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Abstract—This paper presents normalizing flows for incre-
mental smoothing and mapping (NF-iSAM), a novel algorithm
for inferring the full posterior distribution in SLAM problems
with nonlinear measurement models and non-Gaussian factors.
NF-iSAM exploits the expressive power of neural networks, and
trains normalizing flows to model and sample the full posterior.
By leveraging the Bayes tree, NF-iSAM enables efficient incre-
mental updates similar to iSAM2, albeit in the more challenging
non-Gaussian setting. We demonstrate the advantages of NF-
iSAM over state-of-the-art point and distribution estimation al-
gorithms using range-only SLAM problems with data association
ambiguity. NF-iSAM presents superior accuracy in describing
the posterior beliefs of continuous variables (e.g., position) and
discrete variables (e.g., data association).

Index Terms—SLAM, Distribution estimation, Non-Gaussian,
Bayes tree, Normalizing flows.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a foun-
dational capability for mobile robots, enabling such basic
functions as planning, navigation, and control. As such, the
development of robust, accurate, and computationally efficient
SLAM algorithms has been a major focus of research in
robotics over the previous three decades [1–3].

We state the estimation problem for SLAM as inferring
the full posterior distribution of latent variables (i.e., robot
and landmark poses) provided noisy relative measurements
between those variables. Note that the distribution estimation
is different from the point estimation typically seen in the
SLAM literature (e.g., the MAP estimation in [2, Fig. 2]).
We pursue the full posterior distribution since estimates of
the distribution are required in many applications including
probabilistic data association, collision avoidance, and active
perception.

Current state-of-the-art SLAM algorithms (such as
iSAM2 [4]) seek to recover a maximum a posteriori (MAP)
estimate using nonlinear local optimization [5]. This approach
is attractive because using sparsity-exploiting first- or second-
order optimization methods permits fast recovery of the
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(a)

(b)

Fig. 1. Approximate distributions of an unnormalized posterior distribution,
p̃(x|z): (a) the Laplace approximation centering on the MAP estimate, x̂, and
(b) Monte Carlo approximation.

MAP (i.e. point) estimate. Furthermore, assuming that the
true posterior distribution is highly concentrated around the
point estimate, one can construct a Gaussian approximation
to the full posterior by applying the Laplace approximation
(see Fig. 1a) [6, Ch. 4.4]. However, the posterior distribution
in real-world SLAM problems is often non-Gaussian and
may have multiple modes. This is in part due to non-linear
measurement models and non-Gaussian factors [7, 8]. Real-
world examples include systems with range measurements
[9], pose transformations on the special Euclidean group [10],
multi-modal data association [11], the (bimodal) slip/grip
behavior of odometry measurements [12], multipath effects
of sonar and radar [13], and object pose ambiguity in images
due to occlusion and symmetry [14–17]. Therefore, the use
of a Gaussian (or any other unimodal) model of posterior is
inherently incapable of capturing critical information about
the true uncertainty in SLAM posteriors, which is essential
for safe navigation.

As an alternative to (unimodal) optimization-based MAP
(i.e. point) estimators, one might consider approximating
the full posterior using nonparametric (e.g. sample-based,
see Fig. 1b) methods for greater expressive power. The
main challenge with this approach is that estimating the full
SLAM posterior is at least NP-hard in general [3]. As a
result, the computational cost of standard general-purpose
Bayesian inference methods, such as Markov chain Monte
Carlo (MCMC) or nested sampling, is usually too large for the
high-dimensional posteriors that arise in SLAM applications
[18–20]. Some recent efforts have attempted to improve the
computational speed of nonparametric methods by exploit-
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ing the conditional independence structure in SLAM factor
graphs [21, 22]. One such approach is to extend the Bayes
tree, which was proposed in iSAM2 for analyzing the Gaus-
sian approximation, to non-Gaussian settings [4]. The Bayes
tree algorithm converts a cyclic factor graph into an acyclic
directed graph using a variable elimination game [23] and
max-cardinality search [24]. From an information-theoretic
standpoint, the Bayes tree shows how to factorize the original
high-dimensional posterior into a sequence of low-dimensional
conditionals that encode a tree-like graphical model. Recent
multi-modal extensions of iSAM2, such as mm-iSAM [21]
and MH-iSAM2 [22], all take advantage of the acyclic Bayes
tree to solve the original inference problem by performing
inference over the decomposed lower-dimensional problems.
These algorithms, however, can only infer the marginal poste-
rior distribution (mm-iSAM) or are limited to certain sources
of non-Gaussianity (MH-iSAM2); in addition, none of these
algorithms explicitly model non-Gaussian conditionals in the
Bayes tree.

The technical goal in this paper is to find a computationally
tractable density representation that has the necessary flexibil-
ity to approximate the full posterior distribution. Specifically,
we aim to develop an algorithm that is able to perform the
following tasks in non-Gaussian settings:

Task 1. Solve for a distribution that effectively approximates
the full posterior.

Task 2. Draw samples from the distribution to infer quantities
of interest using Monte Carlo integration.

Task 3. Allow incremental updates of the distribution.

We propose to learn non-Gaussian models of conditionals
that factorize the posterior using the Bayes tree. The learned
non-Gaussian models in turn reconstruct the posterior. To
perform inference, we draw samples sequentially from these
models following the order governed by the Bayes tree.
We exploit normalizing flows to represent the non-Gaussian
conditionals. Normalizing flows, as emerging tools for density
modeling [25–30], have shown strong expressive power for
representing complex densities and support fast sampling. An
important property is that conditionals of the modeled density
can be extracted easily from a normalizing flow model, which
perfectly matches our need for modeling conditionals.

Contributions

We present a novel general solution, called normalizing
flows for incremental smoothing and mapping (NF-iSAM)1,
to model and sample the full posterior distribution of general
SLAM problems using the Bayes tree and the normalizing
flow model. Key contributions of this work include:

1) NF-iSAM introduces normalizing flows to factor graph
inference for robot perception.

2) NF-iSAM generalizes the Bayes tree to perform full
(non-Gaussian) posterior estimation for the joint posterior
distribution.

1NF-iSAM is open source at https://github.com/MarineRoboticsGroup/
NF-iSAM.git including source code and the datasets used in this paper.

3) NF-iSAM augments normalizing flows from low-
dimensional inference to high-dimensional cyclic factor
graphs.

4) NF-iSAM achieves superior accuracy in comparison to
state-of-the-art SLAM algorithms in describing the full
posteriors encountered in highly non-Gaussian SLAM
settings.

This paper extends our conference paper [31] with more
technical details, new SLAM problems involving data associ-
ation ambiguity, and extensive experimental results including
a parametric study.

Outline

The rest of the paper is organized as follows. In the
following section of related work (Sec. II), we briefly review
parametric and nonparametric SLAM techniques and some
recent density modeling techniques. Sec. III presents the
problem statement and the high-level idea of the inference
framework without digging into density modeling techniques.
Sec. IV delineates the formulation for modeling densities and
the detailed algorithms. Sec. V summarizes our implementa-
tion and experimental setups. Sec. VI provides experimental
results and demonstrates the advantages of our algorithm in
comparison with state-of-the-art algorithms. Finally, Sec. VII
concludes with a summary of the contributions of this paper
and a discussion of future research directions.

Notation

General notation: Deterministic values are denoted by low-
ercase letters while random variables are indicated by upper-
case letters. If V is a set of indices, then xV denotes a vector or
collection of variables associated with those indices. For ex-
ample, x{i,i+1,...,j} = (xi, xi+1, . . . , xj). A vector of variables
with all n indices is bolded, e.g., x = x{1,2,...,n}. Particularly,
x<d = (x1, x2, . . . , xd−1) and x>d = (xd+1, xd+2, . . . , xn).
We use p(X) to denote the probability density function pX(·)
of random variable X . We denote the function pX(x) at the
deterministic value x by p(x) or p(X = x). We use m(·)
to indicate a non-negative potential function. We use g(·; w)
to indicate a function g(·) that is determined by parameters
w. We denote the sampling of X from a distribution p(X)
using the notation x ∼ p(x). The resulting n i.i.d. samples are
denoted by {x(k)}nk=1. The conditional independence relation
X ⊥⊥ Y |Z reads X and Y are conditionally independent given
Z.

