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Abstract—In this paper, we propose a distributed guiding-
vector-field (DGVF) algorithm for a team of robots to form a
spontaneous-ordering platoon moving along a predefined desired
path in the n-dimensional Euclidean space. Particularly, by
adding a path parameter as an additional virtual coordinate to
each robot, the DGVF algorithm can eliminate the singular points
where the vector fields vanish, and govern robots to approach
a closed and even self-intersecting desired path. Then, the in-
teractions among neighboring robots and a virtual target robot
through their virtual coordinates enable the realization of the
desired platoon; in particular, relative parametric displacements
can be achieved with arbitrary ordering sequences. Rigorous
analysis is provided to guarantee the global convergence to the
spontaneous-ordering platoon on the common desired path from
any initial positions. 2D experiments using three HUSTER-0.3
unmanned surface vessels (USVs) are conducted to validate the
practical effectiveness of the proposed DGVF algorithm, and 3D
numerical simulations are presented to demonstrate its effec-
tiveness and robustness when tackling higher-dimensional multi-
robot path-navigation missions and some robots breakdown.

Index Terms—Swarms, path planning for multiple mobile
robots or agents, multi-robot systems, guiding vector fields

I. INTRODUCTION

Over the years, multi-robot path navigation has attracted
increasing attention due to the rich applications in searching
and rescue, monitoring and reconnaissance, and convey and
escort [1]–[5]. In such a navigation problem, robots are
generally governed by two terms: path-following control and
multi-robot motion coordination. The former is to guide robots
to accurately follow some desired paths, which can be achieved
by projection-point [6], [7], line-of-sight (LOS) [8], [9] and
guiding-vector-field (GVF) methods [10], [11]. The latter is
to coordinate motions of robots subject to some geometric
constraints. In simple missions within open environments,
these coordination constraints can be satisfied by prescribing
some fixed spatial orderings and distributions of robots, which
refers to fixed-ordering coordination [12].

Among the works of multi-robot path navigation, those
using fixed-ordering design have been widely explored in the
literature. As pioneering works, an adaptive controller was
developed in [13] to follow a desired straight-line path. A vir-
tual structure was proposed in [14] to follow some sinusoidal
paths. A pragmatic distributed protocol [15] was designed
to collectively follow some fitting curved paths. However,
these works [13]–[15] were restricted to simple open paths.
Later, it was extended to circles [16], [17] and some other 2D
closed curves [18]–[21]. For even more complex 3D paths,
an output-regulation-based controller [22] was developed to
achieve multi-robot path navigation with periodic-changing

closed paths in the 3D Euclidean space. Another work [23]
has utilized GVF to follow 3D specific-form paths. However,
the aforementioned methods in [13]–[23] cannot cope with
the desired paths containing self-intersecting points, which
motivates a singularity-free GVF with an additional virtual
coordinate in [24]. Therein, self-intersecting desired paths
were transformed to nonself-intersecting ones in a higher-
dimensional Euclidean space and then multi-robot path naviga-
tion was coordinated with the guaranteed global convergence.
Later, such singularity-free GVF was extended for surface
navigation with two additional virtual coordinates [25].

Still, for more complicated missions in dynamic envi-
ronments, the previous fixed-ordering design methodology
is not ideal, which motivates a more efficient approach to
achieve coordination with arbitrary spatial orderings, namely,
spontaneous-ordering coordination to improve efficiency [26].
Notably, spontaneous-ordering coordination does not prede-
termine the steady-state order of the robots, which implies
that the order of the robots does not matter in the multi-
robot coordination but only depends on the initial condition of
robots. For instance, for maintenance tasks in narrow pipelines,
robots must form a platoon as quickly as possible according
to proximity, which then leads to the arbitrary orderings.
Note that, such spontaneous-ordering coordination may induce
time-varying interaction topologies among robots, which will
affect the performance of multi-robot path navigation. In
this pursuit, a distributed hybrid control law was developed
in [27] to coordinate the robots to keep a constant parametric
separation along the navigation paths. A multifunctional con-
troller was proposed in [28] integrating flocking, formation
regulation, and path following simultaneously. Although these
two studies [27], [28] have tried to address the spontaneous-
ordering coordination scenario, they only considered nonself-
intersecting paths with local convergence in the 2D plane.
The spontaneous-ordering multi-robot path navigation with
more challenging self-intersected paths and guaranteed global
convergence still remain an open problem.

For the specific multi-robot platoon navigation task, a num-
ber of existing works also studied the string stability, which
is closely related to the attenuation of external disturbances
along the platoon [29]. The early works focused on the string
stability for linear robots with a fixed communication topology
[30]–[32]. Later, it was extended to the vehicle platoon with
nonlinear dynamics [33]–[35], switching and uncertain topolo-
gies [36], [37], and even time delays [38], [39]. However,
string stability in these works [29]–[39] requires the robots
to maneuver with fixed predecessor and follower neighbors
(i.e., a fixed-ordering platoon), and restricts in most cases the
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movement of the platoon only in the 1D Euclidean space.
Accordingly, it becomes an urgent yet challenging mission
to design a spontaneous-ordering platoon method in higher-
dimensional Euclidean space.

Inspired by the singularity-free GVF reported in [24], we
design a distributed guiding-vector-field (DGVF) algorithm to
govern a team of an arbitrary number of robots to form a
spontaneous-ordering platoon moving along a predefined de-
sired path in the n-dimensional Euclidean space. Particularly,
by adding a path parameter as an additional virtual coordinate
to each robot, the DGVF algorithm can eliminate the singular
points where the vector fields vanish, and govern robots to
approach a closed and even self-intersecting desired path.
Then, the interactions among neighboring robots and a virtual
target robot through virtual coordinates lead to the realization
of the desired platoon with an arbitrary ordering. The main
contribution is summarized as follows.

1) We propose a DGVF algorithm to enable robots to
approach and maneuver along a closed and even self-
intersecting desired path while keeping a platoon with
an arbitrary ordering simultaneously.

2) We guarantee the global convergence to the
spontaneous-ordering platoon on the desired path
from any initial positions, and reduce communication
and computation costs by transmitting only virtual
coordinates among neighboring robots.

3) We establish a multi-USV navigation system and con-
duct 2D experiments with three HUSTER-0.3 USVs to
demonstrate the practical effectiveness of the proposed
DVGF algorithm. Moreover, we perform 3D numerical
simulations to show its effectiveness and robustness
when tackling higher-dimensional navigation missions
and some robots breakdown.

The technical novelty of this paper is three-fold. First of
all, different from the previous GVF [18]–[25] focusing on
the fixed-ordering multi-robot path navigation, the present
paper designs a DGVF algorithm by utilizing the time-varying
interactions among neighboring robots and a virtual target
robot through their virtual coordinates to address a more
challenging spontaneous-ordering multi-robot path navigation
problem. Secondly, the present paper guarantees the global
convergence to the spontaneous-ordering platoon in presence
of strongly nonlinear couplings induced by the ordering flexi-
bility. Thirdly, experiments with three HUSTER-0.3 USVs in
a multi-USV navigation system are conducted to demonstrate
the practical effectiveness of the proposed DGVF algorithm.
Still worth mentioning is that, by using time-varying neighbor-
ing interactions, the present DGVF algorithm can even tackle
the case when some robots breakdown whereas the previous
GVF approaches [18]–[25] do not work in such cases.

The remainder of this paper is organized as follows. Sec-
tion II introduces preliminaries and the formulation of the
problem. The main technical results are elaborated in Section
III. 2D experiments using USVs and 3D numerical simulations
are both conducted in Section IV. Finally, conclusions are
drawn in Section V.

