that
finds paths between keyframes in combined space-time
with unknown arrival times, thereby integrating sampling-
based path planning with optimization-based methods.

We demonstrate our algorithm on various construction as-
sembly problems with up to 12 heterogeneous agents, includ-
ing two long-horizon case-studies using real architectural mod-
els where up to 113 parts have to be placed. Our evaluations
show that this decomposition-based approach scales well with
the number of robots and can efficiently coordinate robotic
teams. We also show the feasibility of the plans computed by
our algorithm on real robots.

II. RELATED WORK

Construction robotics [16] is a growing industry which aims
to automate building construction. Specialized robots such
as bricklaying robots [17] or automated hydraulic excavators
[18] recently emerged. Such robots have been used in various
constructions settings [19]–[22]. However, the algorithmic
aspects of construction planning when dealing with multiple
robots have only begun to be studied.

A. Multi-Robot Motion Planning

On the lowest level, construction planning needs to solve a
multi-robot motion planning problem for heterogeneous robot
teams [23]. This problem is often divided into two categories:
First, one can plan roadmaps in parallel for individual robots,
combine those roadmaps into an (implicit) joint state space
roadmap and eventually search this roadmap using algorithms
such as M* [24], or discrete RRT [25], [26]. Those algorithms
can often be significantly improved using heuristics learned
from prior experience [27].

Second, prioritization frameworks [14], [28], [29] can be
used, where robot-paths are planned sequentially, imposing
the previously planned movements as constraints for the next
robot. Planning sequentially can require backtracking, which
can be time consuming. Several approaches exist to avoid
backtracking, e.g., analyzing start or goal conflicts [30].

In our approach, we use a prioritization approach by em-
ploying a heuristic to prioritize exploration of LGP subprob-
lems. Contrary to prioritization in multi-robot motion planning

we embed planning in space-time [31], [32] to enable planning
in a dynamic environment and with unknown arrival times.
Space-time planning has previously been investigated in the
context of rendezvous planning [33]. In assembly tasks, it
is often necessary to sample several keyframes at different
time instances, due to blockages of the goal region from
other agents. We combine space-time planning explicitly with
discrete constraint switches. Our novel bidirectional space-
time RRT allows us to efficiently find time-dependent plans
while avoiding collisions with previously planned robots.

B. Assembly Planning
The algorithmic aspects of construction planning are studied

in the field of assembly or rearrangement planning [34],
[35]. Assembly planning traditionally focuses on finding valid
sequences to assemble objects [36], [37]. More recently, this
was also applied to masonry constructions [38], [39].

We focus here on integrated task and motion planning
applied to robotic assembly planning. A review of solution
approaches to TAMP problems can be found in [15]. We focus
on some approaches that are especially pertinent to our work:
Constraints and their intersections are explicitly enumerated in
the state space [40]. Such a constraint graph can be exploited
by biased sampling at constraint intersections [41], [42], and
these samples can be connected along the constraint manifolds
using projection methods [43]–[45]. Complex applications of
such an approach are demonstrated in [25], such as concurrent
handovers between multiple robots with multiple objects and
capacity constraints.

On the other hand, symbolic assembly approaches explicitly
introduce symbolic states to find task-level decisions and to
factorize the problem [10], [46], [47]. Once symbolic decision
sequences (skeletons) are found, lower level planners are
used to execute a skeleton, using sampling-based [48], [49]
or optimization-based [10] methods. This approach can be
tailored towards many different applications, for example by
including force constraints [47], dealing with re-planning [50],
[51] or handling partial observability [52].

Previous work dealt with long-horizon construction plan-
ning for a single agent [53], or two agents [8], but solving
long-horizon TAMP problems using multiple robots is an open
challenge. Initial steps towards solving multi-robot, multi-
object rearrangement tasks in a simple configuration space for
homogeneous robot teams with few objects were made in [11],
[54]. Such previous work assumes that the actions of robots
are synchronized [8], [10], [11], [25], plan in the combined
space of all robots, and do therefore not scale [8], are only
demonstrated for simple robots and few objects and state that
they do not expect to scale [54], or are not demonstrated on
long time-horizons [11], [25].

With our approach, we are able to plan for heterogeneous
robot teams with complex interactions, and to scale to more
objects and robots. We achieve this by combining sam-
pling based methods for path-planning, and optimization-based
methods for finding the mode-switches. Contrary to previous
work, our approach does also not assume synchronicity of
actions, thereby allowing the parallelization of assembly tasks
efficiently.

3

III. MULTI ROBOT REARRANGEMENT PLANNING
NOTATION AND PROBLEM FORMULATION:

Given n unique objects, indexed by o ∈ O, |O| = n, with
initial poses p0

o ∈ SE(3) at time t = 0, and m robots, indexed
by r ∈ R, |R| = m, the aim is to rearrange all objects to their
(given) goal locations pGo ∈ SE(3). Each robot may have its
own configuration space Qr ⊂ Rdr .

We formulate the problem as a non-linear mathematical
program over the path x : [0, T] → X . The configuration
space X = Q × SE(3)n consists of all robot configuration
spaces Q = Qr1 ×· · ·×Qrm and object configuration spaces.

Over time, different constraints on the path are active, e.g.,
at the end of a pick-action, the end-effector of an agent needs
to fulfill gripping-constraints. Which constraints are active is
determined by the task assignment s ∈ S = Sr1 × · · · × Srm ,
where Sr indicates the feasible tasks for robot r. Thus, the
state s determines the current task assignment of each robot1.
We use sr,1:Kr

∈ S(R,O) to denote the discrete sequence of
tasks of robot r, with sr,j ∈ Sr. Kr is the number of discrete
states for robot r in the sequence sr,1:Kr

. The set S(R,O)
denotes all valid state sequences induced by a first-order logic-
language for the robots R and objects O. For example, a
handover-action necessitates a pick-action as precondition.

In most approaches to solve TAMP problems the transi-
tions between task assignments occur at fixed intervals [8],
[10], [11], [25]. Our problem formulation allows for task
assignments to switch (finitely often) at any time. This is
achieved by the scheduling function, k : [0, T] → N =
(1, . . . ,K1) × · · · × (1, . . . ,Km), that maps continuous time
t into a vector of indices that select the currently active task
assignments for all robots, such that s(t) = sk(t). We use kr(t)
to denote the scheduling function for robot r. The scheduling
function is constrained to respect the order of the indices, i.e.,
kr(t1) ≤ kr(t2) ∀t1 ≤ t2.

Therefore, we try to find the path x, the terminal time T >
0, the scheduling function k, and the sequences of discrete
states {sr,1:Kr

}mr=1 to optimize

min
x,T,k,

{sr,1:Kr}
m
r=1

∫ T

0

c(x(t), ẋ(t), ẍ(t)) dt (1a)

s.t. x(0) = x0 (1b)
∀t ∈ [0, T] : g(x(t), ẋ(t), sk(t)) ≤ 0 (1c)

{sr,1:Kr
}mr=1 ∈ S(R,O) (1d)

ggoal
(
x(T), pGO,O

)
≤ 0. (1e)

The task assignment state sr,kr(t) ∈ Sr determines currently
active constraints for each robot r on the path x at time t via
the constraint function g in (1c). For example, sr,kr(t1) = sr,j
could specify the necessary constraints for robot r such that it
grasps an object at time t1 as the j-th discrete state sr,j of the
sequence sr,1:Kr

. Additionally, (1c) could describe collision
constrains, or joint-limits. In the following, we refer to the
discontinuities in s as mode-switches, or keyframes. Figure 2

1This is slightly different to most TAMP literature, where s is a set of
grounded literals that determine, e.g., which robot is assigned to which task,
and STRIPS-like rules determine feasible transitions between logical states
(task assignments).

