
1

Online Search-based Collision-inclusive
Motion Planning and Control for
Impact-resilient Mobile Robots

Zhouyu Lu, Zhichao Liu, Merrick Campbell, and Konstantinos Karydis

Abstract—This paper focuses on the emerging paradigm shift
of collision-inclusive motion planning and control for impact-
resilient mobile robots, and develops a unified hierarchical
framework for navigation in unknown and partially-observable
cluttered spaces. At the lower-level, we develop a deforma-
tion recovery control and trajectory replanning strategy that
handles collisions that may occur at run-time, locally. The
low-level system actively detects collisions (via embedded Hall
effect sensors on a mobile robot built in-house), enables the
robot to recover from them, and locally adjusts the post-
impact trajectory. Then, at the higher-level, we propose a
search-based planning algorithm to determine how to best
utilize potential collisions to improve certain metrics, such as
control energy and computational time. Our method builds
upon A* with jump points. We generate a novel heuristic
function, and a collision checking and adjustment technique,
thus making the A* algorithm converge faster to reach the
goal by exploiting and utilizing possible collisions. The overall
hierarchical framework generated by combining the global A*
algorithm and the local deformation recovery and replanning
strategy, as well as individual components of this framework,
are tested extensively both in simulation and experimentally.
An ablation study draws links to related state-of-the-art search-
based collision-avoidance planners (for the overall framework),
as well as search-based collision-avoidance and sampling-based
collision-inclusive global planners (for the higher level). Results
demonstrate our method’s efficacy for collision-inclusive motion
planning and control in unknown environments with isolated
obstacles for a class of impact-resilient robots operating in 2D.

I. INTRODUCTION

There has been an emerging paradigm shift in mobile
robot motion planning and autonomous navigation whereby
collisions with obstacles are not by default avoided but in-
stead exploited to improve certain robot planning, control and
navigation metrics [1]–[5]. Such collision-inclusive planning
and control strategies capitalize on results demonstrating how
some forms of collisions can in fact be useful in terms of
sensing, localization, control, and agility [6]–[14]. Besides
the benefits of embracing collisions, robot deployment in
realistic (that is, dynamic, cluttered, and irregularly-shaped)
environments may, at cases, make collision avoidance hard
to achieve [15], [16]. For example, detecting all obstacles in
the environment can be a challenge, especially when there

The authors are with the Dept. of Electrical and Computer Engineering,
University of California, Riverside. Email: {zlu044, zliu017, mcamp077,
karydis}@ucr.edu. We gratefully acknowledge the support of NSF #IIS-
1910087, ONR #N00014-18-1-2252 and #N00014-19-1-2264, and ARL
#W911NF-18-1-0266. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not
necessarily reflect the views of the funding agencies.

exist translucent and/or transparent obstacles, such as glass
walls, or reflective surfaces [13]. At the same time, using a
conservative local planner may fail finding a feasible path to
the goal even if one exists [17]. Collision-inclusive motion
planners can help address the aforementioned challenges.

Although research on collision-inclusive motion planning
has already begun receiving attention, existing methods can
be limited in their ways to apply in practical cases. On one
hand, methods that evaluate the effect of collision within
motion planning [3], [4] do not apply to online problems. On
the other hand, existing online collision-inclusive planning
methods [9], [11], [18] cannot decide how to use collisions
optimally, which could help guide the robot to the goal. Our
previous online planning method [2] can evaluate possible
collisions in unknown space which lies outside the field-of-
view (FoV) of the robot, but does not consider how to employ
collisions optimally within the known (and/or visible) space.

In this paper, we propose a unified online collision-
inclusive motion planning and control framework that eval-
uates the effect of possible collisions and decides when it
might be preferred to collide with an obstacle (or a surface
more broadly) instead of avoiding it. Our framework applies
to impact-resilient robots with three core capabilities: 1)
collision resilience, 2) collision identification, and 3) post-
impact characterization. We design and fabricate in-house a
custom omni-directional holonomic wheeled robot equipped
with a collision ring that integrates Hall effect sensors along
the arms holding the ring in place (Fig. 1); our robot satisfies
all three core capabilities. The robot runs a Deformation
Recovery control and trajectory Replanning (DRR) strat-
egy [20] that enables it to recover from a collision and
rapidly replan its post-impact trajectory using the information
provided by the Hall effect sensors. The DRR strategy acts
as the local replanner of the unified framework developed
herein. We also propose and develop a global search-based
planning algorithm based on the collision model generated
from the DRR strategy. Similar to [21], our approach ex-
plores the space of trajectories using a set of short-duration
motion primitives generated by solving an optimal control
problem. Instead of pruning those primitives colliding with
the obstacles in the global map, our proposed approach can
adjust and evaluate them based on the collision model.

Succinctly, the paper’s contributions are as follows:
• We extend the DRR strategy to generate local trajecto-

ries when colliding with (non-)convex obstacles.

ar
X

iv
:2

20
9.

13
68

4v
3

 [
cs

.R
O

]
 1

8
O

ct
 2

02
2

2

Start

Goal

(a) Passive impact-resilient robot. (b) Active impact-resilient robot with 4 arms. (c) Active impact-resilient robot with 8 arms.

Fig. 1: The evolution of our omni-directional holonomic robot prototypes used in our collision-inclusive motion planning and control
research program. (a) The first iteration of the robot, inspired by the omnipuck robot [19], featured a passive collision ring and a single-
board computer for motion control [1], [2]. This iteration has a radius of 0.12 m and weighs 0.6 kg. (b) The second iteration critically
included an active collision ring-like structure that can sense collisions via embedded Hall effect sensors and a powerful onboard computer
for online sensor data processing, decision making and motion control [20]. This iteration has a radius of 0.3 m and weighs 6 kg. A
limitation of that prototype was the sparsity of its arms which reduced collision detection accuracy when the collision surface was not
approximately perpendicular to any of the robot’s arms. (c) The most recent prototype developed in this present paper builds upon
successful features of the second version and has significantly improved collision detection accuracy due to a complete redesign of the
arms’ mechanical design and integration of more arms. This iteration has a radius of 0.3 m and weighs 8 kg.

• We develop a search-based planner to generate global
trajectories and evaluate it in different benchmarks.

• We propose and evaluate a unified online collision-
inclusive motion planning and control framework in-
tegrating the DRR strategy and search-based collision-
inclusive planning while considering the robot’s FoV.

Our method is systematically evaluated via both simulated
and real-world experiments using planar holonomic wheeled
robot kinematics in environments that contain isolated convex
and non-convex obstacles. We first test the DRR strategy
experimentally to ensure its feasibility and safety when
applied to the physical robot. Data collected from this
process help identify parameters for the collision model
which is necessary to test the search-based collision-inclusive
algorithm in simulation. Comprehensive benchmark compar-
isons against state-of-art collision-avoidance and collision-
inclusive methods demonstrate the differences, similarities
and the utility of specific components, as well as of the over-
all proposed framework. Moreover, experimentation with the
physical robot in a single corridor environment is conducted
to validate the performance of our unified online collision-
inclusive motion planning and control framework.

This paper builds upon and significantly extends previous
results [2], [20]. The former [2] focuses only at the global
planning level and evaluates possible collisions in the un-
known (not yet observed) space. The latter [20] focuses only
at the local control and planning level that utilizes DRR based
on a-priori given waypoints. This paper, in contrast, develops
the unified framework that combines the global planning and
local control and planning levels together. In this newly-
developed approach, the global planner can evaluate possible
collisions both within and outside the robot’s FoV. 1

In what follows, we review related works in Sec. II
and introduce our overall system’s structure in Sec. III.
The deformation recovery control and post-impact trajectory
replanning components are detailed in Sec. IV and Sec. V,
respectively. The global search-based planner is discussed

1 To make this present paper self-contained, important methods and results
from the previous related papers [2], [20] are included herein.

in Sec. VI. Extensive benchmark (in simulation) and exper-
imental results are given in Sec. VII. Sec. VIII discusses
key findings and current limitations, and elaborates on future
directions of research enabled by the proposed framework.

II. RELATED WORKS

Collision-free motion planning algorithms handle obsta-
cle avoidance in distinct ways (e.g., [21]–[25]) to derive
collision-free trajectories in real-time. Typically, such meth-
ods split the trajectory generation problem into two parts:
1) planning a collision-free geometric path or using motion
primitives, and 2) optimizing the path locally to obtain
a dynamically-feasible time-parameterized trajectory. When
the environment is unknown (or partially-known), different
strategies have been used based on those two-part frame-
work. Many methods adopt the optimistic assumption [26],
[27], which treats the unknown space as collision-free. This
strategy improves the speed of reaching goals but may not
guarantee safety. In contrast, other methods treat the unknown
space as obstacle-occupied [28] and only allow for motions
within the already known free space or FoV-observed free
space [29]. Although these restrictions can help ensure safety,
they tend to lead to conservative motion.

Tordesillas et al. [24] proposed a method that combines
these two strategies by planning in both the known-free and
unknown spaces. Instead of being overly optimistic about
the unknown space, backup trajectories are also planned
to enforce safety should the assumption about unknown
space being free turns out to be wrong. While this method
works well overall, it has put less emphasis on environ-
ment perception, lack of which may reduce safety or create
over-conservative trajectories when the robot is tasked to
operate at high speeds [30]. To this end, perception-aware
strategies [23], [31], [32] have been proposed to predict
unknown dangers and try to discover and avoid those dangers
early on. However, prediction of unknown dangers does not
necessarily ensure accuracy and usually requires additional
computational effort which may limit online implementation.

Different from collision-avoidance, there have been efforts
on designing impact-resilient robots that can withstand colli-

3

sions instead (e.g., [2], [4], [11], [13], [14], [18]–[20], [33]–
[35]). With such robots as hand, one research direction has
been to design characterization methods that can make the
robot sense the collision and recover from the collision state.
Most of such characterization methods have mainly focused
on utilizing data from an onboard inertial measurement unit
(IMU) [36]. However, IMUs are usually unable to distinguish
collisions during aggressive maneuvers and to detect static
contacts, resulting in low accuracy in collision detection.
Sensors that could detect deformation of the robot during the
collision process have been used in the past to provide more
accurate collision detection [18], [37]. In related yet distinct
previous work [14], we have implemented a passive quadrotor
arm design with Hall effect sensors, making the robot able
to detect and characterize collisions. The ability to sense and
characterize collisions has led to various different methods to
replan the local trajectory once the collision is detected [9],
[11], [18]. Planning methods using motion patterns, e.g., to
move forward in straight lines until collision with environ-
ment boundaries and then rotate in place and move forward
again, have also been proposed [38]–[40]. Such methods can
run online in environments with non-convex, polygon-shaped
obstacles. A different trajectory generation method can be
achieved by assuming the robot maintains contact with the
obstacle [12]. Although these methods increase robustness
and safety of post-impact trajectories, they cannot determine
where the robot should collide with the environment to help
it redirect toward the globally-planned goal.

Related works [3], [4] propose methods to evaluate and
design possible collision spots of the global trajectory. Mote
et al. [3] have introduced an empirical algebraic collision
model by directly relating pre- and post-impact velocities
with no thrust commanded. Then, a mixed-integer planning
method based on that model is used to compute collision-
inclusive trajectories in a known environment. However, inte-
ger constraints are hard to create, and solving a mixed-integer
programming problem is usually time-consuming, making it
impossible to run online for planning in an unknown envi-
ronments. Further, the approach [3] has been demonstrated
with a specific pair of objects over a relatively limited range
of conditions (obstacles need to be line segments). Zha and
Mueller [4] have proposed a rapidly exploring random tree
(RRT) based planning method to plan global trajectories
with collisions. The impulsive model is used to create the
post-collision state once the pre-collision state is generated.
Findings from [4] suggest that a collision-inclusive sampling-
based planner is likely to find better trajectories in cluttered
environments (such as narrow tunnels) as compared to en-
vironments that contain isolated obstacles. In addition, such
algorithms remain limited in their use for online planning in
unknown (or partially-known) environments.

Compared to our previous work [2], which developed a
global path planner that explicitly trades-off between risk
and collision exploitation only in unknown space, this paper
proposes a new search-based global planner using a set
of short-duration motion primitives which exploit possible
collisions in the environment. The planner treats the un-

known space as collision-free. Our planner can generate
waypoints with explicit information about possible collisions
and more reasonable time allocation for the local trajectory
generator. Contrary to collision avoidance methods with
hard constraints that generate trajectories only in conser-
vative local space [22], [24], our method utilizes gradient-
based trajectory optimization (GTO) [23], which typically
formulates trajectory generation as a nonlinear optimization
problem and incorporates the artificial potential field (APF)
to ensure safety. However, since GTO does not guarantee
the robot will avoid all possible collisions, especially in
unknown environments, we utilize the DRR strategy [20] for
local trajectory generation; once a collision is sensed and
characterized, DRR can ensure that the robot will recover
from the collision and keep progressing toward its global
goal.

III. SYSTEM OVERVIEW

A. Overall Framework

Our overall system architecture is shown in Fig. 2. Novel
contributions relate to the low-level planner (Sec. IV and V)
and the high-level planner (Sec. VI) in partially-known envi-
ronments. The robot may collide with obstacles that were not
detected at any time instant that the map (e.g., provided via
LiDAR scans) refreshes. Instead of stopping when sensing
the collision, the robot locally refines the trajectory and
continues to explore the unknown space. To avoid repeated
collisions with an obstacle (reminiscent of stacking into local
minima) if another collision occurs while the robot follows
the locally-revised trajectory part, the robot will then stop and
invoke the high-level global planner to make more substantial
refinements to the trajectory. Both processes run online.