Throughout the paper, the real numbers and positive
real numbers are denoted by R,R+, respectively. The n-

dimensional Euclidean space is denoted by Rn. The integer
numbers are denoted by Z. The notation Zj

i represents the set
{m ∈ Z | i ≤ m ≤ j}. The Kronecker product is denoted
by ⊗. The n-dimensional identity matrix is represented by In.
The N -dimensional column vector consisting of all 1’s is
denoted by 1N .

II. PRELIMINARIES

A. Higher-Dimensional GVF

Suppose a desired path P in the n-dimension Euclidean
space is characterized by the zero-level set of the implicit
functions ϕ(σ) [40], [41],

P := {σ ∈ Rn | ϕ(σ) = 0}, (1)

where σ ∈ Rn are the coordinates and ϕ(·) : Rn → R
is twice continuously differentiable, i.e., ϕ(·) ∈ C2. Unlike
conventional methods [6], [7] to measure the error between
a point p0 ∈ Rn and the desired path P by dist(p0,P) =
inf{∥p − p0∥ | p ∈ P}, the implicit functions ϕ(σ) provide
a more convenient way to measure the path-following errors
with ϕ(p0). However, there may exist some pathological
situations, i.e., settling down of

(
∥ϕ(p0(t))∥ to zero along the

trajectory p0(t) does not necessarily imply that dist(p0(t),P)
converges to 0 as t → ∞, see [42], [43]

)
, which can be

excluded by the following assumption.

Assumption 1. [10] For any given κ > 0 and a point p0(t),
one has that inf{∥ϕ(p0)∥ : dist(p0,P) ≥ κ} > 0.

Assumption 1 guarantees that the path-following errors
∥ϕ(p0)∥ are utilized to measure “how close” a point p0 is
to the desired path P , i.e., limt→∞ ∥ϕ(p0(t))∥ = 0 ⇒
limt→∞ dist(p0(t),P) = 0, which can be satisfied by using
some polynomial or trigonometric functions (see, e.g., [43]–
[45]).

(a) (b)

2D circular path 2D self-intersecting path

3D stretched path 3D stretched path

Fig. 1. (a) The red solid line is the desired 2D circular path Pphy :=
{[σ1, σ2]T ∈ R2 | σ1 = cosω, σ2 = sinω, ω ∈ R}, whereas the blue
dashed line is the corresponding “stretched” desired 3D path Phgh :=
{[σ1, σ2, ω]T ∈ R3 | σ1 = cosω, σ2 = sinω}. (b) The red solid line is the
desired 2D self-intersecting Lissajous path Pphy := {[σ1, σ2]T ∈ R2 | σ1 =
cosω/(1 + 0.5(sinω)2), σ2 = cosω sinω/(1 + 0.5(sinω)2), ω ∈ R},
whereas the blue dashed line is the corresponding “stretched” desired 3D
path Phgh := {[σ1, σ2, ω]T ∈ R2 | σ1 = cosω/(1 + 0.5(sinω)2), σ2 =
cosω sinω/(1 + 0.5(sinω)2)}.

Using the characterization of the desired path P in (1), we
are ready to introduce a higher-dimensional GVF to address
the single-robot path navigation problem.
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Definition 1. (Higher-dimensional GVF) [46] Given the de-
sired path Pphy in the n-dimension Euclidean space satisfying
Assumption 1 and parameterized by

Pphy := {[σ1, · · · , σn]T ∈ Rn | σj = fj(ω), j ∈ Zn
1 , ω ∈ R}

with the j-th cooridinate σj , the path parameter ω, and the
function fj ∈ C2, there exists a corresponding desired path
Phgh in the higher-dimensional Euclidean space

Phgh := {ξ ∈ Rn+1 | ϕj(ξ) = 0, j ∈ Zn
1},

where ξ := [σ1, . . . , σn, ω]
T are the generalized coordinates by

regarding ω as an additional coordinate, and ϕj(ξ) := σj −
fj(ω), j ∈ Zn

1 are the implicit functions to measure the path-
following errors. Since Pphy corresponds to the projection of
Phgh spanned on the first n coordinates, a higher-dimensional
GVF χhgh ∈ Rn+1 can be designed as follows,

χhgh = ×(∇ϕ1, · · · ,∇ϕn)−
n∑

j=1

kjϕj∇ϕj , (2)

which can govern a robot to approach and maneuver along
the desired path Pphy by projecting χhgh to the first n-
dimensional Euclidean space. Here, kj ∈ R+ is the gain,
∇ϕj(·) : Rn+1 → Rn+1 denotes the gradient of ϕj w.r.t.
ξj and ×(·) represents the wedge product [47].

The higher-dimensional GVF χhgh in (2) is capable of
providing a propagation direction along the desired path Pphy

with the first term ×(∇ϕ1, · · · ,∇ϕn) ∈ Rn+1 orthogonal to
all the gradients ∇ϕj , j ∈ Zn

1 , and approaching the desired
path Pphy with the second term of

∑n
j=1 kjϕj∇ϕj . In [46],

it has been shown that the higher-dimensional GVF χhgh

can eliminate the singular points (i.e., χhgh = 0) by adding
the virtual coordinate ω, and hence guarantee the global
convergence to even self-intersecting desired paths.

Remark 1. By transforming the path parameter ω into an
additional virtual coordinate, the desired closed and self-
intersecting paths Pphy ∈ Rn in S1 are “cut” and “stretched”
into the higher-dimensional desired paths Phgh ∈ Rn+1,
and become unbounded and nonself-intersecting after intro-
ducing the additional dimension ω [46]. Examples of such
a “stretching” operation are illustrated in Fig. 1, where the
desired 2D circular and self-intersecting paths Pphy have been
transformed into the corresponding unbounded desired 3D
paths Phgh, respectively. Moreover, the higher-dimensional
GVF χhgh ∈ Rn+1 in Eq. (2) is designed for the “stretched”
higher-dimensional desired paths Phgh ∈ Rn+1, where χhgh

is then projected into its first n coordinates to govern the
robot to approach and move along the original desired paths
Pphy ∈ Rn.

B. Multi-Robot Path Navigation

We consider a multi-robot system consisting of N robots
denoted by V = {1, 2, . . . , N}. Each one is described by the
single integrator kinematics,

ẋi = ui + di, i ∈ V, (3)

where xi(t) := [xi,1, . . . , xi,n]
T ∈ Rn represent the positions

and ui(t) := [ui,1, . . . , ui,n]
T ∈ Rn the control inputs of the

robot i, di := [di,1, . . . , di,n]
T ∈ Rn the external disturbances,

such as the state estimation errors, feedback-linearization er-
rors, wind, and currents. Note that the inputs ui in Eq. (3) can
be regarded as the desired high-level guidance velocities when
applied to practical robots with higher-order dynamics, which
are thus applicable to various robots with the hierarchical
control structure, such as unmanned aerial vehicles (UAVs),
and unmanned surface vessels (USVs) [17], [44], [46].

Suppose the i-th desired path Pphy
i for robot i, i ∈ V, in

the n-dimensional Euclidean space is described by,

Pphy
i :={σi := [σi,1, . . . , σi,n]

T ∈ Rn |
σi,j = fi,j(ωi), j ∈ Zn

1 , ωi ∈ R}, (4)

where σi are the coordinates of the desired path Pphy
i ,

fi,j(ωi) ∈ C2, j ∈ Zn
1 and ωi are the parametric functions and

the virtual coordinate of robot i, respectively. Here, fi,j(ωi)
in Eq. (4) are in the same parametric form fi,j(·) for all the
robots V but with different virtual coordinates ωi, i ∈ V , which
then make Pphy

i in Eq. (4) a common desired path for the
multi-robot platoon task later. Then, the sensing neighborhood
Ni of robot i is defined by

Ni(t) := {k ∈ V, k ̸= i | |ωi,k(t)| < R} (5)

with the sensing radius R ∈ (r,∞), the safe radius r and
ωi,k := ωi − ωk. Since the relative parametric value |ωi,k(t)|
is time-varying, one has that Ni is time-varying as well, which
can lead to a spontaneous-ordering platoon later whereas
posing challenging issues in the stability analysis.