Fig. 2: Illustration of the scheduling function k on a problem
with three agents (r1, r2, r3). The scheduling function maps
the time t to the active tasks s1, s2, s3.

illustrates the components of s, and how the sequence is
mapped to continuous time.

The goal constraint (1e) specifies that at the end, all objects
have to be at their target poses. The initial condition x0

contains the initial configuration of all robots as well as the
initial poses of the objects. Finally, c is a cost function, such
as path length, control cost, or minimal time. In case we are
only interested in finding a feasible solution, c = 0.

A. Assumptions

We summarize the assumptions we made in the problem
formulation:
• Known initial and final position of all objects, and

availability of a method to sample configurations for
manipulating them.

• Monotonic rearrangement: While it is possible to handle
nonmonotonicity in the logic search, we assume in this
work that each object is handled a single time. However,
we consider re-grasping of objects such as handovers.

• No force and torque constraints for the robots: In this
work, we assume that the parts are light compared to the
allowable robot-payload. Consequently, every object can
be manipulated by a single robot under this assumption.

IV. METHOD

Solving the problem described in Eq. (1) in a fully joint and
global manner is intractable, and even finding a feasible solu-
tion that utilizes all robots is hard. We present our approach
to decompose the problem into simpler subproblems, and to
solve the subproblems such that the solutions together are a
feasible solution to the original problem. Algorithms 1 to 3
and the following sections describe

1) A decomposition of the overall problem into subproblems
that each contain only a subset of robots and assigned
tasks. These subproblems account for the time-embedding
in a scene where other robots are already moving, and
represent coordination constraints for their respective sub-
set of robots to ensure feasible cooperative manipulations,
e.g., handovers.

2) An approach to generate solutions to manipulation con-
straints defined by the subproblems, such as pick, place,
or handover constraints. We use this method to sample
goals for the path planning algorithm.

3) A bi-directional space-time RRT path planner to find fea-
sible motions between keyframes taking moving robots
into account.

4

Choose Subproblem
(Section IV-D)

Construct Keyframes
Optimization Problem
(Section IV-B & IV-A)

Solve Time-
Embedded Keyframes
Optimization-Problem

Space-Time Planning
to Connect Keyframes

(Section IV-C)

Solve Subproblem

Fig. 3: A high-level description of the steps of our method. The subproblem to solve (i.e. with which agent which part should be
placed) is chosen using a heuristic. This subproblem is then solved (gray rectangle) by first finding a set of feasible keyframes
that fulfill the constraints for the mode switches. Since other agents might already move on a previously planned trajectory,
the method then finds a time-embedded path by repeatedly generating new keyframes with different time-embeddings and
attempting to connect the keyframes to each other. Please refer to Section IV for a more elaborate description of each step.

Algorithm 1: plan().

1 tree ← ∅, curr node ← ∅
2 while true do
3 O ← extract_objects(curr node)
4 seqprev, Rprev ← extract_prev_attempts(curr node)
5 (o,R, seq)← choose_subproblem(O, seqprev, Rprev)
6 if (o,R, seq) = ∅
7 curr node ← backtrack(tree)
8 continue
9 solsub ← solve_subproblem((o,R, seq))

10 if solsub = ∅
11 mark_as_infeasible(curr node, (o,R, seq))
12 else
13 curr node ← add_to_sol(tree, solsub)
14 if done
15 return extract_sol(curr node)

16 return Infeasible

Algorithm 2: solve_subproblem((o,R, seq)).

1 for k = 1 . . . |seq| do
2 goal_sampler ← make_goal_sampler(seq,

R, {x1, . . . , xk})
3 q0, t0 ← get_available_time(R)
4 xk ← ST-RRT*((q0, t0), goal_sampler)
5 if xk = ∅
6 return ∅
7 for k = 1 . . . |seq| do
8 xk ← shortcut(xk)
9 xk ← smooth(xk)

10 return {x1, . . . , x|seq|}

4) A heuristic to prioritize the order of subproblems that
the overall system tries to solve, and how everything is
integrated with each other.

An illustration of this system can be seen in Fig. 3.

A. Decomposition into Time-Embedded, Limited Horizon Sub-
problems with a Subset of Agents

A natural decomposition of Eq. (1) into smaller subproblems
emerges from the problem specification of rearranging objects,
i.e., we consider subgoals of rearranging one object with po-
tentially multiple robots. The following description focuses on
clarifying the degrees-of-freedom (DoF) for each subproblem.

Assume that we are in step l of the planning process. The
set Ol−1 ⊆ O denotes all objects that have been successfully

Algorithm 3: ST-RRT(x0, goal_sampler).

1 Ta ← x0, Tb ← ∅
2 while not stopped do
3 tlb, tub ←update_bounds()
4 if rnd(0, 1) < pgoal
5 t← sample(tlb, tub)
6 qg ← goal_sampler(t)
7 add_goal((t, qg))
8 q ← sample_valid_state()
9 t← sample_valid_time(q)

10 if not xnew ← extend((t, q), Ta) = trapped
11 if connect(xnew, Tb) = reached
12 return extract_path()

13 swap(Ta, Tb)
14 return ∅

moved to their respective goal locations at previous planning
steps, i.e., an action sequence and corresponding trajectory has
been planned. The set Ōl−1 = O\Ol−1 denotes the objects
that have no plan associated yet. A heuristic (explained in
Section IV-D) selects a single new object ol ∈ Ōl−1 and a set
of robots Rl ⊆ R that should be involved in rearranging the
object ol to its target pose pGol .

The optimization problem we solve in step l therefore only
optimizes over a part of the path x. We use x̄lIl to denote the
degrees of freedom in the subproblem, where Il = {Rl, ol} is
the set of indices of the path x that correspond to the robots Rl

and the object ol. Not all degrees of freedom in x̄Il necessarily
become active at the same time, since some of the robots might
be involved in previously planned motions up to different
times (Fig. 4: r1 and r2 become active at different times).
Similarly, the subproblem in step l is temporally embedded
into a scene where robots and objects not part of the current
planning problem may follow previously computed plans (r3

in Fig. 4).
To define the optimization problem for the subproblem, we

therefore also need to specify how the inactive indices of x are
defined. In order to do so, let T l−1

r , T l−1
o ∈ R denote the time

until which paths for robot r and object o have been planned
in the l − 1 previous planning steps. If no path has yet been
planned for a robot/object, its time is set to zero. This allows
us to define the i-th component of the path variable xl in the

5

Fig. 4: A problem with three agents, in which we plan for
r1, and r2 (and object o) with a handover sequence. The
previously fixed plans are dark grey, the red lines indicates
constraints (gsw, ggoal) that have to be fulfilled at the mode-
switches, and the actions and corresponding paths that have
to be planned are light-grey. The blue box indicates the DoF
x̄Il for the current planning problem. The active indices I are
{r1, r2, o}.

planning step l at time t as

xli(t) =

xl−1
i (t) t ≤ T l−1

i

xl−1
i

(
T l−1
i

)
t > T l−1

i , i /∈ Il
x̄li(t) t > T l−1

i , i ∈ Il
. (2)

Therefore, the degrees-of-freedom x̄lIl in planning step l are
those of Rl and ol from the point in time where they have no
associated planned trajectory yet (i.e., t > T l−1

i , i ∈ Il). In
the other cases, they move according to previously computed
plans (t ≤ T l−1

i) or remain at the last planned configuration
(t > T l−1

i , i /∈ Il), i.e., they correspond to inactive degrees
of freedom. The same holds for the scheduling function k
which has the effective degrees of freedom k̄Il . Similarly,
the search over the symbolic task state for the selected
robots happens over

{
sr,Kl−1

r +1:Kl
r

}
r∈Rl

only. The complete
task state sequence of robot r is then the concatenation
sr,1:Kl

r
=
(
sr,1, . . . , sr,Kl−1

r
, sr,Kl−1

r +1, . . . , sr,Kl
r

)
of the

sequences that have been determined in the steps up until step
l−1 and the new sequence. We show an illustration that serves
to explain the free and fixed parts respectively in planning step
l in Fig. 4.

