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iSimLoc: Visual Global Localization for Previously
Unseen Environments with Simulated Images
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Abstract—The visual camera is an attractive device in beyond
visual line of sight (B-VLOS) drone operation, since they are
low in size, weight, power, and cost, and can provide redun-
dant modality to GPS failures. However, state-of-the-art visual
localization algorithms are unable to match visual data that
have a significantly different appearance due to illuminations or
viewpoints. This paper presents iSimLoc, a condition/viewpoint
consistent hierarchical global re-localization approach. The place
features of iSimLoc can be utilized to search target images
under changing appearances and viewpoints. Additionally, our
hierarchical global re-localization module refines in a coarse-to-
fine manner, allowing iSimLoc to perform a fast and accurate esti-
mation. We evaluate our method on one dataset with appearance
variations and one dataset that focuses on demonstrating large-
scale matching over a long flight in complicated environments. On
our two datasets, iSimLoc achieves 88.7% and 83.8% successful
retrieval rates with 1.5s inferencing time, compared to 45.8%
and 39.7% using the next best method. These results demonstrate
robust localization in a range of environments.

Index Terms—Sim-to-real, Aerial Visual Terrain Navigation,
GPS Denied Localization, Hierarchical Global Re-localization.

I. INTRODUCTION

UNMANNED Aerial Vehicles (UAVs) have become pop-
ular in different non-military and commercial applica-

tions such as cargo transport [1], surveillance [2], precision
agriculture [3] and search-rescue tasks [4], [5]. Current UAVs
primarily rely on GPS as their only source for global position
information, making their localization systems fragile to GPS
outages, an issue which is often addressed with safety pi-
lots [6]. However, in the future, beyond visual line of sight (B-
VLOS) flight will require a backup source of global position
to achieve sufficient reliability.

To this end we develop an alternate method that is redundant
with GPS, and is based on the idea of Visual Terrain-Relative
Navigation (VTRN) [7]. Cameras are more attractive for UAVs
than active sensors such as LiDAR since cameras are passive,
able to run over long distances, have a low SWaP-C (Size,
Weight, Power, and Cost), and have a large field-view. As
shown in Fig. 1, challenges of VTRN for localization include:
• Appearance Changes: Appearances of a particular area

may change drastically under different illumination and
weather conditions, making data association challenging.

• Viewpoint Differences: When re-visiting the same place,
the UAV cannot guarantee that it will revisit the exact
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Fig. 1. Challenges for Visual Terrain Navigation. Visual terrain navigation
systems will encounter (a) varying appearance over time (shown in first row),
(b) varying viewpoints (i.e. orientation and altitude shown in last row), and
(c) repeated terrain (shown in middle figure).

same position, orientation, and altitude, which requires
the method to be robust to variations.

• High-similarity at High Altitudes: At high altitudes,
there is a high likelihood of areas with repeated and
homogeneous geometries, such as forests and flat ground,
leading to false data associations.

We propose a novel VTRN approach, iSimLoc, which is
invariant to external condition changes, and provides robust
Global Re-localization in large-scale terrain/urban areas. iSim-
Loc trains a place recognition model for non-visited environ-
ments by leveraging overhead imagery. As it is based on our
previous work [8], [9], iSimLoc is also invariant to appearance
changes caused by illumination and viewpoint differences.
When re-localizing within a large area, iSimLoc relies on a
coarse-to-fine localization method to balance efficiency and
accuracy. The contributions of iSimLoc are:

• Real-to-Sim Conditional-domain Transfer: A Condi-
tional Domain Transfer Module (CDTM) to transform the
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raw images into a constant simulated domain. The CDTM
extracts both geometric and conditional features from
raw images for conditional invariant place recognition.
Our experimental results on urban and terrain areas
demonstrate that the conditional domain transfer module
improves recognition ability for non-visited areas.

• Viewpoint-invariant Place Recognition: Most
VTRN systems depend on fixed viewpoints between
test/reference queries. iSimLoc, on the other hand,
calculates viewpoint-invariant descriptors and estimates
relative orientation through usage of the Pose Estimation
Module (PEM). Specifically, the PEM utilizes spherical
harmonic features, which are orientation-equivariant for
the same location.

• Hierarchical Localization System: For global re-
localization, iSimLoc matches hierarchically starting with
a coarse estimate at a high altitude and refining with
repeated cropping of images to make more accurate
estimates. This method balances efficiency and accuracy,
which is essential for re-localization in large maps.

In our experiment results, we present an extensive evaluation
of our system on two unique datasets: (1) The CMU Cam-
pus dataset consists of 160 trajectories taken under different
lighting conditions targeting an urban environment, which
was collected using a quadcopter flying on Carnegie Mellon
University’s campus; (2) and the Large Terrain dataset consists
of one 150km trajectory covering both urban and natural
terrain, which was collected using a helicopter. On both
datasets, iSimLoc outperforms all other relative place recog-
nition methods and achieves a 88.7% successful recognition
rate for urban areas and 83.8% for natural terrain. Leveraging
overhead images helps our system attain higher generalization
ability for unseen environments. We include a discussion
section and a conclusion section to analyze the advantages
and shortcomings of the current iSimLoc approach, as well as
to examine potential future work.

II. RELATED WORKS

Visual geo-localization is defined as finding geographic
coordinates (and possibly camera orientation) for a given query
image. Based on survey [10], visual geo-localization is divided
into city-scale and natural localization. The main challenges
are environmental condition changes, viewpoint differences,
and large-scale re-localization.