4

1 3
2 3

4 2
1 2

3 1
4

(a) Platoon 1 (b) Platoon 2 (c) Platoon 3

1

3

2

3

4

2
1

2

3

1

4

(a) Platoon 1 (b) Platoon 2 (c) Platoon 3

Fig. 2. An illustrative example where four robots (different colors) form three
distinct-ordering platoons whereas moving along a desired 2D self-intersecting
Lissajous path. (The red point denotes the self-interesting point of the path.)

Note that the common desired path Pphy
i has been scaled

to each robot’s virtual coordinate ωi, which can stipulate the
common scale to determine the neighborhood Ni(t) in (5).
An intuitive example of Ni(t) is that when Pphy

i in (4) is
a line e.g., fi,1 = ωi, fi,j = 0, j ∈ Zn

2 , i ∈ V , the relative
value |ωi,k| becomes the x-axis distance, which implies that
the definition of Ni in (5) is hence reasonable and feasible in
practice.

Moreover, from Definition 1, Pphy
i in (4) can be transformed

to the corresponding common desired path Phgh
i in the higher-

dimensional Euclidean space

Phgh
i :={[σi,1, . . . , σi,n, ωi]

T ∈ Rn+1 |
σi,j = fi,j(ωi), j ∈ Zn

1}. (6)

Denoting pi := [xi,1, . . . , xi,n, ωi]
T ∈ Rn+1 and substituting

the positions xi = [xi,1, . . . , xi,n]
T of robot i into Phgh

i in (6),
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the path-following errors ϕi,j(pi) ∈ R,∀j ∈ Zn
1 , between

robot i and the desired higher-dimensional path Phgh
i are

ϕi,j(pi) =xi,j − fi,j(ωi), j ∈ Zn
1 . (7)

Then, all the robots V achieve the desired multi-robot path nav-
igation mission once the path-following errors ϕi,j(pi),∀j ∈
Zn
1 , converge to zeros, i.e.,

lim
t→∞

ϕi,j(pi(t)) = 0,∀i ∈ V, j ∈ Zn
1 .

C. Spontaneous-Ordering Platoon

According to the parametric path Pphy
i in (4) and the path-

following errors ϕi,j(pi) in (7), we are ready to introduce the
spontaneous-ordering platoon for multi-robot path navigation
problem.

Definition 2. (Spontaneous-ordering platoon) A group of
robots V governed by (3) collectively form a spontaneous-
ordering platoon moving along a common desired path
Pphy
i (4) under Assumption 1, if the following claims are

fulfilled,

1) lim
t→∞

ϕi,j(pi(t)) = 0,∀i ∈ V, j ∈ Zn
1 ,

2) lim
t→∞

ω̇i(t) = lim
t→∞

ω̇k(t) ̸= 0,∀i ̸= k ∈ V,

3) r < lim
t→∞

|ωs[k](t)− ωs[k+1](t)| < R, ∀k ∈ ZN−1
1 ,

4) |ωi,k(t)| > r,∀t ≥ 0, ∀i ̸= k ∈ V, (8)

where ω̇i denotes the derivative of ωi, R ∈ R+, r ∈ R+ are
the specified sensing and safe radius in (5), respectively. Here,
ωs[1] < ωs[2] < · · · < ωs[N ] are the states of the virtual
coordinates with an arbitrary sequence {s[1], s[2], . . . , s[N ]}
in an ascending order when t→ ∞.

In Definition 2, Claim 1) indicates that all the robots
converge to the common desired path Pphy

i . Claim 2) implies
that all the robots move along the common desired path and
maintain relative parametric displacements ωi,k, i ̸= k ∈ V ,
i.e., the parametric displacement of the platoon is fixed.
Claim 3) assures the ordering of the platoon is spontaneous
with an arbitrary sequence. By properly selection of R and r,
it is only required that the limiting relative value of adjacent
virtual coordinates |ωs[k](t) − ωs[k+1](t)| can be set in an
acceptable region (i.e., r < |ωs[k](t)−ωs[k+1](t)| < R), which
is reasonable in practice. Claim 4) avoids the overlapping of
virtual coordinates, which thus guarantees inter-robot collision
avoidance. From Claims 3) and 4), the ordering flexibility
of the platoon indicates that the steady-state order of the
robots cannot be stipulated by the virtual coordinates ωi in
advance, and depends on the initial condition of the robots. It
will pose challenges in the platoon analysis by time-varying
neighbor relations induced by such platoon ordering flexibility;
in sharp comparison, the (desired) neighbor relationships in
fixed-ordering platoons are usually time-invariant and thus
the controls are easier to be designed, and implemented.
An example of spontaneous-ordering platoon is illustrated in
Fig. 2, where the platoons 1, 2, 3 all fulfill the four claims in
Definition 2 but with distinct ordering sequences.

D. Problem Formulation

Let ∂fi,j(ωi) := ∂fi,j(ωi)/∂ωi be the derivative of fi,j(ωi)
w.r.t. ωi, one has that the gradient of ϕi,j(pi) in (7) along
pi ∈ Rn+1 is calculated as follows

∇ϕi,j(pi) := [0, . . . , 1, . . . ,−∂fi,j(ωi)]
T ∈ Rn+1, (9)

which implies that the time derivative of ϕi,j(pi) is

ϕ̇i,j(pi) =∇ϕi,j(pi)Tṗi, i ∈ V, j ∈ Zn
1 . (10)

Meanwhile, uωi is defined as the desired input for the dynamic
of virtual coordinate ω̇i, i.e.,

ω̇i = uωi . (11)

Let ϕ̇i,j = ϕ̇i,j(pi), ∂fi,j = ∂fi,j(ωi), i ∈ V, j ∈ Zn
1 for

conciseness. Rewriting Φi := [ϕi,1, ϕi,2, . . . , ϕi,n]
T, ui :=

[ui,1, ui,2, . . . , ui,n]
T and combining Eqs. (3), (10) and (11)

together yields [
Φ̇i

ω̇i

]
= Di

[
ui + di
uωi

]
(12)

with

Di =


1 0 · · · −∂fi,1
0 1 · · · −∂fi,2
...

...
. . .

...
0 · · · 1 −∂fi,n
0 · · · 0 1

 ∈ Rn+1×n+1.

Now, we are ready to introduce the main problem addressed
by this paper.

Problem 1: (Spontaneous-ordering platoon in multi-robot
path navigation task) Design a distributed algorithm

{ui, uωi } := g(ϕi,1, . . . , ϕi,n, ωi, ωk), i ∈ V, k ∈ Ni, (13)

for the multi-robot system governed by (3), (12) and (13) to
attain the spontaneous-ordering platoon, as given in Defini-
tion 2.

