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Abstract—Online planning of whole-body motions for legged
robots is challenging due to the inherent nonlinearity in the robot
dynamics. In this work, we propose a nonlinear MPC framework,
the BiConMP which can generate whole body trajectories online
by efficiently exploiting the structure of the robot dynamics.
BiConMP is used to generate various cyclic gaits on a real
quadruped robot and its performance is evaluated on different
terrain, countering unforeseen pushes and transitioning online
between different gaits. Further, the ability of BiConMP to
generate non-trivial acyclic whole-body dynamic motions on the
robot is presented. The same approach is also used to generate
various dynamic motions in MPC on a humanoid robot (Talos)
and another quadruped robot (AnYmal) in simulation. Finally,
an extensive empirical analysis on the effects of planning horizon
and frequency on the nonlinear MPC framework is reported and
discussed.

I. INTRODUCTION

Legged robots can autonomously navigate and operate in
environments built for humans. The efficacy of such robots
depends largely on how efficiently they can move around,
adapt to changes in their surroundings and recover from
unforeseen disturbances. These decisions are usually made
by trajectory optimization algorithms which compute optimal
robot movements and contact forces and contact planners
which decide which end-effector should make contact with the
environment. Consequently, it is important for the trajectory
optimization algorithm to be general enough such that it is
able to generate any behaviour that is needed for the robot
to achieve a desired task. At the same time, these algorithms
should run as fast as possible such that they adapt online to
any changes in the environment. In this work, we propose a
general approach to generate whole body trajectories that is
sufficiently fast to be used in a model predictive control (MPC)
fashion.

Initially, algorithms based on simplified models such as
the linear inverted pendulum model (LIPM) [1], [2] were
developed to generate trajectories online for humanoid robots.
These algorithms make use of a predefined footstep sequence
provided by the user to generate a feasible center of mass
(CoM) trajectory. Since the LIPM leads to an optimization
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problem with quadratic costs and linear constraints, the prob-
lem can be solved quickly using a quadratic program (QP) [3].
While further extension of these algorithms enabled adaptation
of the step location and timing [4], [5], [6], they are only
capable of generating walking motions for flat grounds with
co-planar contacts.

On the other hand, frameworks that can plan contacts
and optimal motions for complex scenarios have also been
developed. In [7], [8], [9], the full-body motion and con-
tact selection problems are formulated as single nonlinear
optimization problems. In [10], a more efficient phase-based
formulation of contact planning is proposed. Furthermore, [11]
makes use of differential dynamic programming (DDP) [12]
to solve the motion optimization problem through contact.
While these approaches can in principle find complex contact
sequences, they tend to be computationally too expensive to
be used in real-time. Although [13] showed nonlinear model
predictive control on a quadruped using a Gauss-Newton
multiple shooting variation of DDP and a relaxed spring
damper contact model, results were limited to motions with
low angular momentum such as trotting and jumping in place.

Classically, the trajectory optimization problem has been
split into two different sub-problems: contact planning and mo-
tion optimization. This decomposition reduces the complexity
of the overall problem which allows them to be tractable. The
main idea is to first generate a contact sequence given the
terrain around the robot. The contact sequence is then provided
to the motion planner to generate a feasible trajectory for the
robot. The contact planning sub-problem can be solved using a
variety of approaches such as mixed integer optimization [14],
[15], L1-loss based optimization [16], graph search [17] and
sampling based approach [18]. For the motion optimization
sub-problem, the nonlinear dynamics can be split into two
components, the actuated and unactuated dynamics (centroidal
dynamics) [19]. One of the interesting approaches to generate
whole body motions quickly is to use the centroidal dynamics
and full kinematics of the robot in one optimization problem
[20]. Further, a feasible whole-body motion can be generated
more efficiently by iteratively optimizing for the centroidal
dynamics and whole-body kinematics problems [21]. Despite
splitting the trajectory optimization problem into two parts,
each individual sub-problem remains nonlinear and challeng-
ing to solve in real-time.

In order to further reduce computation times, several relax-
ations have been proposed to the centroidal dynamics formu-
lation. In [22], sequential convex relaxations are used and each
relaxation is solved using a second order cone program [23].
Even though this approach can be used to quickly optimize a
variety of motions, the reduction in compute times are not
yet sufficient for closed-loop optimization. Further, in our
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experience, the relaxations are often not tight enough for
very dynamic motions. Another approach to convexify the
centroidal dynamics problem is to only minimize the worst
case L1 bound on the angular momentum [24]. While this
formulation allows to solve the motion planning problem with
a QP, it was only shown to be capable of generating motions
with low angular momentum such as walking. For quadrupeds,
with negligible leg inertia, the centroidal dynamics is also
often approximated by linearizing the base rotation [25], [26].
In these approaches, the swing foot trajectories are predefined
which restrict the possibilities for whole-body motions and
may lead to physical inconsistency. In [27], DDP is used to
solve an optimization problem with the centroidal dynamics
and first order kinematics in real-time. This approach achieved
re-planning frequencies suitable for real-time use. However,
the approach relied on a low-level whole body controller and
it is unclear whether this controller solely tracked the motions
generated by DDP or whether the low-level controller behaved
as a dynamic filter to ensure physical consistency [28]. From
our experience, the solve times for such methods increase for
more dynamic motions such as bounding or rapid (forward)
jumping due to the drastic changes in the momenta profiles.

In this work, we propose a nonlinear trajectory optimization
framework that can be used in a real-time closed-loop model
predictive control to generate whole-body motions using the
kino-dynamic decomposition proposed in [21]. The dynamics
optimization problem is solved efficiently by exploiting the
biconvex structure of the centroidal dynamics. We previously
explored this structure in [29] which leveraged the biconvex
nature of the problem to formulate two separate, convex,
sub-problems. Given the convexity of each sub-problem, an
alternating procedure based on block coordinate descent was
used which allowed the use of state of the art QP solvers
and resulted in a speedup in solve times. However, very
little is understood about the convergence rates of block
coordinate descent which makes it unreliable for MPC where
new solutions are needed in a fixed time[30]. In this work, we
explore a different approach that also exploits the biconvex
structure of the centroidal dynamics but we formulate the
optimization problem using the Alternating Direction Method
of Multipliers (ADMM) [31], leading to a more efficient and
reliable algorithm. We also split the biconvex dynamics dif-
ferently which reduces the number of optimization variables.

Compared to the block coordinate descent algorithm, the
ADMM algorithm provides favourable convergence properties
such as the ability to reach acceptable solutions in fewer
iterations and guaranteed sublinear convergence [31]. Cru-
cially, due to the unconstrained nature of each sub-problem,
each iteration is computationally cheap with respect to wall
time which allows us to exploit the aforementioned conver-
gence properties and make it attractive for use in an MPC
fashion. In the proposed ADMM formulation, each convex
sub-problem is solved using a custom implementation of
the Fast Iterative Shrinkage Thresholding Algorithm (FISTA)
[32]. This approach guarantees quadratic convergence of the
convex sub-problems while enforcing a variety of constraints
including second order friction cone constraints. Our custom
implementation exploits 1) the accelerated gradient nature of

FISTA by warm starting the line search step to reduce solve
times and 2) the sparse nature of our optimal control problem
(OCP) as each iteration of the line-search only involves
sparse matrix-vector multiplication which is less expensive
compared to typical Quadratic Program (QP) or Quadratically
constrained QP solvers which often involve expensive matrix
decompositions. Due to this formulation, we solve the exact
centroidal optimization problem without relaxing the friction
cone constraints [33] or the dynamic constraints [22]. Finally,
the first order optimization procedure of FISTA increases
robustness to convergence in the absence of true gradients [34],
[35]. This situation often occurs on real robots due to lack of
accurate sensor measurements. Furthermore, problems such as
ill-conditioning of the Hessians that second order methods like
DDP encounter are also absent with FISTA.