Graphical model notation: We define a factor graph
G(f ,Θ, E) by nodes of random variables Θ and factors f
and edges E between variables and factors. Variables that
are adjacent to factor fj are denoted by Θfj = {Θi ∈
Θ|(Θi, fj) ∈ E}. We use C to denote a node or clique on
the Bayes tree. We also use C to denote the collection of
variables in the clique so C ⊆ Θ. The collection of child
cliques of C is denoted by CC . The parent clique of C is
ΠC . The intersection of clique C and its parent ΠC is called
separator SC = C ∩ ΠC while the remaining variables in C
are called frontal variables FC = C \ΠC .
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II. RELATED WORK

Existing methods for SLAM factor graph inference can
be categorized into two classes, namely parametric and non-
parametric solutions. They possess their own strengths on
tackling point and distribution estimations, respectively.

The state-of-the-art optimization-based solutions to SLAM,
such as iSAM2 [4], are MAP-based point estimators that
approximate the posterior distribution by a single, paramet-
ric Gaussian model. iSAM2 presents the Bayes tree [4], a
graphical model that provides a probabilistic interpretation
for sparse linear algebra in square root smoothing and map-
ping (

√
SAM ) [32] and incremental smoothing and mapping

(iSAM) [33]. The Bayes tree can be generalized to non-
Gaussian settings since it is a result purely based on condi-
tional independence structures in graphical models; however,
in iSAM2, the estimated model of the joint posterior is still
constructed by linear-Gaussian conditionals [34, Sec. 3.4].
Recent works of parametric SLAM solutions focus on robust
MAP estimation in the presence of outliers or multi-modal
factors. [3] extensively reviews robust estimation techniques
including switchable constraints [13], robust cost functions [7,
35], and mixture models [8, 36]. However, these techniques
do not aim at capturing the shape of the full posterior.

Alternatively, nonparametric models yield more expressive
representations of the full posterior. These methods use sam-
pling techniques, such as particle filters, MCMC, or nested
sampling [18, 20, 37]. The most well-known nonparametric
SLAM algorithm is FastSLAM [37] which is based on Rao-
Blackwellized particle filters. FastSLAM leverages the relation
that map features are conditionally independent once robot
poses are given. However, due to sample impoverishment
in particle filters, smoothed estimates degenerate as the loss
of diversity in particles’ paths [38]. In order to further
exploit conditional independence relations, a more recent
method, multimodal-iSAM (mm-iSAM) [21], leverages the
Bayes tree [4] to solve SLAM problems with a variety of
non-Gaussian error sources. mm-iSAM uses nested Gibbs
sampling, derived from nonparametric belief propagation [39],
to approximate the marginal belief of each node on the
Bayes tree. As a direct extension of iSAM2, MH-iSAM2 [22]
explicitly solves point estimates of multiple modes for SLAM
problems involving multiple hypotheses (e.g., uncertain data
association and ambiguous loop closures), but it cannot di-
rectly tackle more general factors such as range measurements.

Posterior distribution estimation has also drawn researchers’
interest in the machine learning community. Many tools such
as kernel embedding [40, 41] and Gaussian copula [42, 43]
have been leveraged to model non-Gaussian densities. A
recent class of algorithms aims to draw samples from a non-
Gaussian target distribution by estimating a transformation that
maps samples from a simple reference distribution onto the
target. These algorithms are known as transport maps [44,
45], or normalizing flows [25]. Although they have shown
good performance in modeling densities, research on high-
dimensional probabilistic graphical models is limited.

Fig. 2. Illustration of core steps in NF-iSAM: (a) conversion from a factor
graph to the Bayes tree with elimination ordering (X0, X1, X2, L1, L2) and
(b) construction of clique conditional sampler via normalizing flows. The
colon in a Bayes tree node splits frontal variables FC and separator SC . The
normalizing flow model is learnt from training samples by neural networks.
In factors of Bayes tree node C1, the factor f4 is reverted to a Bayes net
where the measurement variable Z4 is treated unobserved to enable ancestral
sampling for rapidly simulating training samples (See Fig. 5 for more details).

III. INFERENCE ON THE BAYES TREE

A. Factor Graphs and the Bayes tree

We provide a brief review of factor graphs and the Bayes
tree which are the foundation of our inference method. Pos-
terior distributions in SLAM problems are usually repre-
sented by factor graphs [34], which are bipartite graphical
models consisting of variable and factor nodes as shown in
Fig. 2a. The state variable Θ := (Θ1,Θ2, . . . ,Θn) is a high-
dimensional random variable whose n components correspond
to all poses and landmark locations. All measurements are
denoted by z. The posterior distribution of the factor graph is

p(Θ|z) =
p(z|Θ)p(Θ)

p(z)
∝ p(z|Θ)p(Θ) =

m∏
j=1

fj , (1)

where m is the number of factors. A factor fj(Θfj ) represents
either a measurement likelihood or a prior. A prior factor has
density fj(Θfj ) = p(Θfj ), where Θfj are variables adjacent
to factor fj . A likelihood factor represents density fj(Θfj ) =
p(zj |Θfj ) where zj is the measurement in z that is associated
with factor fj . We emphasize that our objective is to infer the
full posterior rather than to determine a point estimate (e.g.,
the MAP estimate).

The Bayes tree is a directed variant of the junction tree [34].
Given a variable elimination ordering, a factor graph can
be converted to a Bayes tree by the variable elimination
algorithm [4, Alg. 2] and the Bayes tree algorithm [4, Alg.
3]. Nodes on the Bayes tree represent cliques of variables as
shown in Fig. 2(a). Variables in a clique shared with its parent
clique are called the separator while the remainder are frontal
variables. The Bayes tree factorizes the posterior by a sequence
of conditionals [34, 46], as seen in

p(Θ|z) =
∏
C∈C

p(FC |SC , z) =
∏
C∈C

p(FC |SC , zC), (2)

where C is the collection of cliques, FC denotes the set of
frontal variables in clique C, SC denotes the separator, and
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Fig. 3. Illustration of learning and inference procedures on Bayes trees. The variable elimination ordering (X0, X1, X2, L1, L2) for constructing Bayes
trees is consistent with that in Fig. 2. A Bayes tree node is denoted by C. The colon in a Bayes tree node splits frontal and separator variables. The white
node on the new Bayes tree is the changes caused by new measurements. Updates of density models only occur to the changed part on the Bayes tree. Green
factors in a clique factor graph are from user-defined factor graphs (e.g., old and new factor graphs here) while blue factors are separator densities from child
cliques and are passed to parent cliques as new factors resulted from variable elimination.

zC denotes the set of observations in and below clique C
on the Bayes tree (we designate the root clique as the top
of the tree). The last equality in (2) is a result of applying
the conditional independence relation FC ⊥⊥ (z \ zC)|SC .
Note that SC is the junction between clique C and its parent
clique. Once SC is fixed with a realization, the measurements
above C, i.e., z \ zC , will not affect FC . Thus, z \ zC can
be excluded from the condition in (2). The factorization (2)
reflects the information-theoretical view of the Bayes tree
we mentioned in Section I: a decomposition of the original
high-dimensional posterior into a sequence of low-dimensional
clique conditionals p(FC |SC , zC). We will solve a sequence of
low-dimensional density modeling problems to learn the clique
conditionals. The learned conditionals in turn reconstruct the
posterior, which enjoys better scalability than directly learning
the high-dimensional posterior.

B. Inference Using the Clique Conditionals
We introduce the main idea of our inference method for

modeling clique conditionals and drawing samples from the
full posterior distribution. The inference method consists
of two steps: (i) performing the bottom-up belief propaga-
tion on the Bayes tree for learning the clique conditionals
p(FC |SC , zC) and (ii) applying ancestral sampling [6, Ch.
8.1.2] to the learned conditionals for drawing posterior sam-
ples in a top-down traversal of the Bayes tree (see the batch
inference in Fig. 3 for an example of the two steps).