III. MAIN TECHNICAL RESULTS

Firstly, it follows from Eqs. (2), (7), (9) that the higher-
dimensional GVF χhgh

i (xi,1, xi,2, . . . , xi,n, ω) ∈ Rn+1 for
robot i is (see, e.g., [46]),

χhgh
i =× (∇ϕi,1, · · · ,∇ϕi,n)−

n∑
j=1

ki,jϕi,j∇ϕi,j

=


(−1)n∂fi,1 − ki,1ϕi,1

...
(−1)n∂fi,n − ki,nϕi,n

(−1)n +
n∑

j=1

ki,jϕi,j∂fi,j

 . (14)

It follows from the χhgh
i in (14) that the DGVF algorithm for

Problem 1 is designed as follows,

ui,j =(−1)n∂fi,j − ki,jϕi,j + d̂i,j , ∀j ∈ Zn
1 ,

uωi =(−1)n +

n∑
j=1

ki,jϕi,j∂fi,j − ci(ωi − ω̂i) + ηi, (15)
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where ki,j , ci ∈ R+, i ∈ V, j ∈ Zn
1 are the corresponding

gains, ωi, ϕi,j , ∂fi,j , j ∈ Zn
1 are given in (4) and (12), respec-

tively. d̂i := [d̂i,1, . . . , d̂i,n]
T ∈ Rn represents an additional

well-designed observer to compensate for the external distur-
bances di in Eq. (3) (refer to Remark 4 for more details). ω̂i is
defined as the estimation of the target virtual coordinate ω∗ for
robot i, where ω∗ is the corresponding virtual coordinate of a
virtual target robot labeled ∗ moving on the desired path Pphy

∗
governed by the designed GVF χhgh

∗ in (14). Since the virtual
target robot ∗ is already moving on the common desired path
Pphy
∗ , one has that ϕ∗,j = 0,∀j ∈ Zn

1 , which implies that the
derivative of ω∗ satisfies

ω̇∗ = (−1)n +

n∑
j=1

k∗,jϕ∗,jf
′
∗,j = (−1)n (16)

as observed from Eq. (14).
Further, ηi in (15) denotes the inter-agent repulsive term

which satisfies

ηi =
∑
k∈Ni

α(|ωi,k|)
ωi,k

|ωi,k|
(17)

with ωi,k := ωi − ωk, Ni given in (5), and the continuous
function α(s) : (r,∞) → [0,∞) (see e.g. [48]) satisfying

α(s) = 0,∀s ∈ [R,∞), lim
s→r+

α(s) = ∞. (18)

An illustrative example of α(s) is (see, e.g. [48]),

α(s) =

{
1

s−r − 1
R−r r < s ≤ R,

0 s > R,
(19)

where α(s) is monotonically decreasing if s ∈ (r,R] and
equal 0 if s ∈ (R,∞). It implies that α(s) is continuous
in the domain (r,∞).

Next, we will prove that the multi-robot system governed
by (3), (12) and (15) satisfies the property P1.
P1: Robots V achieve a spontaneous-ordering platoon in the

multi-robot navigation task.
To this end, conditions C1-C5 are required.

C1: The initial positions and virtual coordinates of the robots
satisfy ∥xi(0)− xk(0)∥ > 0, |ωi,k(0)| > r, ∀i ̸= k ∈ V .

C2: The first and second derivatives of fi,j(ωi), i ∈ V, j ∈ Zn
1

are bounded.
C3: The estimation ω̂i converges to the target virtual coordi-

nate ω∗ exponentially, i.e., limt→∞ ω̂i(t)−ω∗(t) = 0, i ∈
V , exponentially.

C4: The total length Lphy
i of the common desired path Pphy

i

is required to be great than the length of the platoon, i.e.,
Lphy
i >

∫ NR

0

√∑n
j=1 ∂f

2
i,j(s)ds.

C5: The external disturbances di in (3) and their first-order
derivatives ḋi are all bounded, i.e., ∥di∥ ≤ βi,1, ∥ḋi∥ ≤
βi,2, i ∈ V, for some positive constants βi,1, βi,2 ∈
R+ [49].

Remark 2. Condition C1 is reasonable and necessary, which
will be utilized to avoid the overlapping of robots. Condition
C2 is used to prevent the common desired path from changing
too fast, see, e.g., [24], which is necessary for the global con-
vergence analysis later. Condition C4 assures that there exists

enough room of the common desired path to accommodate all
the robots, otherwise the head robot in the platoon may collide
with the tail robot, which fails to form a satisfactory platoon.

Remark 3. Condition C3 is the existence of a distributed
estimator for the target virtual coordinate ω∗ with a constant
velocity ω̇∗ = (−1)n in (16). Such a problem has been well
studied in the literature, e.g., [50]–[52] with a connected and
undirected topology, and even can be easily achieved by broad-
casting ω∗ with a finite-time technique, which is out of the
main scope of this paper. To make the whole design complete,
the distributed estimator endowing exponential convergence
has the following structure,

˙̂ωi =γ1

( ∑
j∈Nc

i

(ω̂j − ω̂i) + bi(ω
∗ − ω̂i)

)
+ ς̂i,

˙̂ςi =γ1γ2

( ∑
j∈Nc

i

(ω̂j − ω̂i) + bi(ω
∗ − ω̂i)

)
, (20)

where ω̂i, ς̂i are the i-th robot’s estimates of ω∗ and ω̇∗,
respectively, γ1, γ2 ∈ R+ are the estimated gain, bi = 1 if
robot i has access to ω∗ and bi = 0, otherwise. N c

i , i ∈ V ,
represents the communication neighborhood set of the robot i.
Let L ∈ RN×N be the Laplacian matrix according to the
neighboring set N c

i , i ∈ V and B := diag{b1, b2, . . . , bn} ∈
RN×N , one has that the smallest eigenvalue λ̄ of the matrix
(L + B) satisfies λ̄ > 0 with a connected communication
topology and at least one robot has access to ω∗. Denote
ϱ := [χT, ζT]T ∈ R2N with χ := [ω̂1, ω̂2, . . . , ω̂N ]T − 1N ⊗ ω∗

and ζ := [ς̂1, ς̂2, . . . , ς̂N ]T −1N ⊗ ω̇∗, and one has the closed-
loop system is ϱ̇ = Aϱ with

A =

[
−γ1(L+H) IN
−γ1γ2(L+H) 0

]
.

According to the conditions γ1 > 1/(4γ2(1−γ22)λ̄), 1 > γ2 >
0 in [51], one has that limt→∞ ϱ(t) = 0 exponentially, which
indicates that limt→∞ ω̂i − ω∗ = 0 exponentially.

Remark 4. Condition C5 is common in real applications.
For generally bounded disturbances, there exist various works
focusing on the disturbance observer d̂i for the compensation
of di in Eq. (3), such as the extended state observers (ESO)
and sliding mode observers (SMO), which can estimate the
disturbances in finite time [49], [53], i.e., limt→T1

{d̂i(t) −
di(t)} = 0 with a constant time T1 > 0. The design of such
disturbance observers is out of the scope of this paper. Instead,
we assume that the compensation of di is achieved by adding a
well-designed observer d̂i into the original inputs ui, namely,
ui → ui + d̂i in DGVF (15), and then analyze the influence
of estimated disturbance errors in Lemmas 1-2 later. More-
over, for constant disturbances, extensive simulations with
no additional disturbance observers are shown in Figs. 13-
15 to illustrate the quantitative influence of disturbances on
the spontaneous-ordering platoon, which demonstrate that the
proposed DGVF (15) can still guarantee the spontaneous-
ordering platoon under small constant external disturbances.

Since the DGVF algorithm (15) is not well defined at
ωi,k = 0 or ωi,k = r because of ηi in (17), it may exhibit
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a finite-time-escape behavior (i.e., uωi (t) = ∞) for the closed-
loop system (12). Therefore, we derive the main results in
three steps for readers’ convenience. In Step 1, we prevent the
finite-time-escape behavior in the closed-loop system (12) (i.e.,
ωi,k(t) ̸= 0, ωi,k(t) ̸= r, ∀t > 0 and Claim 4)). In Step 2, we
prove that all the robots converge to and then maneuver along
a common desired path (i.e., Claims 1)-2) in Definition 2).
In Step 3, we prove the forming of the spontaneous-ordering
platoon (i.e., Claim 3) in Definition 2).