We also propose a second order kinematics optimization
formulation to generate smooth joint trajectories that track cen-
teroidal momentum profiles as required in the kino-dynamic
setup. We choose to solve this kinematics problem with
a DDP solver [36] to exploit the sparsity in the problem.
The second order nonlinear optimization removes the need
to specify heuristic-based end-effector trajectories (e.g. via a
spline based swing foot trajectory) as is often done in MPC
implementations [25], [37]. Although these methods of swing-
foot generation work well for simple motions, they are often
restrictive in nature and do not allow the algorithm the freedom
to find trajectories which may utilize the full capabilities of the
end-effectors. The nonlinear kinematics solver generates non-
trivial swing foot trajectories to track the desired centroidal
momentum provided by the dynamics optimization. Further,
the automatic generation of smooth joint acceleration profiles
allows direct computation and tracking of torques on the robot
with a simple inverse dynamics controller. This removes the
need for a complicated QP-based whole-body controller that
often behaves as an additional dynamic filter.

We demonstrate our approach in closed-loop MPC on
the real Solo12 quadruped robot [38] at 20 Hz to generate
several gaits such as trotting, jumping and bounding. We
also display the robustness of the framework against external
disturbances and terrain noise. A high-five motion is also
shown to demonstrate the generality of the approach to non-
trivial, acyclic motions. Since the framework does not relax
or impose assumptions to make the original problem convex,
we are able to generate a wide array of motions in real-time.
Furthermore, the same approach is used to generate various
dynamic motions in MPC on a humanoid robot (Talos [39])
and another quadruped robot (AnYmal [40]) in simulation.
This underlines the generality, robustness and low computation
times of our proposed framework, BiConMP, despite the
changes in the robot mass distributions, number of joints (size
of optimization problem) and nature of the robot. This is
often not as easy with other approaches which use simplified
dynamics whose assumptions may not hold valid for different
robots. Finally, we empirically analyze the effects of the
horizon length and re-planning frequency on the robustness
and performance of the nonlinear MPC on the real robot
(Solo12). To the best of our knowledge, this is the first reported
empirical analysis of closed loop nonlinear MPC performance



for legged robots.

II. BACKGROUND

This section introduces the background necessary to de-
scribe our approach. First, we discuss the centroidal momen-
tum dynamics of a floating base robot. Next, we explain the
kino-dynamic trajectory optimization scheme used to generate
feasible whole-body multi-contact motions for legged robots.
Finally, we briefly introduce an optimization technique used
in the solver.

A. Centroidal Dynamics

The rigid body dynamics of floating base robot can be
described as

M(q)v̇ + N(q,v) = ST τ +
N∑
j=1

JTj λj (1)

where q ∈ Rn × SE(3) is the generalized configuration of
the robot (joint positions and base pose), and v ∈ Rn+6 is the
generalized velocity vector. M(q) ∈ R(n+6)×(n+6) is the mass
matrix for the given robot configuration, N(q,v) ∈ Rn+6

is the vector containing all generalized forces (Coriolis, cen-
trifugal, gravity, etc), τ ∈ Rn is the vector of joint torques,
S is a selection matrix reflecting the underactuation of the
robot, Jj ∈ R6×(n+6) are the end effector Jacobians and
λj = [fj ,κj ] ∈ R6 is the vector of forces and torques applied
at each end effector.

The dynamics can further be split into its actuated and
unactuated parts [19], [21]

Mu(q)v̇ + Nu(q,v) =

N∑
j=1

JTu,jλj (2a)

Ma(q)v̇ + Na(q,v) = τ +

N∑
j=1

JTa,jλj (2b)

where the subscript a, u correspond to actuated and unactuated
dynamics respectively. The unactuated dynamics is equivalent
to the Newton-Euler equations of the center of mass (CoM)[

l̇

k̇

]
=

[
mg +

∑N
j=1 njfj∑N

j=1 nj((rj − c)× fj + κj)

]
(3)

where l,k are the linear and angular momentum [41], m
is the robot mass, g is the gravity vector, c represents the
center of mass CoM location, nj is a binary integer that
describes whether the end effector j is in contact, fj ,κj , rj are
the end effector force, torque and location respectively. The
linear momentum is related to the CoM velocity ċ as l = mċ.
The linear momentum and angular momentum can also be
described in terms of the generalized joint configuration us-
ing the centroidal momentum matrix(D(q)) of the robot as[
l
k

]
= D(q)v, [41].

B. Kino-Dynamic Motion Generation

Splitting the dynamics enables multi-contact motion genera-
tion by only considering the unactuated dynamics or centroidal
dynamics of the robot. Subsequently, a feasible whole-body
trajectory can then be determined based on the centroidal
plan and desired whole body tasks, provided there is sufficient
torque authority [21][22]. This is an attractive approach since
it breaks the original nonlinear optimization problem into two
simpler sub-problems.

A desired motion plan using the centroidal dynamics can
be generated by solving the following discrete optimal control
problem (OCP)

min.
c,ċ,k,f ,κ

T−1∑
t=0

φt(ct, ċt,kt, ft,κt) + φT (cT , ċT ,kT , fT ,κT )

s.t. ct+1 = ct + ċt∆t (4)

ċt+1 = ċt +

N∑
j=1

njt
fjt
m

∆t+ g∆t (5)

kt+1 = kt +

N∑
j=1

njt ((r
j
t − ct)× f jt + κjt )∆t (6)

∀t,j ,
√

(fjt,x)2 + (fjt,y)2 ≤ µfjt,z , fjt,z ≥ 0 (7)

∀t,j , rjtεΨ, ∀ct ∈ Ω, c0, ċ0 = cinit, ċinit (8)

where φt(ct, ċt,kt, ft,κt) is the running cost,
φT (cT , ċT ,kT , fT ,κT ) is the terminal cost, ∆t is the
time discretization, µ is the friction coefficient, Ψ is the set
of all allowed stepping locations, Ω are kinematic constraints
written as bounds on the CoM position, cinit, ċinit are the
initial conditions for the CoM.

The optimal joint trajectory is generated by solving a
whole-body kinematic optimizer which tracks the optimal
centroidal momentum obtained from the previous step using
the centroidal momentum matrix, along with additional full
body tasks, such as swing foot motion [22]. The generated mo-
mentum trajectory from the whole-body kinematic optimizer
is then used as a soft constraint in the centroidal OCP to obtain
refined centroidal and contact forces trajectories. This process
is iterated until the two sub-problems converge [21] leading
to a solution to the original problem.

One can then directly use plain inverse dynamics to recover
actuated joint torques from desired state trajectories and con-
tact forces using Eq. 2b

τRNEA = Ma(q)v̇ + Na(q,v)−
N∑
j=1

JTa,jλj (9)

Note that in this work we do not use a constrained QP-based
inverse dynamics as is usually done, but we simply use the
computed joint positions, velocities, accelerations and force
trajectories in the Recursive Newton Euler Algorithm (RNEA)
[42] to compute the torques.



Fig. 1: A birds eye view of the entire nonlinear MPC framework. First, centroidal trajectories are generated using the ADMM
framework explained in Section III-B. These trajectories are used within a DDP-based kinematic optimizer that generates
the desired joint trajectories (Section III-D). The optimal force and joint trajectories from this kino-dynamic iteration are
recomputed at 20 Hz and are used in an unconstrained inverse dynamics (9) to compute the desired joint torques at 1 KHz.
Finally these actuator torques are summed up with a fixed low gain impedance joint controller that result in the torques sent
to the robot actuators (20).

C. Fast Iterative Shrinkage Thresolding Algorithm (FISTA)

Proximal gradient methods [43] are a popular family of
algorithms used to solve problems of the form

min.
x

T (x) + I(x) (10)

where x is the optimization variable, T (x) is the cost function
to be optimized and I(x) is usually an indicator function that
enforces feasibility constraints or forces x to remain inside
a feasible set. The cost function T (x) can be non-smooth,
nonlinear or convex and I(x) is restricted to be convex. Each
algorithm in the proximal gradient family varies slightly in the
step length computation and update procedure for x, however
each iteration in the proximal methods is fundamentally of the
form

xk+1 = Pc(xk + tk∇f(xk)) (11)

where tk is the step length, xk+1 is the value of the optimiza-
tion variable at the next iteration (k+1) and Pc is the proximal
operator that ensures that after the descent step is taken, the
new xk+1 lies within the domain of I(x) [43]. Depending
on the function represented by I(x), the proximal operator
may or may not have a closed form solution. The function
I(x) can only be used if it is possible to compute a closed
form solution for the proximal operator [32]. Consequently,
arbitrary inequality constraints cannot be enforced with these
methods. However, in the presence of closed form solutions
(as is in our case) these proximal operators are very cheap to
evaluate.