To deal with changes in environmental conditions, Mishkin
et al. [11] modified BoW approach [12] with multiple de-
scriptors and adaptive thresholds to better cope with large-
scale changes in environments. Bhavit et al. [13] introduce
a visual terrain navigation method where reference images
are rendered from Google Earth (GE) satellite images. How-
ever, because such overhead images from GE are captured
several years prior to test time, visual differences between
reference/testing streams reduce localization accuracy. To deal
with this issue, Mollie et al. [14] utilized an Autoencoder
network to transfer raw images into overhead images, ignoring
local dynamic differences or environmental condition changes.
However, this method cannot handle illumination, weather, and

seasonal changes, reducing generalization ability for unseen
conditions. In their recent work [15], Anthony et al. provide
a seasonally invariant deep transform neural network to con-
vert seasonal images into a stable and invariant domain for
visual terrain navigation. This method targets high-altitude
flying modes as depicted in Fig. 1, where there exist rich
unchanging geometric features that persist even in different
seasons. However, in lower altitudes, this method’s transfer-
ability will be negatively affected by occlusions of 3D ob-
jects and highly variable lighting conditions from different
times of the day. Another solution to deal with disturbances
from environmental conditions is to match horizontal lines
extracted from a query image against those rendered from
digital elevation models (DEM) [16]. In [17], Baatz et al.
demonstrate terrain localization by leveraging this method.
Similarly, Bertil et al. [18] introduced an accurate camera
localization for unmanned surface vessels (USVs) by aligning
horizontal lines with coastal structures. A significant drawback
of horizontal line-based approaches is dependence on rich 3D
geometric structures, such as mountainous or coastal areas.
Thus, performance will be reduced in homogeneous and plain
environments. Similar to [15], our iSimLoc method transfers
raw images into a constant domain.

Viewpoint difference poses another significant challenge for
accurate localization. As depicted in Fig. 1, orientation and
altitude differences can significantly change the appearance
of a location from the original perspective. In both [15]
and [17], the authors conducted image alignment over very
high altitude flights (7, 000 ∼ 15, 000m). In such cases, top-
down images are able to capture rich distinguishable geometric
features for accurate matching. However, not all applica-
tions can leverage this benefit since the Federal Aviation
Administration (FAA) sets the flying altitude limit for UAV
drones to around 120m. Helicopters usually fly at ≈ 300m
when at lower altitudes, encountering changing viewpoints and
environmental conditions. Additionally, current visual terrain
navigation methods usually assume that relative orientations
between raw inputs of drones/helicopter and reference images
are small. Thus, these methods focus on position estimation
and do not include robust relative orientation estimation.
In real applications, a noisy GPS signal may result in a
sizeable initial orientation estimation error, resulting in image
alignment failures and, consequently, a loss of accuracy. Yet,
most image-based alignment methods are unable to estimate
corresponding orientations [13]–[15]. Jeong-Kyun et al. [19]
introduced a vanishing point-based camera orientation estima-
tion method. This method is suitable for urban indoor and
outdoor scenes, as detection of vanishing points is based on
line segments. Shichao et al. [24] proposed CubeSLAM for
camera pose estimation and localization based on extracted
cubic objects. Both line features and cubic objects can be
relatively easily captured in urban environments; however, they
are sparsely present in natural terrain. Baatz et al. [16] used
semantic information (tree, river) as constraints for camera
pose estimation. However, a significant limitation comes from
unreliability of detecting semantic objects. When using visual
terrain navigation at lower altitudes, image distortion caused
by viewpoint changes will further reduce feature stability. To
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TABLE I
PROPERTIES OF DIFFERENT VISUAL TERRAIN RELATIVE NAVIGATION METHODS.

Method Class Environment Condition Viewpoint Altitude Localization
Accuracy

Global
Localization

Anthony et
al. [15] Domain Transfer Natural Changing Known High ≤ 50m No

Patel et
al. [13] Domain Transfer Hybrid Changing Unknown ≤ 50m ≤ 10m No

Bianchi et
al. [14] Domain Transfer Hybrid Changing Known Low ≤ 10m No

Baatz et
al. [17] Geometric Mountain Fixed Unknown High N/A No

Jeong-Kyun et
al. [19] Geometric City Changing Unknown Low N/A No

Baatz et
al. [16] Geometric Mountain Fixed Unknown High N/A Yes

Pluckter et
al. [20] Geometric Natural Fixed Unknown Low 1m No

Arandjelovic et
al. [21]

Place
Recognition City Fixed Unknown Low N/A No

Michael et
al. [22]

Place
Recognition Hybrid Changing Known Low N/A No

Peng et
al. [23]

Place
Recognition Hybrid Changing Unknown Low 1m No

iSimLoc Place
Recognition Hybrid Changing Unknown Hybrid 20m Yes

extract viewpoint-invariant descriptors in both low and high
altitudes — similar to our previous 3D place recognition
work [23], [25] — iSimLoc utilizes spherical harmonics [26]
to extract orientation-equivariant features from spherical per-
spectives. iSimLoc also estimates the relative orientation be-
tween test and reference based on constant amplitude of
spherical harmonics. This ability further improves online local-
ization robustness even for long-term visual terrain navigation.

Most existing VTRN methods focus on local re-localization
against a reference image and share the assumption that
the robot has relatively good estimates of its position and
orientation. However, in real-world applications, environmen-
tal conditions and viewpoints (both orientation and altitude)
may change dramatically and simultaneously. Additionally,
similar and repeated geometric features in natural terrain
environments, such as in forests and flat plain ground, will
further reduce localization success rates. Most VTRN methods
can, thus, hardly deal with global re-localization in large-scale
environments without a great deal of assistance from GPS.

In Table. I, we compare different properties of current
VTRN methods. Domain transfer-based methods are mainly
designed to deal with changing environmental conditions.
Notably different to [15], they ignore viewpoint differences,
making them most suitable for local re-localization, whereas
iSimLoc also includes viewpoint-invariant feature extraction to
handle viewpoint differences. On other hand, most geometric-
based methods mainly target changing viewpoints under con-
stant environmental assumptions. Few methods consider both
conditional and viewpoint differences in visual terrain local-
ization at the same time. In contrast to our previous work
i3dLoc [23] on Robotics: Science and Systems 2021, we use
a place descriptor for locally re-localization, iSimLoc aims
to provide robust visual global re-localization for large-scale
environments by leveraging overhead imagery.

III. SYSTEM OVERVIEW

iSimLoc uses publicly available overhead imagery and
camera images from a UAV as input to provide condition-
and viewpoint- invariant global re-localization in large-scale
terrain/urban environments. The iSimLoc framework consists
of the following three steps: 1) Data Collection to provide
paired simulation/raw data to train the conditional-domain
transfer module; 2) Place Feature Extraction for viewpoint-
invariant place recognition, and 3) Global Re-localization for
hierarchical robust localization.

A. Data Collection

We use two data collection platforms to generate paired sim-
ulated and real-world data for training and evaluation. The first
dataset is recorded under changing conditions and at different
altitudes around the Carnegie Mellon University campus. The
recording platform is a quadcopter with a mounted omnidi-
rectional camera. We name it “CMU Campus” dataset. The
second dataset (“Large Terrain”) is a flight from Cambridge,
Ohio, to Pittsburgh, Pennsylvania using a helicopter with a
downward-facing pinhole camera.