This leads to the following limited horizon optimization
problem in step l for the chosen object ol and robots Rl

min
T̄ l, x̄l

Il
(·), k̄l

Il
(·){

s
r,K

l−1
r +1:Kl

r

}
r∈Rl

∫ T̄ l

T̄ l−1

c
(
xl(t), ẋl(t), ẍl(t)

)
dt (3a)

s.t. xl as defined in Eq. (2)

∀t ∈
[
T̄ l−1, T̄ l

]
: g

(
xl(t), ẋl(t), slk(t)

)
≤ 0 (3b)

∀r ∈ Rl : sr,1:Kl
r
∈ S(Rl, {ol}) (3c)

ggoal
(
xl(T̄ l), pGol , {ol}

)
≤ 0. (3d)

Here, T̄ l−1 = minr∈Rl
T l−1
r is the earliest time for which

no plan of a robot in Rl exists yet. If Rl contains more than
one robot, the final time T̄ l that is being optimized for is the
maximum time of all robots Rl that are involved in the current

planning step, as one robot could fulfill all its constraints
earlier than the others. Consequently, the final times T l

j ≤ T̄ l

are assigned by extracting the minimum times where each
individual robot and object j ∈ Il fulfill their constraints.

B. Time-Embedded Keyframes Optimization to Jointly Solve
for Sequential Transition Constraints

Equation (3) is nonconvex due to collision avoidance, ma-
nipulation constraints, the time-embedding, and the discrete
action-sequence. To robustly find feasible solutions to Eq. (3),
we combine a search for a valid sequence with nonlinear
optimization and a sampling-based planner. The optimizer
solves for configurations at the transition between two task
assignment states, while the motion planner, described in
Section IV-C, iteratively finds paths between the keyframes.

Assume we are given robots R and the sequences of discrete
states

{
slr,j
}
j∈J l

r

∀r ∈ R with J l
r =

{
Kl−1

r + 1, . . . ,Kl
r

}
.

The problem

min
xl
Il

(·)

∑
r∈Rl,
j∈Jr

cd(xlIl(tr,j)) (4a)

s.t. ∀r ∈ Rl ∀j ∈ Jr : gsw(xlIl(tr,j), sr,j , sr,j−1) ≤ 0 (4b)

∃r ∈ Rl∃j ∈ Jr : ggoal(x
l
Il(tr,j), p

G
ol
, ol) ≤ 0 (4c)

thus describes the configurations of the involved robots and
the object ol at the mode switching times tr,j . The constraint
(4b) is the discrete version of (3b) at the transition from
sr,j−1 to sr,j . The cost function cd is the discrete version
of c. Solving Eq. (4) (using, e.g., [55]) generates a set of
keyframes that jointly fulfill interdependent constraints, e.g.,
finding consistent hand positions in pick and place poses.

To solve Eq. (4), we first uniformly sample the times tr,j
with tr,j−1 < tr,j and tr,j > T̄ l−1 for j ∈ Jr where the
transition from the discrete state sr,j−1 to sr,j occurs. We
then use an optimization based solver to find configurations
fulfilling the constraints. Optimization-based solvers are strong
to resolve equality constraints, but are prone to local optima.
We alleviate this problem by repeatedly solving Eq. (4) to
generate various consistent keyframes. There are two reasons
for why the solution to Eq. (4) is randomized and generates
varieties of solutions: First, whenever we solve Eq. (4), we
sample the times tr,j , which leads to a different time embed-
ding and corresponding constraints. Second, we initialize the
optimizer with randomly sampled configurations, which helps
to find various local optima.

In this view, solving Eq. (4) generates feasible keyframes
that can be used as goals for bi-directional path planning.

C. Bi-directional Space-Time Path Planning to Connect
Keyframes

We compute the path for a given action sequence in a
sequential manner (Fig. 5): the path planner first aims to
find a path between the first two keyframes; when one is
found, it moves on to find a path to a third keyframe that is
consistent with the first two. It can always query the keyframes
optimizer for more keyframes consistent with given previous

6

Fig. 5: Illustration of how plans are computed sequentially for an action sequence using the keyframe sampler and the bi-
directional space-time planner. In the action sequence, red shows the constraints that are part of the optimization problem
to generate the keyframes, dark grey indicates the actions for which a path is fixed. In the path planning, the nodes are the
keyframes that are computed, where the light grey ones are the keyframes that are computed for the later mode-switches. The
edges of the forward tree are dark grey, and the ones of the reverse tree are blue. The final path for an action is orange. Please
refer to Section IV-C for an in-depth explanation.

keyframes, i.e., Eq. (4) is solved for the remaining mode-
switch configurations. Solving the full remaining problem,
instead of only the constraints implied by the next mode-
switch, excludes keyframes that are feasible in the next mode
switch, but lead to an infeasible problem later on, e.g., a pick
configuration, which does not correspond to a feasible place-
configuration.

Since the arrival time at which the robot can reach a goal
keyframe configuration is unknown, we uniformly sample
a range of candidate time-embeddings tr,j as input to the
keyframes optimizer. During the planning process, the path
planner continuously extends the range of time-embedding
samples to allow for consideration of larger time-spans, i.e.,
to enable ‘waiting’. The arrival times that are found in this
fashion correspond to the scheduling function k for the robots
involved in the current subproblem.

Path-Planning: We finally present the bi-directional path
planner to connect the keyframe-configurations. Following
the standard notation for time-embedded path planning [32],
[33], let QRl

denote the configuration space for the robots
Rl, and T ⊂ R≥0 the time dimension. Our path planning
problem is the problem of finding a collision-free path through
the combined space-time Y = QRl

× T from an initial
keyframe configuration (x(tr,j−1), tr,j−1) at time tr,j−1, to
a set of candidate goal keyframe configurations, each a pair
(x(tr,j), tr,j) in space-time with varying tr,j .

The free configuration space Qfree for the robots Rl is
time-dependent, as objects and other agents might move on
previously planned paths. Additionally, it can be the case that
some of the agents we are currently planning for move on
a fixed path for some time, i.e., they only become a degree
of freedom at time t > T̄ l−1. We deal with this by using a
constrained path-planner [56], with the constraints defined in
Eq. (2).

Specific care has to be taken due to the time-dimension, and
the direction-dependent distance function in the configuration
space:

d(y1, y2)=

λdQRl

(q1, q2)+(1−λ)(t2−t1),

if t1 < t2, v ≤ vmax;
∞, else.

(5)

where dQRl
can be any valid metric in QRl

, and v is an
estimate of the velocity. We use λ ∈ (0, 1] to describe the
importance of the path-length and the needed time respec-
tively. This distance-metric encodes the inability to move from
a configuration q1 at time t1 to a configuration q2 at time t2
if either the required speed v is too high, or the robot would
need to move backwards in time.

We then extend bi-directional rapidly-exploring random
trees (RRT) [57] to space-time2: This extension consists of
the previously described keyframe sampler which generates
the goals, time dependent collision queries, and configuration-
sampling bounded by the sampled keyframe time. Specific care
has to be taken when connecting edges using the goal-centered
tree: we move ‘backwards’ in this case, and thus the distance
function has to be adapted. This bi-directional space-time RRT
formulation allows us to efficiently find paths.

After finding a path using the outlined approach, we post-
process the path by shortcutting [59] the obtained path, and
smoothing it. Shortcutting of the path works by repeatedly
choosing two discrete states of the path and checking if they
can be connected with a straight line while fulfilling the
constraints, e.g., collision, kinematics, or velocity limits. If
that is the case, the straight line path replaces the part of the
path between the chosen discrete states.