In the specific case when the cost function T (x) is convex, a
proximal gradient method, the Fast Iterative Shrinkage Thresh-
olding Algorithm (FISTA) is an attractive choice. FISTA is an
accelerated first order gradient method that displays quadratic
convergence. Algorithm 1 shows the steps in FISTA. The key
point in the algorithm, as compared to other proximal methods,
is the introduction of the auxiliary optimization variable yk
and the update procedure of tk which is the primary reason
for the quadratic convergence. The step length Lk is chosen
based on a sufficient decrease condition (similar to Wolfe’s
condition [3]). For more details regarding the algorithm we
refer the reader to [43], [32].

Algorithm 1: FISTA algorithm
Initialize optimization variables: y0 = x0, t0 = 1
set k = 0
while k < maximum iterations do

Pick Lk > 0
xk+1 = prox 1

Lk
I(yk + 1

Lk
∇f(yk))

tk+1 =
1+
√

1+4t2k
2

yk+1 = xk+1 + tk−1
tk+1

(xk+1 − xk)

In the following, we will exploit FISTA’s quadratic conver-
gence properties to quickly solve the convex sub-problems of
the centroidal OCP (see Section III-C). The indicator function
in our formulation enforces kinematic (box constraints) and
friction cone constraints (second order cone projections) for



which the proximal operator exists. In practice, FISTA is
computationally very cheap because it does not need the
inversion of the Hessian to achieve quadratic convergence and
the proximal step that enforces feasibility of x (inequality
constraints) is inexpensive.

III. APPROACH

We now introduce the main components of our solver, the
BiConMP. First, we present the biconvex dynamics solver
in detail and explain how it exploits the structure of the
nonlinearity in the centroidal OCP to solve the problem
efficiently. Second, we discuss the DDP based second order
kinematics formulation used in the framework to solve the
nonlinear problem. Finally, we give a birds eye view of how
the BiConMP is used in a non-linear MPC setting to generate
full body motions in real time.

A. Biconvexity in Centroidal Dynamics

The unactuated dynamics constraints (4), (5), (6) are non-
linear due to the cross product term in the angular momentum
constraint (6). This non-convexity makes the problem inher-
ently difficult to solve. These constraints, however, have an
interesting feature: they are biconvex [31]. That is, the con-
straints are affine in terms of c, ċ,k when f jt ,∀t,j is kept con-
stant and vice-versa. Consequently, the terms of the discrete
constraints (4), (5), (6) can be rearranged as an affine equation
in terms of X, A(F)X = b(F) and F, A(X)F = b(X),
where X = {ct, ċt,kt . . . } and F = {f jt,x, f

j
t,y, f

j
t,z . . . }, for

t = 0, . . . , T −1, j = 1, . . . , N . Here A(F) is a matrix whose
elements depend on F and the centroidal dynamic constraints.
Similarly, A(X) is a matrix depending on X and dynamics
constraints. b(F) and b(X) are vectors whose elements depend
on F and X respectively.

B. Biconvex optimization with ADMM

Using the observation from the previous section, the cen-
troidal dynamics OCP in Section II-B can be alternatively
formulated as shown below, to highlight and exploit the
biconvexity in the problem:

min.
X,F

Φ(X) + I(X) + Φ(F) + I(F) (12)

s.t. G(X,F) = 0 (13)

where Φ(X),Φ(F) are the running and terminal cost functions
in terms of X and F respectively, G(X,F) = 0 are the
nonlinear constraints (4) such that it is bi-affine in terms of
X and F, (5), (6) and the initial state constraints (c0, ċ0 =
cinit, ċinit), I(X) is an indicator function that enforces kine-
matic constraints (∀ct ∈ Ω, section II-B) while I(F) is an
indicator function that enforces unilaterality and friction cone
constraints. This formulation makes it possible to exploit the
biconvexity in the dynamics and solve the nonlinear problem
very efficiently using the Alternating Direction Method of
Multipliers (ADMM) [31]. We want to use the ADMM algo-
rithm because it has an interesting property of reaching rea-
sonably good solutions in a few iteration [31]. The downside
however is that ADMM takes far more iterations as compared

to a second order method (DDP) to obtain a high resolution
result. In our application (closed loop MPC), solutions that
have dynamic constraint violation tolerances lower than the
sensor noise and satisfy feasibility constraints are sufficient
to be successfully deployed on the robot (as shown in our
experiments). Consequently, when the need arises, ADMM
allows us to terminate the solver before complete convergence
(early termination) to ensure that the new trajectory is available
in the desired time (real-time). At the same time, be sure that
a reasonably good solution that is realizable on the robot is
available. Furthermore, ADMM has a sub-linear convergence
rates, which is not guaranteed with block-coordinate descent.

The proposed BiConMP solves the dynamics optimization
by iteratively solving the two convex sub-problems (shown in
Algorithm 2) as a part of a larger ADMM optimization scheme
[31]. The ADMM algorithm solves both the convex sub-
problems (force (F) problem and state (X) problem) iteratively
until the dynamics violation falls below a desired tolerance
(exit criteria). The dynamics violation is computed as

||A(Fk+1)Xk+1 − b(Fk+1)||2 ≤ εdyn (14)

where εdyn is the termination tolerance.

Algorithm 2: Biconvex Centroidal Optimization
Initialize optimization variables: F0, X0, P0, ρ
set k = 0
while k < maximum iterations do

min.
F

Φ(F ) + ρ
2 ||A(Xk)F − b(Xk) + Pk||2 + I(F )

min.
X

Φ(X)+ ρ
2 ||A(Fk+1)X−b(Fk+1)+Pk||2+I(X)

Pk+1 = Pk +A(Fk+1)Xk+1 − b(Fk+1)
if ||A(Fk+1)Xk+1 − b(Fk+1)||2 ≤ εdyn then

terminate

The cost function in the state sub-problem is always of the
form Φ(X) = (X −Xnom)TWx(X −Xnom) where Xnom

is a nominal trajectory, Wx is a diagonal weight matrix.
The nominal trajectory gives the solver a heuristic idea of
the desired centroidal trajectory (need not be dynamically
consistent). In practice, the nominal trajectory usually consists
of a desired base height and velocity (forward and sideways
velocity). In addition, for some motions (cyclic gaits), a
nominal angular momentum trajectory is provided to track a
desired base orientation since direct orientation tracking is not
possible with the centroidal OCP formulation (it is possible
with the kinematics solver, section III-D). The nominal angular
momentum trajectory is computed as follows:

knom = w log3(q0 	 qdes) (15)

where q0 and qdes are the current and desired base orientation
quaternions. 	 is the difference operator for quaternions and
log3 is the logarithmic map from SE(3) to se(3). w is a 3
dimensional weight vector. knom is set as the desired nominal
angular momentum value for each time step in the planning
horizon. In practice, the desired base orientation quaternion is
always set to [0, 0, 0, 1] which corresponds to zero roll, pitch
and yaw.



Remark 1: Note that the exact Netwon-Euler dynamics
are considered in the centroidal dynamics optimization. The
inertia of the base is only ignored (assumes unit inertia) while
computing the nominal angular momentum to be tracked in
the cost (Eq. (15)). We use this heuristic computation because
the resulting trajectories from BiConMP were able to track
a desired orientation (even during external pushes) on the
robot. A more accurate nominal trajectory could be used if the
need arises. Note that the exact base orientation is optimized
concurrently in the kinematic solver.

In the force sub-problem, the cost is Φ(F) = FTWfF
which penalizes unnecessary contact forces. To enforce com-
plementarity constraints [9] based on the contact plan, coeffi-
cients of the variables corresponding to the time step for the
given end effector where contact does not exist (elements of
matrix A(Xk)), are set to zero in the force sub-problem. This
automatically sets the planned forces to zero at that time step
after optimization because of the cost function.