For the CMU Campus dataset, we use way-point following
mode to make repeated passes along fixed trajectories to
collect data on the same path but under different conditions (il-
lumination, weather, time, etc.). Large Terrain dataset includes
150km trajectory. We generate a paired sim-to-real dataset for
both platforms by exporting the trajectories’ GPS information
and collecting publicly available nadir overhead imagery from
Google Earth. Due to low frequency of the GPS data, we
interpolate data among two GPS points to generate time-
synced sim-to-real paired images. In Section V, we expand
further on the details of our data generation procedure.
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Fig. 2. iSimLoc system framework. For high and low altitudes, iSimLoc extracts a condition-(illumination) and viewpoint-invariant place descriptor. Only
the descriptor needs to be stored and matched. Larger field of views help iSimLoc to provide an initial guess, while narrower field of view perspectives
provide rich local geometry features for accurate localization. iSimLoc matches hierarchically, which enables us to balance search efficiency and accuracy.

B. Feature Extraction

Due to condition and viewpoint differences, extracting in-
variant place descriptors is the most critical factor in visual
localization. In iSimLoc, we first use a conditional domain
transfer learning module (CDTM) to convert raw images into
a constant geometric domain. As depicted in Fig. 2, the
CDTM is forced to extract conditional and geometric features
with an orthogonal relationship distribution. With extracted
geometric features, iSimLoc learns viewpoint invariant place
descriptors with the Pose Extraction Module (PEM). The PEM
can estimate place descriptors’ similarities while ignoring their
orientation differences, and predict the relative yaw difference
given matched descriptors for a particular area. Since spherical
viewpoints will reduce geometric differences under varying
altitudes, the PEM is also robust to local altitude differences.
Due to these invariance properties, the iSimLoc place feature
model is able to recognize places under different viewpoints,
which increases sampling efficiency for global re-localization.

C. Global Re-localization

Without GPS assistance, current visual terrain relative nav-
igation methods may quickly encounter tracking failures in
repeated and homogeneous terrain areas, especially for long-
term navigation tasks. Our global re-localization procedure
uses extracted iSimLoc place features and a particle filter [27]
in a coarse-to-fine hierarchical refinement method to overcome
the limitations of other methods. Higher altitude images pro-
vide a coarse position estimation over a large search area,
reducing the number of initial particles needed. At lower
altitudes, visual inputs capture more geometric structures,
which produces more accurate final matches. Since features are
orientation invariant, particles only need to be sampled within
Euclidean space R3, instead of SO(3) space, significantly
reducing the total number of particles used.

IV. OUR APPROACH

As illustrated in Fig. 3, the main idea of iSimLoc is to learn
corresponding conditional- and viewpoint- invariant place de-

scriptors that help to localize against overhead imagery. It
consists of three modules:

1) A conditional domain transfer module to convert raw
images into a constant overhead image domain.

2) A pose extraction module to recognize the place and
orientation based on estimated features’ similarities.

3) A hierarchical global re-localization module to track
position at both low and high altitudes.

A. Conditional Domain Transfer Module

To generate constant geometric features from visual inputs
under different environmental conditions, we construct a con-
ditional domain transfer module (CDTM), which includes a
feature encoder, a conditional decoder, and a discriminator.

Before introducing the feature extraction process, we an-
alyze the relationship of information entropy to viewpoints.
Naturally, raw visual images include both geometric features
ZG, which depend on 3D geometric structures, and condition
features ZC , which encode an image’s appearance that is
caused by the combination of environmental conditions (illu-
mination, weather, and seasons). As depicted in Fig. 3, given
a raw image, our encoder module extracts both geometric
features ZG and conditional features ZC simultaneously.

Given an image x, H(ZG, ZC |x) and I(ZG;ZC |x) rep-
resents joint entropy and mutual entropy. H(ZG|ZC , x) and
H(ZC |ZG, x) are conditional entropies based on ZC and
ZG, respectively. The target of place recognition is to extract
condition-invariant geometric features, related to conditional
information H(ZG|ZC , x); and restrict extracted feature’s un-
certainty given same image x, which is relative to joint entropy
H(ZG, ZC |x). To learn condition-invariant place descriptors,
we focus on:

• Increasing condition entropy H(ZG|ZC , x) to enrich
geometric feature ZG extraction from raw image x, which
is independent of conditional feature ZC , and

• Reducing joint entropy H(ZG, ZC |x), which measures
joint features’ ({ZG, ZC}) differences when revisiting the
same place.
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Fig. 3. The network structure of iSimLoc. iSimLoc consists of a conditional domain transfer module (CDTM) to transform raw visual inputs into overhead
images, where environmental conditions are applied to improve generalization ability for unseen environments, and a pose estimation module (PEM) to
simultaneously estimate viewpoint-invariant place features and relative orientations.

Directly improving conditional entropy H(ZG|ZC , x) in
place recognition tasks is intractable, since each unique area
may drastically vary in appearance due to different combi-
nations of environmental conditions (illumination, weather,
seasons), and it is hard to access all potential ZG → ZC
pairs. Alternatively, using the information theory perspective,
H(ZG|ZC , x) can be converted into,

H(ZG|ZC , x) = H(ZG|x)− I(ZG;ZC |x) (1)

where H(ZG|x) measures diversity of geometric features ZG
based on observation x. This is important because in place
recognition tasks, higher variance in place features provide
better distinguish-ability. We design a generative adversarial
network (GAN) [28] to enhance diversity of H(ZG|x), where
corresponding loss metric LGAN is written as,

LGAN = min
θ,φ

max
β

E(log(Dβ(y))+ (2)

E{ZG,ZC}∼pθ(Z|x),ŷ∼qφ(y|ZG,ẐC)(log(1−Dβ(ŷ)))

where y and ŷ are real and generated overhead images, Dβ is
the discriminator to distinguish y and ŷ, Pθ is the encoder and
Qφ is the decoder, and β, θ, φ are the learnable parameters. As
provided by Goodfellow et.al [28], with iterative updating of
generative network (decoder Qφ) and discriminator modules,
an adversarial network is able to push distribution of ŷ
towards target distribution y. On the other hand, since mutual
entropy I(ZG;ZC |x) measures overlaps between geometric
features ZG and condition features ZC , reducing I(ZG;ZC |x)
indicates the minimum projection from ZC onto ZG. We apply
an orthogonal loss metric LOrth to enhance the orthogonal

relationship between features ZG and ZC ,

LOrth = 1− ZG · ZC
‖ZG‖2 · ‖ZC‖2

(3)

Conditional entropy H(ZG|ZC , x) is able to be increased by
the combination of LOrth + LGAN .