For smoothing, we use an optimizer [60] that takes the
constraints and the cost function of the original problem as
input and is thus able to take the dynamics and constraints
into account. Taking this approach is similar to separating path
planning and trajectory planning, and is a common approach
to find feasible paths in cluttered environments [61], [62].

As in the planning itself, care has to be taken to shortcut
and smooth in a constrained manner, i.e., parts of the path that
have previously been fixed can not be altered.

D. Prioritization of Subproblems and Search over Skeletons

In each step l, the limited horizon formulation Eq. (3)
requires a selection of object ol and robots Rl. Due to the
assembly tasks we consider, the order in which objects have

2In this work, we used an early version of the algorithm presented in [58].

7

(a) Tower (b) Wall (c) Well (d) Pavilion

Fig. 6: Final configurations of the models we use for the experiments and demonstrations.

to be rearranged (in particular being placed) is not obvious.
For example, objects need sufficient support in order to be
placed, while placing some objects too early might obstruct
later object placements.

In planning step l we have the set Ol−1 ⊆ O of previously
rearranged objects, and the set of objects Ōl−1 = O\Ol−1 that
have no plan associated yet. From previous task assignments
and trajectory planning, the times T l−1

r until which a trajectory
is already assigned to robot r are known. Based on this
planning state, the algorithm has to

(i) choose an object ol ∈ Ōl−1 subject to object order
constraints (expressed by φ(ol;Ol−1) ≤ 0),

(ii) choose a subset of robots Rl ⊆ R to rearrange object ol,
(iii) search through the space of assignment sequences{

sr,Kl−1
r +1:Kl

r

}
r∈Rl

to find a sequence that is logically
feasible, leads to the goal (i.e., object placement), and for
which the keyframes optimizer and path planner can find
solutions. If no such sequence is found, choose another
robot assignment Rl (that was not chosen yet).

(iv) If no possible choice of Rl leads to a feasible subproblem
(Eq. (3)), we backtrack to rewind previous object place-
ments, and attempt to place ol. Backtracking is repeated
until a valid solution to place ol is found.

This can be seen as a depth-first tree-search over the objects,
robots, and assignment sequences. These steps are explained
in more detail in the following:

1) and 2) Selection of Object and Robots: The objects
ol in step 1) and robots Rl in step 2) are selected by a
strict prioritization: We prioritize the selection of objects by
minimizing a heuristic h:

h(ol;Ol−1) s.t. φ(ol;Ol−1) ≤ 0, (6)

where the constraint φ(o;Ol−1) ≤ 0 is application specific.
As example, it could express that intermediate construction
states need to be stable, or put limits on deflections of
objects. Objects violating the constraint are excluded from the
prioritized search.

The selection of robots Rl is prioritized by minimizing

max
r∈Rl

T l−1
r , (7)

i.e., the latest busy time of all involved robots. This assumes
(very conservatively) that the work on this subproblem starts
only when the last of the involved robots becomes free. The
robot-selection could also be prioritized by, e.g., minimizing
the estimated finishing time of the subproblem.

3) Path Planning and Action Sequence/Robot Rejection:
finding an action sequence is realized as a breadth-first search
to check if there exists a sequence{

sr,Kl−1
r +1:Kl

r

}
r∈Rl

∈ S(Rl, {ol}) (8)

which is logically feasible and leads to the symbolic goal.
With Eq. (3) fully defined by the choice of Rl, ol, and{
sr,Kl−1

r +1:Kl
r

}
r∈Rl

, we try to find a valid path (as detailed
in Section IV-B and Section IV-C). Before attempting to solve
the full problem, it is possible to evaluate lower bounds, i.e.,
simpler subproblems, which, if they are infeasible, guarantee
that there is no solution to the full problem. In our case,
examples for this are i) attempting to find a placement pose,
and ii) attempting to find the configurations at the mode
switches. For a more thorough description of the notion of
lower bounds, we refer to [63].

If a problem is infeasible for a chosen
{
sr,Kl−1

r +1:Kl
r

}
r∈Rl

,
we first attempt to solve the problem using different{
sr,Kl−1

r +1:Kl
r

}
r∈Rl

multiple times, and if still no feasible
solution can be found, we restart from 2), excluding infeasible
task sequences and robots.

In general, the methods we use for generating keyframes or
motion paths can not prove infeasibility of a specific discrete
assignment Rl, ol,

{
sr,Kl−1

r +1:Kl
r

}
r∈Rl

due to non-convexity
of the optimization problem, or due to finite runtime of the
path planning. Hence, we keep a list of all assignments that
we determined to be infeasible before, and revisit them in
a deprioritized manner if still no solutions in the remaining
discrete assignments can be found. This allows us to explore
more promising decisions, while still guaranteeing that a
solution will be found eventually, if it exists. For brevity, this
was left out of the algorithm.

4) Backtracking: At this stage, all robots Rl, and possible
task assignments were checked. Thus, any infeasibility at this
stage must be caused by previously placed objects, since a
selected part ol fulfills all the constraints to be able to be
placed, i.e., φ(ol;Ol−1) ≤ 0, and placing additional objects
can never make placement of ol feasible. Instead, we backtrack
to rewind previously placed objects until a valid solution to
place object ol can be found.

V. DEMONSTRATIONS & RESULTS

We analyze the scalability of the algorithm, and how some
scenarios benefit more than others from better parallelizability.

8

Fig. 7: An illustration of the robots (from left to right): a
mobile manipulator, a KUKA-arm on a mobile base, and a
crane.

We demonstrate the robustness of the algorithm on long-
horizon scenarios, show the ability to coordinate multiple
robots in a scenario where a handover sequence is necessary,
and a real robot experiment. Finally, we compare the algorithm
to a modified version of a classical TAMP-solver.

A. Setup

We test the algorithm on several construction scenarios34:
• A tower, consisting of 15 pieces, where the placements

of the parts have to be in strictly sequential order.
• A wall, consisting of 36 bricks used to analyze how well

a task can be parallelized.
• A well, consisting of 52 pieces, used to demonstrate

scalability.
• A pavilion consisting of 113 unique wooden cassettes,

used to demonstrate scalability.
The final configuration of the models is visualized in

Fig. 6. We assume that the pieces form a rigid body with
the neighbouring pieces as soon as they are placed, and thus
neglect both the fastening process, and the structural support
that would be necessary. We are first and foremost interested
in finding a feasible solution to Eq. (1), i.e. we use c = 0. For
the real robot experiment, we minimize the acceleration in the
smoothing-step.

1) Robots: We demonstrate our approach using 3 different
robots (Fig. 7): a mobile manipulator, a KUKA-arm on a
mobile base, and a crane. The robots we are using for the
demonstrations are holonomic. If not stated differently, we
model manipulation by gripping-by-touch: On construction
sites, vacuum grippers are commonly used, which can be
approximated as gripping-by-touch.

2) Task Assignments: The discrete task assignments are
pick, place, retract and handover. We require a place task
to always be followed by a retract task, since in general,
after placing an object, it is not desirable to stay in the same
configuration, and possibly block the placement configurations
of other agents.

3) Ordering Heuristic: We represent the buildings as a
graph, with the nodes being parts, and edges between con-
nected parts. The heuristic h in Eq. (6) is chosen to find
the object that maximizes the number of previously placed
neighbours. The placeable parts are the set of nodes which

3Simulated using https://github.com/MarcToussaint/rai
4The experiments were run on a single core of Intel(R) Core(TM) i7-8565U

CPU @ 1.80GHz with 16GB RAM using Ubuntu 18.04.

2 4 6 8 10
#Agents

2000

4000

6000

E
xe

c.
T

im
e

[S
te

p
s]

2 4 6 8 10
#Agents

2

4

6

S
p

ee
d

u
p

F
ac

to
r

Tower

Wall

Fig. 8: The execution time (left), and the speedup factor of
the execution time (right) when using multiple agents for the
tower and the wall models over 10 runs. The speedup factor
is the factor by which the execution time is sped up by using
m agents compared to only one agent. The line is the median
and the shaded area is bounded by the 25 and 75 percentile.