Collision-

inclusive Search-

based Algorithm

State list [x1, x2, …, xK]

Trajectory

Refinement

Deformation

Recovery and

Replanning

Collision type list [ξ1, ξ2, …, ξK]

Time segment list [t1, t2, …, tK-1]

Trajectory segments [Փ1, Փ2, …, ՓK-1]Mapping Section

Odometry

Feedback

Lidar sensors

reading

p, v, R, Ω

p, v, R, Ω

p, v, R, Ω

Map Mτ

Goal state xgoal

xdes

High Level Planner

Low Level Planner

Fig. 2: Overview of our unified framework for collision-inclusive
motion planning and control. The method builds upon two novel
components developed in this work; a global collision-inclusive
planner and a local trajectory generator.

Contrary to collision avoidance algorithms, we do not im-
pose any obstacle-related constraints in trajectory generation,
nor we run a geometric collision check once a trajectory is
generated at the low level. Instead, we directly generate a

4

Desired

Trajectory

Generation

pd(t)

ad(t)

vd(t) Geometric

Controller

ADC

Hall sensor reading[1, 2, ..., N]

No

Deformation

Recovery

Controller

Yes Optimization

based Trajectory

Replanner

pr(T)

vr(T)

Motor Controller

Unit

M
o
to

r
sp

in
n

in
g
 s

p
e
ed

[N
1
,
N

2
,
N

3
,
N

4
]

Onboard Mini

PC Odometerp, v, R, Ω

Collision

detection

Trajectory segments [Փ1, Փ2, …, ՓK-1]

Recover

trajectory Փr

Updated trajectory segments

[Փ1, Փ2, …, ՓK-1]
n n n

Updated trajectory segments

[Փ1, Փ2, …, ՓK-1]
n n n

Arduino mega2560

Fig. 3: The DRR strategy for this work’s low-level planner.

trajectory based on given waypoints.2 If a collision occurs,
the robot receives a signal that a collision has occurred from
any of the Hall effect sensors embedded between the main
chassis and its deflection surfaces and activates a deformation
recovery controller. The controller (Sec. IV) makes the robot
detach from the collision surface by recovering from the
deformation, and determines a post-collision state for the
robot so as to facilitate post-impact trajectory replanning.
The replanner (Sec. V) refines the initial trajectory since
collisions change the second-order continuity of the trajectory
followed before collision. To do so, the replanner uses the
post-collision state computed by the recovery controller as
initial state for refined trajectory generation. The procedure
repeats as new collisions occur in the future, in a reactive and
online manner. Figure 3 shows the DRR strategy, along with
specific implementation components for experimentation.

We select GTO for post-impact recovery and global trajec-
tory refinement based on [23] that revealed that GTO-based
methods are particularly effective for local replanning, which
is key for high-speed online motion planning in unknown
environments. One drawback of GTO is the presence of local
minima that may lead to undesirable solutions. Specifically,
GTO may yield a trajectory that intersects with the obstacles
in the environment [23]. Our DRR strategy can resolve this
issue by offering a way to run a quick replan locally after
the collision happens to ensure post-impact consistency.

B. Problem Assumptions and Notation

The proposed approach applies under the following:
• The boundary of the environment is known.
• Operating environments attain the form of confined

corridors with isolated convex and non-convex obstacles,
and only planar collisions obstacles are considered.

• During deformation and until a collided arm recovers
its initial length, the tip of the arm remains in contact
with the collision surface but does not rotate about the
z axis, and the wheels of the robot contact the ground.

• The Hall effect sensor can return the information of
collision state timely.

Key notation used in this paper is shown in Table I.

2 The list of waypoints can be computed via any path planning method.
It is independent from our proposed collision-inclusive planning algorithm.

TABLE I: Key notation.
l0 neutral length vector of the spring
ls pre-tensioned spring length (arm not compressed)
le length at maximum spring load following Hooke’s law
l current spring length (deformation vector)
p position vector of the robot
v velocity vector of the robot
a acceleration vector of the robot
s− state vector prior to the collision and recovery
s+ state vector post to the collision and recovery
sd state vector of the robot (point of mass model)

ke spring constant of the arm.
kd damping coefficient of the arm.

τ time interval
tc time instance when the sensing collision
Tr time horizon of deformation recovery
Trep time horizon of replanning
w
b R Rotation matrix from body frame to world frame
w
c R Rotation matrix from collision frame Fc to world frame

F state transition matrix of deformation controller
G input to state matrix of deformation controller
C mapping matrix of polynomial coefficient η
Q cost matrix of smoothness term
Af state transition matrix in free space
Bf input to state matrix related to sd in free space

Js smoothness term objective function
Jo objective function of the clearance
Jv penalty on velocity
Ja penalty on acceleration

IV. DEFORMATION RECOVERY CONTROL

The purpose of our proposed deformation controller is to
make the robot recover from a collision and reach a post-
impact state that can facilitate recovery trajectory replanning
(which we discuss in the next section).

A. Problem Setting

Consider a holonomic mobile robot (Fig. 1c), modeled as
a point mass m. The robot’s main chassis is connected to its
deflection surfaces via visco-elastic prismatic joints (Fig. 4).
Note that the springs inside each joint are pre-tensioned.
The robot’s compliant arms can both protect the robot from
collision damage, and generate an external force driving it
away from obstacles. External forces along each arm are
caused via visco-elastic deformations assumed to follow the
Voigt model; ke and kd denote the spring constant and
damping coefficient, respectively. Hall effect sensors are used
to measure the amount of deformation along each arm, and to
signal collision detection when a user-tuned arm compression
threshold is exceeded.3 The arm design with the bump sensor
mechanism is similar to the button mechanism [41] and helps
protect the robot from damage caused by collision as well as
sense the collision in real time. Collision detection accuracy
is related to the number of arms on the robot.

We consider four key quantities related to spring lengths:
neutral l0, pre-tensioned ls, maximum-load le, and current
l (also referred to as deformation vector). These quantities
play a significant role in the deformation recovery controller;
they are also summarized in Table I, along with other key

3 The threshold is tuned based on the sensitivity of the Hall effect sensors.

5

{o}{o}

θ

xc

yc

xc

yc

θ

xc

yc

rr

{o}

Fig. 4: (Left) Model of our wheeled robot equipped with compliant
arms. (Right) Close-up view of the assembly of the visco-elastic
prismatic joint and Hall effect sensor.

notation. In single-arm collisions, current spring length vector
l is aligned with the unit vector along the colliding arm,
pointing from the tip of the arm to the center of robot along
the compliant prismatic joint. For clarity of presentation, we
consider in the following single-arm collisions. In multi-arm
collisions we compute individual contributions from each
colliding arm’s spring and then consider their vector sum
as the compound deformation vector used in lieu of l.

We use three coordinate systems. The world and body
frames (wb R denotes the rotation matrix from body to world
frames while bl denotes the deformation vector expressed
in the body frame), and a (local) collision frame Fc. This
frame is defined at the time instant a collision occurs, tc, and
remains fixed for throughout the collision recovery process,
Tr. Its origin coincides with the origin of the robot when a
collision is detected. Basis vector {n, t,k} of Fc are defined
normal, tangent and upwards with respect to the deformation
vector l. Let θ be the angle of deformation vector l in Fc.4

The (frame-agnostic) robot collision dynamics is given by
ml̈+kdl̇+ke(l− l0) = main, where ain is the robot’s body
acceleration input as provided by the robot’s motors.

B. Deformation Controller

The deformation recovery controller’s task is to steer the
post-impact state of the robot to a desired one within a time
period of [tc, tc + Tr]. The time horizon Tr is an important
hyper-parameter tuned by the user. Typically, longer Tr

means the robot will recover from collision with longer
time and smoother motion pattern. Through a preliminary
calibration phase we selected Tr = 0.5s.

4 Note that inability to define the deformation vector may make the
collision frame ill-defined. There are three special cases for this to happen.
One is when two opposite arms deform exactly equally. In this case, there are
two possible solutions to define the direction of the deformation vector along
the line connecting the two arms. However, our algorithm still works as it
prioritizes motion along the tangent to the collision vector (this would be
the case of going through a very narrow straight corridor). The second case
contains asymmetric collisions with three or more arms such that the vector
sum is still zero. Then, one can define the collision frame based on the most
dominant (in terms of magnitude) individual collision vector. Our algorithm
can still work, though it is possible that more collisions will occur as the
robot tries to navigate through (this would be the case of going through a
very narrow curvy corridor). The last case is when there is an even (four or
greater) number of symmetric collisions of exactly the same magnitude. The
collision frame can no longer be defined. However, this case can only happen
if the robot is radially pressed (entrapped) so that motion is completely
restricted, which is not expected to occur during normal operation.

The deformation controller operates with respect to the
local, collision frame Fc. Let the state variable be cs =
[cpx

cpy
cθ cvx

cvy]
⊤. The control input is u = [ux uy uθ]

⊤,
where ux = (cain− ke

m (cls−cl0))·cn, uy = (cain− ke

m (cls−
cl0))·ct, and uθ = cω ·ck with cω being the angular velocity
of the robot in the collision frame. Note that position control
terms include compensation for the force caused by the spring
being pre-tensioned when the robot’s arm is at its rest length.
Then, the state space model of the robot recovering from
collision can be expressed as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ṗx = vx

ṗy = vy

θ̇ = uθ

v̇x = −ke

m px − kd

m vx + ux

v̇y = −ke(µsign(vy)+tan θ)px+f0
m − kd(µsign(vy)+tan θ)vx

m + uy

(1)
where f0 = µkesign(vy)(cls − cl0) · cn.

Since the robot is holonomic, we can decouple orientation
from position control.5 The orientation and angular velocity
errors during recovery time t ∈ [tc, tc + Tr] are eR(t) =
1
2 (R

⊤
d R−R⊤Rd)

∨ and eṘ(t) = ω−R⊤Rdωd, respectively.6

Index d denotes desired quantities; these are Rd = R(tc) and
ωd = [0 0 0]⊤. (All terms are with respect to collision frame
Fc.) Then,

uθ = −KreR,z(t)−KωeṘ,z(t) . (2)

Note that since this is a planar collision problem, the
collision recovery orientation controller considers only the
z−components of orientation and angular velocity errors.

Regarding collision recovery position control, note that the
translation-only motion in (1) is affine. Thus, we can apply
feedback linearization. The linearized system matrix F is

F =

⎡⎢⎢⎢⎢⎣
0 0 1 0

0 0 0 1

−ke

m 0 −kd

m 0

0 0 0 0

⎤⎥⎥⎥⎥⎦
with state vector sd = [px py vx vy]

⊤. The control input
matrix is G = I2×2 with control input vector ν = [νx νy]
given by{︄

νx = ux

νy = uy − ke(µsign(vy)+tan θ)x+f0
m − kd(µsign(vy)+tan θ)vx

m
(3)

We formulate an optimal control problem with fixed time
horizon T based on the linearized system ẋ = Fx + Gν.

5 In our approach we seek to make the robot keep the same orientation
it has at the instant it collides throughout the collision recovery process.
We follow this approach because it can simplify the overall deformation
recovery control problem without sacrificing optimality.

6 The vee map ∨ is the inverse of a skew-symmetric mapping.

6

Using the change of variable τ = t− tc,7 we seek to solve

min
sd

Tr∫︂
0

(sd(τ)
⊤Γsd(τ) + ν⊤(τ)Hν(τ))dτ (4a)

subject to ṡd = Fsd +Gν, (4b)
− ∥le − ls∥ cos θ ≤ px ≤ 0. (4c)
sd(0) = [p0,x 0 v0,x v0,y]. (4d)
sd(Tr) = [0 pT,y vT,x vT,y]. (4e)

Matrices Γ = γ

[︄
I2×2 0

0 02×2

]︄
and H = hI2×2 penalize

the displacement during the recovery process and the control
input, respectively. There is a trade-off between the displace-
ment and the control input of the robot. Tuning parameters
γ and h balance this trade-off to select the controller with
minimal control energy and displacement.

Constraint (4c) dictates that the robot should be in contact
with the collision surface until the colliding arm’s spring
has recovered its original, pre-tensioned length ls (i.e. the
arm is no longer compressed) without compressing beyond
its linear region le. Constraints (4d) and (4e) enforce initial
and terminal position and velocity conditions, respectively. In
detail, p0,x is determined by the colliding arm’s Hall effector
sensor reading. Since the vector form of the sensor’s reading
(that is, bl − bls) is expressed in the body frame, we need
transform it to the collision frame Fc as per

p0,x = −[1 0] w
c R

⊤ w
b R (bl− bls) . (5)

The velocity components at the collision instant v0,x and
v0,y are expressed in frame Fc and are estimated at run-
time.8 Post-impact, the arm needs to be uncompressed (hence
pT,x is set to 0), but pT,y is treated as an unconstrained
free variable. Post-impact terminal velocity components vT,x

and vT,y are also expressed in Fc and can be set freely. In
Sec. V, we discuss how to generate vT,x and vT,y based on
the preplanned trajectory. We discretize the linearized system
in (4b) with sampling frequency f = 10 Hz using the Euler
method, and solve the corresponding quadratic program with
CVXOPT. The process is summarized in Alg. 1.