C. Convex Sub-problems

The state sub-problem can be solved using any Quadratic
Program (QP). The force sub problem will need a Quadrati-
cally Constrained QP solver due to the second order friction
cone constraints[3]. These constraints could be relaxed and
made linear, but this leads to more conservative motions
(discussed later). In the BiConMP, we use FISTA (section
II-C) because of the following favourable reasons: 1) FISTA
maintains quadratic convergence even while enforcing con-
straints, 2) FISTA has low computation cost since its a first
order method. The biconvex problem was formulated with
indicator functions enforcing inequality constraints (kinematic
and friction cone constraints) because FISTA can efficiently
impose them using proximal operators, which are computa-
tionally inexpensive.

1) State sub-problem (optimizing for X): the kinematic
constraints are enforced by the indicator function I(X). This
constrains the CoM to stay within a cube whose size depends
on the location of the contact points at the particular time
step. The proximal operator then becomes a box projection
[32] while computing a descent step in FISTA for the kth

iteration,

Xk+1 = max(min(X∗
k,u), ξ) (16)

where

X∗
k = Yk+

1

Lk
(Φ

′
(Yk)+ρA(Fk)T (A(Fk)Yk−b(Fk)+Pk))

is the updated X parameter after the descent step is taken
with Lk as the line search step, Fk is an auxilary variable
to Xk used in FISTA (subsection II-C), u and ξ are the
upper and lower bounds required to be satisfied for kinematic
feasibility. For the components of X corresponding to velocity
and angular momentum, the upper and lower bounds are set
to +∞ and −∞ so as to enforce bound constraint only on the
CoM location.

2) Force sub-problem (optimizing for F): the indicator
function I(F) enforces second order friction cone constraints
[44]. The proximal operator enforcing this constraint for each
group fx, fy, fz corresponding to one contact point and time
step in the F vector is

(0, 0, 0) µ
√

(fxk )2 + (fyk )2 ≤ −fzkorfzk < 0

(βfx, βfy, γfz) µ
√

(fxk )2 + (fyk )2 > fzk
(fx, fy, fz)

√
(fxk )2 + (fyk )2 ≤ µfz

where µ is the friction coefficient,

β =
µ2
√

(fxk )2 + (fyk )2 + µfz

(µ2 + 1)
√

(fxk )2 + (fyk )2
(17)

and

γ =
µ
√

(fxk )2 + (fyk )2 + fz
(µ2 + 1)

. (18)

Subsequently, after a descent step is taken in FISTA to update
the force vector

F∗
k = Yk+

1

Lk
(Φ

′
(Yk)+ρA(Xk)T (A(Xk)Yk−b(Xk)+Pk))

every f∗x , f
∗
y , f

∗
z in F∗

k is then projected based on the friction
cone proximal operator to obtain the force vector Fk+1 for the
next iteration. Here Yk is the auxiliary variable to Fk (section
II-C). The projection of each group of forces independently
works mathematically with the FISTA algorithm because the
control decision variables are independent [32] of each other
in the centroidal problem. There is no explicit constraint en-
forcing unilaterality in fz because the friction cone projection
implicitly enforce fz ≥ 0. The interesting point to note here
is that with FISTA, the second order cone projection can be
enforced directly while still maintaining quadratic convergence
rates. In contrast, other QCQP solvers do not have quadratic
convergence properties. They are also more computationally
intensive because they need second order information. To
improve solve time the friction cones are often approximated
as linearized (i.e. converted to pyramidal polyedral constraints)
in order to solve them with QPs. This usually results in
conservative trajectory solutions which is not desirable when
dynamic motions are to be performed.

3) FISTA implementation: To reduce the solve times in
each iteration we specialize our implementation of the FISTA
solver to exploit certain additional details specific to the
dynamics optimization problem. Firstly, the analytical gra-
dients of the cost function is used to compute the descent
direction instead of using auto-diff or numerical differentiation
methods. Secondly, the sparsity of the matrices A(X), A(F)
are exploited during the matrix-matrix and matrix-vector com-
putation in each iteration. Thirdly, the matrix multiplications,
such as A(Xk)TA(Xk), A(XF)TA(XF), etc., which are only
computed once in each convex sub-problem, are cached and
reused. Finally, the accelerated gradient nature of the solver
ensures that the first line search step is successful after certain
number of iterations are reached. In practice, we noticed that
almost the same step lengths were used in each iteration.
Subsequently, we warm start the solver with these line search
steps which significantly improves the solve times as the solver



no longer searches for the optimal values during run time.
The warm starting of the line search works well in FISTA
because of an interesting property in its convergence proof
which states that any line search parameter bigger than the
Lipschitz constant of the cost function will satisfy Wolfe’s
condition (chapter 10 [32]). In this case, we conjecture that
the empirically determined value satisfies this property. Warm
starting the line search would not be possible conveniently
with other QP solvers.

Remark 2: The quadratic convergence property of FISTA,
the computationally inexpensive proximal operators used to
enforce the inequality constraints, and the above-mentioned
details in the implementation significantly improve the solve
times which play a crucial role in being able to re-plan online
on the real robot. It is important to note that, thanks to FISTA,
we have quadratic convergence for each sub-problem of the
ADMM framework. We however only expect super-linear
convergence for the whole centroidal trajectory optimization
problem.

D. Kinematics Solver

The full-body kinematics trajectory generation problem
described in section II-B is also nonlinear in nature. In the
BiConMP, the problem is solved quickly using Differential
Dynamic Programming (DDP) [12]. DDP exploits the block
diagonal structure of the matrices while optimizing the prob-
lem and also shows quadratic convergence [45], [46]. We
use Crocoddyl [36], an open-source DDP implementation. We
formulate the problem as

min.
q,v,v̇

T∑
t=0

Φtmom(l∗t ,k
∗
t ) + ΦtCoM (c∗t ) + Φteff (qt,vt) + ||v̇||

s.t. qt+1 = qt + vt ∆t, vt+1 = vt + v̇t ∆t (19)

where, Φtmom(l∗t ,k
∗
t ) = ||D(qt)vt −

[
l∗t
k∗
t

]
|| is a momentum

cost that tracks the optimal linear and angular momentum
computed by the centroidal OCP (Algorithm 2), ΦtCoM (c∗t )
is the center of mass tracking cost with the optimal CoM
trajectory (c∗t ) obtained from the centroidal OCP, Φteff (qt,vt)
is the end effector locations and velocity cost, and ||v̇|| is a
penalty on the control. In practice, the cost on the control
encourages smooth motions of the end effectors especially
during contact transitions. For example, during the landing
phase of a jumping motion the kinematics solver retracts
the legs of the robot in the air so that a large torque is
not needed at the time of contact to bring the legs to rest
(satisfy complementarity constraints). In essence, this reduces
the impact of the legs during landing and makes the motion
smooth on the real robot. This is one of the advantages of
using a nonlinear kinematics formulation that plans a full body
motion by taking the future into account.

E. The Model Predictive Control Pipeline

An overview of the entire framework is shown in Fig. 1.
Given the current states of the robot qinit, vinit, v̇init, desired
gait, planning horizon and velocity, a contact plan is either

generated and adapted using the Raibert controller [47] or
pre-defined without contact adaptation for acyclic or general
motions. The BiConMP framework takes the input states and
computes the optimal end effector forces, joint positions, joint
velocities and joint acceleration trajectories for the entire
horizon. Given the desired joint trajectories and contact forces,
we use (9) along with a low joint impedance around the desired
states to compute the desired torques at 1 KHz (Equation
(20)). The desired torques is then sent to the robot which are
tracked on board at 10 KHz. The BiConMP control loop is
re-computed at 20 Hz (50 ms) to update for optimal motion
and control trajectories in real time.

In our BiConMP framework, we re-plan the whole-body
trajectories every 50 ms, for a horizon larger then 50 ms,
based on feedback from the current state of the robot. The
feedforward torques are computed every 1 ms with inverse
dynamics (Equation (9)) based on the open loop trajectories
in between two re-planning instances. Finally, a low joint
impedance around the desired states are added to the computed
torque to result in the final joint torques

τi = τRNEA,i +Kp(qd,i − qr,i) +Ky(vd,i − vr,i) (20)

where τi is the torque sent to joint i, τRNEA,i is computed
using interpolated values of fi, qi,vi, and v̇i between each
MPC cycle, Kp and Ky are the joint position and velocity
impedance gains respectively. Subscripts d and r stand for
desired and actual respectively. In the rest of the paper,
we refer to the RNEA based controller (20) as the inverse
dynamics (ID) controller.