Lemma 1. Under conditions C1, C3 and C5, a multi-robot
system governed by (3), (15) prevents the finite-time-escape
behavior, i.e., ωi,k(t) ̸= 0, ωi,k(t) ̸= r, ∀t > 0.

Proof. See Appendix A.

Lemma 2. Under conditions C2 and C3, a multi-robot system
governed by (3), (15) converges to and then moves along
the common desired path Pphy

i , i ∈ V in Eq. (4), i.e.,
limt→∞ ϕi,j(pi(t)) = 0, limt→∞ ω̇i(t) = limt→∞ ω̇k(t) ̸=
0,∀i ̸= k ∈ V, j ∈ Zn

1 .

Proof. From the definition of Ω in (47), one has that
∫ t

0
Ω(s)ds

is monotonic. Then, it follows from Eqs. (44), (47) that∫ t

0

Ω(s)ds ≥ V (t)−
∑
i∈V

∫ t

0

{
ei(s)

2

4
+

∥d̃i(s)∥2

2

}
ds− V (0).

Since the term −
∑

i∈V
∫ t

0

{
ei(s)

2/4+∥d̃i(s)∥2/2
}
ds is lower

bounded, and V (0) and V (t) are both bounded in Lemma 1,
one has

∫ t

0
Ω(s)ds is lower bounded as well, which implies

that
∫ t

0
Ω(s)ds has a finite limit as t→ ∞.

Meanwhile, since V (t) is bounded in Lemma 1, it follows
from Eq. (35) that Φi, ω̃i, ηi are all bounded. Combining
with the boundedness of the first and second derivatives of
fi,j(ωi), i ∈ V, j ∈ Zn

1 in condition C2, one has that Ω̇ is
bounded as well, which implies that Ω in (47) is uniformly
continuous in t. Then, it follows from Barbalat’s lemma [54]
that

lim
t→∞

Ω(t) = 0. (21)

Since a2i ≥ 0,ΦT
iKiKiΦi ≥ 0, ki,j > 0, i ∈ V, j ∈ Zn

1 in
Eqs. (45), (47), one has

lim
t→∞

ai(t) = 0, lim
t→∞

Φi(t) = 0n, (22)

which further implies limt→∞ ϕi,j(pi(t)) = 0, i ∈ V, j ∈ Zn
1 ,

i.e., Claim 1) in Defintion 2.
Moreover, since ai in (45) contains Φi(t), ei(t) which both

approach zeros when t→ ∞, one has that

lim
t→∞

ciω̃i(t)− ηi(t) = 0. (23)

It then follows from Eqs. (32) and (33) that limt→∞ ˙̃ωi(t) = 0.
From the fact ω̇∗ = (−1)n and ω̃i = ωi − ω∗ in Eqs. (16)
and (32), one has that limt→∞ ω̇i(t) = limt→∞ ω̇k(t) ̸=
0,∀i ̸= k ∈ V , i.e., the Claim 2) in Defintion 2. The proof is
thus completed.

Remark 5. From Lemmas 1 and 2, the prevention of the
finite-time-escape behavior and the global convergence of the

robots to the common desired path can still be guaranteed in
the presence of exponentially vanishing estimation errors and
external disturbances in conditions C3 and C5 simultaneously.
Moreover, the quantitative influence of the constant external
disturbances on the spontaneous-ordering platoon is also
demonstrated by numerical simulations in Section IV-C later.

Lemma 3. Under condition C4, a multi-robot system governed
by (3), (15) guarantees the spontaneous-ordering platoon, i.e.,
r < limt→∞ |ωs[k](t)− ωs[k+1](t)| < R,∀k ∈ ZN−1

1 .

Proof. From the fact limt→∞ ω̇i(t) = limt→∞ ω̇k(t) ̸=
0,∀i ̸= k ∈ V in Lemma 2, one has that the limiting relative
value of ωi, i ∈ V against any ωk, k ̸= i is time-invariant with
an arbitrary sequential ordering {s[1], s[2], . . . , s[N ]} in an
ascending order, which satisfies ωs[1] < ωs[2] < · · · < ωs[N ].

Meanwhile, since |ωi,k(t)| > r, ∀i ̸= k ∈ V in Lemma 1,
one has that

|ωs[i],s[i+1]| > r, i = 1, . . . , n− 1.

Next, we will prove the condition of |ωs[i],s[i+1]| < R, i =
1, . . . , n− 1, by contradiction. With the loss of generality, we
assume that there exists at least one pair of adjacent robots
labeled s[l], s[l + 1] such that |ωs[l],s[l+1]| ≥ R. Then, the
contradiction is analyzed by the following three cases.

Case 1: ωs[l] < ωs[l+1] ≤ ω∗. As for the robot s[l], one has
that −ci(ωs[l]−ω∗) = −ciω̃s[l] > 0. Due to the assumption of
|ωs[l],s[l+1]| ≥ R, one has that |ωs[l],s[j]| > R, j = l+1, . . . , n,
which implies that robot s[l] may only have neighbors satis-
fying |ωs[l],s[k]| < R, k = l − 1, . . . , 1. It follows from the
definition of ηi in (17) that ηs[l] > 0, which implies the
limiting values −ciω̃s[l] + ηs[l] satisfy

−ciω̃s[l] + ηs[l] =ci(ω
∗ − ωs[l]) + ηs[l]

≥ci(ωs[l+1] − ωs[l]) + ηs[l]

≥ciR > 0.

It contradicts Eq. (23).
Case 2: ω∗ ≤ ωs[l] < ωs[l+1]. As for robot s[l + 1], the

contradiction is similar to robot s[l] in case 1, one has that
−ciω̃s[l+1] + ηs[l+1] ≤ −ciR < 0, which contradicts Eq. (23)
as well.

Case 3: ωs[l] < ω∗ < ωs[l+1]. As for robot s[l], the
contradiction is the same as case 1. As for robot s[l + 1],
the contradiction is the same as case 2, of which are both
omitted.

According to the contradiction of the cases 1, 2, 3, one has
that |ωs[i],s[i+1]| < R, i = 1, . . . , n− 1. Then, it is concluded
that r < |ωs[i],s[i+1]| < R, i = 1, . . . , n − 1, i.e., Claim 3) in
Definition 2. The proof is thus completed.

Remark 6. The spontaneous-ordering property is achieved
by the attraction of the target virtual coordinate ω∗ and the
repulsion among virtual coordinates ωi,k, of which both finally
reach a balance in one dimension (i.e., virtual coordinate
ω) and thus form the spontaneous-ordering platoon. Therein,
the steady orderings of the platoon, however, are unknown in
advance, which are distributively calculated during the multi-
robot path-navigation process.
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Theorem 1. A multi-robot system governed by (3) and the
DGVF algorithm (15) achieves the property P1, under the
conditions C1, C2, C3, C4 and C5.

Proof. It follows from Lemmas 1-3 directly.

Remark 7. Different from the string stability in previous
platoon works [29]–[39] which requires the robots to ma-
neuver with fixed predecessor and follower neighbors (i.e.,
a platoon in terms of fixed-ordering string), the proposed
DGVF (15) can handle time-varying neighbor relationships
(i.e., the predecessor and follower of the robots cannot be
uniquely determined and the string of the platoon is time-
varying), which then enables the robots to form a spontaneous-
ordering platoon in the higher-dimensional Euclidean space
(n ≥ 2). So far, the string stability cannot be analyzed in the
present spontaneous-ordering platoon with such time-varying
predecessor and follower, which will be investigated in future
work.