Computed control inputs (4) and (2) make the robot detach
from the collision surface and help bring it to a temporary
post-collision state which can be used as the initial condition
for post-impact trajectory generation. We discuss this next.

V. POST-IMPACT TRAJECTORY REPLANNING

A. Problem Formulation

We formulate the post-impact trajectory generation prob-
lem as a quadratic program with equality constraints, i.e.

7 We employ this change of variable for clarity. Problem (4) resets every
time a new collision occurs; this gives rise to an LTI system, hence the
change of variable can apply.

8 In the experiments conducted in this work, velocity measurements are
provided via a motion capture camera system, but the method applies as
long as velocity estimates are available, e.g., via optical flow.

Algorithm 1: Deformation recovery controller

input : Displacement in body frame bl− bls
via Hall effect sensors readings; collision
time instant τc ∈ [0,∆tic); position in
world frame at collision instant, wpτc ;
velocity in world frame at collision
instant, wvτc ; rotation matrix w

b R;
rotation matrix w

c R; next waypoint point
in world frame, wpnext.

output : Control input u
parameter: Maximum velocity of the robot vmax

1 Function RECOVERYCONTROLLER(bl− bls, τc,
∆tic , wpτc , wpnext, wvτc , w

b R, w
c R):

2 wvT ←
wpnext− wpτc

∆tic−τc

3 cvT ← w
c R

⊤ wvT

4 if cvT,x < 0 then
5 cvT,x ← 0
6 end
7 if ∥ cvT ∥ ≥ vmax then
8 cvT ← vmaxnormalize(cvT)
9 end

10 Calculate p0,x based on (5) with lb
11 p0,y ← 0
12 Calculate ux and uy based on (4) and (3) with

given vT and p0

13 Calculate uθ based on (2)
14 u← [ux uy uθ]

⊤

15 return u

min
η

Js(η) =

NI∑︂
i=ic

∆ti∫︂
0

⃦⃦⃦
wp

(q)
i (t)

⃦⃦⃦
dt (6a)

subject to C
(0)
0,ic,β

ηic,β = wpr,β , (6b)

C
(1)
0,ic,β

ηic,β = wvr,β , (6c)

C
(α)
∆tNI

,NI ,β
ηNI ,β = wd

(α)
∆tNI

,NI ,β
,

α = {0, 1 . . . q − 1}, (6d)

C0
∆ti,i,βηi,β = wpi+1,β , (6e)

C
(α)
∆ti,i+1ηi,β = C

(α)
0,i+1,βηi+1,β ,

α = {1, 2 . . . q − 1}. (6f)

For polynomial segments, we can rewrite Js as

Js =
∑︂

β∈{x,y}

NI∑︂
i=ic

η⊤
i,βQ

q
β(∆ti)ηi,β ,

where ic is the segment where the collision happens and
NI is the number of trajectory segments. Superscript q
denotes the derivative order; for example, q = {1, 2, 3, 4}
correspond to min-velocity, min-acceleration, min-jerk and
min-snap trajectories, respectively. Subscript β ∈ {x, y}
indicates the x and y component of the trajectory, and ∆ti is
the time duration for ith polynomial segment. Parameter ηi,β
is the vector of coefficients of ith polynomial. C(α)

0,i,β maps

7

the coefficients to αth order derivative of the start point in
segment i, while C

(α)
∆ti,i,β

maps the coefficients to αth order
derivative of the end point in segment i.

Constraints (6b) and (6c) impose the initial values for the
0th and the 1st order derivatives to match the position and
velocity values attained via the collision recovery controller,
respectively. Constraint (6d) imposes that the αth order
derivatives of the end position are fixed. Constraint (6e) im-
poses that the trajectory will pass through desired waypoints
after ic. Constraint (6f) is imposed to ensure αth continuity
among polynomial segments.

We solve this quadratic programming (QP) problem given
initial (post-collision) and end states, and intermediate way-
points. Then, we perform time scaling as in [22] to reduce
the maximum values for planned velocities, accelerations
and higher-order derivatives as appropriate, and thus improve
dynamic feasibility of the refined post-impact trajectory.

The solution of the QP problem serves as the initial value
for GTO [42], where we change the objective function to

min λsJs + λoJo + λd(Jv + Ja) , (7)

where Jo is the cost to avoid collisions, and Jv and Ja are the
penalties when candidate velocity and acceleration solutions
exceed the dynamic feasibility limit, respectively. Weight
parameters λs, λo and λd trade off between smoothness,
trajectory clearance and dynamical feasibility, respectively.

Similar to [42], we use an exponential cost function. At
a position with distance d to the closest obstacle, the cost
co(d) is written as

co(d) = αo exp (−d− do)/γo , (8)

where αo is the magnitude of the cost function, do is the
threshold where the cost starts to rapidly rise, and γo controls
the rate of the function’s rise. Then, Jo can be computed as

Jo =

NI∑︂
i=ic

∆ti∫︂
0

co(p(t))∥v(t)∥dt

=

NI∑︂
i=ic

N∑︂
k=0

co(p(tk))∥v(tk)∥δt .

(9)

Jv can be computed in a similar manner, whereby cv(v) is
the cost function applied on the velocity and attains the same
form as in (8). We can then obtain

Jv =
∑︂

β∈{x,y}

NI∑︂
i=ic

∆ti∫︂
0

cv(vβ(t))∥aβ(t)∥dt

=
∑︂

β∈{x,y}

NI∑︂
i=ic

N∑︂
k=0

cv(vβ(tk))∥aβ(tk)∥δt
(10)

The formulation of Ja is similar to (10). The cost function
of the acceleration constraint ca(a) is also an exponential
function similar to co(d) and cv(v), since it is can penalize
when close to or beyond acceleration bounds while staying
flat when away from the bounds. We apply a similar Newton
trust region method as in [42] to optimize the objective.

pnext

pr

xc

yc{c}

xc

yc{c}

pmap

(a) No adjustment made.

pnext

pr

xc

yc{c}

xc

yc{c}

pmap

padd

Replanning with new

information here

(b) Add new waypoint padd.

Fig. 5: Waypoint adjustment process when the collision is sensed.

B. Waypoint Adjustment

In some cases, it may be necessary to adjust the waypoints
given by a preplanned trajectory with the information ob-
tained from the collision, and then solve the aforementioned
problem in Sec. V-A with the adjusted waypoints. Such cases
occur when there is no direct line of sight between the
collision state and the waypoint at the end of the immediately
next trajectory segment following collision recovery. By
enabling such waypoint adjustment, the algorithm promotes
exploration and in certain cases prevents the robot from being
trapped in a local minima in which repeated collisions at the
same (or very close-by) place could otherwise occur.

With reference to Alg. 2, we express in the local collision
frame Fc the next waypoint waypoint list[ic+1] (lines 2–
4). In line 5, we adjust waypoint list with the information
we get from collision. Details of this process are shown in
Fig. 5. We add an additional waypoint padd to create a path
detouring the collided obstacle. Then we select the shortest
path among all the possible paths toward the next waypoint
pnext that was originally in the list before collision. Possible
padd waypoints are generated by either using a path gener-
ation algorithm (e.g., jump point search) when the complete
collision surface can be perceived, or by searching along the
y-axis of collision frame Fc by a (user-defined) exploration
distance ϵexplore when the complete collision surface cannot
be reliably perceived (e.g., via LiDAR measurements).

Algorithm 2: Post-impact waypoint adjustment
input : Position after the collision recovery in

world frame, wpr; waypoint list of
preplanned trajectory; waypoint list;
w
c R; trajectory segment ic where the
collision happens.

output : waypoint list after adjustment
waypoint list

parameter: Robot radius rrob
1 Function WAYPOINTADJUSTMENTLINE(wpr,

waypoint list, w
c R, ic):

2 wpnext ← waypoint list[ic + 1]
3 Transfer wpnext into Fc frame to get cpnext

4 Transfer wpr into Fc frame to get cpr

5 Adjust waypoint list as Fig. 5
6 return waypoint list

As the robot progresses and reaches the additional way-
point padd that was added following the collision, then it
replans based on latest information provided from the per-
ception module. This happens when the robot either reaches

8

the added waypoint (to ensure that the next waypoint is in
free space) or it senses another collision from the deformation
sensor. In this case, the original pnext will change as well.
Note that this process runs online. In the case that the robot
senses a collision before reaching padd, then it will recover
and stop (instead of running the fast replanning approach
listed above) and call the global planner to revise larger parts
of the trajectory. If a new waypoint is inserted in the list, we
map the path generated by wpr and waypoints in the list after
ic + 1 into time domain using a trapezoidal velocity profile.
If no new waypoint is inserted, we set the time duration of ic
segment in (6) as ∆tic = tic+1− tc, where tic+1 is the time
reaching next waypoint pic+1 in the preplanned trajectory.

VI. SEARCH-BASED COLLISION-INCLUSIVE PLANNING

In this section, we propose the main algorithm to generate
the waypoint list and trajectory segments that serve as the
input to the DRR strategy.

A. Problem Formulation

Let the system state sd(t) ∈ S ⊂ Rn×q contain the
configuration and the (q − 1)th-order derivatives in 2D (i.e.
n = 2). The free state space, Sfree ⊂ S, contains both
obstacle-free configurations, Pfree, as well as the system’s
dynamical constraints, Dfree, which include minimum and
maximum bounds on velocity [vmin, vmax], acceleration
[amin, amax], jerk [jmin, jmax], and other higher-order
derivatives. We can then write Sfree = Pfree × Dfree =
Pfree× [vmin, vmax]× [amin, amax]×· · · . Pobs = P\Pfree

and Sobs = Pobs ×Dfree defines the obstacle region.
The differential flatness of some mobile robot

systems (e.g., [21]) helps design control inputs
from 1D time-parameterized polynomial trajectories
independently for each of the n positions. Hence,
sd(t) = [pD(t)⊤, ṗD(t)⊤, · · · ,p(q−1)

D (t)⊤]⊤ where

pD(t) =
q∑︁

i=0

di
ti

i! and D = [d0, · · · ,dq] ∈ Rn×(q+1),

and di = [di,x di,y]
⊤ in (6). To simplify the notation, we

re-express the derivatives as v(t) = ṗ⊤
D(t), a(t) = p̈⊤

D(t),
j(t) =

...
p⊤
D(t), etc., and drop subscript D.

We can construct the polynomial trajectories via p
(q)
D (t) =

u(t) with controls u(t) ∈ U = [−umax, umax]
n ⊂ Rn. In

state space form this yields ṡd(t) = Afsd(t)+Bfu(t), with

Af =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 In 0 · · · 0

0 0 In · · · 0

...
.

...
0 · · · · · · 0 In

0 · · · · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Bf =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0

...
0

In

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

In collision-inclusive planning, we consider a smoothness

cost Js(D) =
K∑︁

k=1

Tk∫︁
0

∥u(t)∥2dt =
K∑︁

k=1

Tk∫︁
0

∥p(q)
D,k(t)∥2dt. The

trajectory is not qth order differentiable as it would be in
collision avoidance. The smoothness of the entire trajectory is
the sum of its qth order differentiable segments. We consider

two additional costs. First, Tg =
K∑︁

k=1

Tk+(K−1)Tr penalizes

the overall trajectory duration. Then,

Jc =

⎧⎪⎨⎪⎩
(| cv+

x |−| cv−
x |)2+ ∑︁

β∈{y,z}
∆Eβ

Tr
∀ζ(t) = 1

0 otherwise

(12)

evaluates the effect of a collision in changing the direction
of motion of the robot. ∆Eβ = (cv+β − cv−β)

2, where
cv+β = cvβ(t + Tr) and cv−β = cvβ(t). cv+β can be
approximated via Alg. 4 if pgoal is known. (We discuss Alg. 4
in detail in Sec. VI-D.) We also define an indicator function
ζ(t) = {0, 1} that signals if the robot is colliding at time t.

We can then define the optimization problem
min
D,Tg

Js(D) + ρtTg + ρcJc(t) (13a)

subject to ṡd(t) = Afsd(t) +Bfu(t),∀ζ(t) = 0,

∀t ∈ [0, Tg] (13b)
sd(t+ Tr) = FDRR(sd(t)),∀ζ(t) = 1,

∀t ∈ [0, Tg − Tr] (13c)
ζ(t) ∈ {0, 1},∀t ∈ [0, Tg] (13d)

ζ(t) = 0, if sd(t+ δt) ∈ Sfree, δt→ 0,

∀t ∈ [0, Tg] (13e)

ζ(t) = 1, if sd(t+ δt) ∈ Sobs, δt→ 0,

∀t ∈ [0, Tg − Tr] (13f)

sd(0) = sd0, sd(Tg) ∈ Sgoal,
ζ(0) = 0, ζ(Tg) = 0 (13g)

sd(t) ∈ Sfree,u(t) ∈ U ,∀t ∈ [0, Tg] (13h)
cvx(t) ∈ Vc, if ζ(t) = 1 . (13i)

Parameters ρt > 0 and ρc > 0 regulate the relative
importance of trajectory smoothness, duration, and amount
of collisions that switch the direction of motion. Condi-
tions (13e) and (13f) determine how the value for ζ(t) is
being set. In (13i), Vc = [−vmax,c, vmax,c]; vmax,c indicates
the maximum collision velocity which, if exceeded, will lead
to the robot flipping over. Thus, we set the pre-collision
velocity component along x axis of Fc as vx(t) ∈ Vc.