When the provided contact plan is longer than the desired
MPC horizon (e.g. for acyclic motions below), the plan is
segmented into a smaller section matching the desired horizon
length and then provided to the BiConMP. As time elapses,
the segment is shifted (moving horizon) to select the part of
the contact plan starting from the elapsed time t and ending at
t+T where T is the desired horizon. For gaited motions, the
contact plan is automatically updated based on the time that
has elapsed which determines which phase the legs should be
in and for how long depending on the gait parameters and
desired horizon length (horizon is kept constant after the start
of the motion). The desired velocity is also updated at every
cycle based on the user input.

Remark 3: We would like to emphasize the importance of
each individual component in our BiConMP pipeline. First,
we exploit the biconvex structure in the centroidal dynamics
and efficiently generate centroidal trajectories while respecting
force constraints (Section III-B). Second, for solving the
convex sub-problems in the centroidal problem, we use FISTA
which ensures quadratic convergence even with second order
friction cone constraints. Third, we solve a simple second
order whole-body kinematic optimizer given the momentum
profiles provided by the centroidal dynamics optimization.
This allows to drastically reduce computation time compared
to the approaches using full-body dynamics DDP for the
kinematics problem [48]. Fourth, given the planned forces
from centroidal MPC and desired joint trajectories from the
IK, we compute the joint torques using Eq. (9) without a
need to solve a constrained whole-body inverse dynamics.



Note that contrary to [27], we intentionally did not use a
constrained inverse dynamics on top of our MPC block to
demonstrate the quality of the plans generated by our approach
without the need to further filter them for physical consistency
[28]. Specifically, torque references computed from our MPC
algorithm (which enforces friction cone constraints) can be
applied directly to the robot.

IV. EXPERIMENTS

In this section we present results obtained on a real Solo12
quadruped [38] along with simulation results on a humanoid
and another quadruped robot. We first study the optimizer,
including effects on the solve times as the size of optimization
problem changes and the behaviour of termination criteria used
in the biconvex dynamics solver. Next, we present the different
motions (cyclic and acyclic) generated on Solo12 along with
the performance of the BiConMP in various scenarios to test
the robustness of our approach. Finally, we present simulation
results on the AnYmal quadruped and the Talos humanoid to
show that the approach can be directly applied to legged robot
with other morphologies and mass distributions. The attached
video illustrates all these experiments.

A. Implementation details

The entire BiConMP is implemented in C++. The biconvex
dynamics optimizer is implemented from scratch including a
custom implementation of FISTA. Croccoddyl [36] is used to
solve the kinematics problem. The code will be made available
open-source upon acceptance of this paper.

All experiments were run on a Dell precision 5820 tower
machine with a 3.7 GHz Intel Xeon processor and rt-preempt
kernel. Robot Operating System 2 (ROS 2) was used to
handle the multi threading requirement of the approach to
communicate between the 1 kHz inverse dynamics control
loop and the 20 Hz MPC loop. The BiConMP is run on a node
using a service client setup while the main inverse dynamics
control loop (20) is run on a separate node at 1 kHz. The
BiConMP service node is called at 20 Hz to update the plan
and provide it to the inverse dynamics controller. The desired
torque commands are then computed and provided to Solo12
via Ethernet channel.

B. Solver Analysis

1) Solve Times: To analyze the solve times of the BiConMP
as a function of the number of collocation points/problem
size, three motions (trot, jump and bound) are used. These
cyclic gaits are used as it is straightforward to change the
horizon of the problem for this analysis. For each of these
motions, the weights of the optimization problem, step time,
discretization time, tolerances, etc., are kept the same and
only the horizon of the problem is increased. In all the cases,
the solver is terminated only after satisfying the termination
criteria. The resulting solve times are shown in Fig. 3. The top
3 plots contain the solve times from the dynamics biconvex
solver, the DDP based kinematics solver and the total solve
time (including miscellaneous operations like cost creations),

respectively. The biconvex dynamics solver shows a linear
increase in the solve times as the problem size increases.
The kinematic solver also show an almost linear growth with
increase in the number of collocation points. The solver does
violate this trend at times depending on the termination cri-
teria used in Crocoddyl [36]. However, the kinematics solver
maintains a strong linear behavior in the problem size that is
mainly important in this work to achieve MPC (between 6-12
collocation points). On the other hand, the total solve times
of the BiConMP framework maintains a linear growth in the
solve rates. The solver always remains real-time, that is, it
converges faster than the horizon of the plan. For example,
the solver takes less than 0.85 seconds to generate a jump
motion with a horizon of 7 seconds (140 collocation points
× 0.05). The third plot also shows that the biconvex solver
takes the most time in the framework. Consequently, further
decrease in solve times can be achieved by warm starting the
solver with pre-computed solutions or by highly optimizing
the code [49].

2) Termination Criteria: The dynamics violation is used
as the termination criteria for the dynamics biconvex solver
(section III-B). The solver is terminated when the centroidal
dynamics constraints fall below the threshold of 0.001 or
until we hit a maximum number of ADMM iterations. Each
iteration here refers to one ADMM iteration. In Fig. 4, the
dynamic violation vs the number of iterations is plotted for the
three motions discussed previously. Each convex sub-problem
in the biconvex ADMM problem is solved until the norm of
the gradient falls below 1e− 5. A high tolerance is necessary
to ensure that the main biconvex problem converges to high
quality solutions. The dynamics violation rapidly decreases to
a small value across all motions in alignment to the sublinear
convergence property of the ADMM algorithm [31]. Note
that a reasonable solution is found in a few iterations as
reflected by the rapid drop in the dynamic violation. This is
in alignment with the property of ADMM to get to roughly
good solutions in a few iterations (section III-B). This allows
us to set a maximum number of iterations of the ADMM
algorithm in order to guarantee the real-time performance of
our framework. We found that in practice there are times
where we may hit the maximum number of iterations be-
fore our solver finds a solution that satisfy our criteria for
acceptable dynamic violation. Even though our solutions don’t
fall within our predefined threshold for dynamic violation,
we found empirircally that these trajectories are of sufficient
quality to be executed on the robot. In practice, setting the
maximum number of ADMM iterations to 50 allowed us to
run all of the required motions on the robot. The kinematics
solver is terminated based on the default settings provided by
Crocoddyl.

C. Cyclic Gaits

We generated different gaits such as trots, jumps and bounds
for the Solo12 quadruped. The resulting motions are shown in
Fig. 2. Table I outlines the parameters used to design the gaits.
Figure 5 shows the actual and desired base angular velocity
about the Y axis (pitching axis) and the desired forces from



Fig. 2: Different motions demonstrated on real robot and simulation with solo12.

Fig. 3: Solve times vs number of collocation points.

the planner. The BiconMP is able to generate a bounding
motion with considerable change in angular momentum and
pitch magnitude.

We observed empirically that a smaller gait horizon than
the ones chosen for each motion discussed above often led to
the solver diverging after the completion of a few gait cycles.
We hypothesize that this instability is due to the lack of a
terminal cost/constraint that ensures the viability of the gait
[50]. In the presence of a suitable terminal cost the horizon
could be reduced [51]. A planning horizon of 2 gait cycles
was necessary to ensure stability of the solver for bounding
motions. The need for a longer planning horizon became
especially necessary at higher speeds as these motions require
tighter regulation of the angular momentum. Specifically, in

Fig. 4: Dynamic violation as compared to iterations in the
dynamics optimizer.

order to create ground reaction forces to control motions with
higher angular momentum, we believe a higher amount of
control authority is required over time to bring the motion to
a viable state that can be tracked successfully.

The BiConMP is able to track desired linear and angular
velocities accurately on the robot irrespective of the gait. In
Fig. 6, the velocity tracking performance for the trot and
bounding gaits are shown. The framework is able to trade
off the desired velocity input commands while staying within
the limit cycle in real-time. The motions are also robust
to unforeseen disturbances (push recovery) and unaccounted
uneven terrain as shown in the accompanying video.