To reduce joint entropy H(ZC , ZG|x), similar to Cycle-
GAN [29], we construct an L1 loss metric between raw
image x and reconstructed image x̂ as demonstrated in Fig. 3.
Using raw image x, iSimLoc generates overhead image ŷ with
geometric feature ZGx and condition feature ZCy ; then using
ŷ, iSimLoc reconstructs x̂ with ZGŷ and ZCx . In our previous
work [23], we prove that decreasing H(ZG, ZC |x) corre-
sponds to reducing image reconstruction uncertainty given
sample data x. We formulate the reconstruction loss as,

LRecon =H{ZGx ,ZCx}∼Pθ(x),{ZGŷ ,ZCŷ}∼Pθ(ŷ) (4)

[log(Qφ(ZGŷ , ZCx)|x)]

The original H(ZG, ZC |x) is transformed into its upper bound
LRecon(x̂, x). Based on Eq. 2, 3 and 4, we construct the loss
metric for the conditional domain transfer module as,

LCDTM = LGAN + LOrth + LRecon (5)

B. Pose Estimation Module
In iSimLoc, the Pose Estimation Module (PEM) is designed

to predict viewpoint-invariant place descriptors and extract
relative orientations. The PEM module is combined with a
pre-trained ResNet18 model from torchvision1 for deep feature
extraction, and a spherical feature-based viewpoint-invariant
descriptor extractor and orientation estimator.

1https://pytorch.org/vision/stable/models.html
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Fig. 4. Spherical convolution module. Given a spherical feature f and
a kernel signal h, we first transform them into harmonic domain (Hf , Hh)
using a Fast Fourier transform (FFT) and a Discrete Fourier Transform (DFT).

1) Viewpoint-invariant Descriptor: Using spherical (360◦)
images is natural for viewpoint-invariant place recognition.
However, traditional convolutional neural networks are not
well suited to use with spherical images, since angular reso-
lution is not uniform across these types of images. Instead of
a traditional convolution, we apply the spherical convolution,
which utilizes spherical harmonics present in spherical projec-
tion images. Spherical convolutions avoid space-varying dis-
tortions in Euclidean space by convolving spherical signals in
the harmonic domain. The mathematical model of the spherical
convolution into harmonic domain shows that it is orientation-
equivariant. Spherical convolution of SO(3) signals f and h
(f, h are functions: SO(3) → RK) in rotation group SO(3)
is defined as,

[f ?SO(3) h](R) =

∫
SO(3)

f(R−1Q)h(Q)dQ (6)

where R,Q ∈ SO(3). As the proof in [30] shows, spherical
convolutions are orientation-equivariant,

[f ?SO(3) [LQh](R) =[LQ[f ?SO(3) h]](R) (7)

where LQ(Q ∈ SO(3)) is a rotation operator for spherical
signals. Convolution of two spherical signals f and h in
the harmonics domain is computed in three steps: We first
expand f and h to their spherical harmonic basis Hf and Hh,
then compute the point-wise product of harmonic coefficients,
and finally invert the spherical harmonic expansion. In our
previous works [8], [23], we have utilized this approach to
extract orientation-invariant place descriptors for either 3D
point clouds or spherical images. For more details on spherical
harmonic properties, we suggest the reader refers to the
original work in [26]. To leverage viewpoint-invariant feature
extraction, we utilize VLAD networks [21] to cluster local
orientation-equivariant features into global place descriptors.
With the assistance of the CDTM module, iSimLoc is able to
learn condition- and viewpoint- invariant place descriptors.

2) Orientation Estimation: As shown in the PEM module
of Fig. 3, given extracted spherical harmonic features from
two relative spherical images, we apply an estimation module
to directly obtain relative orientations. As shown in [31], the
spherical correlation Ĉ between two spherical signals f1 and
f2 is their inner product Ĉ = 〈f1, f2〉. If f2 is the rotated

300m 250m 200m

150m 100m 50m

Fig. 5. Spherical Images at Varying Altitudes. Overhead imagery projected
into spherical images at different altitudes. Higher altitudes capture more
context, while lower altitudes capture richer local details.

version of f1, relative orientation r ∈ SO(3) can be estimated
by maximizing Ĉ,

argmax
r∈SO(3)

〈f1, r−1f2〉 (8)

Based on the orthogonal property of the spherical harmonics
and the magnitudes property of harmonic signals [32], the
above equation can be evaluated using the spherical Fourier
coefficients. Since this part is beyond the scope of our paper,
please refer to [31] for a more detailed derivation.

3) Pose Loss Metric: To enable end-to-end training for
viewpoint-invariant place feature extraction, we apply indi-
vidual triplet-loss in both raw image domain and simulation
(i.e. overhead) image domain separately, and also cross triplet-
loss between the two domains. To illustrate loss functions,
we first describe necessary definitions. In both real-world and
simulated image domain, for each query image Mk we provide
the following tuples Tk = [Sk, {Srot}k, {Spos}k, {Sneg}k]. Sk
is encoded spherical place descriptors from Mk, {Srot}k is
a set of descriptors from the same position of Mk but for
different orientations. As was done in relative place recogni-
tion work [21], we also provide positive {Spos}k and negative
{Sneg}k features based on distance to Mk. We construct paired
tuples within raw image domain SV and simulation image
domain SS . Ideally, for each scenery, the place descriptor
should be invariant to orientation and sensitive to translation
differences, thus we design the following loss function,

LIndividual(Tk) = (9)
max

i∈{Spos}k,j∈{Sneg}k
([λ1 + d(Sk, Sposi)− d(Sk, Snegi)]+)+

max
i,j,k

([λ2 + d(Srotj , Sposi)− d(Srotj , Snegi)]+)

where d(·) denotes Euclidean distance, and [.]+ denotes the
hinge loss. λ1 and λ2 are constant thresholds to control
the margin between feature differences of different Euclidean
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distances. Meanwhile, we also define a domain learning metric
to reduce cross-domain feature differences:

LCrossDomain(Tk) = (10)

max
i∈{Spos}k,j∈{Sneg}k

([λ3 + d(SVk , S
S
posi)− d(S

V
k , S

S
negi)]+)+

where λ3 is constant threshold to control margin between raw
and simulated image features. By combining both individual
metrics and cross domain metric, we obtain the following loss
function for the Pose Estimation Module,

LPEM = LVIndividual + LSIndividual + LCrossDomain (11)

In our application, λ1, λ2 are set to 0.5 and λ3 is set to 1.0.
During the training procedure, we first train the domain trans-
fer module with paired real-world and simulated images; then
we use the pre-trained transfer model to produce conditional-
and viewpoint-invariant place descriptors for use in training
the rest of the network.