Herein we show that, similar to the collision avoidance
motion planning problem [21], safety constraints may be
addressed by reformulating problem (13) into a deterministic
shortest path one with (n×q) state S and n control U . Since
the dimensionality of U remains at n, search-based planning
(e.g., A* [43]) that discretizes U using motion primitives can
be an effective way to determine in finite-time resolution-
complete and optimal (in the discretized space) trajectories.

B. Motion Primitives

Choosing a number of samples r ∈ Z+ along each axis
[−umax, umax], which defines a discretization step: du =
umax

r and results in M = (2r + 1)n motion primitives, is
one technique to acquire the discretization UM . Given initial
state sd0 = [p⊤

0 ,v
⊤
0 , · · ·]⊤, we generate a motion primitive

9

of duration τ > 0 that applies piece-wise constant control

ũm(t) =

{︄
um p

(q−1)
D (t) ∈ [p

(q−1)
D,min,p

(q−1)
D,max],

0 p
(q−1)
D (t) ̸∈ [p

(q−1)
D,min,p

(q−1)
D,max]

(14)

where um ∈ UM for t ∈ [0, τ]. Given initial conditions,

pD(t) = ũm(t)
tq

q!
+ · · ·+ v0t+ p0 (15)

is a piece-wise function. The resulting trajectory of (11) is

sd(t) = eAf t⏞⏟⏟⏞
Adf (t)

sd0+

∫︂ t

0

eAf (t−σ)Bf ũm(σ)dσ⏞ ⏟⏟ ⏞ .

Bdf (t)um

(16)

By beginning at sd0 and applying all primitives to acquire
the M possible states after τ ∈ [0, τf] (Alg. 3), we can
create a graph representation of the attainable system states.
There will be M2 potential states at time 2τ if all primitives
are applied to each of the M states once again. The set of
reachable states Sr is finite given the free space Sfree is
bounded. These enable the construction of a graph the states
of which are connected by a motion primitive e = (ũm, τ, ξ)
with ξ being an integer (discussed in Sec. VI-D).

We construct the graph to explore the free state space
Sfree using Alg. 3. Given the constant time upper-bound
τf and the fully specified state s, the primitive is derived in
line 4 using the control input um; lines 5–23 check whether
the primitive intersects with the obstacles and then modify
those primitives intersecting with the obstacles. This step will
be further discussed Sec. VI-D. In lines 6–13, we evaluate
the end state of a valid primitive not intersecting with the
obstacles and we add it to the set of successors of the
current node; meanwhile, we estimate the edge cost from the
corresponding primitive. In lines 16–21, we modify the end
state of the primitive and add it to the set of successors of the
current node; meanwhile, we estimate the edge cost related
to the corresponding modified primitive. Line 19 shows that
we consider Tr for the robot recovering from the collision
using DRR in the cost function. Further modification of the
cost function about estimating the cost related to Jc part will
be discussed in Sec. VI-D. The nodes in the successor set
R(sd) are added to the graph after we have checked all the
primitives in the finite control input set. Finally, the graph
keeps growing until we reach the goal is reached.

C. Deterministic Shortest Trajectory

We can re-formulate (13) as a graph-search problem
using the set of motion primitives UM and the induced
discretization. To do so, we introduce additional constraints
for the control input u(t) in (13) to be piecewise-constant.
We introduce an additional variable N ∈ Z+, so that

Tg =
N−1∑︁
k=0

(τk + ζk+1Tr), and ũk is computed by (14) with

uk ∈ UM for k = 0, · · · , N − 1 and a constraint in (13h):

u(t) =

N−1∑︂
k=0

ũk1t∈[Tk,Tk+1] .

Algorithm 3: Collision-inclusive motion primitive
generation

input : Initial state sd ∈ Sr ⊂ Sfree; motion
primitive set UM , upper-bound of
duration τf

output : Reachable set R(sd) from sd in one
step; costs set C(sd); duration set T (sd);
collision states set Z(sd)

parameter: Time interval δt; recover time Tr in DRR
1 Function GETMOTIONPRIMITIVE(sd, UM , τf):
2 R(sd)← ∅, C(sd)← ∅, T (sd)← ∅, Z(sd)← ∅
3 for all um ∈ UM do
4 Calculate edge em(t) according to (16) for

t ∈ [0, τf]
5 if e(t) ∈ Sfree for all t ∈ [0, τf] then
6 ζm ← 0
7 τm ← τf
8 sd,m ← em(τf)
9 R(sd)← R(sd)

⋃︁{sdm}
10 JD ←

∫︁ τ

0
∥ũm(t)∥2dt

11 C(sd)← C(sd)
⋃︁{JD + ρtτf}

12 T (sd)← T (sd)
⋃︁{τm}

13 ζ(sd)← Z(sd)
⋃︁{ζm}

14 else
15 ζm ← 1
16 Generate sd,m, τ and calculate Jc or

prune this primitive (discussed in VI-D
and VI-F).

17 R(sd)← R(sd)
⋃︁{sd,m}

18 JD ←
∫︁ τ

0
∥ũm(t)∥2dt

19 C(sd)← C(sd)
⋃︁{JD + ρt(τ + Tr) + Jc}

20 T (sd)← T (sd)
⋃︁{τm}

21 ζ(sd)← Z(sd)
⋃︁{ζm}

22 end
23 end
24 return R(sd), C(sd), T (sd), Z(sd)

By letting Ti =
i−1∑︁
k=0

τk we can force the control trajectory to

be a composition of the motion primitives in UM . Given an
initial state sd0 ∈ Sfree, a goal area Sgoal and a finite set of
motion primitives UM with duration τ > 0, we seek to select
a series of motion primitives u0:N−1 of length N , such that

min
N,u0:N−1

N−1∑︂
k=0

∥uk∥2 + ρt(τk + ζk+1Tr) + ρcJc,k

(17a)

subject to sd(t̃) = Adf (t̃)sd,k +Bdf (t̃)uk ⊂ Sfree,
∀t̃ ∈ [0, τk] (17b)
ζk ∈ {0, 1},∀k ∈ {0, 1, · · ·N − 1} (17c)

ζk+1 = 0, if sd(τk + δt) ∈ Sfree, δt→ 0
(17d)

ζk+1 = 1, if sd(τk + δt) ∈ Sobs, δt→ 0
(17e)

10

sd,k+1 = sd(τk),∀ζk+1 = 0 (17f)
sd,k+1 = FDRR(sd(τk)),∀ζk+1 = 1 (17g)

sd,0 = sd0, sd,N ∈ Sgoal, ζ0 = 0, ζN = 0
(17h)

uk ∈ UM (17i)
cv−k,x ∈ Vc, if ζk = 1 . (17j)

The optimal cost of (17) is an upper bound to the optimal
cost of (13) because (17) is a constrained version of (13). The
whole trajectory consists of a set of continuous and collision
free primitives of τk duration and initial state sd,k. If the
end state of the primitive sd(τk) is state which collides with
an obstacle, we modify it based on (17g). We modify the
final state based on DRR controller model. We make the
modified final state as initial state of next primitive. If the
end state of the primitive sd(τk) is collision free, we keep
the final state similar the collision-avoidance planner making
the final state as initial state of the next primitive as (17g).
Reformulating into a discrete control problem enables the
use of several motion planning methods that rely on search-
based [44] or sampling-based [4] techniques. We choose to
adopt an A* technique similar to [21] and concentrate on
the creation of effective, guaranteed collision checking and
post-collision behavior categorizing methods, as well as an
accurate and consistent heuristic since the former can ensure
limited time (sub-)optimality. 9

D. Collision Checking and Post-collision Behaviors

For a computed edge e(t) = [p(t)⊤ v(t)⊤ a(t)⊤ · · ·]⊤, in
Alg. 3, we need to check if e(t) ∈ Sfree for all t ∈ [0, τf].
For e(t) ∈ Sfree ∧ e(t + δt) ∈ Sobs with δt → 0 for all
t ∈ [0, τf], we need to modify the edge e(t) as in lines 16–
21 in Alg. 3. We check collisions in the geometric space
Pfree ⊂ Rn separately from enforcing dynamic constraints
Dfree ⊂ Rn×(q−1). An edge e(t) is collision-free only if its
geometric shape pe(t) ∈ Pfree for all t ∈ [0, τf].

In general, determining collision points for each motion
primitive can be very challenging. Herein we model P as
an occupancy grid map, Mo. Other representations such as
polyhedral maps [3], [22], [25] are also possible but often
hard to obtain from a robot’s FoV sensor data (e.g., from
LiDAR) and hence not pursued herein. Let Pe = {pe(ti) |
ti ∈ [0, τf], i = 1, · · · I} be a set of positions that the system
traverses along the trajectory. For collision-free primitives we
need pe(ti) ∈ Pfree for all i ∈ {0, · · · I}. The duration of the
collision-free trajectory is τ = τf . For the given polynomial
pe(t), t ∈ [0, τf], the positions pe(ti) are sampled by
defining

ti =
i

I
τf such that

τ

I
vmax ≥ ϵmap , (18)

where ϵmap is the occupancy grid resolution, and vmax =
max{|vmin|, |vmax|}. This condition ensures that the max-
imum distance between two consecutive samples will not

9 We note here that in principle both a search-based (as herein) and a
sampling-based global planner is possible. In Section VII-D we demonstrate
the differences of the two within collision-inclusive motion planning.

exceed the map resolution. Since it is an approximation, some
cells traversed by pe(t) with a portion of the curve within
the cell shorter than ϵmap may be missed, but it guarantees
the collision-free trajectory does not hit any obstacles.

In not collision-free e(t), the estimated collision time
instant ti is when pe(ti) ∈ Pfree ∧ pe(ti + δt) ∈ Pobs with
δt ≈ ti+1−ti for all i ∈ {0, · · · I−1}. Then, we set the dura-
tion τ of the collision-inclusive motion primitives in Alg. 3 to
ti, and modify the end state sd,e of e(t) as sd,e = {s−d,e, s+d,e}
with s−d,e = e(ti) = [pe(ti)

⊤ ve(ti)
⊤ ae(ti)

⊤ · · ·]⊤. We
set the duration of this edge τ = ti and set ζ(τ) = 1.
s+d,e = FDRR(s

−
d,e) is the post-impact state recovered using

the DRR strategy. We discuss how to set s+d,e shortly.
Since v,a and other higher-order derivatives are polyno-

mial functions, we can compute their extrema within the time
period [0, τ] to check if the respective maximum bounds are
violated. The polynomials’ order is less than 5 for n ≤ 3,
hence the extrema can be computed quickly in closed form.
We eliminate the primitives that cannot be dynamically im-
plemented (i.e. any bounds are exceeded). For the collision-
inclusive primitives, we need to check the x component of
the velocity v−e in Fc corresponding cv−e,x ∈ Vc. We prune
those with cv−e,x ̸∈ Vc to prevent the robot from flipping
over after colliding.

To generate the frame Fc required for evaluating the
collision-inclusive primitives, we need to get the geometric
information of each obstacle that the robot collides on. Given
a current scan from the mapping sensor (e.g., a LiDAR) we
identify all possible collision surfaces and use regression to fit
curve equations to the possible collision surfaces. The value
of doing so is that it enables a rapid calculation of the tangent
and normal unit vectors at selected possible collision points
on those collision surfaces. Basis vectors of Fc are generated
as discussed in Sec. IV-A whereas the origin of Fc is set to
be the estimated position of collision p−

e in s−d,e.
After generating Fc, we are able to generate s+d,e based

on the map Mo which we predict the robot will collide on
when arriving at s−d,e with the given motion primitive. Given
the goal position pgoal, we are able to set s+d,e according
to Alg. 4. This way, we can ensure the trajectory generated
by the search-based algorithm respect constraint (17g). In
Fig. 6, we show how to generate the intermediate waypoint
padd based on the jump point search algorithm. If there is
no feasible path to the goal, we prune this collision-inclusive
motion primitive. Given cv−

e and cv+
e , we can generate Jc of

this collision-inclusive motion primitive according to (12).10

We set a lower bound to Jc, Jc, to induce a cost if the robot
tries to use collisions alone to steer. Tuning ρc help regulate
collision-avoiding and collision-inclusive trajectories.

We also create an infeasible, Pinf , area to link pruned
collision-inclusive p−

e ∈ Pinf . We apply Pinf to prevent
the robot from getting into areas where the collisions are
difficult to detect using this arm design (i.e. when collision

10 We consider that most of the collision energy can be recovered by
the robot via its compliant arms. In practice, precise computation of the
dissipated energy is a challenge; however, the DRR strategy accommodates
for collision energy losses without any explicit energy dissipation models.

11

pgoal

xc

yc{c}

xc

yc{c} padd

v
-

v
-

pe
-

pe
-

v
+

v
+

Fig. 6: An example of performing collision and detouring away from
a non-convex obstacle by generating a new waypoint between the
point of collision and the goal.

surfaces reduce to almost a point, such as obstacle corners).

Algorithm 4: Post-collision state generation

input : Pre-collision state in world frame s−d,e;
collision frame Fc; goal position in
world frame pgoal; Mo.

output : Post-collision state in world frame s+d,e;
behavior type after collision ξ.

parameter: Lower bound and upper bound of the
velocity vmin, vmax; upper bound of
duration of each primitives τf , δt.