2 4 6 8 10
#Agents

2

4

6

R
el

at
iv

e
C

om
p

.
T

im
e Tower

Wall

Fig. 9: The relative computation time for different numbers
of agents for the tower and the wall scenario over 10 runs.
The line is the median and the shaded area is the 25 and 75
percentile, respectively.

are connected to at least one node in the graph that is already
placed. This is encoded in the constraint φ in Eq. (6).

Due to the heuristic and placement constraint, no back-
tracking was required in our experiments. As such, there is
no specific demonstration, or mention of how many times
backtracking was needed in the examples.

B. Experimental Results

We provide analysis on several quantitative metrics in this
section. The experiments for the analysis were done using the
mobile manipulator utilizing pick and place-sequences. Videos
of the assembly processes for various models with different
team-sizes and various constellations of robot types can be
found in the supplementary material.

1) Execution Time: The execution time, i.e. the real time
of the planned movements, is expected to decrease the more
agents are used for the rearrangement task. Figure 8 plots the
factor by which the execution is sped up against the number
of agents for the tower and the wall, and highlights how
the separability of the model influences how adding more
robots leads to diminishing returns in the speedup factor. These
diminishing returns occur more quickly for the tower, where
all agents need to place the objects in close vicinity.

2) Computation time: Fig. 9 shows approximately linear
scaling with the number of agents for the computation time.
This supports that our approach of planning each agent sep-
arately, and assuming the previously planned agents as fixed,

https://github.com/MarcToussaint/rai

9

TABLE I: Median computation time over 10 runs for Tower
and Wall, 5 for Well and Pavilion for the components of the
algorithm for all models, with number of agents m. The total
time additionally contains e.g. pre-processing of the model,
deciding on action-sequences etc. The super- and subscripts
are the difference to the 25, and 75 percentile.

Time [s]
m Keyframes-opt Path-planning Postprocessing Total

Tower
(15 obj.)

1 13.0+2.0
−1.6

0.7+0.1
−0.0

4.3+0.3
−0.2

19.3+2.5
−1.3

5 19.7+0.3
−1.3

4.7+0.4
−0.2

15.8+0.8
−0.6

50.6+8.2
−3.0

10 25.8+4.7
−1.4

13.3+10.9
−0.7

44.4+2.0
−3.6

102.3+19.3
−5.5

Wall
(36 obj.)

1 42.1+3.0
−2.9

4.2+0.2
−0.3

23.9+0.7
−0.8

75.4+4.3
−4.2

5 62.0+6.1
−0.7

17.0+1.1
−1.9

53.7+1.2
−3.1

163.0+3.7
−5.4

10 102.7+6.0
−4.8

50.1+4.2
−6.1

107.6+5.3
−2.4

319.7+37.4
−5.0

Well
(52 obj.)

1 256.8+15.1
−0.7

53.1+11.2
−4.1

131.7+26.2
−3.5

450.2+15.5
−13.0

5 342.2+45.9
−16.1

84.1+11.8
−1.6

222.6+38.9
−1.1

722.1+123.3
−15.4

Pavilion
(113 obj.)

1 734.7+113.0
−38.5

311.5+26.5
−27.3

511.1+86.3
−34.2

1597.7+94.7
−37.1

5 937.6+11.5
−75.8

339.7+21.2
−8.0

669.0+36.4
−28.4

2336.1+86.2
−195.2

scales well. Since the tower has a bottleneck where all agents
have to come together within a relatively small region, it
scales worse than the wall. The objects making up the wall
are distributed over a larger space, and thus the agents do
not impede each other as much, i.e., the planning problem
is easier, since fewer agents per volume are present. Table I
breaks down the average necessary computation time for the
different steps of the planning process. Specifically, we want
to highlight that solving the keyframe-problem takes most of
the time of the whole planning process.

C. Comparison to fixed-time-sampling

We did not put an emphasis on comparison with other
methods, as the other methods we are aware of ([8], [11],
[12], [25], [54], [64]) do not scale to the number of robots
and objects we consider. We compare our method to a fixed-
time sampling scheme5, which decomposes the problem as
the presented approach does, and uses prioritized planning,
but does not allow for variable durations of the actions, i.e.
all mode-switches take place at a multiple of T . We first note
that the fixed-time-sampling approach is extremely sensitive
to the choice of T . If there are tasks with different duration,
or agents that have different maximum speeds, this approach
will not allocate the right time, and take an unnecessarily long
time for short tasks, or be infeasible altogether.

We compare the schedules generated by our approach, and
the fixed-time-sampling approach for building the tower using
7 agents in Figure 11: It is clear that our method achieves
better utilization in this example. This is due to the fact that
a single agent can temporarily block any other placement
when building the tower. This happens in the beginning, where
blocks tend to be gripped from above, which blocks placement
of another block at the same time. The later blocks need to
be grabbed from the side to be placed, as the robots would
not be able to place the parts that are higher up if they are

5This is similar to what most TAMP solvers would do.

TABLE II: Median computation times over 10 runs for the
fixed-time sampling method with number of agents m. The
total time additionally contains e.g. pre-processing of the
model, deciding on action-sequences etc. The super- and
subscripts are the difference to the 25, and 75 percentile.

Time [s]
m Keyframes-opt Path-planning Postprocessing Total

Tower
(15 obj.)

1 8.8+0.7
−0.6

1.0+0.1
−0.1

6.0+0.1
−0.1

17.3+0.8
−0.4

5 27.5+69.6
−8.2

6.4+0.6
−1.7

16.3+7.5
−0.4

197.6+48.1
−16.6

10 43.4+103.9
−1.8

11.2+5.8
−1.0

27.2+16.0
−0.1

579.1+43.8
−96.4

Wall
(36 obj.)

1 28.9+5.0
−1.9

4.9+0.1
−0.3

30.6+0.2
−0.2

70.6+3.8
−1.6

5 134.3+16.3
−18.3

24.2+4.1
−1.5

61.2+4.2
−0.3

317.8+54.5
−18.6

10 207.8+16.5
−24.0

43.7+21.4
−1.1

91.4+0.3
−1.6

1235.8+9.5
−254.8

grabbed at the top. By coincidence, this enables parallelization
for the later blocks for the fixed-time sampling in this example.
Placing at a slightly different time would work but is not
possible with this approach.

We show the same graphs as before, i.e. relative necessary
computation time, and relative speedup in Fig. 12, and Fig. 13
respectively, showing that our method both achieves better
speedup by using more robots, and better scaling with regard
to computation time. Table II shows the absolute computation
times broken down to the different parts. While we see that
on the Wall-example, a similar speedup can be achieved due
to the large space that is available, this is not the case in
the Tower-example. The main bottleneck in the fixed-time-
sampling is the keyframe generation, which becomes much
harder if the space is highly congested, and thus needs more
restarts, which leads to a much longer computation time, and
much worse scaling of the computation time with the number
of agents we plan for.

D. Demonstrations

1) Long horizon assembly: We demonstrate our algorithm
on two long horizon-construction tasks using the mobile ma-
nipulators, and modeling manipulation constraints as gripping-
by-touch:
• The well, using 6 agents: Computation time 14.1 min,

execution time 2150 steps.
• The pavilion, using 8 agents: Computation time 43.2 min,

execution time 3867 steps.
We show a schedule for the assembly of the pavilion using 8
agents in Fig. 10 to showcase the complexities in coordinating
the robot movements.