C. Hierarchical Localization

Visual ambiguity is unavoidable during high-altitude flying
in large-scale terrain relative navigation. Therefore, we devise
a hierarchical localization module that helps iSimLoc achieve
robust localization with a coarse-to-fine searching strategy. In
contrast with place features used in other works [13], [14], our
place descriptor is symmetric to viewpoint differences, and so
each area only requires one descriptor at a certain resolution.

As shown in Fig. 5, given one test image at full resolution,
we generate spherical projections ([256 × 256]) at different
altitudes. Higher altitude images capture larger context for
coarse global localization, which will reduce the number
of initial particles. Given a potential search area of size
[M1 ×M2]m

2, the potential field-of-view of each particle is
based on altitude H . We define the active searching radius as
H tan 45◦ = H . At the lowest resolution level, particles are
sampled uniformly on a reference overhead image, and we
define a ratio Rolp ∈ [0, 1] to control the overlaps between
two sampled areas. The initial number of particles Pinit is
decided by

Pinit =
M1 ·M2

(H · (1−Rolp))2
(12)

where a higher ratio Rolp results in more initial particles.
The weight of each particle ωi is estimated by computing

the cosine similarity,

ωi = cos(Si, Sc) =
Si · Sc

‖Si‖ · ‖Sc‖
(13)

where Sc is the encoded feature from aerial vehicle image, Si
is the feature of i-th particle. New particles are re-generated
from the highest weighted particles, with random translations
added. The distribution of particles converge to a local area
through iterative updates. We use weights to estimate particles’
convergence Neff = 1/(

∑(
ωik
)2
), and determine whether to

change resolution level.
When particles converge into potential areas, we decrease

altitude and remove 10 ∼ 30% of particles, then new parti-
cles are re-sampled around the remaining original weighted

particles. By iteratively updating particles, our method accu-
rately matches while reducing computational burden. Given
a [M1 × M2] reference overhead image, searching for the
best match through brute-force directly at the lowest altitude
H1 has a complexity of O (Pinit) · O (C). Bound O (C)
includes reference image generation, feature extraction and
feature similarity calculation, and is a constant for different
altitudes. Assume the highest altitude is α times H1, then
we calculate computation complexity between Brute-force and
Hierarchical searching by,

CBrute−Force
Hierarchical

=

O(M1·M2)·O(C)
(H·(1−Rolp))2

O
(∑lmax

i=0
M1·M2

(αH·(1−Rolp))2 · 0.8
i
)
·O (C)

(14)

= O

(
α2 · (1− 0.2)

1− 0.8lmax

)
where lmax is the maximum number of layers of hierarchical
searching. When we let α = 3 and lmax = 5, we expect
hierarchical approach to be around 2.7 times faster than the
Brute-force method. Besides increased matching efficiency,
our hierarchical search method also increases robustness to
orientation and altitude variations.

V. EXPERIMENTS

We evaluate the performance of various VTRN methods
with respect to changing illumination, low/high altitudes, and
over large flights. Two datasets are utilized for comprehensive
evaluation: 1) the CMU Campus dataset and 2) the Large
Terrain dataset. The CMU Campus dataset is designed to
test invariance of VTRN methods to different lighting and
altitudes, as well as test 3D localization during the take-
off/landing phase of a flight. This dataset was recorded with
a DJI Mavic 2 Pro quadcopter equipped with a GoPro Max
omnidirectional camera as shown in Fig. 6.

The Large-Terrain dataset contains a 150km trajectory from
Ohio, to Pennsylvania. The focus of this dataset is to capture
complex natural terrain over longer trajectories at higher
altitudes. This dataset was collected using a helicopter with
a downward-facing pinhole camera and a GPS; Fig. 7 shows
this platform2. Using recorded GPS points from the quadcopter
and helicopter, we generate corresponding rendered or cropped
images from high resolution overhead imagery from Google
Earth Engine [33].

The following sections will expand on details of our two
datasets, evaluation metrics, and comparison methods, and
then analyze localization performance of iSimLoc with re-
spect to other methods for three factors: Condition-invariance,
Viewpoint-invariance, and Global re-localization Performance.

Visual Terrain Relative Navigation Datasets
• CMU Campus dataset includes 8 types of trajectories

within the campus of Carnegie Mellon University. For
each trajectory, we recorded 4 passes at different times
of day (10am, 1pm, 4pm, 7pm), along with different

2https://allhands.navy.mil/Media/Gallery/igphoto/2002418498/
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DJI Mavic Pro 2

GoPro 360 Cam

GPS Module

Fig. 6. UAV data collection platform. The platform consists of a DJI Mavic
Drone (with GPS), and a omnidirectional camera with an IMU. We gather
360◦ spherical images with time-synchronized IMU and GPS data, under
different illumination and viewpoints at Carnegie Mellon University’s campus.

orientations ([0, 45, 90, 180]◦) as shown in Fig. 8. The
average distance covered over all trajectories is 1.6km.
For each pass we collected time-synchronized spher-
ical video and GPS positions of the quadcopter. We
created a 3D simulated environment within Microsoft’s
AirSim [34], which outputs paired spherical reference
images for these trajectories. Within the simulator we
have a 3D model of relevant portions of CMU campus
as well as a high resolution overhead image that is used
when the quadcopter reaches a high altitude; we generate
the reference trajectories using the GPS data collected
from real-world passes. We project images onto spherical-
views for low flying mode (≤ 120m). We crop the
spherical images for high flying mode (≥ 120m) to avoid
the disturbances from a changing sky. We use trajectory
{1 ∼ 6} for training, and {7, 8, 9, 10} for evaluation. Data
was collected in the month of June 2021.