1 Function GETPOSTCOLLISIONSTATE(s−d,e, pgoal,
Mo):

2 v+ ← pgoal−p−
e

τf

3 Generate cv+ based on Fc as what is shown in
Fig. 6

4 if cv+x < 0 then
5 cv+x ← 0
6 ξ ← 2
7 We generate a intermediate waypoint padd as

what is shown in Fig. 6 given Mo based on
jump point search algorithm. The waypoint
should be the last visible waypoint along the
path. v+ ← padd−p−

e

τf

8 else
9 ξ ← 1

10 padd ← ∅
11 end
12 We adjust each components of v+ with a

saturation function restricting upper bound and
lower bound as vmin and vmax.

13 We set all derivatives of s+d,e as p
(q) +
e = 0, for

all q ≥ 2, p(1) +
e = v+, p+

e = p−
e .

14 return s+d,e, ξ

E. Heuristic Function Design
A heuristic function that is admissible, informative (i.e.

provides a tight approximation of the optimal cost), and
consistent (i.e. it can be inflated to obtain solutions with
bounded sub-optimality efficiently) is required for efficient
graph search to solve (17). Similar to [21], we solve a
relaxed form of (13) and arrive at a reasonable heuristic
function. The basic concept is to replace the difficult-to-
satisfy sd(t) ∈ Sfree and u(t) ∈ U requirements in (13)
with a constraint on time T . Next, we demonstrate that a
relaxation of (13) that includes motion planning may be
solved optimally and effectively. We add a constraint to
ensure that the robot will travel through the recently added
waypoint padd, avoiding the obstacle it collided with and
preventing repeated collisions with it if padd ̸= ∅.

1) Lower Bound of Time: Limits on maximum speed,
acceleration, jerk, etc. imposed by Sobs and U can help
create a lower in (13) of T . If padd = ∅, the minimum
time to reach the nearest state sd,goal in the goal region
Sgoal is constrained by T v =

∥pgoal−p0∥∞
vmax

. This is because
the system’s maximum velocity is bounded by vmax along
each axis. The system’s maximum acceleration is bounded
by amax, hence the state sd,goal = [p⊤

goal v
⊤
goal] cannot be

reached faster than
min
a, Ta

T a (19a)

subject to ṡd(t) = Afsd(t) +Bfu(t),u(t) = a(t),

∀t ∈ [0, T a] (19b)
∥a(t)∥ ≤ amax (19c)

sd(0) = [p⊤
0 v⊤

0]
⊤, s(T a) = [p⊤

goal v
⊤
goal]

⊤

(19d)

The above is a minimum-time optimal control problem
with input constraints, which can be solved in closed form
along each individual axis to obtain the lower bound T a =
min{T a,x, T a,y, T a,z} [45, ch. 5]. This procedure applies
for constraints in higher-order derivatives, but in practice the
computed times are less likely to provide better bounds while
requiring higher computational effort. Hence, even though we
can define a lower bound on the minimum achievable time
via T = min{T v, T a, · · · }, for computational expediency we
use the efficiently-computed (but less tight) bound T = T v .
For those cases with padd ̸= ∅, we generate T 1 and T 2

for path segments p0 → padd and padd → pgoal as
T 1 = T v,1 = ∥padd−p0∥∞

vmax
and T 2 = T v,2

∥pgoal−padd∥∞
vmax

.
2) Velocity Control Linear Quadratic Minimum Time

Heuristic: The lower bound T can help relax (13) by
replacing the state and input constraints. If padd = ∅, then

min
D,Tg

Js(D) + ρtTg (20a)

subject to ṡd(t) = Afsd(t) +Bfu(t),∀t ∈ [0, Tg]
(20b)

sd(0) = sd0, sd(Tg) ∈ Sgoal (20c)
Tg ≥ T . (20d)

The relaxed problem (20) is in fact the classical Linear
Quadratic Minimum-Time Problem [46]. The optimal cost

12

generated from (20) according to [22] is

h(sd,0) = δ⊤T W−1
T δT + ρtTg . (21)

We define δT = sd,goal − eAfTgsd,0 and the controllability
Gramian WT =

∫︁ Tg

0
eAf tB⊤

f eA
⊤
f tBfdt.

Let us consider velocity control as an illustrative example
of (21). Given Tg , sd,0 = p0, sd,goal = pgoal, we can rewrite
the optimal cost of (20) shown in (21) as

hv(sd,0) = C∗(Tg) =
∥pgoal − p0∥2

Tg
+ ρtTg . (22)

By minimizing C∗ in (22) with the constraint T ∗
g ≥ T , we

are able to obtain the ideal T ∗
g . If the positive real root

root+ ≥ T , then the solution is the positive real root of
dC∗

dTg
= 0. Otherwise, T ∗

g = T . Furthermore, the optimal cost
is C∗(T ∗

g). For the case where padd ̸= ∅, we modify (22) to

hv(sd,0) = C∗(T1, T2) =
∥padd − p0∥2

T1
+ ρtT1+

∥pgoal − padd∥2
T2

+ ρtT2

(23)

Similarly, we are able to derive the optimal T ∗
1 and T ∗

2 by
minimizing C∗ in (23) with constraints T ∗

1 ≥ T 1 and T ∗
2 ≥

T 2. We can get the solution of this optimization problem by
solving the positive real root of ∂C∗

∂T1
= 0 and ∂C∗

∂T2
= 0. The

optimal cost then is C∗(T ∗
1 , T

∗
2).

F. Jump Point-based Computation to Improve Efficiency

Previous analyses (Sec. VI-A to VI-E), yield the overall
structure of our proposed collision-inclusive search-based
motion planning algorithm, based on A* graph search. From
(17), we notice that we extend the feasible set of the
optimization problem compared to the collision avoidance
planning problem [21]. Extending the feasible set forces our
method to traverse more nodes on the graph compared to the
collision avoidance method. Even though our method can
generate a less conservative result with less cost compared
to the collision avoidance method, the computational time of
our can be larger compared to collision avoidance.

To improve computational efficiency and reduce the com-
putational time of our method, we can replace the post-
impact motion primitive generation technique introduced in
Sec. VI-D in A* graph search with a more efficient variant
that is inspired by jump point search [47]. Specifically, we
notice that when the robot needs to add a new waypoint be-
tween the collision point p−

e of the motion primitive and the
goal pgoal (ξ = 2), we can modify p+

e = padd. Performing
this modification will help us eliminate traversing multiple
nodes with the same padd. This way, the number of nodes we
are traversing can reduce, thus reducing computational time.
Even though applying this technique can be at expense of
optimality of the solution, solving the planning problem with
less computational time can be more important in practice.

If colliding with an obstacle (as shown in Fig. 6), we
modify p+

e and duration τ as p+
e ← padd and τ ← τ + τadd

with τadd =
∥padd,y−p−

e ∥
∥v+

e ∥ . The cost will be updated with new

τ ← τ + τadd. When we go through edges with ξ = 2,
we split the trajectory of this given edge with two segments,
given the start and the end waypoints as p0 and p−

e for the
first segment, p−

e and p+
e for the second segment. The time

duration of the first segment is τ−τadd and the time duration
of the second segment is τadd. We set the ξ = 0 and ζ = 0
with respect to the waypoint p+

e .

G. Trajectory Refinement

Following the aforementioned approach results in a
collision-free trajectory including specific times needed to
reach each waypoint. This is then fed as a prior to create
smooth trajectories in higher dimensions. The refined trajec-
tory s∗d(t) is derived from solving a gradient-based trajectory
generation problem similar to the one in Sec. V-A with given
initial and end states sd,0 and sd,goal and intermediate way-
points pk, k ∈ {0, 1, · · · , N}. The time for each trajectory
segment τk is also given from the prior trajectory. All pk are
stored in waypoint list (see Alg. 2).

We apply a two-step optimization strategy similar to [42]
which can be summarized as follows: 1) First, optimize the
collision cost of the path generated from waypoints only.
Positions of intermediate waypoints on the initial path are left
as free variables, and will be pushed away from the obstacles.
2) Second, revise the time scaling of the trajectory according
to current waypoints’ positions. Then optimize the objective
with additional smoothness and dynamical penalty terms.

The output trajectory comprises Nc + 1 continuous poly-
nomial trajectory segments. The differential variable of the
waypoint with ξk ≥ 1 is fixed end variable in the collision-
inclusive method, which indicates sd,ed,i = s−d,k, k ∈
{0, 1, · · · , N}, i ∈ {1, · · · , Nc}, ∀ξk ≥ 1. The differential
variable of the next fixed initial state is sd,st,i+1 = s+d,k, k ∈
{0, 1, · · · , N}, i ∈ {1, · · · , Nc}, ∀ξk ≥ 1. The collision
state waypoints ξk ≥ 1 are generated from a grid map with
augmented obstacles. We need to adjust those waypoints
before trajectory generation by relocating them so that the
distance to the closest block is dc ≤ rrob; this way we ensure
that planned collisions occur. The output of the search-based
algorithm may have two colliding and reflecting states that
are close-by (Fig. 7). In this case, if pi is visible to both pi−2

and pi+1, we can delete pi−1 to reduce redundant collisions.
We also disregard obstacles that the robot planned to collide
on (ξk ≥ 1) when computing the potential field for trajectory
generation in the second step for computational expediency.
The trajectory after refinement is n-th order continuous.

It is important to note that even though the refinement step
produces a smoother trajectory, the refined course might be
dynamically infeasible; we need to perform time scaling as
in [22] to reduce the maximum dynamics of the refined tra-
jectory. The refined trajectory might collide with the obstacle
in the trajectory segment that is checked to be collision free
according to Sec. VI-D. In such cases, our DRR strategy
ensures robustness and safety.

13

pi+1pi+1

pipipi-1pi-1

Delete

this

waypoint

pi-2pi-2

Fig. 7: Collision state merging.

VII. EXPERIMENTAL RESULTS

We validate the effectiveness of our unified framework
for collision-inclusive motion planning and control by pre-
senting several benchmark testing results in simulation and
via physical experimentation with our robot. 1) First, we
test the deformation controller on the robot to evaluate its
performance and generate a post-collision model which is
required in simulation. 2) Second, we test the local DRR
trajectory generation component experimentally with our
robot. 3) Then, we test our global planning method in
a double corridor environment and compare it with state-
of-the-art search-based collision avoidance and sampling-
based collision-inclusive methods. 4) After that we test the
overall planning strategy in simulation in unknown, partially-
observable environments. 5) Lastly, we evaluate the overall
method with our impact-resilient robot experimentally.

A. Experimental Setup and Implementation Details

Testing the deformation controller (Sec. VII-B) and DRR
(Sec. VII-C) experimentally takes place in a 2.0 × 2.5 m
area with a rectangular pillar serving as a static polygon-
shaped obstacle. The overall method is tested experimentally
(Sec. VII-F) in a 2.5 × 3.5 m area with a long rectangular
pillar in the middle to form a U-shaped corridor environment.

We use the two active omni-directional impact-resilient
wheeled robots we built in-house (Fig. 1). The main chassis
is connected to a deflection ‘ring’ via 4 or 8 arms that
feature a visco-elastic prismatic joint each. Each arm has
embedded Hall effect sensors to measure the length of the
arm and detect collisions along each of their direction when
the deformation exceeds a certain threshold. In physical
experiments, odometry feedback is provided by a 12-camera
VICON motion capture system. An onboard Intel NUC mini
PC (2.3 GHz i7 CPU; 16 GB RAM) processes odometry data
and sends control commands to the robot at 10 Hz. The robot
is equipped with a single-beam LiDAR (RPLidar A2) with
8 m range to detect the obstacles in the environment.

The robot may flip when colliding with velocities over a
bound. To identify a theoretical collision velocity bound to
avoid flipping, we use an energy conservation argument. As-
sume the kinetic energy before collision transfers into elastic
potential energy of the arm, and the gravitational potential
energy of the robot with small flipping angle counters the
negative work input from the controller, i.e.

Ek,t−(vmax) = Eep(le)−Eep(ls)+Egp(σmax)+main,max(ls−le)

Then,

vmax ={k[(le − l0)
2 − (ls − l0)

2]

2m
+ g(ρ− ls + le) sinσmax

+ain,max(ls − le)}
1
2 .

The robot’s radius is 0.3 m. The difference between the
initial and neutral position of each arm is ls = 30.0 mm, the
maximum load length is le = 15.0 mm, and the neutral length
is l0 = 41.5 mm. The spring coefficient is k = 2.31 N/mm.
We set the largest flip angle σmax = 3°. For the 4-arm robot,
the maximum acceleration input is ain,max = 5.0 m/s2, and
its mass is 6.0 kg. Then, we compute an upper theoretical
velocity bound of vmax ≈ 0.7 m/s.11

Simulated comparison against other methods (Sec. VII-D)
takes place in a double-corridor environment, whereas simu-
lated benchmark testing of our method when noise is added
takes place in the same double-corridor environment but
with added isolated obstacles added as well (Sec. VII-E).
We further consider a similar environment that features non-
convex obstacles (Sec. VII-E).

We use a rigid cylinder body to emulate the robot. A
numerical model is generated from the experiments for
the deformation recovery controller to determine the output
velocity after collision. The output velocity is generated by
adding uniform random noise to the reference velocity cvT .
Then, we use a ray-casting algorithm to emulate the LiDAR
(we consider the range of the LiDAR can cover all visible
operating space). We implement simulation benchmarks in a
python environment. All simulations run on an workstation
with Intel Core Xeon-E2146G CPU.