2) Handover scenario: We consider the scenario of the
tower again, but this time with three mobile bases with KUKA-
arms on top. Manipulation is modeled as gripping-by-touch.
Since the KUKA-arms are unable to reach the top of the tower,
we add a tower crane. However, the crane is unable to reach
the pieces on the floor. Therefore, handover sequences are
necessary to place the last 3 parts. This scenario demonstrates
the ability of our framework to handle and coordinate robots
with different capabilities and explore various possible task
sequences to fulfill a task. The resulting schedule, and some

10

0 500 1000 1500 2000 2500 3000 3500 4000

t

Mobile1

Mobile2

Mobile3

Mobile4

Mobile5

Mobile6

Mobile7

Mobile8
Pick

Place

Retract

Fig. 10: The schedule for a set of 8 mobile agents assembling the pavilion.

0 250 500 750 1000 1250 1500 1750 2000

Mobile1

Mobile2

Mobile3

Mobile4

Mobile5

Mobile6

Mobile7
Pick

Place

Retract

0 250 500 750 1000 1250 1500 1750 2000
t

Mobile1

Mobile2

Mobile3

Mobile4

Mobile5

Mobile6

Mobile7

Fig. 11: Illustration of the schedules obtained by our method
(top), and fixed-time sampling (bottom) for the tower with 7
mobile agents.

2 4 6 8 10
#Agents

0

10

20

30

R
el

at
iv

e
C

om
p

.
T

im
e Tower

Tower: fixed

Wall

Wall: fixed

Fig. 12: The relative computation time for different numbers of
agents for the tower and the wall scenario over 10 runs for our
method and fixed-time sampling. The line is the median and
the shaded area shows the 25 and 75 percentile, respectively.

frames from the process can be seen in Fig. 14 and Fig. 15,
respectively.

3) Real robot experiments: We demonstrate an experiment
with two robotic arms with Robotiq grippers as end-effectors.
We model the manipulation constraints of the robot as a two
finger gripper. The goal is to stack 6 boxes using the two
arms.

We execute the trajectory open-loop; we thus rely on an
accurate model in the simulation, such that the trajectory can
be executed without adaptions. Figure 16 shows a sequence
of images from the two robots placing the blocks. While it
is visible that the boxes are not perfectly aligned, it is clear
that the algorithm succeeds in effectively coordinating the

2 4 6 8 10
#Agents

2000

4000

6000

E
xe

c.
T

im
e

[S
te

p
s]

2 4 6 8 10
#Agents

2

4

6

S
p

ee
d

u
p

F
ac

to
r

Tower

Tower: fixed

Wall

Wall: fixed

Fig. 13: Comparison of the execution time (left), and the
speedup of the execution time when using multiple agents
(right) for the tower and the wall models over 10 runs for
our method and the fixed-time sampling. The speedup factor
is the factor by which the execution time is sped up by using
m agents compared to only one agent. The line is the median
and the shaded area is bounded by the 25 and 75 percentile.

0 200 400 600 800 1000 1200 1400
t

KUKA1

KUKA2

KUKA3

Crane1 Pick

Place

Retract

Handover

Fig. 14: Illustration of a schedule for the Tower-example
using three KUKA-arms on mobile bases and a tower crane,
therefore requiring robot-robot interaction. We specifically
highlight the times at which constraints are active for two
robots (handover), and which agents are affected.

robots. This showcases that it is possible to account for the
constraints arising in real robot experiments and that the plans
and trajectories generated by our algorithm can be executed
on a set of real robots.

VI. DISCUSSION & LIMITATIONS

Multi-robot assembly is a complex problem which con-
sists of multiple NP-hard subproblems [32]. The method
development in this paper is application-driven, aiming to
push towards an efficient solution strategy that scales well to
challenging scenarios. There are parts of the approach that
were not considered in this work, which need to be tackled
when deploying this framework to real construction scenarios.

At the moment, the algorithm is too slow to allow for online-
replanning. As visible from the experiments, the keyframe-
computation take the majority of the time. Smarter generation

11

(a) (b) (c) (d)

Fig. 15: Illustration of a handover scenario with a KUKA-arm and a crane. (a) KUKA-arm picks up the object. (b) The
placement position is not reachable. (c) A handover to the crane is executed. (d) The crane places the object onto tower.

(a) (b) (c) (d) (e)

Fig. 16: Snapshots of the robot experiment, where two Panda arms with two-finger gripper end-effectors are stacking six boxes.

of the keyframes, e.g., through online learning of initializations
for the optimizer, is one way to decrease the time [65],
[66]. Reducing the number of sampled goal states is another
possibility to scale down the necessary time. For speeding up
the planning, the biggest possible improvement is the usage
of multiquery planning. Applying multiquery path planning in
a dynamic environment is not straightforward however, and
needs to be considered as future work.

While we showed that the paths can be executed by real
robots directly in a controlled environment, in case uncertainty
is present, this might be more challenging. Hence, the planning
done in this framework might need to account for uncertainty
in the execution, both in space, and in time. One possibility
to do so would be to reserve a ‘safe corridor’ for an agent,
through which no other agent travels for a given time-window.
Another one would be to, e.g., maximize clearance during the
path planning, and not only to minimize time.

A. Discussion of Theoretical Properties

We briefly discuss the properties of the algorithm, and
necessary changes to achieve completeness.

a) Selection of Subproblems: The priorization of objects
and robots in combination with the backtracking can be seen as
depth first search. This means that every possible assignment
will be chosen at some point. The methods we use for path-
planning can not prove an infeasibility, which is why we need
to continue exploring the ‘infeasible’ nodes.

b) Choice of action-sequence: We are using a depth-first
search over the space defined by a first-order logic-language to
compute the available action sequences. Under the assumption
that each object can be rearranged to its goal position within
a finite number of actions, this implies that we will find a
feasible action sequence, if one exists.

c) Path-planning: Path-planning in our algorithm works
sequentially through an action-sequence, and plans each part
of the sequence using an RRT. This means that each segment
alone is asymptotically complete in the limit, assuming that
the keyframe-sampling is uniformly covering the solution
manifold and that we return to a subproblem infinite number of
times. It might be possible that we find a path in one part of the
action sequence which does not have a corresponding feasible
path in the following action, and thus label the sequence
as ‘infeasible’. The occurrence of this is greatly reduced by
jointly sampling all keyframes. Continuously re-expanding the
‘infeasible’ nodes covers this case.

We finally note that we need to make sure in the algorithm
that we do not make subsequent placements impossible by
fixing paths that do not allow for a feasible subsequent path,
i.e., do not block pick or place configurations with ‘resting’
agents.

VII. CONCLUSION

We presented a planning system to solve long-horizon
multi-robot construction assembly problems that integrates
several novel components. The approach strongly exploits the
factorizations of multi-agent construction assembly problems,
by solving simpler subproblems involving only a subset of
agents to plan for and a single object that has to be placed
at its goal location. These solutions to the separate subprob-
lems are then used to construct a feasible solution to the
overall problem. To solve the limited-horizon subproblems,
we combine sampling based path planning with joint mode-
switch optimization to solve for manipulation constraints, and
proposed novel methods to find time-embeddings for planned
tasks. Path planning between keyframes amidst other moving,
previously planned, objects and robots is achieved using a
novel bi-directional RRT-planner in space-time.

12

We demonstrate that our approach scales well to many
robots and many objects on a variety of construction tasks.
We provide both qualitative and quantitative analysis of the
results. Compared to planning task assignments at fixed times,
our time-embedding leads to better utilization of the robots
and hence lower execution time to achieve the task, as well as
lower computation times for planning the movements. Finally,
we demonstrated the approach in a real robot experiment. The
robotic experiments show that it is possible to execute the
paths that our approach generates.

The approach exploits decompositionality and greedily se-
lects the next sub-tasks. This is successful for our application
scenarios, but compromises global optimality for efficient
planning and execution times, as is crucial to make multi-robot
planning work.

We want to push the approach to demonstration on real con-
struction scenarios. In this setting, more realism in the model
description is required, including exact physical constraints on
static stability.