The primary challenge is modeling the clique den-
sity p(FC , SC |zC) and extracting the clique conditional
p(FC |SC , zC) in the belief propagation. The bottom-up belief
propagation is the unidirectional sum-product message passing
from the leaf nodes to the root node in a tree [6, Fig. 8.52]

(also known as the Shafer-Shenoy algorithm [47] for junction
trees). The clique density for any clique C, as a result of the
product operation in the sum-product, is formulated by

p(FC , SC |zC) ∝
∏
q∈CC

p(Sq|zq)
∏

Θfi
⊆C

Θfi
6⊆Sq

fi(Θfi), (3)

where q denotes any child clique of clique C and CC indicates
the set of the child cliques. Relation (3) shows that the clique
density contains some user-defined factors f(·) and separator
densities p(Sq|zq) which are resulted from variable elimination
(i.e. the sum operation) in the child cliques. We will introduce
normalizing flows in the following section to model the clique
density as well as extract the clique conditional and the
separator density. The separator density p(SC |zC) will be
passed upwards as a new factor for joining in the sum-product
in the parent clique of C.

In addition, we will also use normalizing flows to construct
conditional samplers for each clique conditional p(FC |SC =
sC , zC) such that independent samples of FC can be drawn
once the separator is fixed by a realization sC . These condi-
tional samplers will be created during the belief propagation
and cached for performing the ancestral sampling in the top-
down traversal.

IV. SLAM VIA NORMALIZING FLOWS

We first briefly review normalizing flows in Section IV-A.
We then present our novel technique for modeling and learning
clique conditional p(FC |SC , zC) via normalizing flows in Sec-
tion IV-B. Finally, in Section IV-C we describe our incremental
inference approach that generates joint posterior samples.
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A. Normalizing Flows

Normalizing flows have shown strong expressive power
for modeling complex distributions. An extensive review can
be found in [29, 30]. A normalizing flow is a transforma-
tion T that maps a D-dimensional target random variable
X := (X1, . . . , XD) onto another D-dimensional random
variable Y := (Y1, . . . , YD) that follows a reference dis-
tribution q(y). We choose the standard multivariate normal
distribution N (0, ID) as the reference distribution which is
also a common choice in related literature for its advantages
in computation [26–30]. We will explain those advantages in
the later discussion of this subsection and, in particular, stress
their connections with some properties of the chosen reference
distribution including sampling efficiency, separability (i.e.,
independent components), and log-concavity. Our objective in
this subsection is to use the reference distribution, q(y), and
the transformation, T , to model the target distribution, p(x);
see Fig. 4 for an example.

We take the transformation to be a lower-triangular map:

T (x) =


T1(x1)
T2(x1, x2)
...
TD(x1, x2, . . . , xD)

 =


y1

y2

...
yD

 = y, (4)

where each function Td is differentiable, bijective, and increas-
ing with respect to xd [25–28, 30]. In general, a transformation
between random variables of two distributions without addi-
tional constraints is not unique. It has been proven, however,
that triangular maps to a standard Gaussian exist and are
unique for any non-vanishing densities [48–50]. Theoretically,
the Knothe–Rosenblatt rearrangement provides a scheme to
construct the triangular map by defining T1 to TD sequen-
tially [50, Ch. 1]. However, it is computationally impractical
to construct the exact Knothe–Rosenblatt rearrangement for
modeling a general multivariate density. Thus, in practice,
many works opt to estimate such a map by seeking the optimal
one among a parameterized family of triangular maps [27,
44, 45]. We will follow the same practice and show how to
solve for the optimal T . Before the optimization problem for
T , we review three useful properties of triangular maps that
have been widely exploited for constructing the map, drawing
samples, and extracting marginals and conditionals.

Property 1: Since Td is differentiable, lower-triangular, and
increasing with respect to xd, its Jacobian matrix is triangu-
lar with positive diagonals. The absolute value of Jacobian
determinant is thus given by,

|T ′(x)| =
D∏

d=1

∂Td
∂xd

. (5)

For any such T , by change of variables, we have p(x;T ) =
q(T (x)) |T ′(x)|, where p(x;T ) denotes a density defined by
q(y) and T for modeling p(x). Thus, with the triangular
structure, p(x;T ) can be expressed by

p(x;T ) = q(T (x))

D∏
d=1

∂Td
∂xd

. (6)

Fig. 4. A one-dimensional example of transformation function: histogram
of sample x (left), transformation function T (x) (middle), and histogram of
transformed samples and reference variable y ∼ N(0, 1) (right).

The density model (6) can be evaluated once we can evaluate
T and its Jacobian. Our goal is to find T that makes p(x;T )
well approximate the target density p(x).

Property 2: Td essentially models the conditional probability
p(xd|x1, . . . , xd−1) [27]. This idea is also referred to as
autoregressive flows in literature [29, 30]. For any d where
2 ≤ d ≤ D,

p(x1, . . . , xd−1;T ) = q(y1, . . . , yd−1)

d−1∏
i=1

∂Ti
∂xi

(7)

and

p(x1, . . . , xd;T ) = q(y1, . . . , yd)

d∏
i=1

∂Ti
∂xi

. (8)

Their quotient is simply

p(xd|x1, . . . , xd−1;T ) = q(yd|y1, . . . , yd−1)
∂Td
∂xd

. (9)

Furthermore, since we defined q(y) as the standard multivari-
ate normal distribution, (9) can be reduced to

p(xd|x1, . . . , xd−1;T ) = q(yd)
∂Td
∂xd

, (10)

where yd = Td(x1, . . . , xd) and q(yd) is a one-dimensional
normal distribution. Thus, Td fully determines how we model
the conditional p(xd|x1, . . . , xd−1). This important property
enables extracting marginals and conditionals once T is
learned. We will use this property to build desired clique
conditional samplers on the Bayes tree in Section IV-B.

Property 3: The normalizing flow T provides the following
simple procedure for generating samples from p(x;T ):

1) Draw samples y ∼ q(y);
2) Solve for x by inverting T , i.e.,

x = T−1(y) =


T−1

1 (y1)
T−1

2 (y2;x1)
...
T−1
D (yD;x1, x2, . . . , xD−1)

 . (11)

In the first step, we can directly draw samples from the
standard multivariate normal distribution q(y). Since T is
lower triangular, in the second step one can use a forward
substitution-type approach to solve for elements of x one
by one. We denote x<d = (x1, x2, . . . , xd−1). Specifically,
x<d is solved before xd so x<d can determine the one-
dimensional function Td(· ;x<d) that maps xd to yd. Since Td
was constructed to be invertible with respect to xd, xd can be
solved by evaluating the inverse function of Td(· ;x<d) at yd.
Computation of the inverse can be efficiently done numerically
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or analytically, depending on the specific parameterization of
Td [29, 30]. Thus, a sample of y can be transformed to a
sample of x ∼ p(x;T ) by computing components x1, . . . , xD
recursively.

Optimal Normalizing Flow: It remains to explain how
the triangular map T in (4) can be obtained. Given n i.i.d.
training samples {x(k)}nk=1 from p(x), we find T by minimiz-
ing the Kullback–Leibler (KL) divergence between p(x) and
p(x;T ). In the following section (Sec. IV-B), we will present a
simulation-based method for obtaining these training samples
in the context of factor graph inference; in this section, we only
focus on the procedure from training samples to normalizing
flows in Fig. 2b. Assuming training samples are given, an
optimal triangular map T ? is given by,

T ? ∈ argmin
T∈T

DKL (p(x) ‖ p(x;T )) (12)

= argmin
T∈T

∫
x

p(x) log
p(x)

p(x;T )
dx (13)

= argmin
T∈T

∫
x

−p(x)

D∑
d=1

[
log q(Td) + log

∂Td
∂xd

]
dx (14)

≈ argmin
T∈T

−
n∑

k=1

D∑
d=1

[
log q(Td) + log

∂Td
∂xd

] ∣∣∣∣
x=x(k)

(15)

= argmin
T∈T

n∑
k=1

D∑
d=1

(
1

2
T 2
d − log

∂Td
∂xd

) ∣∣∣∣
x=x(k)