1) Solve times in real experiments: To evaluate the solve
times, each gait (trot, jump and bound) are run on the robot
in 3 different scenarios for 15 seconds (300 replan calls of
BiConMP), i) flat ground with no disturbance, ii) flat ground
with external disturbances, iii) uneven terrain (step height of 5-
8 cm (20−32% of the nominal base height)) without external
disturbances. Table. II shows the solve time statistics for each
of these scenarios. As can be seen, the max solve time (worst
case solve time) does not exceed the replanning time of 50 ms



Motion Stance Duration (s) Gait Duration (s) Collocation Discretization ∆t (s) Number Of Collocation Points
Trot 0.15 0.3 0.03 10
Jump 0.2 0.5 0.05 10

Bound 0.15 0.3 0.05 12

TABLE I: Gait parameters for the various gaits tested on hardware.

Gait Scenario Replan Frequency (Hz) Mean Solve Time (ms) Standard Deviation (ms) Max Solve Time (ms)
Trot Flat Ground 20 23.47 2.45 32.8
Trot Push 20 21.49 3.1 33.03
Trot Terrain 20 26.13 4.45 36.5
Jump Flat Ground 20 23.32 6.7 44.2
Jump Push 20 22.45 3.4 37.8
Jump Terrain 20 29.55 7.37 40.4

Bound Flat Ground 20 27.15 5.2 42.6
Bound Push 20 27.16 5.3 43.1
Bound Terrain 20 27.27 5.3 40.0

TABLE II: Solve times of the BiConMP on Solo12 for various gaits and scenarios.

Fig. 5: Angular velocity and forces during bounding gait.

(20 Hz) and remains real-time regardless of the circumstances.
Also, it is interesting to note that the mean solve times for
each motion in the presence of terrain and pushes are quite
similar to the flat ground scenario, which means that the
solver remains unaffected by uncertain situations. On the other
hand, the solve times with the same gait parameters / weights
were lower on an average by about 5-6 milliseconds without
sensor noise (such as in simulation). Hence, to achieve higher
re-planning frequencies, obtaining clean sensor data seems
important.

The solve times of the framework for different motions

Fig. 6: Velocity tracking for trot and bound gait on the real
robot. x axis is the elapsed time in seconds.

range between 20-35 milliseconds on average, which is about
20-35 control cycles. Since the solve times are not negligible
there exists a plan lag or delay from when sensor input is
received and when the new plan is available. This lag has
shown to cause instabilities on real robots during run times
and several approaches have been proposed to deal with this
issue [52]. In our experiments, we skip the section of the plan
that falls between the planning time and track the rest of the
plan with the inverse dynamics controller. That is, if a new
plan is requested at T = 0 and the plan is available after t
milliseconds, the plan from t milliseconds to the end is used



Fig. 7: Solve times during live gait transitions. The white color
regions corresponds to the trot gait, the pink section represents
the jumping gait and the yellow section depicts the bounding
phase.

assuming that the robot is close to the plan at t milliseconds.
Even though this might not necessarily be true all the time (for
example - push recovery, terrain noise) this strategy did not
affect the stability of the gaits on the robot when compared
to simulation where time can be frozen until a new plan is
available.

2) Gait Transitions: Taking advantage of the re-planning
capability of the framework, unplanned stable transitions are
possible between the 3 different gaits. A plot of the base height
and pitch of the base along with the solve times are shown in
Fig. 7. The robot is initially in a brief trot phase depicted by the
almost constant pitch and base height. After which, the robot
transitions to the jumping gait at around 1 second, as can be
seen from the large amplitude oscillations in the base height.
After about 5 seconds the robot transitions back to the trot gait
for about 2 seconds. Finally, the robot moves to the bounding
gait between 8 to 12 seconds as can be observed with the large
changes in the pitch of the robot. All these transitions happen
when the user desires these changes without any pre-planning
between gaits changes. When the gait change is triggered, the
gait parameters (Table I) and contact plan (discussed in the
previous subsection) is changed to the new gait. The BiConMP
then generates a stable motion to transition to the desired gait.
During all these transitions the framework keeps its solve times
below 50 milliseconds. Also, the solve times for each gait
remain similar to when there are no transitions (Table. II).

D. Acylic Motions

To demonstrate the capability of the BiconMP to generate
dynamic trajectories beyond mere gaited locomotion, we per-
form a high-five motion on Solo12. The goal for the robot is
to give a high-five to a person in front of it by first raising both
its front legs at a height above its base. Then, the robot must
reach one of its arms out forward in order to high-five at a

fixed position. Figure 8 shows the high-five motion generated
on the robot. Since Solo12 must balance on its hind legs for the
duration of the high-five, the motion needs to build significant
momentum and is non-trivial to achieve. The motion planner
initially gets the robot to crouch before the front two legs
lift off in order to generate enough angular momentum. After
the lift off, the front two legs try to reach the goal position
provided by the user in the plan. The swing foot trajectory
of the front left leg is shown in Fig. 10. The red dots in the
top three sub-plots denote the desired goal position provided
by the user in the x, y and z axis. The shaded section of the
plots represent the duration of the motion where the front leg
is supposed to be in an air phase trying to reach the desired
goal, which can be verified by noticing that the planned z
force becomes zero in this zone.

Note that during this motion, the kinematics solver finds a
non-trivial rotating motion for the front legs after performing
the high-five in order to track the centroidal momentum
trajectories provided by the biconvex centroidal dynamics
solver. Specifically, the front legs of the robot swing their legs
backwards and pivot around the hip joint in order to obey
the momentum profile. Such a swing foot trajectory is very
difficult to design a priori for a given motion which highlights
the advantages of using a whole-body motion optimizer.

E. Simulations with other robots

We illustrate the generality of our approach by testing it on
two other robots with different morphology, complexity and
mass distributions. In all these experiments, no changes are
made to the BiConMP framework (including the use the ID
controller). We run these experiments in simulation. The solve
times obtained for these different motions as they are run in
MPC are shown in table III. The resulting movements are also
shown in the attached video.

1) Talos: - The humanoid robot Talos [39] weighs around
94 kg, stands at 170 cm and has 35 joints, i.e. it is larger,
heavier and more complex than Solo12. Firstly, we validate
the approach by generating stable walking in MPC. Only
a reference CoM height, a Raibert controller based contact
plan at 0.3s of step time and nominal mid swing phase
via-points are provided to our optimizer. Note that in this
case the MPC loop is run at 10Hz as the mean solve time
slightly exceeds 50ms. This is due to the fact that we optimize
full-body motions with 35 joints now (instead of 12 for
Solo12). Secondly, we generate a jump, which is a highly
dynamic motion, in MPC. The framework is only provided
a contact plan which specifies a flight and stance time of
0.4 seconds. The planner then automatically generates the
required force profile to be applied on the ground and the
whole-body motions that track the momentum profiles stably.
This again demonstrates the strength of using a nonlinear
kinematics solver to automate swing foot trajectory generation.
The resulting motion in simulation is shown in figure 9.

2) AnYmal: - The quadruped robot AnYmal [40] weighs
around 30 Kg which is significantly heavier than Solo12. We
generate low stepping frequency trot of 0.4 seconds and cyclic
jumping with an air time of 0.3 seconds. The solve times



Fig. 8: High five motion (top left to bottom left in clock wise direction).

Fig. 9: Jump motion with Talos (Top left to bottom left in clock wise direction).

of AnYmal trot are slightly higher as compared to Solo12
since we use more collocation points in the trajectory. We also
demonstrate stable unplanned gait transitions just like with
Solo12.

Remark 4: Note that we still track these motions on
these robot without the need for a complicated QP based
ID controller even though AnYmal and Talos’ legs are heavy
(i.e. contribute significant momentum) as compared to Solo12.
Our framework remains unaffected even with low stepping
frequencies (Anymal Trot) and arm swinging motions (Talos
Jump).