• Large Terrain contains one 150km trajectory of a Bell
206 helicopter flying from Cambridge, Ohio, to Pitts-
burgh, Pennsylvania in August 2017. The dataset includes
unstructured natural scenarios (e.g., rivers, forests, and
plains), structured city-like environments (e.g., houses,
streets, and buildings), and also hybrid-structured rural
areas (farms). We generate paired helicopter images and
overhead images based on the time-synchronized GPS
data. We split the dataset into sub-trajectories, and use
60% for training and 40% for evaluation.

Table. II shows the differences between our two VTRN
datasets. The average distance of the CMU Campus trajec-
tories is 1, 600m, and each trajectory includes 4 passes under
different time of the day. The Large Terrain dataset includes
150 sub-trajectories with average distance of 1, 000m. For both
datasets, there is no overlap between training and evaluation
datasets. Fig. 8 shows some example images of different areas
of CMU in the CMU Campus dataset. Fig. 9 shows example
scenarios encountered in the Large Terrain flight.

Evaluation Methods and Metrics We evaluate the localiza-
tion performance of our method on both CMU Campus and

GoPro 360 Cam

GPS Module

Helicopter

Camera

GPS Module

Fig. 7. Helicopter platform. A helicopter equipped with a GPS and
a downward-facing pinhole camera is used to collected the 150km long
trajectory for localization.

TABLE II
PROPERTIES OF CMU Campus AND Large Terrain DATASETS.

Light Cond. Distance Area
CMU Campus Varying 1, 600m× 10× 4 Urban
Large Terrain Constant 1, 000m× 150 Urban, Terrain

Large Terrain datasets via traditional place retrieval metrics.
The evaluation dataset consists of cross-domain reference and
testing queries on the same trajectories. Each testing frame can
find its correspondences on reference queries. Successful place
feature matching is based on testing queries’ retrieval poses.
If the deviation distance of retrieval and target query is within
a given threshold (20m for CMU Campus dataset and 40m for
Large Terrain dataset), place recognition is counted as success-
ful; otherwise, it is unsuccessful. We use average recall of top
10 and top-N retrievals, receiver operating characteristic curve,
feature difference, relative orientation distributions, and global
re-localization success rates to analyze place recognition ac-
curacy on evaluation trajectories of both datasets. We com-
pare iSimLoc with learning-based feature learning methods
(CycleGAN [29], AlexNet [35], NetVLAD [21], CALC [36]),
and non-learning based geometric methods HoG [37], Bag-of-
words (BoW) [12] and CoHoG [38]).

All learning-based methods are trained with the same hard-
ware: an Ubuntu 18.04 system with 64GB of RAM and one
Nvidia 1080Ti GPU. Default visual input dimensions for all
methods is set to 256×256. To train iSimLoc, we use only 10%
of paired sim/real data from each dataset for domain-transfer
training, and we use 60% of the overhead images for place
recognition training; we evaluate on cross sim/real domains
with the remaining 40% of the data. For other methods, we
use 60% for training, and leave 40% as unseen environments
for evaluation.

In condition-invariant analysis, we fix viewpoints and cal-
culate place recognition average recalls of different methods
under changing conditions. In viewpoint-invariant analysis,
we fix environmental conditions, and calculate average recall
under different viewpoints (translations, orientations, and alti-
tude ratios). In hierarchical localization analysis, we analyzed
successful global re-localization rates on both datasets using
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Fig. 8. Examples of viewpoint and illumination changes in the CMU Campus dataset. The first column shows overhead images of CMU’s Newell-Simon
Hall and Cohon University Center. The next three columns show corresponding UAV images during different times of day, viewpoints, and weather conditions.

Fig. 9. The 150km trajectory flight captured in the Large Terrain dataset. The flight covers challenging areas, including natural, urban, and rural terrain.

different global localization methods.

A. Domain-invariant Place Recognition Analysis

This section evaluates visual place recognition performance
for different environmental conditions. We provide raw images
and paired overhead images for the same perspectives for a
fair comparison. Furthermore, we compare our CDTM module
with existing non-learning method HoG to verify place recog-
nition ability. We first show domain adaptation on both CMU
Campus and Large Terrain datasets by transferring raw images
into overhead images. Based on CDTM module’s orthogonal
feature constraints, we extract paired geometry features (ZG)
and condition features (ZC) from the same image. As stated in
Section. IV-A, additional conditional features from overhead

images assists in domain transfer of real images. We compared
recognition ability with and without orthogonal extraction to
verify the above property.

Fig. 10 shows domain transfer on unseen environments.
After training the network model on our two datasets, we
pick unseen trajectories to examine image reconstruction
performance. The first rows of both sections in the figure
show the input images; the last rows show the target images,
and the third rows show images generated with our CDTM
module. For comparison, we also show images generated
with CycleGAN [29] network modules in the second rows.
Different from CycleGAN, under varying illumination of CMU
Campus dataset, our CDTM module also encodes condition
styles into the image reconstruction. CycleGAN requires that
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Fig. 10. Condition-invariant Domain Transfer. The two sets of four rows show domain transfer results on CMU Campus and Large Terrain datasets
respectively. For each dataset, we demonstrate reconstruction results from CycleGAN and our CDTM module separately.

target images must follow the same style, which restricts
image reconstructions on unseen environments or conditions.
Fig. 11 shows feature difference matrices between test query
images and reference overhead images. We notice that both
non-learning and learning methods have varying performance
if conditions change. In general, AlexNet and methods with
domain transfer modules show higher robustness. With dif-
ferent domains as constraints, NetVLAD shows less general-
ization ability than AlexNet. However, the large size of the
AlexNet model makes it ill-suited for real-time inference.

With a domain transfer module (CDTM and CycleGAN),
HoG shows higher robustness to domain differences. When
comparing two different domain transfer modules, our CDTM
module is able to generalize better than CycleGAN for unseen
environments. Amongst learning-based methods, CALC and
original NetVLAD are more sensitive to lighting changes.
They cannot capture rich geometric structures for proper place
retrievals, especially on the Large Terrain dataset.