, (16)

where (14) follows from (10) and also used the training
samples to approximate the expectation by Monte Carlo
integration. T denotes all triangular maps defined by (4).
If the reference distribution is log-concave (e.g., Gaussian
distributions here), the cost function from (15) is convex. As
the feasible set is also convex, (16) turns out to be a convex
optimization problem [51, Lemma 1]. Interested readers can
find more discussion in [45, 52, 53]. While (16) offers a
theoretical pathway for finding an optimal T , it is not practical
to solve (16) directly as it requires searching among all
admissible maps. To make this practical, we limit our search to
admissible maps in a parameterized family of transformations
F ⊂ T,

T ? ∈ argmin
T∈F

n∑
k=1

D∑
d=1

(
1

2
T 2
d (x(k))− log

∂Td(x(k))

∂xd

)
. (17)

The parameterization choice determines whether or not the
above optimization problem is convex. For example, if we
let T1(x1) = ax1 + b for a one-dimensional problem (i.e.,
D = 1), we can examine derivatives of the cost function
to derive a close-formed globally optimal solution under the
parameterization, a? = 1/σx1 and b? = −x̄1/σx1 , where
x̄1 and σx1 are empirical mean and standard deviation of x1

samples. Obviously this affine transformation is not expressive
enough for modeling non-Gaussian densities. Many flexible
parameterizations of Td have been proposed including poly-
nomial expansions [44, 53], sum-of-square polynomials [27],
and splines [26]. Td can be modeled as a one-dimensional
function of xd, Td(xd; cd(x<d; wd)), where cd(x<d; wd) is the
so-called conditioner network [30]. The conditioner network

with weights wd takes x<d as the input and then outputs a set
of parameters such as polynomial coefficients or spline seg-
ments that determine a differentiable, bijective, and increasing
function of xd under the chosen parameterization [26, 27].
However, except for special cases like Gaussian conditionals, it
is difficult to analyze and model the conditioner and then solve
for its weights since Td essentially encodes a high-dimensional
conditional. Neural networks have been widely employed as
universal functional approximators of conditioners in normal-
izing flows [29, 30]. In practice, one optimizes over all weights
w<D+1 for a solution to (17) once a parameterization method
and network configuration are designed; see Sec. V-A for our
parameterization method and neural network configuration. It
is an active research topic to construct a parameterization
method that possesses convexity for leveraging the convex
problem (16). Interested readers can find further discussions
in [54].

Practical Considerations: A usual routine before training
is standardizing raw samples by their means and standard
deviations to regularize unbounded large values [55]. This
standardizing step is equivalent to an affine transformation
which makes training more efficient and does not alter the
problem nor affect the non-Gaussianity in the raw samples.
When the training is finished, the resulting triangular map
will be transformed back to the space of raw samples by the
inverse of the affine transformation. Samples of orientation
variables in our SLAM experiments are transformed to [−π, π]
before being standardized since the experiments are treated in
a planar environment; for samples in more general manifolds
(e.g., SO(3)), one should resort to alternative standardizing
methods (e.g., in vector spaces such as so(3)). Recently, more
sophisticated treatments for orientation have been proposed for
normalizing flows, which improves the robustness and expres-
sive power of density estimation on complex manifolds [28].
As a widely used alternative of autoregressive flows, coupling
flows impose additional structures on the triangular map at
the expense of reduced expressive power, leading to improved
efficiency in modeling and training normalizing flows [30].
While there are so many different normalizing flow parameter-
izations, we stress that the inference framework of NF-iSAM
is generalizable as it is mostly governed by the Bayes tree
and the triangular map structure. As what we will depict in
the flowchart of Fig. 5, learning for a model of density just
takes a small fraction in the flowchart. We emphasize that the
specific parameterization for modeling a complex density is a
replaceable part in the pipeline. Thus, more parameterization
methods can be explored and exploited in future work for
efficiency, expressiveness, and robustness in density modeling.

B. Clique Conditional Samplers via Normalizing Flows

This subsection focuses on learning the clique density
p(SC , FC |zC) in (3). We will describe in detail how to learn
a normalizing flow model of the clique density from which
we can extract the separator density p(SC |zC) and the clique
conditional p(FC |SC , zC).
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Fig. 5. Flowchart for the generation of training samples and the desired normalizing flow. This factor graph is the C1 factor graph in Fig. 3. The collection
zC1 denotes all measurements in this leaf clique. Z4 and z4 denote the measurement variable and value in factor f4, respectively.

As suggested in Section IV-A, we can learn the normalizing
flow

TC(SC , FC) =

[
TSC

(SC)
TFC

(SC , FC)

]
(18)

for the clique density p(SC , FC |zC) if we have training
samples from p(SC , FC |zC). Then TSC

is the normalizing
flow for the separator density p(SC |zC), and TFC

is the
normalizing flow for the clique conditional p(FC |SC , zC).
There are many well-developed off-the-shelf implementations
of MCMC sampling such as PyMC3 [56] or nested sampling
such as dynesty [57]. However, even though variables in a
clique are much fewer than those in the entire Bayes tree,
those packages are still too slow for generating the training
samples for robotics applications [20].

Inspired by the so-called forecast-analysis scenario in hid-
den Markov models [58] and simulating from a Bayes net
model [34, Sec. 1.5], we propose the following two-step
strategy for modeling the clique density p(FC , SC |zC):
Step 1. Draw training samples from an intermediate density

p̃, where sampling is efficient.
Step 2. Train normalizing flow T̃ for p̃, and retrieve T for

p(SC , FC |zC).
In Step 1, we sample from the intermediate density

p(OC , SC , FC |z′C), where z′C = zC \ oC . We can select a set
of likelihood factors, whose measurements are oC , that breaks
the factor graph of the clique into an acyclic factor graph (for
example, see f4 in Fig. 5). We define these likelihood factors
as loop-closing factors and convert them to Bayes nets where
measurements are assumed as unobserved variables OC (see
[34, Sec. 1.7] for the recipe and the probabilistic interpretation
of the conversion). Since both Bayes nets and the acyclic
factor graph afford ancestral sampling, one can use ancestral
sampling and measurement models to efficiently simulate
samples of (OC , SC , FC) which are distributed according to
the intermediate density.

Algorithm 1 is our implementation of Step 1 for SLAM
problems. In the algorithm, most of the loop-closing factors
can be passively identified when we simulate samples. The
prior factors P in the algorithm refer to either user-defined
normalizable densities (e.g., the density of the first robot pose),
from which we are typically able to draw samples directly, or
separator densities modeled by normalizing flows, which enjoy

fast sampling as well (Property 3, Sec. IV-A). Starting from
samples in these priors (line 2), we iterate over binary factors
to simulate other robot pose and landmark samples (line 6). If
both variables adjacent to a binary factor have been sampled,
virtual observations between samples of these variables will
be simulated (line 8). All multi-modal data association factors
are proactively treated as loop-closing factors for simulating
measurements (line 14).

In Step 2, we use training samples from the intermediate
density p(OC , SC , FC |z′C) to learn the normalizing flow T̃C
for eventually modeling p(SC |zC) and p(FC |SC , zC). Ac-
cording to Section IV-A, by ordering arguments in T̃C to
(OC , SC , FC), we get the triangular map

T̃C(OC , SC , FC) =

T̃OC
(OC)

T̃SC
(OC , SC)

T̃FC
(OC , SC , FC)

 . (19)

When we fix OC to its measured value oC , T̃SC
(OC =

oC , SC) gives the normalizing flow for the separator density
p(SC |zC), and T̃FC

(OC = oC , SC , FC) gives the normalizing
flow for the clique conditional p(FC |SC , zC) (see Algo-
rithm 2). Thus, we can retrieve the desired normalizing flow
model TC from T̃C :

TC (SC , FC) =

[
T̃SC

(OC = oC , SC)

T̃FC
(OC = oC , SC , FC)

]
, (20)

which models the clique density p(FC , SC |zC).