B. Experimental Testing of the Deformation Controller

To examine the deformation controller’s effect in local
trajectory generation, we command the robot to collide with
an obstacle and then apply the proposed deformation recovery
controller. We perform 10 trials of various input-output
velocity combinations [20, Table 2]. Collision detection is
very accurate; only 9 out of 249 were not detected.

Results suggest that the deformation controller generates a
negative velocity to make the robot detach from the obstacle
after collision. Actual output velocity v̄out is determined
by the actual input velocity v̄in and the set output value
vout,set though the latter may not be reached in practice.
That is because feedback linearization is not robust to system
parameter uncertainties that occur in practice. We observe
that the velocity along the normal to collision direction is
closer to the set velocity than the velocity along the tangent
direction. This is because most of the uncertainties in system
parameters enter as unmodeled friction dynamics along the
tangent direction. Further, the sensor is more accurate when
the input velocity is along the normal direction; the average
value of deformation detected in this case is 29% larger.

11The 8-arm robot features motors with higher torque and different gear
ratio that increase ain,max and despite the mass increase to 8 kg, the same
upper theoretical velocity bound remains valid.

14

C. Experimental Testing of the DRR Strategy

We test our DRR strategy with a trajectory generated based
on using the online safe trajectory generation method in [48]
with time scaling as in [22] without collision checking. We
compare the strategies in two cases: 1) when the previous
path does not intersect with the collision surface; and 2) when
the previous path intersects with the collision surface.

Case 1 tests the condition in Fig. 5a, i.e. no waypoint is
added as per Alg. 2. Case 2 tests Fig. 5, i.e. a waypoint
is added to the list. In case 2, we run RRT* to generate a
collision free path and perform path simplification to remove
nodes without affecting the path’s collision safety [20, Fig. 4].
The path simplification technique removes intermediate way-
points between two waypoints if a line segment between
those two does not intersect with the obstacle. Then, we
use the trajectory generation strategy in [48]. We perform 10
trials for each case. Instances of DRR and all experimental
trajectories are shown in Fig. 8 and Fig. 9, respectively.

Waypoint 1

Waypoint 3

Waypoint 4

Collision point

Waypoint 2

Waypoint 1

Waypoint 2

Collision point

New waypoint

Fig. 8: Composite images (taken every 2 s) of a sample experiment
with DRR. The robot must go from start to goal passing through
all waypoints, including intermediate ones created post-collision.

Even though we design a collision-free desired trajectory
with the strategy in [48], the robot may still collide with the
environment given for instance unmodeled dynamics such as
drift. In case 1 there are 3 out of 10 trials that the robot in fact
collides with the obstacle applying trajectory generation [48]
that aims to avoid collisions. Table II shows statistics on mean
arrival times, path lengths and control energy.

TABLE II: Comparison of trajectory generation strategy in [48]
(Collision-avoidance) and DRR (Collision-inclusive) strategies.

Strategy in [48] DRR (our method)

Case 1 Case 2 Case 1 Case 2

T̄ end [s] 7.7 8.71 6.16 9.17

STD(Tend) 0 2.20 0.22 0.31

s̄ [m] 3.153 3.448 2.977 4.38

STD(s) 0.117 0.495 0.150 0.451

Ec̄ [m2/s3] 56.83 80.62 58.42 255.96

STD(Ec) 29.34 54.38 32.92 133.54

In case 1 for DRR, mean arrival times T̄ end and path
lengths s̄ decrease by 25% and 6%, while the control energy
increases by 2.8% on average. However, the error in the
end point increases by 25%. In case 2, mean arrival times
and path lengths increase by 5.2% and 27%, and control
energy increases by 258%. This is because the output velocity
of DRR is not flat since the robot decelerates and then
accelerates during boundary following. The path generated
by the boundary following is not the shortest. However, since
the path between the collision point and the new inserted

start goal

(a) Case 1 collision avoidance.

start

goal

(b) Case 2 collision avoidance.

start goal

(c) Case 1 DRR.

start

goal

(d) Case 2 DRR.

Fig. 9: Experimental trajectories generated from DRR and collision
avoidance [48] when the preplanned path intersects or does not
intersect with the obstacle. (In all cases we conduct 10 trials).

waypoint is close to the obstacle surface, the existence of the
obstacle decreases the control error in free space. The error
in the end point decreases by 12%. These results show the
tradeoff between online reactive execution (whereby collision
checking is skipped) and collision avoidance.

D. Simulated Tests of the Collision-inclusive Global Planner

To test our proposed framework in simulation, we first
benchmark it in a double corridor environment to test our
search-based collision-inclusive global planner. We compare
our method for global planning against two methods: 1)
a search-based collision-avoidance motion planning algo-
rithm [21], and 2) an RRT*-based (sampling-based) collision-
inclusive planning algorithm adapted from [4] to ensure fair
comparisons.12 In all tests, the dynamic limits are set as
amax = 5.0 m/s2. The holonomic robot only translates but
does not rotate during the process.13 We set the upper bound
of the robot velocity vmax = 2.0 m/s. The cost function in
all methods considers ρt = 1.0. The overall size of the map
is 70 × 70 m. The position resolution of the grid map in
the benchmark is 1.0 m, and the position resolution of the
velocity map in the benchmark is 0.1 m/s. The time interval
for each motion primitive is set as τ = 5.0 s (selected via an
ablation study the results of which are shown in Table III) and
the resolution of acceleration r = 1.0 m/s2 also selected via
an ablation study the results of which are shown in Table IV).
We set λs = 0.5, λo = 1.0 and λv = 10.0.14 Parameter
ρc in the cost function is one of the most critical ones
as it determines how much collisions are being penalized.
We select ρc = 1.0, with the ablation studies to determine
this value being demonstrated qualitatively in Fig. 10 and
expanded in more depth in Table V.

Results from testing the global planner are shown in
Fig. 10; both collision avoidance as per [21] (panel a)
and collision-inclusive (our method, panel b-f) results are

12 No open-source python code is available for either [21] and [4], so we
implemented both ourselves to the best possible extent.

13 Constant orientation is maintained via a separate stabilizing controller.
14 The values were selected empirically to improve trajectory refinement.

15

−20 0 20 40 60

X [m]

−10

0

10

20

30

40

50

60
Y

[m
]

(a) Collision-avoidance without
node pruning.

−20 0 20 40 60

X [m]

−10

0

10

20

30

40

50

60

Y
[m

]

(b) Collision-inclusive without
jump points (ρc = 1.0)

−20 0 20 40 60

X [m]

−10

0

10

20

30

40

50

60

Y
[m

]

(c) Collision-inclusive without
jump points (ρc = 10.0).

20 0 20 40 60
X [m]

10

0

10

20

30

40

50

60

Y
[m

]

(d) Collision-inclusive without
jump points (ρc = 100.0).

−20 0 20 40 60

X [m]

−10

0

10

20

30

40

50

60

Y
[m

]

(e) Collision-inclusive with
jump points (ρc = 1.0).

−20 0 20 40 60

X [m]

−10

0

10

20

30

40

50

60

Y
[m

]

(f) Collision-inclusive with
jump points (ρc = 10.0).

Fig. 10: Search-based collision avoidance global planner [21] (top
panels) and our proposed search-based collision-inclusive global
planner for three different ρc values. Higher ρc values (bottom
panels) penalize collisions more, thus recovering behaviors that
resemble collision avoidance. The collision-inclusive with jump
points case when ρc = 100.0 is very similar to the case without
jump points in panel (d) in the sense of number of closed nodes
Np (c.f. Table V, and hence not shown here for brevity.

highlighted. We demonstrate our method’s results with and
without implementing jump points. We also consider three
cases for varying values of parameter ρc which affects how
much collisions are being penalized in the cost function: 1)
ρc = 1.0 (panels b and e) which corresponds to minimal
penalty; 2) ρc = 10.0 (panels c and f) which corresponds
to a medium penalty; and 3) ρc = 100.0 (panels d) which
corresponds to a severe penalty. It can be readily verified that
both cases of ρc = {1.0, 10.0} can lead to paths that contain
collisions, although in some cases (especially when jump
points are considered) a higher ρc value of 10.0 may make
the output trajectory unnecessarily complex and suboptimal
(panel f). As such, if collisions are to be considered, setting
ρc = 1.0 should be preferred. At very high ρc values (of
100.0), we observe that our method can recover collision
avoidance behaviors (c.f. panels a and d). This highlights
our global planner’s ability to switch between collision-
inclusive and collision avoidance planning on-demand by
only updating the value of a single parameter.

We also demonstrate the utility of formulating the motion
primitives as discussed in Sec. VI-B as compared to directly
pruning dynamically infeasible primitives. Our proposed
method can feature primitives of longer duration τ , which
in fact helps increase the efficiency of exploring the space.

TABLE III: Comparison of global planners’ performance between
our method and that to prune primitives.

r = 1.0 τ Comp.
Np

Traj. Ctrl.
[m/s2] [s] Time[s] Time[s] Cost[m2/s3]]

method [21]
without pruning 5.0 31.86 1427 71.5 12.01

Our method
without pruning

ρc = 1.0
5.0 34.60 1340 69.1 13.25

method [21]
with pruning 0.5 18629.12 102836 91.1 201.98

Our method
with pruning
ρc = 1.0

0.5 15168.97 89450 90.9 200.72

Table III provides comparative numbers for both collision
avoidance [21] and our collision-inclusive method. Results
verify that our selected primitives generation method can
explore the space with significantly less computational time
when compared to the approach of pruning infeasible states.

Table IV contains the results from the ablation study on
the resolution parameter r. We found that in the environment
with simple obstacles (as in Fig. 14a shown later), a high
resolution of r = 0.5 leads to computational times for both
collision-avoidance and collision-inclusive methods that are
much higher since the graph is denser. The computational
time of the collision-inclusive method is higher than the
collision-avoidance method since we modify those primitives
that intersect with the obstacles instead of pruning them
altogether. With lower resolution r = 1.0 or r = 2.0, the
computational time of both collision-avoidance and collision-
inclusive methods rapidly decreases. When r = 1.0 collision-
avoidance and our collision-inclusive method have compa-
rable computational performance. However, as we further
increase the resolution (r = 2.0), the computational time
of our collision-inclusive method gets much lower than the
collision-avoidance method, which appears to be affected
less by this change. These observations suggest that with
lower resolution, collision-inclusive primitives can explore
the space with higher efficiency. However, the trajectory
time and control cost are higher than applying higher res-
olution. Similar observations can be made when testing in a
more complicated environment (Fig. 14b). Therefore, taken
computational time, trajectory time and control cost into
consideration, we select r = 1.0 for which both collision-
avoidance and collision-inclusive method have better results.

Further, we conduct a more extensive analysis to evaluate
the effect of different values of parameter ρc in more detail.
Table V contains more detailed results and also presents com-
parisons against the sampling-based (RRT*) method in [4],
which was adapted herein to feature a trapezoidal velocity
pattern to connect any two nodes in the tree to better match
our search-based global planning method and enable fair
comparisons. Due to the non-deterministic nature of this
method, we perform 10 trials and report statistics. In all other
cases (that are deterministic), we perform a single trial.

Both our collision-inclusive method and collision avoid-
ance in [21] can generate kinodynamically-feasible trajec-
tories. When the initial velocity is v0 = [0 0]⊤ m/s and
ρc = 1.0, our method without jump points tends to gen-

16

TABLE IV: Comparison of global planners’ performance for differ-
ent values of parameter r
.

non-convex env. r Comp.
Np

Traj. Ctrl.
Fig. 14a [m/s2] Time[s] Time[s] Cost[m2/s3]

method [21] 0.5 480.19 6752 63.1 11.86

Our method
without jump point

ρc = 1.0
0.5 873.78 9311 66.3 14.09

method [21] 1.0 31.86 1427 71.5 12.01

Our method
without jump point

ρc = 1.0
1.0 34.60 1340 69.1 13.25

method [21] 2.0 34.68 1657 74.6 17.48

Our method
without jump point

ρc = 1.0
2.0 9.70 557 74.7 12.57

non-convex env.
Fig. 14b

method [21] 0.5 564.95 8385 74.9 9.58

Our method
without jump point

ρc = 1.0
0.5 1995.16 15908 81.3 11.94

method [21] 1.0 55.11 2388 79.9 12.43

Our method
without jump point

ρc = 1.0
1.0 52.69 1799 76.6 20.15

method [21] 2.0 48.33 2151 89.0 20.84

Our method
without jump point

ρc = 1.0
2.0 24.39 1726 79.6 12.33

erate a path with the shortest duration compared to both
the collision-inclusive planner with jump points and the
collision-avoidance planner. However, the control cost for
doing so is slightly higher. The computational time of the
collision-inclusive planner with jump points is the second-
lowest among all the methods. Comparing these results with
those obtained by the RRT* method in [4], we find the
RRT*-based approach is time consuming since node rewiring
requires significant computational time (about 88% of total
time). Also, results are not deterministic compared to the
search-based method. Thus, we deduce that the search-based
collision-inclusive method with jump points can be the global
planner in our unified collision-inclusive motion planning and
control framework with parameters selected in this section.