Table. III shows analysis of average recall for top 10
retrievals for different methods; domain transfer based on
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Fig. 11. Real-to-Sim feature differences for different datasets. Each sub-figure represents the difference matrix between real images (x-axis) and
corresponding overhead images (y-axis). Similarities are calculated by cosine distance. The first three rows show results on the same trajectory of CMU
Campus datasets under illuminations of [10am, 1pm, 7pm]. The last row shows matching results on Large Terrain dataset.

TABLE III
THE AVERAGE RECALL OF TOP @10 RETRIEVALS FOR DIFFERENT

ENVIRONMENTS.

Method C10am C1pm C7pm Terrain
NetVLAD [21] 46.8% 52.1% 36.4% 68.1%

CALC [38] 64.5% 70.8% 50.2% 80.2%
AlexNet [35] 98.5% 95.8% 76.0% 90.7%

HoG [37] 80.2% 87.5% 75.0% 86.5%
CycleGAN [29]+HoG 93.7% 94.9% 88.5% 89.3%
iSimLoc(CDTM)+HoG 96.5% 98.3% 93.8% 92.8%

CycleGAN and CDTM further improves place retrieval accu-
racy compared to other methods. We also notice that AlexNet
performs well at the 10am case from the CMU Campus
dataset, while CDTM performs well in all conditions. In
Fig. 12, we present the receiver operating characteristic (ROC)
curves of different methods. CDTM has robust true-positive
rates compared with other methods. However, while the non-
learning HoG method also performs well on 1pm CMU
Campus dataset, it is not robust for all time conditions. Overall,
the CDTM-based domain transfer module provides a high
average recall rate with top 10 retrievals, and has a robust
and confident estimation of potential matches.

B. Viewpoint-Invariant Place Recognition Analysis

On both CMU Campus and Large Terrain datasets, our pose
estimation module (PEM) extracts viewpoint-invariant descrip-
tors for place retrievals from extracted condition-invariant
features from our (CDTM) module. For this experiment, both
reference and test images are from same domain to focus
on robustness to viewpoint differences. Our place descriptor
constrains global localization to the Euclidean domain. More-
over, given matching testing and reference images, the PEM
estimates relative orientations in parallel. In this subsection, we
investigate robustness to viewpoint differences and accuracy of
orientation estimation separately.

Firstly, as shown in Fig. 13, for each dataset we ana-
lyze viewpoint-invariance by applying several orientations on
yaw ([15◦, 45◦, 90◦, 145◦]) and pitch ([5◦, 15◦, 30◦]) angles to
testing images. Most place recognition methods show high
retrieval rates but only for small viewpoint changes. For a fixed
pitch angle, place recalls of different methods drops signifi-
cantly as the yaw angle is changed. As the yaw angle changes,
iSimLoc shows higher and more consistent performance. With
only viewpoint differences, iSimLoc’s top 5 place retrievals on
both datasets is above 90%.

We further analyze viewpoint-invariance from a different
perspective. For both datasets, we analyze the similarity of
iSimLoc features given reference images from a local area with
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Fig. 12. ROC analysis for cross-domain place recognition. Each sub-figure shows the receiver operating characteristic (ROC) curves of different methods
for unseen environments on CMU Campus under conditions [10am, 1pm, 7pm] and Large Terrain datasets.

different rotations and scales. For each sub-figure of Fig. 14, an
image pixel corresponds to relative translation difference, and
the center of the images are ground truth matching areas. We
take reference images for different field of views, e.g. scale 1.0
means reference and test images have the same perspective.
Scale 0.8 and 1.2 indicate reference images are taken at
80% and 120% of the altitude of testing images. For local
translation, orientation, and scale differences, iSimLoc shows
a higher similarity score on both CMU Campus and Large
Terrain datasets, which will improve global re-localization
robustness for scale differences.

Additionally, given a matched image pair, relative orien-
tation estimation uses the same spherical features that are
used for the viewpoint-invariant descriptor as depicted in
Section. IV-B2. As shown in Fig. 15, on both CMU Campus
and Large Terrain datasets, relative orientation between testing
and reference queries can be evaluated according to maximum
spherical correlation Ĉ as we stated in section IV-B2. For both
datasets, we present the relative orientation error distribution,
which has a domain within [−30 ∼ 30]◦. Compared to

performance on CMU Campus dataset, the estimator shows
higher orientation error on the Large Terrain dataset, and this
is mainly caused by textureless terrain environments, which
increase difficulty of accurate orientation estimation.

In general, the PEM module provides accurate viewpoint-
invariant place recognition, which improves global localization
efficiency by reducing the sampling space from 6-DoF space
to Euclidean space. The orientation estimation module con-
currently estimates relative orientation between testing images
and matched query images. However, as we can see in the
feature matching results, there are outliers due to common
and similar textures, which is something that becomes more
abundant in long-term navigation. In the following subsection,
we investigate hierarchical localization performance in terms
of robustness, accuracy, and efficiency.

C. Hierarchical Localization Analysis
Hierarchical matching improves global localization effi-

ciency over a large search area without losing matching accu-
racy, as depicted in Section. IV-C. Robustness of hierarchical
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Fig. 13. Localization results for different viewpoints on different datasets. For each dataset, we pick one trajectory from the same domain and generate
test/reference queries with different pitch angles [5, 15, 30]◦ and yaw angles [15, 45, 90, 135]◦, and then analyze the average recall for top-N retrievals.

localization can be further boosted by ignoring condition and
viewpoint changes, which is done with the aid of the do-
main transfer module (CDTM) and viewpoint-invariant module
(PEM). We analyze different global localization methods on
the CMU Campus dataset as shown in Fig. 16, i.e., fixed
120m and 40m altitudes, and high-to-low altitudes. Global
localization is done through using the same iSimLoc place
feature and particle filter, under the same iteration times and
resampling mechanism. For each iteration, we only keep 80%
of the original particles. Matching using a fixed altitude is

often sub-optimal since one has to trade between accuracy
and amount of context captured within place features. In
contrast, hierarchical localization starts from a broad field of
view (FOV) to find potential best matches, and incrementally
changes perspectives by cropping higher resolution regions
of the image. This matching method helps iSimLoc balance
search efficiency and robustness, which is especially important
for large-scale re-localization tasks.

We also evaluate matching accuracy and efficiency by
investigating recognition rates and matching time on our two
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Fig. 14. Localization results at high altitude with various viewpoints and scales. In each sub-figure, we compare feature distance between fixed visual
images and their corresponding simulated images. x and y axes represent offset distance on the XY-plane [64× 64]. Each pixel is equal to 1m.