C. Incremental Inference on Bayes Tree

Learning the full posterior distribution will start from leaf
cliques CL. By Section IV-B, we can learn normalizing flows
for the separator density p(SCL |zCL) and the clique conditional
p(FCL |SCL , zCL). The separator density will be passed to the
parent of clique CL as a new factor as shown in Fig. 3
(i.e., p(X1, L1|zC1) and p(X2, L1|zC2)). The normalizing flow
for the clique conditional will be saved in clique CL as a
conditional sampler for sampling the joint posterior later. Our
algorithm learns all normalizing flows during a single leaf-to-
root traversal on the Bayes tree. The product of learned clique
conditionals resolves Task 1 in Sec. I.
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As we described in Sec. III-B, once all cliques have
learned their conditional samplers of clique conditionals
p(FC |SC , zC), we can draw components of a joint poste-
rior sample from these conditional samplers by recursively
applying ancestral sampling during a root-to-leaf traversal on
the Bayes tree. Through the root-to-leaf traversal, Task 2 in
Sec. I can be accomplished. Compared to learning normalizing
flows during the leaf-to-root traversal, the computational cost
of the root-to-leaf traversal is minimal since normalizing flows
support fast sampling (Property 3, Sec. IV-A).

When performing incremental updates, we do not need to
recompute normalizing flows for all cliques of the Bayes

Algorithm 1: TrainingSampleSimulator
Input: Prior P , binary measurement B, and multi-modal

data association M factors in a clique
Output: Samples and measured values

1 Initialize samples S and measured values V dictionaries
2 S[Θi]← Sample any variable Θi in P
3 while queue B 6= ∅ do
4 fi = p(zi|Θj ,Θk)← Pop the first element in B
5 if only one latent variable (e.g., Θk) not in S then
6 S[Θk]← Simulate variable Θk using sample S[Θj ],

measured value zi, and measurement models
7 else if both latent variables Θj ,Θk in S then
8 S[Zi]← Simulate measurement Zi between samples

S[Θj ] and S[Θk] using measurement models
9 V[Zi]← Measured value zi

10 else
11 Push fi to the back of B

12 for fi = p(zi|Θfi) in M do
13 S[Zi]← Simulate measurement Zi between samples

S[Θfi ] using measurement models
14 V[Zi]← Measured value zi

15 return Samples S, measured values V

Algorithm 2: ConditionalSamplerTrainer
Input: Training samples and measured values o
Output: Clique conditional, separator density

1 Rearrange training samples to the order of observation (O),
separator (S), and frontal variables (F )

2 Find T̃ in (19) by minimizing the KL divergence according
to (16) using the training samples

3 T (S, F )← T̃ (O = o, S, F ) // fix observations in (20)
4 TS , TF ← partition T (S, F ) following (18)
5 Obtain samplers of p(F |S), p(S) from TS and TF by (11)
6 return Samplers of p(F |S), p(S)

Algorithm 3: NF-iSAM
Input: New factors f , factor graph G, ordering Θ
Output: Samples of the joint posterior distribution

1 T ← G.update(f ,Θ) // update the Bayes tree
2 T∆ ← T .extract(f ,Θ) // extract the changed sub-tree of T
3 for clique C in leaf-to-root traversal of T∆ do
4 x, o← TrainingSampleSimulator(C)
5 p(FC |SC), p(SC)← ConditionalSamplerTrainer(x, o)
6 Append p(SC) to the parent clique as a factor
7 D ← {} // initialize an empty dictionary for posterior samples
8 for clique C in root-to-leaf traversal of T do
9 p(FC |SC)← retrieve the conditional sampler in C

10 s← D[SC ] // retrieve samples of separator
11 D[FC ]← draw samples from p(FC |SC = s) using (11)
12 return D

tree. Every time a new factor is added into the factor graph,
the corresponding change in the Bayes tree is an exact and
symbolic result from the Bayes tree algorithm [4, Alg. 3].
We just need to learn normalizing flows for cliques in the
changed part to update posterior estimation (see clique C3 in
Fig. 3 for an example of incremental inference). We designate
the changed part of the Bayes tree the sub-tree. The upward
traversal starts from leaves of the sub-tree instead of the
entire Bayes tree. Normalizing flows for cliques outside the
sub-tree are not changed and can be reused directly. Thus,
the computational cost for incrementally training normalizing
flows depends only on the sub-tree, instead of the entire
problem. To draw samples from the full joint posterior den-
sity, the downward traversal still needs to visit all cliques.
However, as mentioned above, the computational cost for the
downward sampling traversal is much lower than that for
training normalizing flows. The detailed algorithm of NF-
iSAM is summarized in Algorithm 3. At this point, all Task
1-Task 3 we proposed in Sec. I have been resolved. With
the exception of normalizing flows for modeling non-Gaussian
conditionals, our strategy for incremental updates is similar to
iSAM2 where linear-Gaussian conditionals for the Gaussian
approximation are partially updated as new measurements
arrive. The back-substitution in iSAM2 for the least-squares
solution also corresponds to a root-to-leaf traversal on the
entire Bayes tree [34, Sec. 5.4.3].

Although the final output of our algorithms is samples for
subsequent inference tasks requiring Monte Carlo integration,
function evaluation of the approximate distribution can be
conducted as well. While we wrap trained normalizing flows
in the name of “sampler” in Algorithms 2 and 3, the density
modeled by normalizing flows can be easily evaluated by
(6). Instead of drawing samples at line 10 to line 11 in
Algorithm 3, we can simply evaluate the conditionals modeled
by normalizing flows and then return their product as the
function evaluation of the approximate density of the joint
posterior.

V. IMPLEMENTATION AND EXPERIMENTAL SETUPS

A. Current Implementation of NF-iSAM

We implemented Algorithms 1-3 as well as other building
blocks including prior and measurement likelihood factors,
factor graphs, and the Bayes tree in Python. In the current
implementation of normalizing flows, we choose rational-
quadratic (RQ) splines to parameterize the one-dimensional
function of xd, Td(xd; cd(x<d; wd)) [26], considering the flex-
ibility of splines. A fully connected neural network (FCNN)
with an input dimension d − 1 is configured to model the
conditioner network cd(x<d; wd). If the spline is composed
of K different rational-quadratic functions, the conditioner
network possesses an output dimension 3K − 1 of which
2K − 2 units map to coordinates of spline knots on the
xd-yd plane and K + 1 units are for spline derivatives at
those knots; see RQ-NSF (AR) in [26, Sec. 3] for the detailed
parameterization. Our RQ spline flows are constructed and
trained using PyTorch [59]. For the experiments in Sec. VI,
we use two-layer FCNNs for every conditioner network. The
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default number of hidden layer units in the FCNN is set to
8 and the default number of RQ splines, K, is set to 9. The
default number of training samples is set to 2000. While we
had tried some stopping criteria in [60] using test sets, for
less training time, the training of the FCNNs stops when the
loss (17) converges. We monitor the relative change between
the average loss over the latest 50 iterations and that over the
second latest 50 iterations. The ongoing training is terminated
once the relative change is lower than 1%.

It is worth mentioning that [29, Table 3] has reported
that spline-based flows outperform or are on par with other
normalizing flows in terms of modeling accuracy. Another
advantage of RQ splines is that it can be inverted by evaluating
an analytically exact expression, which permits a fast solution
to the inverse transformation problem (11) for sampling.

B. Other Solvers and Computation Resources

We use a nested-sampling-based approach for factor graphs,
NSFG [20], to obtain high-quality samples for some examples
in Sec. VI as reference solutions. NSFG is implemented
in Python based on the dynamic nested sampling package,
dynesty [57]. iSAM2 (provided by the GTSAM library in C++
[61]) and mm-iSAM (provided by Caesar.jl, v0.10.2 in Julia
[62]) are tested in our experiments as well. Experiments are
performed on a workstation with an AMD Ryzen ThreadRip-
per 3970X CPU with 32 cores and 64 threads, an NVIDIA
RTX 3090 GPUs, and 125.7 GB of RAM running Ubuntu
20.04.1 LTS. Only the neural network training in NF-iSAM
uses the GPU while other solvers and other computation in
NF-iSAM rely on the CPU in our experiments.