VIII. ACKNOWLEDGEMENT

The authors thank Christoph Schlopschnat for the model of
the wooden pavilion.

REFERENCES

[1] McKinsey & Company, “The next normal in construction: How disrup-
tion is reshaping the world’s largest ecosystem,” 2020.

[2] J. M. Davila Delgado, L. Oyedele, A. Ajayi, L. Akanbi, O. Akinade,
M. Bilal, and H. Owolabi, “Robotics and automated systems in construc-
tion: Understanding industry-specific challenges for adoption,” Journal
of Building Engineering, vol. 26, p. 100868, 2019.

[3] H. J. Wagner, M. Alvarez, O. Kyjanek, Z. Bhiri, M. Buck, and
A. Menges, “Flexible and transportable robotic timber construction
platform – TIM,” Automation in Construction, vol. 120, p. 103400, 2020.

[4] R. A. Knepper, T. Layton, J. Romanishin, and D. Rus, “IkeaBot:
An autonomous multi-robot coordinated furniture assembly system,” in
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), May
2013, pp. 855–862.

[5] I. Rodrı́guez, K. Nottensteiner, D. Leidner, M. Durner, F. Stulp, and
A. Albu-Schäffer, “Pattern Recognition for Knowledge Transfer in
Robotic Assembly Sequence Planning,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 3666–3673, 2020.

[6] F. Suárez-Ruiz, X. Zhou, and Q.-C. Pham, “Can robots assemble an
IKEA chair?” Science Robotics, vol. 3, no. 17, p. eaat6385, 2018.

[7] C. Garrett, Y. Huang, T. Lozano-Perez, and C. Mueller, “Scalable and
Probabilistically Complete Planning for Robotic Spatial Extrusion,” in
Proc. of Robotics: Science and Systems (R:SS), Corvalis, Oregon, USA,
July 2020.

[8] V. N. Hartmann, O. S. Oguz, D. Driess, M. Toussaint, and A. Menges,
“Robust task and motion planning for long-horizon architectural con-
struction planning,” in Proc. of the IEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2020.

[9] S. Leder, R. Weber, D. Wood, O. Bucklin, and A. Menges, “Distributed
Robotic Timber Construction: Designing of in-situ timber construction
system with robot-material collaboration,” ACADIA – Ubiquity and
Autonomy, 2019.

[10] M. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum, “Dif-
ferentiable Physics and Stable Modes for Tool-Use and Manipulation
Planning,” in Proc. of Robotics: Science and Systems (R:SS), 2018.

[11] T. Pan, A. M. Wells, R. Shome, and L. E. Kavraki, “A General Task and
Motion Planning Framework For Multiple Manipulators,” in Proc. of the
IEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2021, pp.
3168–3174.

[12] J. Ota, “Rearrangement planning of multiple movable objects by using
real-time search methodology,” in Proceedings 2002 IEEE International
Conference on Robotics and Automation (Cat. No.02CH37292), vol. 1,
2002, pp. 947–953 vol.1.

[13] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, “Manipulation
planning among movable obstacles,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA). IEEE, 2007, pp. 3327–3332.

[14] M. Erdmann and T. Lozano-Perez, “On multiple moving objects,”
Algorithmica, vol. 2, no. 1-4, p. 477, 1987.

[15] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling,
and T. Lozano-Pérez, “Integrated task and motion planning,” arXiv
preprint arXiv:2010.01083, 2020.

[16] K. S. Saidi, T. Bock, and C. Georgoulas, Robotics in Construction.
Cham: Springer International Publishing, 2016, pp. 1493–1520.

[17] F. Robotics, “Hadrian x begins first commercial building,”
Youtube, 2015. [Online]. Available: https://www.youtube.com/watch?
v=qWGrIQqGwAM

[18] R. L. Johns, M. Wermelinger, R. Mascaro, D. Jud, F. Gramazio,
M. Kohler, M. Chli, and M. Hutter, “Autonomous dry stone,” Construc-
tion Robotics, vol. 4, no. 3, pp. 127–140, 2020.

[19] F. Augugliaro, S. Lupashin, M. Hamer, C. Male, M. Hehn, M. W.
Mueller, J. S. Willmann, F. Gramazio, M. Kohler, and R. D’Andrea,
“The Flight Assembled Architecture installation: Cooperative construc-
tion with flying machines,” IEEE Control Systems Magazine, vol. 34,
no. 4, pp. 46–64, 2014.

[20] R. Mascaro, “Towards Automating Construction Tasks: Large-Scale
Object Mapping, Segmentation and Manipulation,” Journal of Field
Robotics, 2020.

[21] R. Naboni, A. Kunic, A. Kramberger, and C. Schlette, “Design, simula-
tion and robotic assembly of reversible timber structures,” Construction
Robotics, pp. 1–10, 2021.

[22] S. Parascho, I. X. Han, S. Walker, A. Beghini, E. P. Bruun, and
S. Adriaenssens, “Robotic vault: A cooperative robotic assembly method
for brick vault construction,” Construction Robotics, vol. 4, no. 3, pp.
117–126, 2020.

[23] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[24] G. Wagner and H. Choset, “Subdimensional expansion for multirobot

path planning,” Artificial Intelligence, vol. 219, pp. 1–24, 2015.
[25] R. Shome and K. E. Bekris, “Synchronized Multi-Arm Rearrangement

Guided by Mode Graphs with Capacity Constraints,” arXiv preprint
arXiv:2005.09127, 2020.

[26] K. Solovey, O. Salzman, and D. Halperin, “Finding a needle in an
exponential haystack: Discrete RRT for exploration of implicit roadmaps
in multi-robot motion planning,” International Journal of Robotics
Research, vol. 35, no. 5, pp. 501–513, 2016.

[27] H. Ha, J. Xu, and S. Song, “Learning a Decentralized Multi-arm Motion
Planner,” arXiv preprint arXiv:2011.02608, 2020.

[28] M. Bennewitz, W. Burgard, and S. Thrun, “Optimizing schedules for
prioritized path planning of multi-robot systems,” in Proc. of the IEEE
Int. Conf. on Robotics and Automation (ICRA), vol. 1. IEEE, 2001,
pp. 271–276.

[29] W. Wu, S. Bhattacharya, and A. Prorok, “Multi-robot path deconfliction
through prioritization by path prospects,” in Proc. of the IEEE Int. Conf.
on Robotics and Automation (ICRA). IEEE, 2020, pp. 9809–9815.

[30] J. van Den Berg, J. Snoeyink, M. C. Lin, and D. Manocha, “Centralized
path planning for multiple robots: Optimal decoupling into sequential
plans.” in Proc. of Robotics: Science and Systems (R:SS), vol. 2, 2009,
pp. 2–3.

[31] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kinody-
namic motion planning with moving obstacles,” International Journal
of Robotics Research, vol. 21, no. 3, pp. 233–255, 2002.

[32] J. Reif and M. Sharir, “Motion planning in the presence of moving
obstacles,” Journal of the ACM (JACM), vol. 41, no. 4, pp. 764–790,
1994.

[33] A. Sintov and A. Shapiro, “Time-based RRT algorithm for rendezvous
planning of two dynamic systems,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA). IEEE, 2014, pp. 6745–6750.

[34] D. Halperin, J.-C. Latombe, and R. H. Wilson, “A general framework for
assembly planning: The motion space approach,” Algorithmica, vol. 26,
no. 3, pp. 577–601, 2000.

[35] A. Krontiris and K. E. Bekris, “Dealing with Difficult Instances of
Object Rearrangement.” in Proc. of Robotics: Science and Systems
(R:SS), 2015.

[36] L. S. H. de Mello and S. Lee, Computer-aided mechanical assembly
planning. Springer Science & Business Media, 2012, vol. 148.