V. ANALYSIS OF THE MODEL PREDICTIVE CONTROLLER

In this section, we analyse the contribution of the inverse
dynamics (RNEA) controller on the stability of the robot
and the advantages of using a nonlinear MPC setting on the
robot as compared to pure trajectory optimization (when a
fixed plan is tracked on the robot). Further, we thoroughly
analyze the impact of horizon and replanning frequency on the
performance and robustness of the MPC framework in order
to gain insights on tuning parameters in the case of MPC for
legged robotics. We also discuss qualitative advantages that
were observed on the robot, which are difficult to quantify.

A. Inverse Dynamics controller

We compare the contribution of the PD gains with the MPC
planned trajectory in the inverse dynamics controller. In Fig.
11, the total torque sent to the robot along with the torque
resulting from the PD controller is plotted for three joints
belonging to the front left leg during the periodic jumping
gait. The shaded sections highlight the contact phases of the
leg during the motion. The torques due to the PD controller
are very close to zero for most of the contact phase while the
total torque is not zero (especially for the knee joint which
does most of the work in the jump motion). This shows that
the joint torques computed by the BiConMP account for most
of the control during contact phases, underlining the quality of
the optimized control trajectories. However, the PD controller
seems to play a significant role during an air to contact phase
transition where there is an sudden change in the planned
contact forces. During run time, the optimized forces from
the BiConMP are interpolated to match the low level control
frequency (i.e. we have a 20Hz MPC loop and a 1KHz torque
control loop). Consequently, the forces are interpolated from
zero to the next desired value which also prevents sudden
jumps in the commanded torques. Consequently, the motion
run on the robot is slightly different from the plan during



Robot Motion Replan Frequency (Hz) Mean Solve Time (sec) Number Of Collocation Points Time Discretization ∆t (sec)
Talos Jump 10 0.031 10 0.04
Talos Walk 10 0.052 10 0.1

AnYmal Trot 20 0.042 18 0.05
AnYmal Jump 20 0.034 10 0.05

TABLE III: Solve times for various motions generated on different robots in simulation.

Fig. 10: Swing foot trajectory of front left leg from the IK.

these transitions. We hypotheses that it is the reason why the
contribution of the PD controller seems to be larger during
these transitions. We made qualitatively similar observations
for other movements and simulation experiments on the other
robots (Talos and Anymal).

B. Sim-to-Real Transfer

Initially, the motions discussed in section IV-C and IV-D
were first validated in simulation (Raisim [53]). During this
stage, the cost functions (weight tuning of the optimization
problem) and gait parameters were altered until a desirable
motion was observed in simulation, after which the motion was
tested on the real system. All the transfers from the simulation
to the real robot was instantaneous. That is, any motion that
was stable in simulation for a given set of weight parameters
and gains worked directly on the robot without further tuning.
This suggests that the MPC framework is sufficiently robust to
model mismatch to ensure direct sim-to-real transfer. Further,
it is interesting to note that the same set of Kp gains of
3.0 and Ky gains of 0.05 were used across all the motions
presented in the result section for both simulation and real
robot experiments with Solo12. In our experience, this is
rarely the case when using pure trajectory optimization [22]
without online re-planning. Often different gains are needed
across different motions in simulation and these gains need to

Fig. 11: Contribution of PD gains to the total torques. The
three joints are the hip abduction adduction (denoted HAA),
the hip flexion extension (Hip) and the knee joint (Knee).

Fig. 12: Comparison of MPC performance vs. replanning
frequency. The change in the mean optimal cost returned by
the MPC is plotted against replanning frequency.

be further adapted on the robot. This is a significant benefit
provided by the closed-loop MPC setup as gain tuning on the
real robot is often cumbersome.



Fig. 13: Comparison of maximum external disturbance vs. re-
planning frequency for 3 different motions: trotting, bounding,
and jumping. Experiment performed in simulation.

C. Impact of re-planning frequency on performance

In this second set of experiments, we seek to understand the
effect of the re-planning frequency on the performance of the
MPC. This is an important factor, albeit seldom analyzed, as
this sets minimum requirements on optimizer performances.
During this experiment, we choose the trot gait and make
Solo12 track a fixed desired velocity trajectory from the same
starting point. The desired velocity trajectory is set to 0.5
m/s for a fixed duration of 6 seconds after which the desired
velocity is changed briefly to 0 m/s and then finally to -0.5 m/s
for 6 seconds. During each run, the robot is kept at the same
starting position, the weights, horizon length of the plan and
the gains in the ID controller are all kept constant. Only the
re-planning frequency is changed during each run. The mean
optimal cost returned by the BiConMP is used as a metric
[54], [51] to evaluate the performance of the MPC. We ran
this experiment 4 times in which 2 times Solo12 walks on flat
ground while the other two times it walks on random terrain
(as shown in Fig. 2). The same experiment is also run on flat
ground in simulation for further comparison.

The results obtained from the experiments are shown in
Fig. 12. The plot shows that after a certain threshold re-
planning frequency is reached the MPC performance does not
change. In this case the threshold re-planning frequency is
approximately 7 Hz. Further, this threshold does not change
even in the presence of terrain uncertainties. Consequently,
this suggests that after reaching a desired threshold there does
not seem to be any benefit, in re-planning much faster with
respect to performance. Further, the performance of the MPC
in simulation as compared to the real robot is also very similar
after this threshold re-planning frequency is reached. This
result could also help explain why we were able to the directly
transfer motions from simulation to the real robot without
any additional changes (i.e. our re-planning frequency was
sufficiently high).

D. Impact of planning horizon on performance

Another important parameter in MPC is the length of the
optimization horizon. To reduce computational cost, it needs
to be as small as possible but a too short horizon (depending
on the choice of terminal cost) will lead to unstable behaviors.
In this third set of experiments, we analyse how the length of
the planning horizon influences the performance of the MPC.
The experimental setup was kept identical to the previous
subsection (V-C). The only difference here is that the planning
horizon is changed while the re-planning frequency is kept
constant. For these experiments, we were unable to determine
a good evaluation metric. The cost function can not be used
as a metric since the total value attainable by the cost changes
with problem size (number of collocation points) which in
turn depends on the horizon. Consequently, we only discuss
qualitative results observed during the experiments.

For a low re-planning frequency where a stable gait is
not observed (frequency lower than 7 Hz, section V-C), we
observed that performance/stability could be improved by
increasing the length of the planning horizon. After a threshold
length is reached, additional increases did not seem to bring
any visible benefits. In the presence of terrain uncertainty, a
similar result was observed. Further, the threshold planning
horizon for a given re-planning frequency remained the same
with or without terrain uncertainty. Consequently, we found
that at low re-planning frequency, the stability of the motion
could be increased by increasing the horizon. This result is in
alignment with well-established theoretical results [51].

E. Impact of re-planning frequency on robustness

In the final set of experiments, we analyse how overall
motion robustness increases as the re-planning frequency in-
creases. Here we choose to specifically evaluate robustness to
external disturbances. Since measuring during locomotion, in a
reproducible manner, the maximum magnitude of disturbance
rejection is difficult on the real system, we perform this
experiment in simulation. Moreover, we test the robustness
at very high frequencies which are not realizable in the real
world (solve times are higher than the re-planning time).
However, our previous experiments suggest that results from
the simulation should carry to the real robot. In each run, an
external force is applied on the base in a random direction
discretized at intervals between 0 and 360 degrees. We push
the robot for a duration of 0.2 to 0.5 seconds. We run each
experiment 10 times for each duration and run the experiments
on three different gaits (trotting, bounding and jumping.

The results are shown in Fig. 13. This experiment shows
that there is a gain in robustness, in terms of disturbance
rejection when moving from 20 Hz to 100 Hz, after which the
relative gain starts to decay. Based on the previous experiment
(Sim-to-Real and MPC performance), a similar result could be
expected on the real system provided the solver was 4-5 times
faster as the solution quality of the MPC is almost the same
in simulation and real robot beyond a re-planning frequency
of at least 10 Hz.



VI. DISCUSSION

This section discusses the proposed approach and the ex-
perimental results with respect to the current state of the art.