Remark 8. The unwinding phenomenon commonly encoun-
tered in the rigid-robot attitude tracking problem, refers to
the situation where a robot, whose attitude is represented
by a quaternion, might perform an unnecessary large-angle
maneuver, even if the initial attitude is close to the desired
attitude [55]. However, such an unwinding phenomenon is
less relevant in this paper, because the proposed DGVF (15)
is designed and treated as the high-level desired guidance
velocities (i.e., desired attitude) for simple single-integrator
robots in Eq. (3), rather than the low-level attitude tracking
with rigid body dynamics. The “stretching” operation of the
DGVF (15) in Fig. 1 shows the unwinding effect in the end,
and the robots may take a long way around the closed path
to get into the platoon. We notice that some rigorous anti-
unwinding techniques have been explored in the literature,

O X

Y

Fig. 3. Illustration of the USV kinematics.

such as the modified rodrigues parameters (MRPs) and sliding
mode control (SMC) [55], [56], which can be seamlessly
embedded in the low-level attitude tracking module with the
desired attitude provided by the high-level DGVF (15).

IV. 2D EXPERIMENTAL RESULTS AND 3D SIMULATIONS

In this section, we validate the effectiveness and robustness
of the DGVF algorithm (15) by 2D experiments using three
HUSTER-0.3 USVs and 3D numerical simulations.

A. Accommodating the DGVF to USV’s Dynamics

Since the DGVF algorithm (15) provides high-level refer-
ence tracking velocities rather than low-level control signals

when encountering robots with high-order dynamics, it applies
to any robots whose guidance velocities can be exponentially
tracked with well-designed low-level motor control signals. In
what follows, we will first introduce the accommodating of the
DGVF algorithm (15) to the USVs. The kinematics of USV i
in the Cartesian coordinates [17] are,

ẋi = ϵi cosψi − vi sinψi,

ẏi = ϵi sinψi + vi cosψi,

ψ̇i = ri (24)

with the positions qi(t) = [xi(t), yi(t)]
T ∈ R2, the yaw angle

ψi(t) ∈ R in the Cartesian coordinate, and ϵi(t), vi(t), ri(t) ∈
R the surge, the sway and the yaw velocities of USV i in the
USV coordinate, respectively, as shown in Fig. 3.

The dynamics of USV i are described by a practical model
(see e.g., [57])

ϵ̇i = l1ϵi + l2viri + l3τi,1,

ṙi = l4ri + l5τi,2,

v̇i = l6vi + l7ϵiri, (25)

where l1, l2, l3, l4, l5, l6, l7 ∈ R are the identified parameters,
and τi,1, τi,2 ∈ R the actuator inputs of USV i. It follows from
Eq. (24) that ẋi, ẏi can be rewritten in a compact form,[

ẋi
ẏi

]
=

[
cosψi − sinψi

sinψi cosψi

] [
ϵi
vi

]
. (26)

Analogously, substituting Eq. (26) into the closed-loop
system (12) yieldsϕ̇i,1ϕ̇i,2
ω̇i

 =

1 0 −∂fi,1(ωi)
0 1 −∂fi,2(ωi)
0 0 1

cosψi − sinψi 0
sinψi cosψi 0
0 0 1

ϵivi
ω̇i

 .
(27)

Let ϵri , v
r
i be the high-level guidance velocities for ϵi, vi,

respectively. Defining the signal errors as

ϵ̃i := ϵi − ϵri , ṽi := vi − vri , (28)

it follows from Eqs. (27) and (28) thatϕ̇i,1ϕ̇i,2
ω̇i

 =

cosψi − sinψi −∂fi,1(ωi)
sinψi cosψi −∂fi,2(ωi)
0 0 1

 ϵrivri
uωi

+

eϵ,iev,i
0


(29)

with

eϵ,i :=ϵ̃i cosψi − ṽi sinψi,

ev,i :=ϵ̃i sinψi + ṽi cosψi. (30)

Starting from DGVF (15) for the single-integrator robots
in (3), a modified DGVF algorithm for USV i is naturally
proposed as follows,

ϵri =(∂fi,1 − ki,1ϕi,1) cosψi + (∂fi,2 − ki,2ϕi,2) sinψi,

vri =− (∂fi,1 − ki,1ϕi,1) sinψi + (∂fi,2 − ki,2ϕi,2) cosψi,

uωi =1 +

2∑
j=1

ki,1ϕi,1∂fi,1 − ci(ωi − ω̂i) + ηi. (31)
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Monitoring

Eight infrared cameras

Pool: 4000mm x 4000mm

(a) Multi-USV platform (b) HUSTER-0.3 USVs
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Computer

Infrared emitters 
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(c) Size and components of the HUSTER-0.3 USV 
Onboard Navigation

Group ComputerOnboard Regulation

Infrared 
Cameras

Data 
Saving

Velocity Tracking
Motor    

Driving

Source Launching
Emitting 

Infrared Light

Path Following
Higher-Dimensional     

GVF 

Spontaneous-Ordering
Platoon

Virtual Coordinates
Interaction 

DGVF  Designing
Guidance 
Velocity

(d) Structure of multi-USV navigation system

Position Capturing

Fig. 4. (a) The multi-USV platform consists of eight infrared cameras, a
computer, and a 4000 mm × 4000 mm pool. (b) Three HUSTER-0.3 USVs
with infrared emitters as the identifiers on their tops which can be identified
by eight infrared cameras during the experiments. (c) Size: 300mm (length) ×
120mm (width) × 60mm (height) and detailed components of the HUSTER-
0.3 USV. (d) Structure of the multi-USV navigation system, where the path
following, spontaneous-ordering platoon, DGVF designing, velocity tracking,
and source launching are running onboard, and the position capturing and
monitoring are conducted on the ground computer. (The solid lines denote
physical connections whereas the dotted lines virtual connections.)

Note that the low-level velocity tracking problem in (25)
and (28), i.e., limt→∞ ϵ̃i(t) = 0, limt→∞ ṽi(t) = 0 ex-
ponentially has been well addressed in [17], which then
follows from (30) and the bounded trigonometric function
cosψi, sinψi that limt→∞ eϵ,i(t) = 0, limt→∞ ev,i(t) = 0
exponentially.

Proposition 1. Under the conditions C1-C4, a multi-USV
system composed of (24), (25) and the modified DGVF algo-
rithm (31) achieves the property P1 subject to limt→∞ ϵ̃i(t) =
0, limt→∞ ṽi(t) = 0, exponentially.

Proof. The proof is similar to Theorem 1, which is thus
omitted.

B. 2D Experiments with USVs

For the experiments, we firstly establish an indoor
multi-USV navigation platform and thereby conduct the
spontaneous-ordering platoon experiments. As shown in

Fig. 4 (a), the multi-USV navigation platform is composed
of a 4000mm × 4000mm pool, a motion-capture system
(eight Flex 3 infrared cameras) to identify the positions of
the USVs, and a ground computer (Intel core i7-960) to
transmit, analyze and store the detection data to the three
HUSTER-0.3 USVs. As demonstrated in Fig. 4 (b), three
HUSTER-0.3 USVs are all equipped with infrared emitters,
which are utilized for identification by infrared cameras.
Moreover, it is observed in Fig. 4 (c) that each HUSTER-
0.3 USV is 300mm in length, 120mm in width, and 60mm
in height, which is equipped with two DC motors (5V), two
speed encoders (Mini-256), two transmission shafts (150mm
× 6mm), a control module (STM32F1) and a 2.4GHz wireless
module (NRF24L01). Please refer to our previous work [17]
for more details. Fig. 4 (d) exhibits the structure of the multi-
USV navigation system, which is divided into three parts: the
onboard navigation to produce desired guidance velocity based
on DGVF, the onboard regulation to track velocity and launch
infrared lights, and the ground computer to capture positions
and save data. During the navigation experiments, our DGVF
algorithm is running with a fixed 10Hz frequency and all the
data are transmitted to and saved on the ground computer.