C. Datasets and Measurement Likelihood Models

In the following experiments, we use three simulated
datasets and two real-world datasets for range-only SLAM
problems with and without data association ambiguity. We
apply a unified variable elimination ordering in Algorithm 3
when solving these datasets: eliminating poses along the robot
trajectory first and then landmarks. The extensive experimental
results form a parameter study that investigates how the
performance of NF-iSAM is affected by conditions such as:
i) the magnitude of measurement noise, ii) hyperparameters
in normalizing flows, iii) the fraction of factors involving data
association ambiguity, iv) the randomness of robot trajectories,
v) random seeds for the algorithm, and vi) the dimensionality
of the SLAM problems.

We define three types of likelihood models for measure-
ments in the datasets. First, the measurement of transformation
between robot poses Tw

i and Tw
j ∈ SE(d) is modeled as

T̃ j
i = T j

wT
w
i exp (ξ∧) where ξ ∼ N (0,Σ) and Tw

i reads pose
i in the world frame. Second, the range measurement between
a robot pose Tw

i and a landmark location lwj with known
data association is modeled as r̃ji = ‖twi − lwj ‖2 + ξ where
twi denotes the translation vector in Tw

i and ξ ∼ N (0, σ2).
Third, the range measurement with unknown data association,
r̃i, is modeled as p(r̃i|twi ,Li) = 1

|Li|
∑

lwj ∈Li
p(r̃i|twi , lwj )

where Li denotes the set of possibly associated landmarks.

Each component in the sum-mixture is simply a likelihood
model of range measurement with a given data association.
All components in the mixture are equally weighted given no
prior information about data associations.

VI. RESULTS

A. Synthetic Datasets

1) A Small Illustrative Example: A small example is em-
ployed to illustrate capacities and performance of NF-iSAM
on non-Gaussian inference (Fig. 6 and 7). We create a 2D
environment where a robot performs a range-only SLAM task
using odometry and range measurements to landmarks. A large
fraction of the range measurements, however, have no identity
information of landmarks, which implies that each ambiguous
range measurement can (potentially) be associated with all
landmarks. While this problem is relatively low dimensional, it
is nevertheless still difficult to infer the posterior distribution of
robot and landmark positions since the problem involves both
nonlinear measurements (e.g., distance) and high-uncertainty
non-Gaussian likelihood models (due to the multi-modal data
association).

Fig. 6 and 7 show samples that are drawn from estimated
posteriors of problems without and with data association
ambiguity. The runtime and accuracy are shown in Fig. 8.
In both cases, the robot moves from X0 to X5 following a
clockwise trajectory during which it acquires five odometry
measurements and eight distance measurements. In the case
with ambiguity, however, distance measurements from X{1−4}
are modeled as potentially associated with all detected land-
marks with equal weights. Note that “No solution” tags in the
figures indicate that we could not obtain a solution due to
errors thrown by GTSAM.

Incorporating range measurements already presents a chal-
lenge due to strong nonlinearity, so we analyze the case
without data association ambiguity first (see Fig. 6). According
to the scatter plots and kernel density estimation, the solutions
of NF-iSAM resemble reference solutions provided by NSFG
for all steps. When a landmark owns two distinct distance
measurements (e.g., landmark L1 at time step 1 and landmark
L2 at time step 3), both NF-iSAM and NSFG are able to
infer the bi-modal distribution of the landmark’s location.
Furthermore, uni-modal posterior distributions of the landmark
are immediately recovered by them once the robot sights
the landmark from three different poses (see landmark L1

at time step 2 and landmark L2 at time step 4). Caesar.jl
was developed to estimate multi-modal marginal posteriors.
Even though Caesar.jl pinpoints the landmarks at the last
step, the uncertainty estimates are less accurate. Moreover, its
estimation for earlier steps preserves many less-likely modes,
which will certainly introduce errors in the evaluation of
empirical mean as well as uncertainty. GTSAM leverages
nonlinear least-squares (NLLS) optimization techniques to
resolve Gaussian approximations of posterior distributions.
For a newly detected landmark, we randomly pick a point
on the circle projected by the range measurement from a
robot pose, and supply it to GTSAM as the initial value
of the landmark. At early steps, it cannot return a solution
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(a)

(b)

Fig. 6. Results for the small range-only problem without data association ambiguity: a) samples from joint posteriors and b) kernel density estimation.
The robot moves clockwise from X0 to X5 and measures its distances to the landmarks L1 and L2. The black lines in (a) mark the odometry and range
measurements with certain data association. Groundtruth coordinates of landmark locations are marked by ‘+’ on KDE plots.

since the information matrix for NLLS is under-determined
due to insufficient constraints. At step 3 and 4 even when
each landmark possesses at least three distinct measurements,
considerable drifts from the ground truth still exist as the
NLLS optimization is subject to local optima in this non-
convex optimization problem.

As shown in Fig. 8a, our quantitative analysis of this case
follows the qualitative analysis above. We use the root-mean-
square error (RMSE) to gauge the difference between the
empirical mean of our posterior samples and the ground truth.
We choose to compute the empirical mean rather than an MAP
point among samples since the empirical mean can reflect
errors incurred by spurious modes in estimated distributions.
Here, since we aim to infer the full posterior distribution in-
stead of a point estimate, maximum mean discrepancy (MMD)
[63] is actually a more reasonable choice. Given samples
from two densities, MMD is a metric to evaluate how far
the two distributions are apart. Therefore, a lower MMD from

a solution to the NSFG solution indicates a more “accurate”
approximation of the posterior. As the reference solver, the
RMSE of NSFG outperforms others at the expense of compu-
tation time. Note that before time step 4, the landmark belief
is supposed to be bi-modal or donut-shaped distributions so
it is reasonable to have large RMSE at those time steps. The
plot of RMSE of NF-iSAM follows the same trend as that of
NSFG and it is noticeably lower than mm-iSAM and GTSAM.
We extract samples from joint and marginal distributions to
compute the joint MMD and the marginal MMD respectively.
The MMD plots indicate the superior accuracy of NF-iSAM in
capturing the entire “shape” of the true posterior. The lower
MMD of landmark L1 from GTSAM at time step 3 and 4
is a coincidence as the random initial value of landmark L1

happens to be around the ground truth (see green dots in scatter
plots of GTSAM). However, the initial value of landmark L2

unluckily locates away from the ground truth so the final
estimate of GTSAM is inevitably distorted, resulting in the
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(a)

(b)

Fig. 7. Results for the small range-only problem with data association ambiguity: a) samples from joint posteriors and b) kernel density estimation. The robot
moves clockwise from X0 to X5 and measures its distances to the landmarks L1 and L2. The black lines in (a) mark the odometry and range measurements
with certain data association while the red lines in (a) between a robot pose and k landmarks indicate a range measurement that is potentially associated with
k landmarks. Ground truth landmarks and poses in (a) are marked by ‘×’ and arrows, respectively. On the KDE plots, groundtruth landmark coordinates are
marked by ‘+’ .

large MMD of landmark L1 at the final time step.
Ambiguous data association of range sensing makes the

estimation problem even more difficult, as shown in the highly
uncertain posteriors of NSFG solutions in Fig. 7. At time step
2, two of the three distance measurements to landmark L1 are
associated with L2 as well, leading to a more uncertain distri-
bution of landmark L1 than the counterpart in the ambiguity-
free case. The uni-modal distributions of landmark L1 and L2

are not resolved until new ambiguity-free measurements added
at the last step. NF-iSAM precisely captures the same trend
in all scatter, kernel density estimation (KDE), and RMSE
plots. The MMD plots in Fig. 8b indicate that NF-iSAM
consistently infers more accurate estimates of the true posterior
than other solvers in the setting with ambiguity. Note that
iSAM2 provided by GTSAM is extended with max-mixture
factors [8, 64] for dealing with multi-modal data association
so GTSAM is replaced by max-mixtures in the legend.