E. Simulated Tests of our Unified Collision-inclusive Method

We first test our unified collision-inclusive motion planning
and control strategy in a double corridor environment with
online sensing, and compare its performance against that of a
collision avoidance framework similar to [24]. In the collision
avoidance framework, the global planner is the search-based
method in [21]; we also make the optimistic assumption
of treating the unknown space as free. The local trajectory
generation method is based on gradients [42] and time du-
ration adjustment [22]. We design a backup safety trajectory
to ensure the robot will stop at the frontier. Then, we test
both methods in a double corridor environment populated
with circular isolated obstacles of increasing density. In all

TABLE V: Comparison of global planners’ performance for differ-
ent values of parameter ρc.

v0 = [0 0]⊤ Comp.
Np

Traj. Ctrl. Succ.
[m/s] Time[s] Time[s] Cost[m2/s3] Rate[%]

search based
method [21] 29.02 1427 71.5 12.01 100.0

Our method
no jump point

ρc = 1.0
34.60 1340 69.1 13.25 100.0

Our method
with jump point

ρc = 1.0
30.75 1388 73.3 10.101 100.0

Our method
no jump point
ρc = 10.0

48.28 1701 74.1 10.74 100.0

Our method
with jump point

ρc = 10.0
44.32 1747 76.7 12.60 100.0

Our method
no jump point
ρc = 100.0

44.93 1588 71.5 12.01 100.0

Our method
with jump point
ρc = 100.0

41.74 1602 71.5 12.01 100.0

sampling based
method [4]

mean 124.94 211 101.0 9.86

70.0
std 55.63 38.2 9.86 2.91
min 93.72 183 84.2 5.77
max 259.40 298 114.8 15.27

v0 = [2 2]⊤

search based
method [21] 22.41 1113 71.7 14.02 100.0

Our method
no jump point

ρc = 1.0
24.45 1012 81.0 15.03 100.0

Our method
with jump point

ρc = 1.0
23.78 1077 78.9 8.20 100.0

Our method
no jump point
ρc = 10.0

37.30 1388 74.9 13.28 100.0

Our method
with jump point

ρc = 10.0
36.67 1417 74.9 13.28 100.0

Our method
no jump point
ρc = 100.0

30.97 1145 71.7 14.02 100.0

Our method
with jump point
ρc = 100.0

30.38 1145 71.7 14.02 100.0

sampling based
method [4]

mean 88.50 169 117.0 14.18

70.0
std 43.88 55.7 10.58 5.14
min 17.09 63 103.6 8.28
max 142.83 235 134.9 21.83

cases, each method is run for 10 times with the same initial
configuration and parameter settings.

We test with and without additive estimation noise in
the global planner. Position estimation noise is zero-mean
truncated Gaussian with variance of 0.3 and bounds of ±0.9.
Velocity estimation noise is zero-mean truncated Gaussian
with variance of 0.1 and bounds of ±0.3. Comparative results
are presented in Figs. 11 and 12. Output trajectories of our
method (with added noise) are shown in Fig. 13.

With reference to Fig. 11, when replanning every 5 sec,
our method generates shorter paths with a lower trajectory
time on average. When the obstacle density is low (9.3%),
our method generates trajectories with higher control energy;
however, when the obstacle density increases (13.5% &
20.7%) our method requires lower control energy since the

17

robot can utilize the obstacles to change its heading.15 When
replanning every 10 sec, our method consistently generates
paths with lower length on average. Our method also has
lower trajectory times and control energy.

With ρc = 100, Trep = 5.0 s, our algorithm causes
oscillations around the obstacle by avoiding collisions which
increase path length and trajectory time. However, its ability
to use collisions makes its output trajectory better than
the collision-avoidance strategy in terms of control energy,
trajectory and path length. With Trep = 10.0 s the path
length, trajectory time and control energy of the collision-
inclusive trajectory is higher since there is no safety maneu-
ver making the robot stop before the frontier; hence it will
have to turn sharply and possibly oscillate when replanning.
The computational time of the collision-inclusive planning is
higher since it visits more nodes in the graph.

Further, success rates of the proposed collision-inclusive
method and collision avoidance are shown in Fig. 12.
Our method has higher success rates as it addresses over-
conservativeness in collision avoidance to ensure safety.

We then test our proposed unified collision-inclusive mo-
tion planning and control strategy in environments with non-
convex obstacles (Table VI and Fig. 14). With reference to the
environment shown in Fig. 14a, and using a replanning time
interval Trep = 5.0 s, our strategy can reach the goal with
lower computational time, trajectory time and path length but
higher control energy since the robot trajectories oscillate
at the corner of the obstacle after collision-recovery and
detouring. Similar patterns are observed for Trep = 10.0 s.
In the case shown in Fig. 14b, and with Trep = 5.0 s,
our strategy is better than collision avoidance in terms of
computational time, trajectory time, path length and control
energy. When Trep = 10.0 s, the control energy of our
method increases because of oscillations around corners.

TABLE VI: Results by testing with non-convex obstacles.

non-convex env. Comp. Traj. Ctrl. Path
Fig 14a Time[s] Time[s] Cost[m2/s3] Len.[m]

Our method
Trep = 5.0

mean 35.90 81.34 34.24 144.29
std 0.953 0.398 0.434 0.231

Collision-avoidance
Trep = 5.0 52.55 85.0 25.814 160.67

Our method
Trep = 10.0

mean 16.71 80.43 21.15 146.51
std 0.243 0.857 0.312 0.121

Collision-avoidance
Trep = 10.0 18.62 90.0 15.11 167.25

non-convex env.
Fig 14b

Our method
Trep = 5.0

mean 9.09 80.48 19.72 146.02
std 0.210 0.623 2.205 2.543

Collision-avoidance
Trep = 5.0 32.62 93.4 27.38 173.60

Our method
Trep = 10.0

mean 6.98 85.33 32.54 153.17
std 0.199 0.857 0.556 0.395

Collision-avoidance
Trep = 10.0 14.45 94.4 19.50 166.94

15 In collision avoidance, and with Trep = 5.0 s, the robot can get trapped
oscillating in a area to avoid collisions and cannot reach the goal; however,
adding some random behavior may help the robot break the tie.

(a) Trep = 5.0 s. (b) Trep = 5.0 s.

(c) Trep = 5.0 s. (d) Trep = 5.0 s.

(e) Trep = 10.0 s. (f) Trep = 10.0 s.

(g) Trep = 10.0 s. (h) Trep = 10.0 s.

Fig. 11: Computational time, path length, trajectory time and control
energy for collision-avoidance (CA) without (in red) and with (in
yellow) noise, collision-inclusive (CI) without (in grey) and with (in
blue) noise with ρc = 1.0 and collision-inclusive (CI) without (in
magenta) and with (in black) noise with ρc = 100.0 methods, for
two cases of replanning time Trep = 5.0 s and Trep = 10.0 s.

(a) Trep = 5.0 s. (b) Trep = 10.0 s.

Fig. 12: Success rates of both collision-avoidance and collision-
inclusive frameworks (same notation as in Fig. 11).

F. Experimental Validation of our Framework

Finally, we validate our proposed framework experimen-
tally, and also test is against the collision avoidance strategy
in Sec. VII-E, in a single corridor environment similar to [3]
(Fig. 15). Each method is repeated for 10 times using the
same parameter settings. Output trajectories are depicted

18

(a) Trep = 5.0, obstacle density=9.3%. (b) Trep = 5.0, obstacle density=13.5%. (c) Trep = 5.0, obstacle density=20.7%.

(d) Trep = 10.0, obstacle density=9.3%. (e) Trep = 10.0, obstacle density=13.5%. (f) Trep = 10.0, obstacle density=20.7%.

Fig. 13: Simulated trajectories of the unified collision-inclusive motion planning and control framework with online sensing and noise
added to the input of the global planner in the double corridor for environment with increasing obstacle density.

(a) Trep = 5.0 s. (b) Trep = 5.0 s.

(c) Trep = 10.0 s. (d) Trep = 10.0 s.

Fig. 14: Simulated trajectories generated from our method in envi-
ronments with isolated non-convex obstacles.Collision point

Start Goal Start Goal

Fig. 15: Composite images of a sample experiment with our unified
collision-inclusive motion planning and control framework (left) and
of a collision avoidance sample experiment (right). Snapshots shown
every 2.5 s. (See supplementary video file for more details.)

in Fig. 16, while detailed numerical results are given in
Table VII. By implementing our proposed collision-inclusive
planning method, the robot can reach the goal area with
higher success rates since unmodeled dynamics in physical
testing make the robot collide with the obstacle even if the
reference trajectory generated from collision avoidance is
designed to be collision-free. Further, by utilizing collisions,
the robot can reach the goal faster while requiring less control
energy by trading off the average path length.

VIII. DISCUSSION AND CONCLUSIONS

A. Summary of Contributions and Main Findings

In this article, we proposed a unified collision-inclusive
motion planning and control framework applied for nav-

Fig. 16: Experimental trajectories generated from our proposed
collision-inclusive method (left) the collision avoidance method in
Sec. VII-E (right). (In all cases we conduct 10 trials).

TABLE VII: Comparison of collision-inclusive and collision-
avoidance frameworks in the physical robot.

Path Traj. Ctrl. Succ.
Len.[m] Time[s] Cost[m2/s3] Rate[%]

Collision-avoidance mean 4.99 12.74 38.32
90.0std 1.80 2.61 16.75

Collision-inclusive mean 5.36 11.98 32.45
100.0std 0.33 1.19 10.05

igation in unknown environment. A global search-based
method is devised to generate a path which contains explicit
information about collisions. The effect of the collisions is
explored in the global planner. The local planner is enhanced
by a lower-level deformation recovery control and trajectory
replanning strategy, which enables the robot to detect and
recover from collisions and move toward the goal. The
deformation controller is designed based on robot dynamics,
which herein is a holonomic omni-directional wheeled robot.

The planning system was evaluated extensively through
several benchmark comparisons in simulation as well as
via physical experimental testing. The conducted ablation
study demonstrated the utility of certain key design choices
made in this work (e.g., not pruning primitives altogether),
and evaluated the effect of key parameters (e.g., how much
collisions are to be penalized via parameter ρc). The proposed
collision-inclusive planning method is implemented in simu-
lation first and then integrated with state estimation, mapping
and control into our custom-made robot platform to check
the feasibility of the method in physical world experiments.
Results show that the proposed method is robust and can
generate fast and safe trajectories compared to collision-

19

avoidance methods. Overall, this work pushes forward the
state-of-the-art in collision-inclusive motion planning and
control, and provides a competitive alternative to traditional
collision avoidance methods for a class of impact-resilient
mobile robots operating in partially-observable environments
populated with isolated (non-)convex obstacles.

B. Discussion of Key Selections in our Framework

Application to Other Robots in 2D and 3D: We consid-
ered the family of omni-directional wheeled robots (Fig. 1).
Yet, we anticipate that our proposed framework can apply
to other impact-resilient robots in 2D (e.g., wheeled [11] or
aerial [13], [14], [18], [37], [49] robots) provided that they
can adjust their position and redirect post impact by using
the collision to save energy. The omni-directional wheeled
robot employed here is one example along those types of
robots. The higher-level part of the framework can readily
apply in 3D for such systems; same holds for the overall
methodology as in whole. However, the proposed lower-level
collision recovery would need to be adjusted to consider the
3D dynamics for post-impact stabilization [14].

Use of Motion Primitives: Besides the use of motion
primitives (as herein) other methods are possible. For in-
stance, direct control of the kinematic model (1) of the spe-
cific robot considered herein, or use of fixed motion patterns
(e.g., as in [38]–[40]) can be viable alternatives. However,
use of motion primitives at the higher-level provides a unified
way to make the proposed framework applicable to all the
aforementioned types of robots and extendable from 2D to
3D, and hence it was preferred to over simpler approaches
that would have worked specifically for the omni-directional
robot we tested with herein but would be hard to scale to
other types of robots. Furthermore, use of primitives allows
for more flexibility which is critical to help determine where
the robot should collide with the environment to help it
redirect toward the globally-planned goal; this is achieved
by directly using information on the velocity as per (12).

Choosing a Search- or Sampling-based Global Plan-
ner: We showed that it is possible to derive collision-
inclusive planning frameworks with the global planner being
either search-based or sampling-based. Each has its own
strengths and weaknesses, and as a matter of fact, our
results are consistent with observations made in collision-
avoidance methods. Consistent with collision avoidance, a
user can choose which approach to select (search-based over
sampling-based global planner) according to their application
needs; our proposed framework can accommodate both. We
highlight here that the sampling-based global planner can
be further optimized by biasing search toward free space
to increase computational efficiency (e.g., [50]). Integra-
tion of the sampling-based planner into our overall real-
time framework would require further adaptations of the
collision-inclusive RRT* planner to make it online (faster
nearest neighbor search, minimal cost path generation, and
optimized rewiring methods). Similar to collision-avoidance
online RRT* methods (e.g., [51], [52]), a collision-inclusive

anytime planning algorithm is required to extend the RRT*
method for planning collision-inclusive trajectories online.

C. Directions for Future Work

The framework developed herein lays the basis toward a
general method for collision-inclusive motion planning and
control, and creates multiple opportunities for future research
along these lines. These include extension to other robots and
to systems with higher-order dynamics, evaluation of direct
controllers against motion primitives (as well as different
parameterizations of the latter), and integration of sampling-
based planners into the overall framework.