[37] S. Lee, “Backward assembly planning with assembly cost analysis,” in
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 1992,
pp. 2382–2391 vol.3.

[38] G. T. Kao, A. Körner, D. Sonntag, L. Nguyen, A. Menges, and
J. Knippers, “Assembly-aware design of masonry shell structures: a
computational approach,” in Proceedings of IASS Annual Symposia,

https://www.youtube.com/watch?v=qWGrIQqGwAM
https://www.youtube.com/watch?v=qWGrIQqGwAM

13

vol. 23. International Association for Shell and Spatial Structures
(IASS), 2017, pp. 1–10.

[39] E. P. Bruun, R. Pastrana, V. Paris, A. Beghini, A. Pizzigoni, S. Parascho,
and S. Adriaenssens, “Three cooperative robotic fabrication methods
for the scaffold-free construction of a masonry arch,” arXiv preprint
arXiv:2104.04856, 2021.

[40] R. Alami, J.-P. Laumond, and T. Simeon, “Two manipulation planning
algorithms,” in Workshop on the Algorithmic Foundations of Robotics.
AK Peters, Ltd. Natick, MA, USA, 1994, pp. 109–125.

[41] M.-T. Khoury, A. Orthey, and M. Toussaint, “Efficient sampling of
transition constraints for motion planning under sliding contacts,” 2020,
arXiv:2011.01552 [cs.RO].

[42] W. Vega-Brown and N. Roy, “Asymptotically optimal planning under
piecewise-analytic constraints,” in Algorithmic Foundations of Robotics
XII. Springer, 2020, pp. 528–543.

[43] K. Hauser and V. Ng-Thow-Hing, “Randomized multi-modal motion
planning for a humanoid robot manipulation task,” International Journal
of Robotics Research, vol. 30, no. 6, pp. 678–698, 2011.

[44] Z. Kingston, M. Moll, and L. E. Kavraki, “Exploring implicit spaces for
constrained sampling-based planning,” International Journal of Robotics
Research, vol. 38, no. 10–11, pp. 1151–1178, 9 2019.

[45] J. Mirabel and F. Lamiraux, “Handling implicit and explicit constraints
in manipulation planning,” in Robotics: Science and Systems 2018, 2018,
p. 9p.

[46] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA). IEEE, 2011, pp. 1470–1477.

[47] M. Toussaint, J.-S. Ha, and D. Driess, “Describing physics for phys-
ical reasoning: Force-based sequential manipulation planning,” IEEE
Robotics and Automation Letters, 2020.

[48] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “An
incremental constraint-based framework for task and motion planning,”
International Journal of Robotics Research, vol. 37, no. 10, pp. 1134–
1151, 2018.

[49] W. Thomason and R. A. Knepper, “A unified sampling-based approach
to integrated task and motion planning,” in International Symposium of
Robotics Research, 2019.

[50] T. Migimatsu and J. Bohg, “Object-Centric Task and Motion Planning in
Dynamic Environments,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 844–851, 2020.

[51] P. S. Schmitt, F. Wirnshofer, K. M. Wurm, G. v. Wichert, and W. Bur-
gard, “Modeling and planning manipulation in dynamic environments,”
in Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA).
IEEE, 2019, pp. 176–182.

[52] C. Phiquepal and M. Toussaint, “Combined task and motion planning
under partial observability: An optimization-based approach,” in Proc.
of the IEEE Int. Conf. on Robotics and Automation (ICRA). IEEE,
2019, pp. 9000–9006.

[53] N. Funk, G. Chalvatzaki, B. Belousov, and J. Peters, “Learn2assemble
with structured representations and search for robotic architectural
construction,” in Conference on Robot Learning. PMLR, 2022, pp.
1401–1411.

[54] M. Levihn, T. Igarashi, and M. Stilman, “Multi-robot multi-object
rearrangement in assignment space,” in Proc. of the IEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS). IEEE, 2012, pp. 5255–5261.

[55] J. Ortiz-Haro, V. N. Hartmann, O. S. Oguz, and M. Toussaint, “Learning
Efficient Constraint Graph Sampling for Robotic Sequential Manipu-
lation,” in Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), 2021.

[56] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Manipu-
lation planning on constraint manifolds,” in Proc. of the IEEE Int. Conf.
on Robotics and Automation (ICRA). IEEE, 2009, pp. 625–632.

[57] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to
single-query path planning,” in Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), vol. 2. IEEE, 2000, pp. 995–1001.

[58] F. Grothe, V. N. Hartmann, A. Orthey, and M. Toussaint, “ST-RRT*:
Asymptotically-Optimal Bidirectional Motion Planning through Space-
Time,” in Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), 2022.

[59] R. Geraerts and M. H. Overmars, “Creating High-quality Paths for
Motion Planning,” International Journal of Robotics Research, vol. 26,
no. 8, pp. 845–863, 2007.

[60] M. Toussaint, “KOMO: Newton methods for k-order Markov constrained
motion problems,” e-Print arXiv:1407.0414, 2014.

[61] K. Kant and S. W. Zucker, “Toward efficient trajectory planning:
The path-velocity decomposition,” International Journal of Robotics
Research, vol. 5, no. 3, pp. 72–89, 1986.

[62] Q.-C. Pham, S. Caron, P. Lertkultanon, and Y. Nakamura, “Admissi-
ble velocity propagation: Beyond quasi-static path planning for high-
dimensional robots,” International Journal of Robotics Research, vol. 36,
no. 1, pp. 44–67, 2017.

[63] M. Toussaint and M. Lopes, “Multi-bound tree search for logic-
geometric programming in cooperative manipulation domains,” in Proc.
of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2017.

[64] J. Chen, J. Li, Y. Huang, C. Garrett, D. Sun, C. Fan, A. Hofmann,
C. Mueller, S. Koenig, and B. C. Williams, “Cooperative task and motion
planning for multi-arm assembly systems,” 2022, preprint at http://web.
mit.edu/yijiangh/www/papers/chen2022cooperative.pdf.

[65] J. Ortiz-Haro, J.-S. Ha, D. Driess, and M. Toussaint, “Structured deep
generative models for sampling on constraint manifolds in sequential
manipulation,” in Conference on Robot Learning. PMLR, 2022, pp.
213–223.

[66] D. Driess, J.-S. Ha, and M. Toussaint, “Learning to solve sequential
physical reasoning problems from a scene image,” The International
Journal of Robotics Research, vol. 40, no. 12-14, pp. 1435–1466, 2021.

http://web.mit.edu/yijiangh/www/papers/chen2022cooperative.pdf
http://web.mit.edu/yijiangh/www/papers/chen2022cooperative.pdf

	I Introduction
	II Related Work
	II-A Multi-Robot Motion Planning
	II-B Assembly Planning

	III Multi Robot Rearrangement Planning Notation and Problem Formulation:
	III-A Assumptions

	IV Method
	IV-A Decomposition into Time-Embedded, Limited Horizon Subproblems with a Subset of Agents
	IV-B Time-Embedded Keyframes Optimization to Jointly Solve for Sequential Transition Constraints
	IV-C Bi-directional Space-Time Path Planning to Connect Keyframes
	IV-D Prioritization of Subproblems and Search over Skeletons
	IV-D1 and 2) Selection of Object and Robots
	IV-D3 Path Planning and Action Sequence/Robot Rejection
	IV-D4 Backtracking

	V Demonstrations & Results
	V-A Setup
	V-A1 Robots
	V-A2 Task Assignments
	V-A3 Ordering Heuristic

	V-B Experimental Results
	V-B1 Execution Time
	V-B2 Computation time

	V-C Comparison to fixed-time-sampling
	V-D Demonstrations
	V-D1 Long horizon assembly
	V-D2 Handover scenario
	V-D3 Real robot experiments

	VI Discussion & Limitations
	VI-A Discussion of Theoretical Properties

	VII Conclusion
	VIII Acknowledgement
	References