1) Algorithms for closed-loop whole-Body MPC: Very
few algorithms have demonstrated closed-loop whole-body
MPC on real legged robots. General purpose interior-point
or sequential quadratic programming (SQP) methods are not
capable of providing solve times low enough for real-time
control. Most of the existing approaches use custom DDP-like
methods to solve the entire whole-body optimization problem
at once [13], [55] or decompose it [27]. These approaches
have demonstrated closed-loop MPC ranging from 20 − 80
Hz for particular motions like trot and jumps. However,
these algorithms have seldom been used to show diverse and
dynamic motions on robots with different anatomy in closed
loop. To our knowledge, our method is the first algorithm
using ADMM and first-order proximal methods to demonstrate
closed-loop MPC at competitive rates.

The advantage of using DDP-like methods is that they can
in principle solve any OCP and efficiently exploit the time-
induced sparsity in the problem. DDP further provides optimal
feedback gains that can be used for local high-frequency
control. However, enforcing constraints becomes challenging
(typically hard constraints are not enforced in reported MPC
results). The most common practice of using log-barriers
to enforce constraints can be numerically problematic [33]
due to ill-conditioning of the Hessian. To address this issue,
constraints can be relaxed in order to find reasonable solutions
[33]. Recently, DDP-based algorithms that enforce constraints
directly with low solve times have been proposed [56]. How-
ever, they are yet to be demonstrated on high-dimensional
problems in MPC.
On the other hand, the BiConMP does not solve general
optimal control problems and largely relies on the structure of
the floating-based dynamics (kino-dynamic decomposition and
biconvex structure of the centroidal dynamics). This has the
advantage that constraint enforcement, especially on contact
forces, becomes rather straightforward due to the use of the
proximal operators (including second-order cones) without any
loss in the solve times or convergence rates. Furthermore,
problems related to Hessian ill-conditioning inherent to second
order methods are removed with the use of FISTA (a first order
method). While we exploited the structure of the centroidal
dynamic, we still use DDP to solve the kinematic optimization
problem. It might be interesting to explore whether this prob-
lem can be further decomposed to exploit proximal methods
and potentially improve efficiency while also including hard
constraints. Force constraint enforcement plays an important
role (as already highlighted in [57], [58]) and our results
suggest that this helps find control trajectories that can be
directly executed on the robot with a simple inverse dynamics
controller, without the need for an additional dynamic filter (as
a QP-based inverse dynamics) unlike DDP-based approaches
[27].

In general, existing DDP-based approaches need a good
warm start trajectory [55], [49], [13] to actually achieve high
replanning rates. Indeed, quadratic convergence rates are only

guaranteed close to a local minimum and DDP can be quite
slow away from it. Obtaining these trajectories is, however, a
challenge which still limits the applicability of DDP-based
whole-body solvers. In contrast, we did not encounter the
need for good initialization in any of our experiments. The
ability of ADMM to converge to good solutions quickly allows
early termination of the solver. This property is favourable in
closed loop MPC settings with real-time requirements and is
not present with other second order methods. This property
could also be exploited other problems with closed loop MPC
settings.

2) Advantages of proximal methods for MPC: The use of
first order optimization methods for MPC is not common in
robotics, nor is the use of general proximal methods. We
believe that beyond the legged robots, our work highlights
a few interesting properties more broadly applicable. First,
algorithms such as FISTA are very easy to implement (they
only need gradients) and are numerically robust. Since sensor
noise can limit the availability of true gradients, first order
methods are more likely to converge to good solutions com-
pared to second-order methods [34], [59]. Indeed, we observed
that the algorithm was surprisingly stable in a closed loop
MPC setting. Further, the use of proximal operators renders
the constraint satisfaction problem rather easy. This suggests
that first order methods might play an increasing role for
MPC solvers in robotics. Furthermore, developing custom
solvers based on proximal operators and related augmented
Lagrangian formulations [56], [60] for other closed loop
application is also a promising research direction, especially
when early termination is more important than very high
precision.

3) Enforcing torque constraints: The main assumption in
the kino-dynamic decomposition of the nonlinear robot dy-
namics is that there exists sufficient torque authority [21],
without which computing feasible torques becomes impossible
(or needs several kino-dynamic iterations) for the given plan.
During our experiments on the robot, this assumption has
never been violated for all the motions even though only
one dynamic to kinematic iteration is performed. Further, the
computed torques have been much lower than the maximum
torque limits of Solo12 and subsequently more aggressive
behaviours can be performed if needed. In the case that this
limit is being reached, more than one kino-dynamic iteration
can be performed to ensure better consensus. It is also possible
to add torque constraints in the kinematic optimizer at the cost
of slightly higher solve times as discussed in previous work
[22].

4) Insights from Nonlinear MPC Implementation: Running
the nonlinear whole body MPC has shown several advantages
on the robot along with a few key insights: re-planning online
in general improves the robustness of the robot to disturbances
and terrain. In addition, the whole body optimization allows
the robot to automatically change swing foot trajectories
without highly specified references. An interesting result from
our analysis is that increasing the re-planning frequency or
horizon above a certain threshold does not seem to give
any major advantages in terms of performance for the tasks
we analyzed. However, there is a significant improvement in



robustness as the frequency is increased from 20 Hz to 100 Hz
after which the rate of gain starts to decrease. Consequently,
this analysis suggests that re-planning frequencies higher than
10 Hz are not needed to achieve direct sim to real transfer
for the Solo12. However, to gain more robustness to external
disturbances, higher frequencies are needed and avenues such
as warm starting the solver, optimizing the implementation or
further exploiting the problem structure can be explored.

5) Comparison to Deep Reinforcement Learning (DRL):
Recently, DRL has become an increasingly popular choice to
generate robust trajectories for legged robots [61], [62]. One
main reason stems from the fact that MPC approaches need
fast optimizers while DRL approaches learn a policy offline
which is rather cheap to evaluate online. However, our pro-
posed method has a re-planning frequency comparable to these
methods, with the scope of further speed up in future work.
In addition, generating new trajectories with an optimizer is
significantly less cumbersome and does not require one to
re-train a policy for different types of motions. In our case,
the same cost function with different weights can be used to
generate different motions. Finally, the sim-2-real transfer is
simple and instantaneous in our approach as the BiConMP is
able to compensate for modeling errors automatically thanks
to the closed-loop optimization. On the other hand sim-2-real
transfer with DRL methods is usually not simple because they
depend heavily on the trained robot model. Subsequently, they
require very accurate robot actuator models [53] in simulation
or domain randomization is necessary [62] for successful
transfer.

CONCLUSION

We proposed a nonlinear MPC framework, the BiConMP,
capable of generating dynamic behaviors in real-time for
various legged robots. We exploit the biconvex nature of the
centroidal dynamics to propose an efficient solver based on
ADMM and proximal gradient methods. We further propose
to formulate the kinematic problem as an optimal control
problem which is then solved using off-the-shelf DDP solvers
[36]. Through various real robot and simulation experiments
we demonstrated the ability of the approach to generate and
control very dynamic movements. We conducted an extensive
analysis of the various parameters of the MPC framework such
as frequency, cost, and horizon to understand their impact
on the performance and robustness on the real robot, hence
suggesting general guidelines for MPC requirements. In future
work, we intend to investigate the effect of warm-start on
the solver efficiency. We also intend to further explore the
capabilities of first order proximal methods for more general
MPC applications to robotics.
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[13] M. Neunert, M. Stäuble, M. Giftthaler, C. D. Bellicoso, J. Carius,
C. Gehring, M. Hutter, and J. Buchli, “Whole-body nonlinear model
predictive control through contacts for quadrupeds,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1458–1465, 2018.

[14] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in 2014 IEEE-RAS international
conference on humanoid robots. IEEE, 2014, pp. 279–286.

[15] B. Ponton, A. Herzog, S. Schaal, and L. Righetti, “A convex model of
humanoid momentum dynamics for multi-contact motion generation,”
in 2016 IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids). IEEE, 2016, pp. 842–849.

[16] S. Tonneau, D. Song, P. Fernbach, N. Mansard, M. Taı̈x, and
A. Del Prete, “Sl1m: Sparse l1-norm minimization for contact planning
on uneven terrain,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2020, pp. 6604–6610.

[17] Y.-C. Lin, B. Ponton, L. Righetti, and D. Berenson, “Efficient humanoid
contact planning using learned centroidal dynamics prediction,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 5280–5286.

[18] S. Tonneau, A. Del Prete, J. Pettré, C. Park, D. Manocha, and
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