Further, at its current form, our method does not consider
the perception model of the robot in online planning; ex-
tension of the proposed algorithm to consider the perception
problem based on the collision-inclusive method is another
interesting direction of future research. Lastly, we have shown
that it is possible to handle navigation in environments
populated with isolated non-convex environments; however,
study of navigation in more cluttered environments (e.g.,
maze-like) is a direction of research enabled by this work.

ACKNOWLEDGEMENT

The authors wish to thank Hanzhe Teng for his help
implementing the mapping package used in this work.

REFERENCES

[1] Z. Lu and K. Karydis, “Optimal steering of stochastic mobile robots
that undergo collisions with their environment,” in IEEE International
Conference on Robotics and Biomimetics, 2019, pp. 668–675.

[2] Z. Lu, Z. Liu, G. J. Correa, and K. Karydis, “Motion planning
for collision-resilient mobile robots in obstacle-cluttered unknown
environments with risk reward trade-offs,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2020, pp. 7064–7070.

[3] M. Mote, M. Egerstedt, E. Feron, A. Bylard, and M. Pavone,
“Collision-inclusive trajectory optimization for free-flying spacecraft,”
Journal of Guidance, Control, and Dynamics, pp. 1–12, 2020.

[4] J. Zha and M. W. Mueller, “Exploiting collisions for sampling-based
multicopter motion planning,” in IEEE International Conference on
Robotics and Automation, 2021, pp. 7943–7949.

[5] T. Lew, T. Emmei, D. D. Fan, T. Bartlett, A. Santamaria-Navarro,
R. Thakker, and A.-a. Agha-mohammadi, “Contact inertial odome-
try: collisions are your friends,” in The International Symposium of
Robotics Research. Springer, 2019, pp. 938–958.

[6] T. Schmickl, R. Thenius, C. Moeslinger, G. Radspieler, S. Kernbach,
M. Szymanski, and K. Crailsheim, “Get in touch: cooperative decision
making based on robot-to-robot collisions,” Autonomous Agents and
Multi-Agent Systems, vol. 18, no. 1, pp. 133–155, 2009.

[7] K. Karydis, D. Zarrouk, I. Poulakakis, R. S. Fearing, and H. G. Tanner,
“Planning with the star (s),” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2014, pp. 3033–3038.

[8] D. W. Haldane, M. M. Plecnik, J. K. Yim, and R. S. Fearing, “Robotic
vertical jumping agility via series-elastic power modulation,” Science
Robotics, vol. 1, no. 1, 2016.

[9] Y. Mulgaonkar, A. Makineni, L. Guerrero-Bonilla, and V. Kumar, “Ro-
bust aerial robot swarms without collision avoidance,” IEEE Robotics
and Automation Letters, vol. 3, no. 1, pp. 596–603, 2017.

[10] S. Mayya, P. Pierpaoli, G. Nair, and M. Egerstedt, “Localization
in densely packed swarms using interrobot collisions as a sensing
modality,” IEEE Transactions on Robotics, vol. 35, no. 1, pp. 21–34,
2018.

[11] A. Stager and H. G. Tanner, “Composition of local potential functions
with reflection,” in IEEE International Conference on Robotics and
Automation, 2019, pp. 5558–5564.

20

[12] N. Khedekar, F. Mascarich, C. Papachristos, T. Dang, and K. Alexis,
“Contact–based navigation path planning for aerial robots,” in IEEE
International Conference on Robotics and Automation, 2019, pp. 4161–
4167.

[13] Y. Mulgaonkar, W. Liu, D. Thakur, K. Daniilidis, C. J. Taylor, and
V. Kumar, “The tiercel: A novel autonomous micro aerial vehicle
that can map the environment by flying into obstacles,” in IEEE
International Conference on Robotics and Automation, 2020, pp. 7448–
7454.

[14] Z. Liu and K. Karydis, “Toward impact-resilient quadrotor design,
collision characterization and recovery control to sustain flight after
collisions,” in IEEE International Conference on Robotics and Au-
tomation, 2021, pp. 183–189.

[15] M. Hoy, A. S. Matveev, and A. V. Savkin, “Algorithms for collision-
free navigation of mobile robots in complex cluttered environments: a
survey,” Robotica, vol. 33, no. 3, pp. 463–497, 2015.

[16] S. Campbell, W. Naeem, and G. W. Irwin, “A review on improving the
autonomy of unmanned surface vehicles through intelligent collision
avoidance manoeuvres,” Annual Reviews in Control, vol. 36, no. 2, pp.
267–283, 2012.

[17] H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto, “Safe local
exploration for replanning in cluttered unknown environments for
microaerial vehicles,” IEEE Robotics and Automation Letters, vol. 3,
no. 3, pp. 1474–1481, 2018.

[18] P. De Petris, H. Nguyen, T. Dang, F. Mascarich, and K. Alexis,
“Collision-tolerant autonomous navigation through manhole-sized con-
fined environments,” in IEEE International Symposium on Safety,
Security, and Rescue Robotics, 2020, pp. 84–89.

[19] A. Stager and H. G. Tanner, “Stochastic behavior of robots that navi-
gate by interacting with their environment,” in IEEE 55th Conference
on Decision and Control, 2016, pp. 6871–6876.

[20] Z. Lu, Z. Liu, and K. Karydis, “Deformation recovery control and post-
impact trajectory replanning for collision-resilient mobile robots,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2021, pp. 2030–2037.

[21] S. Liu, N. Atanasov, K. Mohta, and V. Kumar, “Search-based motion
planning for quadrotors using linear quadratic minimum time control,”
in IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, 2017, pp. 2872–2879.

[22] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J.
Taylor, and V. Kumar, “Planning dynamically feasible trajectories for
quadrotors using safe flight corridors in 3-d complex environments,”
IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1688–1695,
2017.

[23] B. Zhou, J. Pan, F. Gao, and S. Shen, “Raptor: Robust and perception-
aware trajectory replanning for quadrotor fast flight,” IEEE Transac-
tions on Robotics, vol. 37, no. 6, pp. 1992–2009, 2021.

[24] J. Tordesillas, B. T. Lopez, M. Everett, and J. P. How, “Faster: Fast
and safe trajectory planner for navigation in unknown environments,”
IEEE Transactions on Robotics, vol. 38, no. 2, pp. 922–938, 2021.

[25] R. Deits and R. Tedrake, “Efficient mixed-integer planning for uavs in
cluttered environments,” in IEEE International Conference on Robotics
and Automation, 2015, pp. 42–49.

[26] F. Gao, W. Wu, Y. Lin, and S. Shen, “Online safe trajectory generation
for quadrotors using fast marching method and bernstein basis polyno-
mial,” in IEEE International Conference on Robotics and Automation,
2018, pp. 344–351.

[27] J. Tordesillas, B. T. Lopez, J. Carter, J. Ware, and J. P. How, “Real-
time planning with multi-fidelity models for agile flights in unknown
environments,” in IEEE International Conference on Robotics and
Automation, 2019, pp. 725–731.

[28] D. Liu, M. Cong, and Y. Du, “Episodic memory-based robotic plan-
ning under uncertainty,” IEEE Transactions on Industrial Electronics,
vol. 64, no. 2, pp. 1762–1772, 2016.

[29] B. T. Lopez and J. P. How, “Aggressive collision avoidance with
limited field-of-view sensing,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2017, pp. 1358–1365.

[30] K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni,
K. Saulnier, K. Sun, A. Zhu, J. Delmerico, K. Karydis, N. Atanasov,
G. Loianno, D. Scaramuzza, K. Daniilidis, C. J. Taylor, and V. Kumar,
“Fast, autonomous flight in gps-denied and cluttered environments,”
Journal of Field Robotics, vol. 35, no. 1, pp. 101–120, 2018.

[31] C. Richter and N. Roy, “Learning to plan for visibility in navigation of
unknown environments,” in International Symposium on Experimental
Robotics. Springer, 2016, pp. 387–398.

[32] E. Heiden, K. Hausman, G. S. Sukhatme, and A.-a. Agha-mohammadi,
“Planning high-speed safe trajectories in confidence-rich maps,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2017, pp. 2880–2886.

[33] A. Briod, P. Kornatowski, J.-C. Zufferey, and D. Floreano, “A collision-
resilient flying robot,” Journal of Field Robotics, vol. 31, no. 4, pp.
496–509, 2014.

[34] D. W. Haldane, C. S. Casarez, J. T. Karras, J. Lee, C. Li, A. O.
Pullin, E. W. Schaler, D. Yun, H. Ota, A. Javey, and R. S. Fearing,
“Integrated manufacture of exoskeletons and sensing structures for
folded millirobots,” Journal of Mechanisms and Robotics, vol. 7, no. 2,
p. 021011, 2015.

[35] T. Li, Z. Zou, G. Mao, X. Yang, Y. Liang, C. Li, S. Qu, Z. Suo, and
W. Yang, “Agile and resilient insect-scale robot,” Soft Robotics, vol. 6,
no. 1, pp. 133–141, 2019.

[36] A. Battiston, I. Sharf, and M. Nahon, “Attitude estimation for collision
recovery of a quadcopter unmanned aerial vehicle,” The International
Journal of Robotics Research, vol. 38, no. 10-11, pp. 1286–1306, 2019.

[37] A. Briod, P. Kornatowski, A. Klaptocz, A. Garnier, M. Pagnamenta,
J.-C. Zufferey, and D. Floreano, “Contact-based navigation for an
autonomous flying robot,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2013, pp. 3987–3992.

[38] A. Q. Nilles, Y. Ren, I. Becerra, and S. M. LaValle, “A visibility-
based approach to computing non-deterministic bouncing strategies,”
The International Journal of Robotics Research, vol. 40, no. 10-11,
pp. 1196–1211, 2021.

[39] T. Alam, L. Bobadilla, and D. A. Shell, “Minimalist robot navigation
and coverage using a dynamical system approach,” in IEEE Interna-
tional Conference on Robotic Computing, 2017, pp. 249–256.

[40] J. S. Lewis and J. M. O’Kane, “Planning for provably reliable navi-
gation using an unreliable, nearly sensorless robot,” The International
Journal of Robotics Research, vol. 32, no. 11, pp. 1342–1357, 2013.

[41] P. E. Sandin, Robot mechanisms and mechanical devices illustrated.
McGraw-Hill, 2003.

[42] F. Gao, Y. Lin, and S. Shen, “Gradient-based online safe trajectory
generation for quadrotor flight in complex environments,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2017, pp.
3681–3688.

[43] M. Likhachev, G. J. Gordon, and S. Thrun, “Ara*: Anytime a* with
provable bounds on sub-optimality,” Advances in Neural Information
Processing Systems, vol. 16, pp. 767–774, 2003.

[44] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and efficient
quadrotor trajectory generation for fast autonomous flight,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 3529–3536, 2019.

[45] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal control. John
Wiley & Sons, 2012.

[46] E. Verriest and F. Lewis, “On the linear quadratic minimum-time
problem,” IEEE Transactions on Automatic Control, vol. 36, no. 7,
pp. 859–863, 1991.

[47] D. Harabor and A. Grastien, “Online graph pruning for pathfinding
on grid maps,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 25, no. 1, 2011.

[48] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,” in Robotics
Research. Springer, 2016, pp. 649–666.

[49] J. Zha, X. Wu, J. Kroeger, N. Perez, and M. W. Mueller, “A
collision-resilient aerial vehicle with icosahedron tensegrity structure,”
in IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, 2020, pp. 1407–1412.

[50] R. Sandström, D. Uwacu, J. Denny, and N. M. Amato, “Topology-
guided roadmap construction with dynamic region sampling,” IEEE
Robotics and Automation Letters, vol. 5, no. 4, pp. 6161–6168, 2020.

[51] J. D. Hernández, E. Vidal, G. Vallicrosa, E. Galceran, and M. Carreras,
“Online path planning for autonomous underwater vehicles in unknown
environments,” in IEEE International Conference on Robotics and
Automation, 2015, pp. 1152–1157.

[52] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Any-
time motion planning using the rrt,” in IEEE International Conference
on Robotics and Automation, 2011, pp. 1478–1483.

	I Introduction
	II Related Works
	III System Overview
	III-A Overall Framework
	III-B Problem Assumptions and Notation

	IV Deformation Recovery Control
	IV-A Problem Setting
	IV-B Deformation Controller

	V Post-impact Trajectory Replanning
	V-A Problem Formulation
	V-B Waypoint Adjustment

	VI Search-based Collision-inclusive Planning
	VI-A Problem Formulation
	VI-B Motion Primitives
	VI-C Deterministic Shortest Trajectory
	VI-D Collision Checking and Post-collision Behaviors
	VI-E Heuristic Function Design
	VI-F Jump Point-based Computation to Improve Efficiency
	VI-G Trajectory Refinement

	VII Experimental Results
	VII-A Experimental Setup and Implementation Details
	VII-B Experimental Testing of the Deformation Controller
	VII-C Experimental Testing of the DRR Strategy
	VII-D Simulated Tests of the Collision-inclusive Global Planner
	VII-E Simulated Tests of our Unified Collision-inclusive Method
	VII-F Experimental Validation of our Framework

	VIII Discussion and Conclusions
	VIII-A Summary of Contributions and Main Findings
	VIII-B Discussion of Key Selections in our Framework
	VIII-C Directions for Future Work

	References