Fig. 15. Orientation estimation on our two datasets. For each dataset, we
manually set the orientation difference between testing and reference queries
with a default yaw offset ofN ∼ (0, 90◦), and analyze the relative orientation
estimation of the PSE module.

datasets. For the CMU Campus dataset, we take the whole
campus area as the reference map, which covers an area of
700m× 400m. The testing image is taken from an altitude of
120m with an omnidirectional camera. For the Large Terrain
dataset, we take a selected area as reference map, which
covers a space of 1000m × 500m. The test image is taken

from an altitude of 200m with a pin-hole camera pointing
towards the ground. A successful recognition is defined as
having a matching distance within 20m for CMU Campus and
40m for Large Terrain. To maintain the matching efficiency,
all the reference image features are pre-stored. Table. IV
shows matching performance for different matching modes,
when given different numbers of initial particles. When using
constant crops for global localization, iSimLoc cannot provide
high recognition rates with fewer initial particles. However,
matching with more initial particles requires more processing
time. With hierarchical matching we are able to match well
even with few initial particles. Specifically, at a higher initial
altitude, the hierarchical matching approach enables a more
robust initial estimate, which further helps achieve success-
ful localization. Regarding the efficiency, we notice that a
hierarchical approach speeds up localization by a factor of
4 ∼ 10 times. Compared with the performance on CMU
Campus dataset, localization over the Large Terrain dataset
shows lower success rates, which is likely caused by less-
distinguishable geometric features in the terrain.

VI. DISCUSSION

As depicted in System Overview (Section. III), our iSimLoc
method consists of a condition- and viewpoint- invariant place
feature learning module, and a hierarchical localization module
for VTRN task. The conditional domain transfer module of
iSimLoc improves localization accuracy with the assistance
of conditional features of target domains as demonstrated
by results shown in Fig. 10. As depicted in Section.V-A,
our CDTM reconstruction is based on both geometric and
conditional features, which further improves localization ac-
curacy for unseen environments compared to CycleGAN and
AlexNet by 3.75% and 5.09% on average. However, the
current domain transfer module can only be used with low-
resolution images (128×128 or 256×256), which reduces it’s
ability to capture rich geometric features. The Pose Estimation
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Fig. 16. Comparison of different global localization methods on CMU dataset. The first two rows show global localization with iSimLoc place features at
constant altitudes (120m and 40m respectively). The last row shows localization using a hierarchical manner (from a 120m perspective). In each sub-figure,
we plot particle distributions and density analysis. The X-Y positions are relative to the target position.

TABLE IV
GLOBAL RE-LOCALIZATION ROBUSTNESS AND EFFICIENCY.

ACC0.9 ACC0.8 ACC0.7 ACC0.9 ACC0.8 ACC0.7 T ime0.9 T ime0.8 T ime0.7
Localization Method CMU Campus Dataset Large Terrain Dataset Run Time

Hierarchical Localization
CALC [36] (100% Altitude) 10.1% 6.8% 4.5% 10.8% 7.1% 4.1% 2.4s 1.9s 1.6s
HOG [37] (100% Altitude) 12.1% 9.4% 5.2% 11.4% 8.5% 5.6% 2.1s 1.7s 1.5s

NetVLAD [21] (100% Altitude) 24.7% 18.3% 12.4% 22.5% 16.8% 13.6% 3.1s 2.5s 2.1s
AlexNet [35] (100% Altitude) 45.8% 31.6% 23.5% 39.7% 28.4% 19.2% 3.3s 2.6s 2.2s

iSimLoc (100% Altitude) 88.7% 84.5% 74.8% 83.8% 76.1% 72.4% 1.5s 1.2s 0.9s
iSimLoc (50% Altitude) 89.1% 84.2% 78.4% 85.4% 79.2% 70.3% 6.2s 5.0 4.3s
iSimLoc (33% Altitude) 91.8% 85.3% 76.1% 86.9% 81.7% 72.5% 12.9s 10.2s 9.0s

Constant Altitude Localization
iSimLoc (100% Altitude) 59.2% 51.9% 45.8% 52.5% 48.8% 43.1% 1.5s 1.2s 1.1s
iSimLoc (50% Altitude) 61.6% 52.5% 48.2% 54.7% 49.2% 45.3% 6.2s 5.1s 4.4s
iSimLoc (33% Altitude) 63.5% 55.3% 49.7% 53.6% 51.4% 45.9% 13.1s 10.8s 9.1s

Module (PEM) that is shown in Section.V-B demonstrates
robustness to viewpoint differences and orientation estimation
compared to other methods by 5 ∼ 10% as depicted in Fig. 13.
However, the current spherical convolution network in the
PEM has very shallow layers (4 spherical convolutions), which
may reduce its feature extraction ability. Finally, as analyzed
in Section.IV-C, our hierarchical searching method balances
matching efficiency and accuracy. As shown in Table. IV,
by using the hierarchical method, iSimLoc can reach up to
80% successful retrieval rates for large-scale place recognition
compared to 40% for the next best method AlexNet.

Since iSimLoc is designed to give the top matches for global

re-localization, for a complete system it needs to be further
combined with online image alignment methods for accurate
pose estimation, and visual odometry for continuous pose
estimation. As shown in the run time analysis in Table. IV,
the hierarchical version of iSimLoc has 88.7% (Campus) and
83.8% (Large Terrain) correct matches with a 1.5s compution
time, and 89.1% and 85.4% correct matches with a 6.2s
computation time.

VII. CONCLUSION

This paper presented iSimLoc, a hierarchical global re-
localization method for visual terrain relative navigation
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(VTRN) with the assistance of overhead imagery. iSimLoc
can learn a place recognition model with only simulated
images and only requires a small portion (10%) of paired
sim/real data to train the domain-transfer module compared
to other methods that require 60% of the data for domain
transfer. Since it is viewpoint-invariant property it recognizes
the same place even with orientation and altitude differences,
and the hierarchical matching method helps iSimLoc balance
efficiency and robustness for global re-localization.

In future research, we intend to improve the efficiency of
hierarchical localization by parallelizing the method. Addi-
tionally, we also plan to improve the current domain-transfer
module’s ability to capture rich geometric details so that we
can integrate iSimLoc with existing image alignment methods
for accurate pose estimation.
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