Given samples from the posterior distribution of the robot
and landmark positions, p(Θ|z), one can evaluate the posterior
belief of different data associations following

p(D|z) =

∫
Θ

p(z|Θ, D)p(D)∑
D∈D p(z|Θ, D)p(D)

p(Θ|z) (21)

≈ 1

N

N∑
i=1

p(z|Θ = θ(i), D)p(D)∑
D∈D p(z|Θ = θ(i), D)p(D)

, (22)

where θ(i) is one of the N samples drawn from p(Θ|z), and
D is a possible data association in the set of all associations,
D. p(D) is subject to a uniform distribution over D as we
have no prior knowledge about those associations. p(z|Θ, D)
is actually a binary factor under the association D so it is
known when we formulate the problem.

Fig. 9 shows the posterior belief of groundtruth data as-
sociations so a good estimate should approach 1 as more
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Fig. 8. Performance of different solvers for the small illustrative range-only
problem: (a) data associations are given and (b) data associations are unknown
from time step 1 to 4. The performance metrics include computation time,
RMSE w.r.t. the ground truth, and maximum mean discrepancy of estimated
marginal and joint posteriors to NSFG solutions.

Fig. 9. Estimated posterior belief of groundtruth data associations for the
small problem with data association ambiguity.

measurements arrive. It is clear that both NF-iSAM and NSFG
manage to identify true data associations eventually.

2) Medium-scale Problems in the Manhattan World with
Range Measurements: Here we simulate a variety of scenarios
to investigate whether NF-iSAM performs consistently well
over a range of settings such as different noise magnitudes, the
fraction of measurements with ambiguous data associations,
and robot trajectories. We consider these to be “medium-scale”
problems since NSFG can still converge within tens of minutes
and return samples of posteriors as reference solutions for the
extensive parameter study. We implement a simulator named
“Manhattan world with range measurements” to synthesize
odometry and distance measurements along Manhattan-world-
like trajectories (i.e., the robot operates in grid environments
where it can only move to adjacent vertices by fixed step
length). Fig. 10 shows a navigation task using range sensing
along a lawnmower path in the simulator. Problems with
random trajectories can be found in Fig. 14a. In all the cases,
the robot starts from time step zero and then proceeds step-by-
step until time step 15, during which three landmarks will be
sighted. At each time step, a distance measurement is acquired
with or without data association ambiguity. Hence, unknowns

Fig. 10. Results for the lawnmower path problem on the 4-by-4 grid: a) sam-
ples from joint posteriors, b) kernel density estimation, and c) performance.
See Fig. 7 for our convention about markers in (a).

at the final step consist of 16 poses and three landmark
positions, resulting in a 54-dimensional posterior distribution.

There are several settings related to noise magnitudes
and the fraction of ambiguous range measurements for the
lawnmower path experiment. The default standard deviation
of range sensing noise is set to 2 meters while the default
covariance of odometry noise is diag(0.04, 0.0016, 0.0004)
where the diagonal entries correspond to longitudinal, lat-
eral, and heading measurements. The default probability for
generating ambiguous data association factors is set to 40%.
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Fig. 11. Error and accumulated computation time for posterior estimation
at the final step of the lawnmower path problem with different measurement
noise and numbers of ambiguous data association factors. For each column,
only one of the settings varies from the default setting. Average MMD means
the average of MMDs for all estimated marginals.

Fig. 12. Error and accumulated computation time of posterior estimation
at the final time step with various hyper-parameters for learning normalizing
flows. The parameter study is performed with the medium-scale problem with
the default setting regarding noise models and data association ambiguity.
Column-wise and row-wise means are shown beside the grids.

We are interested in investigating how those settings affect
the performance of NF-iSAM and other solvers. Before vary-
ing and interrogating those settings, posterior samples for
the default setting are presented in Fig. 10a to visualize
the scenario and the solutions. The posterior distribution is
resolved incrementally step-by-step. An interesting point in
Fig. 10c is that the evidently linear curve of NSFG on the
log-scale runtime plot indicates the exponential growth of
computation time with increased dimensionality. On the other
hand, while less accurate, other solvers are able to retain
a roughly constant computation time per step by exploiting
incremental inference techniques, which makes full posterior
inference more tractable.

We conduct an empirical study over measurement noise
and the fraction of ambiguous range measurements. Only
one of the settings mentioned above varies for each point
in Fig. 11. Runtime plots of max-mixtures are neglected
as they are faster than others by at least two orders of
magnitude in our experiments; however, solutions of max-
mixtures deviate considerably from the ground truth due to
bad initial values and local optima. The computation time of
NF-iSAM is consistently lower than mm-iSAM (Caesar.jl) and
the reference solution (NSFG) while its RMSE is almost at the
same order of magnitude as the reference solution in various

settings. The lower value of average MMD from NF-iSAM
indicates that its estimated posterior distribution resembles
the reference posterior distribution better than mm-iSAM and
GTSAM, which demonstrates the superior accuracy of NF-
iSAM for full posterior estimation in non-Gaussian settings.

The normalizing flow model in NF-iSAM is primarily char-
acterized by two predetermined hyperparameters: the number
of RQ functions on the spline for fitting the one-dimensional
transformation map, and the number of hidden units in the
fully connected neural networks that output locations and
derivatives of the spline knots (see Sec. V for more about
hyperparameters). The former one controls the flexibility of
the spline while the latter one is the width of neural networks.
Both of them have a great impact on the expressiveness of the
normalizing flow model so it is worth investigating how they
influence the solutions of NF-iSAM. It is not surprising to
find that greater numbers of spline knots and hidden units in
general lead to higher computation time as there are more
parameters being trained in the neural networks (Fig. 12).
Another considerable change is spotted in the plot of joint
MMD versus the number of knots. More spline functions
evidently allow for a finer fit to the shape of the posterior,
decreasing the joint MMD between NF-iSAM and reference
solutions. In contrast, these parameters overall present little
influence on the RMSE, which implies that the enhanced
expressiveness only marginally improves point estimates. The
low sensitivity of RMSE also reflects our previous comment
that MMD is a more reasonable choice for evaluating the
quality of full posterior estimation. Furthermore, this implies
an important fact that the accuracy evaluation simply using
means or modes can be ineffective especially for non-Gaussian
posteriors.

Because training samples are self-generated in NF-iSAM,
the number of training samples (i.e., n in (17)) is a prede-
termined hyperparameter in NF-iSAM as well. Fig. 13 shows
how the number of training samples affects the results for the
lawnmower path problem. It is evident that small sample sizes
(e.g., 500 and 1000 samples) cause less favorable performance
in both computation time and accuracy. This can be explained
by the plot of training loss where fewer samples incur slower
and more unstable convergence of training loss. An extremely
large number of training samples increases both the total
computation time and the fraction of the time for sample
generation; furthermore, it does not greatly improve accuracy
of the results. Further investigation is needed to design an
adaptive strategy that determines good hyperparameters in the
training.

Fig. 14 presents posterior samples and performance of
different algorithms under randomly generated cases. NF-
iSAM behaves robustly for those cases and provides solutions
almost as accurate as the reference solutions while possessing
superior scalability, due to the use of incremental updates.

3) Large-scale Problems in the Manhattan World with
Range Measurements: We demonstrate scalability of NF-
iSAM and repeatability of its solutions given randomness in
algorithms. We simulate a relatively large-scale range-only
SLAM problem where the robot follows a path similar to that
in the Plaza1 dataset [65]. The entire trajectory involves 136
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(a) (b)

Fig. 13. Effects of training sample numbers in NF-iSAM results: (a)
accumulated time, RMSE, and joint MMD at the final time step of the
lawnmower path problem on the 4-by-4 grid, and (b) evolution of loss for
training normalizing flows at the final time step.

Fig. 14. Randomly generated cases: (a) samples of estimated posteriors and
(b) error bands (95% confidence interval) of performance by different methods
for randomly generated cases. Runtime of GTSAM is not shown as it makes
the computation time of other solvers less distinguishable in the figure. See
Fig. 7 for our convention about markers in (a).

robot poses, 4 landmarks, 135 odometry measurements, and
136 range measurements among which 59 measurements are
associated with multiple landmarks (i.e., they will be modeled
by multi-modal data association factors). The posterior of
robot poses and landmark locations incurs a 416-dimensional
latent variable at the end of the sequence, to which a reference

solution via sampling techniques is generally not available.
Hence, we only compute RMSE of NF-iSAM estimates versus
ground truth as the accuracy metric.