In what follows, we consider the 2D circular and self-
intersecting Lissajous waterway (i.e., desired paths) to conduct
spontaneous-ordering platoon experiments using the modified
DGVF (31). First, we choose the sensing and safe radius
R = 1.0, r = 0.7, where the potential function α(s) can be
designed based on Eq. (19). The target virtual coordinate ω∗

satisfies ω̇∗ = 1 in Eq. (16), where the initial value ω∗(0) is set
to be ω∗(0) = 0. By Remark 3, we pick the estimator gains
γ1 = 20, γ2 = 4 to satisfy condition C3 with a connected
communication topology.
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Fig. 5. Two experimental cases of the spontaneous-ordering platoon moving
along the desired 2D circular waterway using the modified DGVF (31).
Subfigures (a), (d): Initial positions of the USVs. Subfigures (b), (e): Final
platoons move along the circular waterway after 40 seconds. Subfigures (c),
(f): Trajectories of the three USVs from the initial positions to the final platoon
with distinct ordering sequences (Here, the blue vessels represent the initial
positions, and the red ones the final platoon).

For the desired 2D circular paths Pphy
i , i ∈ V , the

parametrization is

xi,1 = 800 cosωimm, xi,2 = 800 sinωimm,

which fulfills conditions C2 and C4. We choose the gains
ki,1 = 3.5, ki,2 = 3.5, ci = 2 in (31). Fig. 5 illustrates
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Fig. 6. Temporal evolution of the position errors ϕi,1, ϕi,2, i = 1, 2, 3, and
the final relative value of virtual coordinates between each pair of adjacent
robots |ωs[k](t)− ωs[k+1](t)|, k = 1, 2, in Fig. 5 (c).
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Fig. 7. Two experimental cases of the spontaneous-ordering platoon moving
along the desired 2D self-intersecting waterway using the proposed modified
DGVF algorithm (31). Subfigures (a), (d): Initial positions of the USVs.
Subfigures (b), (e): Final platoon moves along the self-intersecting waterway
after 16s. Subfigures (c), (f): Trajectories of the three USVs from the initial
positions to the final platoon with distinct ordering sequences (Here, the blue
vessels represent the initial positions, and the red ones the final platoon).

two experimental cases of the spontaneous-ordering platoon
moving along the common desired 2D circular waterway. As
shown in Figs. 5 (c) and (f), three USVs from different initial
positions (blue vessels) achieve platoons (red vessels) with
distinct ordering sequences (Fig. 5 (c): {2,3,1} and Fig. 5 (f):
{3,1,2}), where the corresponding experimental snapshots of
the initial positions and the final platoons are given in Figs. 5
(a), (b), (d), (e), respectively. It thus verifies that the ordering
of the platoon is spontaneous. Additionally, we take Fig. 5 (c)
as an example to analyze the state evolution in the circular-
path experiments. It is observed in the zoomed-in panels
[40s, 45s] × [−100mm, 100mm] of Fig. 6 that ϕi,1, ϕi,2, i =
1, 2, 3, approach and stay in the range of [−100mm, 100mm]
after 40 seconds, which is acceptable compared with the length
of the desired circular path and the size of the USV in the
trajectory of Fig. 5 (c). In this way, the effectiveness of

Fig. 8. Temporal evolution of the position errors ϕi,1, ϕi,2, i = 1, 2, 3, and
the final relative value of virtual coordinates between each pair of adjacent
robots |ωs[k](t)− ωs[k+1](t)|, k = 1, 2, in Fig. 7 (c).

tracking the desired circular waterway is verified. Moreover,
the relative value of adjacent virtual coordinates |ω1,3|, |ω3,2|
satisfy |ω1,3| ∈ (0.7, 1.0), |ω3,2| ∈ (0.7, 1.0) after 40 sec-
onds in Fig. 6, which verifies that the platoon in terms of
relative parametric displacement is achieved. The feasibility
of the proposed algorithm (31) for closed waterways is thus
demonstrated.

(a) (b)

Fig. 9. Cases (a)-(b): trajectories of ten robots from different initial positions
to spontaneous-ordering platoons moving along a desired Lissajous path in
the 3D Euclidean space with the proposed DGVF (15). (Here, the blue and
red arrows represent the initial and final positions of the robots, respectively.
The red line denotes the desired Lissajous path).

For the desired 2D Lissajous path Pphy
i , i ∈ V containing

self-intersecting points, it follows from the conditions C2 and
C4 that the parametrization is

xi,1 =
800 cosωi

1 + 0.3(sinωi)2
mm, xi,2 =

800 sinωi cosωi

1 + 0.3(sinωi)2
mm

with the virtual coordinates ωi. The gains in (31) are set
to be ki,1 = 2, ki,2 = 2, ci = 2. Analogously, Fig. 7
illustrates two experimental cases of the spontaneous-ordering
platoon whereas moving along the common desired 2D self-
intersecting waterway. It is observed in Figs. 7 (c) and (f) that
three USVs from different initial positions (blue vessels) also



10

0 5 10 15 20 25 30
-20

0

20

0 5 10 15 20 25 30
-10

0

10

0 5 10 15 20 25 30

Time (sec)

-10

0

10

Fig. 10. Temporal evolution of the position errors ϕi,1, ϕi,2, ϕi,3, ∀i ∈ Z10
1 ,

in Fig. 9 (a) for example.

Fig. 11. Temporal evolution of the derivative of the virtual coordinate
ω̇i, ∀i ∈ Z10

1 and the final relative value of virtual coordinates between
adjacent robots |ωs[k](t)− ωs[k+1](t)|,∀k ∈ Z9

1, in Fig. 9 (a) for example.

(a) Proposed DGVF (15) (b) Yao’s Method [23]

Convergent Platoon Divergent Behavior 

Fig. 12. A special situation of four robots i = 2, 3, 4, 5, suddenly breaking
down at t = 2s and the rest of six robots stoping interacting with the broken
four robots when t > 2s in the ten-robot path navigation mission. Trajectory
and platoon comparison of the rest of the six robots i = 1, 6, 7, 8, 9, 10,
between the proposed DGVF (15) (see the successful platoon in subfigure
(a)) and Yao’s fixed-ordering method [24] (see the failure of a platoon in
subfigure (b)). (Here, the blue and red arrows represent the initial and final
positions of the robots, respectively. The red line denotes the desired Lissajous
path).

achieve platoons (red vessels) with distinct ordering sequences
(Fig. 7 (c): {2,3,1} and Fig. 7 (f): {3,1,2}), where the
corresponding experimental snapshots of initial positions and
final platoons are given in Figs. 7 (a), (b), (d), (e), respectively.
We take Fig. 7 (c) as an example to analyze the state evolution
in the self-intersecting-waterway experiments.

As shown in the zoomed-in panels [26s, 30s] ×
[−100mm, 100mm] of Fig. 8, ϕi,1, ϕi,2, i = 1, 2, 3, approach
and stay in the range of [−100mm, 100mm] after 26 seconds,
which is acceptable as well compared with the length of
the desired Lissajous path and the size of the USV in the
trajectory of Fig. 7 (c). It thus verifies the effectiveness
of tracking the desired Lissajous waterway. Moreover, the
relative value of adjacent virtual coordinates |ω1,3|, |ω3,2| also
satisfy |ω1,3| ∈ (0.7, 1.0), |ω3,2| ∈ (0.7, 1.0) after 16 seconds
in Fig. 8, which verifies that the platoon in terms of relative
parametric displacement is also achieved. The feasibility
of the proposed DGVF algorithm (31) for self-intersecting
waterway is thus substantiated. More experimental details can
be viewed in the attached video. 1

C. 3D Numerical Simulations

In this part, 3D numerical simulations are conducted to
validate the feasibility of Theorem 1 in the higher-dimensional
Euclidean space. We consider n = 10 robots governed by (3)
and (15), where the sensing and safe radius are given by
R = 0.6, r = 0.4, respectively. The potential function α(s)
is designed according to Eq. (19). Moreover, the parametric
setting for the target virtual coordinate ω∗ and the estimator
gains γ1, γ2 in Remark 3 are the same as those in the
experimental subsection.