Fig. 15a shows the posterior samples resolved by NF-iSAM
at a few important time steps. The odometry and groundtruth
trajectories are respectively shown in gray and black in the
figure as well. At time step 6, the robot nearly moves along a
line and, as a result, the belief of landmark locations inferred
by distance measurements is subject to a distribution mirrored
across the line being tracked by the robot. The highly uncertain
distribution of landmark location results in the significant
RMSE at time step 6 as shown in Fig. 15b. As the robot
proceeds and turns left to time step 19, distance measurements
acquired along the asymmetric trajectory can disambiguate
landmark locations, thus the landmark distribution collapses
to uni-modal. The steep decline of RMSE at time step 19
is a direct consequence of the disambiguation of landmark
locations. Although the landmarks are basically pinpointed at
this time step, the accumulative error in odometry can still
incur inaccurate estimation. As seen around the bottom part
of the groundtruth path, the odometry trajectory considerably
deviates from the ground truth by more or less a block, visibly
twisting the estimated trajectory. This is reflected by the sharp
increase of RMSE at time step 39 as well. However, as shown
in the estimated trajectory at time step 135, the deviation at the
bottom of the trajectory is corrected via fusing the full-time
history of measurements, which demonstrates the smoothing
capacity of NF-iSAM.

In practice NF-iSAM learns probability density functions
from a finite number of training samples via stochastic opti-
mization (see Algorithms 1 and 2), so it is not a deterministic
algorithm. Therefore, it is necessary to check if NF-iSAM
can achieve consistent results in the presence of inherent
randomness in algorithms. As seen in Fig. 15b, the width
of the error band of RMSE is comparatively much smaller
than the mean of RMSE. Thus, the accuracy of NF-iSAM is
marginally affected by randomness in algorithms.

B. Real-world Datasets

We also evaluate the scalability and error of NF-iSAM
using a larger real SLAM dataset. The Plaza dataset provides
time stamped range and odometry measurements (δx, δθ) of
a vehicle moving in a planar environment [65]. Two of its
sequences, Plaza1 and Plaza2, are available in the GTSAM
software distribution. There are four unknown landmarks in
each of the sequences. As noted in [65], the error of distance
measurement is strongly correlated with the true distance, lead-
ing to a non-zero mean in the distribution of errors. Therefore,
we use least squares to fit an affine function characterizing the
relation between the measurement error and the true distance.
We then compute calibrated distances via subtracting the affine
function from measured distances. This is a valid calibration
process. If we were provided with the same sensor, we could
make a collection of range measurements independently, and
fit the linear model using our own data. As indicated by the
histograms in Fig. 16a, the error of the calibrated distances
obeys zero-mean Gaussian distributions well and no evident
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Fig. 15. NF-iSAM results for the simulated Plaza1 dataset: (a) posterior estimation where robot trajectories are shown in red and estimated by averages
of samples, black lines and blue X markers are the ground truth, and gray lines are odometry trajectories and (b) error bands (95% confidence interval)
of computation time per incremental update and RMSE of six NF-iSAM solutions to the simulated Plaza1 dataset. NF-iSAM was initialized with different
random seeds to get those solutions.

Fig. 16. Plaza datasets: (a) least squares for modeling distance-dependent bias in range measurements and error distributions (fitted to N(mean, standard
deviation)) of the calibrated data which is obtained by subtracting least-squares-predicted bias from the raw data, (b) NF-iSAM’s results for the datasets
mingled with different fractions of ambiguous data association (ADA) factors, and (c) maximum a posteriori estimation by GTSAM. Trajectories by NF-iSAM
are formed by the average of posterior samples. They have been processed by the Kabsch-Umeyama algorithm for trajectory alignment.

Fig. 17. Performance evaluation of NF-iSAM for the Plaza datasets: (a)
runtime and RMSE with ADA factors and (b) decomposed runtime of NF-
iSAM for the Plaza1 sequence without data association ambiguity. We also
plot the dimension of variables involved in learning normalizing flows for
each incremental upate.

outliers appear in the datasets. To tackle datasets where outliers
present, the Gaussian noise model in Sec. V-C can be replaced
by outlier-robust distributions (e.g., a mixture model with a
null hypothesis that the measurement is wrong [8]). NF-iSAM
is applicable to those situations since there is no assumption

on noise models in our algorithms (Algorithms 1-3).

The range-only dataset is challenging for the state-of-the-
art SLAM techniques (e.g., iSAM2) that rely on the Gaussian
approximation obtained by linearization around an MAP esti-
mate. Since range-only SLAM is a highly non-convex problem
and good initial values are usually not available in advance,
those techniques are prone to find local optima. For a newly
detected landmark, we randomly pick a point on the circle
projected by the range measurement, and supply it to GTSAM
as the initial value of the landmark. The GTSAM solutions
in Fig. 16c clearly show that range-only measurements pose
difficulties for the MAP estimation especially when a good
initialization is not available.

As shown on the leftmost side in Fig. 16b, NF-iSAM can
solve both sequences and return accurate estimates on robot
trajectories and landmark positions. Moreover, we consider
data association ambiguity in these datasets and evaluate the
performance of NF-iSAM for multi-modal data association
problems. Note that we randomly choose a faction of range
measurements, wipe the ID information of the detected land-
mark, and designate the measurement to associate with all
landmarks. The rightmost end in Fig. 16b is the most chal-
lenging case where 60% of range measurements are acquired
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with no landmark information such that they are formulated
by multi-modal factors. The estimated trajectories of NF-
iSAM resemble the ground truth well in all the cases with
data association ambiguity. As seen in Fig. 17a, although a
higher fraction of data association ambiguity causes a higher
RMSE, the RMSE is still at the same order of magnitude
as that with no data association ambiguity. We also provide
the profiling of NF-iSAM’s runtime in Fig. 17b. The time for
sample generation and subsequent training remains roughly
even across key poses since the dimension of variables on
the sub-tree for incremental updates is fairly consistent. As
we mentioned in Sec. IV-C, sampling posteriors takes much
shorter time than training normalizing flows. While posterior
sampling is fast, it runs through the entire Bayes tree. Thus, the
time for posterior sampling increases with the dimensionality
of the joint posterior. To alleviate this issue for larger-scale
problems, one may consider to control the size of the Bayes
tree via strategies including fixed-lag smoothing [34, Sec.
5.3.2].

VII. CONCLUSION

We presented a novel algorithm, NF-iSAM, that provides
a promising foundation for estimating the full posterior dis-
tribution encountered in SLAM. NF-iSAM utilizes the Bayes
tree coupled with normalizing flows to achieve efficient in-
cremental updates in non-Gaussian distribution estimation of
the full posterior. We demonstrated the advantages of the
approach over alternative state-of-the-art point and distribution
estimation techniques for SLAM, with synthetic datasets and
real datasets. Our approach showed an improved estimate
of the full posterior in highly non-Gaussian settings due to
nonlinear measurement models and non-Gaussian (e.g., multi-
modal) factors. Currently, for real SLAM problems with non-
Gaussian and nonlinear models, our approach can be used to i)
understand how the posterior distribution evolves over time, ii)
provide reference estimates to approximate distributions found
by other estimation techniques, and iii) perform inference tasks
that require an estimate of the full posterior, e.g., estimating
the posterior belief of data association or various expectations
with respect to the posterior.

We conclude the paper by noting that NF-iSAM warrants
further research as a promising and generalizable algorithmic
framework. Its generalizability includes two aspects: i) the
parameterization of transformation maps in normalizing flows
can be replaced by other forms ii) and, more significantly,
normalizing flows can be replaced by other probabilistic
modeling techniques. On the practical side, our experiments
employ complex transformations to express non-Gaussian dis-
tributions, which in part incurs greater computation cost than
iSAM2. Further research is needed to explore more efficient
implementation strategies that can lead us closer to real-time
operation, including: (1) leveraging more efficient density
modeling techniques such as coupling flows [30] and (2)
utilizing faster incremental update strategies on the Bayes tree
such as marginalization operations and variable elimination
orderings with heuristics [34, 46].
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