In what follows, a desired 3D Lissajous path Pphy
i , i ∈ V

containing self-intersecting points is considered, of which the
parametrization is xi,1 = 16 cos(0.5ωi), xi,2 = 6 cos(ωi +
π
2 ), xi,3 = 2 cosωi, i ∈ V fulfilling conditions C2 and C4.
The parameters in (15) are set to be ki,1 = 0.6, ki,2 =
0.6, ki,3 = 0.6, ci = 3, i ∈ V . Figs. 9 (a)-(b) describes the
trajectories of ten robots from different initial positions (blue
arrows) fulfilling the condition C1 to the spontaneous-ordering
platoon maneuvering along the common 3D Lissajous path
(red arrows) in the 3D Euclidean space.

During the process, the multi-robot platoon with differ-
ent initial positions is achieved with distinct ordering se-
quences (Fig. 9 (a): {6,9,8,1,4,2,3,5,7,10} and Fig. 9 (b):
{7,9,4,8,10,1,3,5,6,2}), which demonstrates the property of
spontaneous orderings as well. Additionally, we take Fig. 9
(b) as an illustrative example to analyze the states’ evolution
of spontaneous-ordering platoon in the self-intersecting-path
navigation task. As shown in Fig. 10, the path-following errors
ϕi,1, ϕi,2, ϕi,3, i ∈ V, converge to zeros after 17 seconds, i.e.,
limt→∞ ϕi,1(t) = 0, limt→∞ ϕi,2(t) = 0, limt→∞ ϕi,3(t) =
0, i ∈ V , which verifies Claim 1) in Definition 2. Essentially,
it is observed in Fig. 11 that limt→∞ ω̇i(t) = 1, i ∈ V , which
verifies limt→∞ ω̇i(t) = ω̇k(t) ̸= 0,∀i ̸= k ∈ V in Claim 2) of
Definition 2 explicitly. The final relative values of adjacent vir-
tual coordinates satisfy 0.4 < limt→∞ |ωs[k](t)−ωs[k+1](t)| <

1Online. Available: https://www.youtube.com/watch?v=QCkpw6Pwpoo

https://www.youtube.com/watch?v=QCkpw6Pwpoo
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(a)

(c)

(b)

(d)

(e) (f)

Fig. 13. Trajectories and platoon performance of ten robots governed by the
proposed DGVF (15) under external constant disturbances with increasing
intensities. Subfigures (a) and (b): di = [0.1, 0.1, 0.1]T, i ∈ Z10

1 , sub-
figures (c) and (d): di = [1, 1, 1]T, i ∈ Z10

1 , and subfigures (e) and (f):
di = [3, 3, 3]T, i ∈ Z10

1 . (Here, the blue and red arrows represent the initial
and final positions of the robots, respectively. The red line denotes the desired
Lissajous path).

0.6,∀k ∈ Z10
1 in the zoomed-in panels [24s, 25s] × [0.3, 0.7]

of Fig. 11, then it fulfills Claims 3) and 4) of Definition 2. It
thus has the property P1.

To show the robustness of the proposed DGVF algorithm,
we compare our algorithm with Yao’s fixed-ordering method
[24] when some robots break down during the multi-robot path
navigation process. According to the fixed-ordering method
in [24], we set the desired values between adjacent vir-
tual coordinates to be |ω∗

k,k+1| = 2π/15, k ∈ Z9
1 with

a connected and fixed communication topology in advance,
which can form a platoon with a fixed ordering sequence:
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Then, we consider a special situa-
tion when four robots i = 2, 3, 4, 5, suddenly break down at
t = 2s and conduct the numerical simulations to compare the
robustness between the proposed DGVF (15) and the fixed-
ordering algorithm [24]. As shown in Fig. 12 (a), the rest of
six robots i = 1, 6, 7, 8, 9, 10 governed by DGVF (15) stop
communicating with the broken robots i = 2, 3, 4, 5 and only

0 5 10 15 20 25 30
-20

0

20

0 5 10 15 20 25 30
-10

0

10

0 5 10 15 20 25 30

Time (sec)

-10

0

10

Fig. 14. Temporal evolution of the position errors ϕi,1, ϕi,2, ϕi,3,∀i ∈ Z10
1 ,

under the constant disturbances di = [3, 3, 3]T, i ∈ V, in Fig. 13 (e) for
example.

Fig. 15. Temporal evolution of the derivative of the virtual coordinate
ω̇i, ∀i ∈ Z10

1 and the final relative value of virtual coordinates between
adjacent robots |ωs[k](t) − ωs[k+1](t)|,∀k ∈ Z9

1, under the constant
disturbances di = [3, 3, 3]T, i ∈ V, in Fig. 13 (e) for example.

interacting with the rest ones, which still forms a satisfactory
six-robot platoon fulfilling the property P1. However, it is
observed in Fig. 12 (b) that the rest of six robots governed
by the method in [24] fail to form the platoon anymore. The
robustness of the DGVF design (15) is thus verified when
experiencing robots breakdown.

Moreover, to analyze the quantitative influence of external
disturbances di in (3) on the DGVF algorithm (15), we
consider the external constant disturbances with increasing
intensities in the spontaneous-ordering platoon task. For di =
[0.1, 0.1, 0.1]T, i ∈ Z10

1 , Fig. 13 (a)-(b) illustrates that ten
robots from different initial positions (blue arrows) can still
form the spontaneous-ordering platoon maneuvering along
the common desired 3D Lissajous path (red arrows). For
di = [1, 1, 1]T, i ∈ Z10

1 , it is observed in Fig. 13 (c)-(d) that
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ten robots from different initial positions maintain a platoon-
like formation, but only deviate the desired 3D Lissajous path
by a certain distance. However, for di = [3, 3, 3]T, i ∈ Z10

1 ,
Fig. 13 (e)-(f) exhibits that even the spontaneous-ordering
platoon cannot be guaranteed anymore, which implies that the
robustness of the present DGVF (15) holds for the disturbances
with intensities smaller than a threshold di = [3, 3, 3]T, i ∈
Z10
1 .
Additionally, we take Fig. 13 (e) as an illustrative example

to analyze the states’ evolution of the spontaneous-ordering
platoon under constant disturbances di = [3, 3, 3]T, i ∈ Z10

1 . As
shown in Fig. 14, the path-following errors ϕi,1, ϕi,2, ϕi,3, i ∈
Z10
1 oscillate sharply and deviate from zeros, which implies

that Claim 1 in Definition 2) cannot be guaranteed. More-
over, it is observed in Fig. 15 that the derivative of virtual
coordinate ω̇i(t), i ∈ V oscillates around −1, which implies
that limt→∞ ω̇i(t) = ω̇k(t) ̸= 0,∀i ̸= k ∈ V in Claim 2) of
Definition 2 does not hold. Moreover, Fig. 15 exhibits that the
final relative values of adjacent virtual coordinates oscillate
and cannot satisfy 0.4 < limt→∞ |ωs[k](t) − ωs[k+1](t)| <
0.6,∀k ∈ Z10

1 in the zoomed-in panels [24s, 25s] × [0.3, 0.7]
compared with Fig. 11, i.e., Claim 3) of Definition 2 does not
hold. Therefore, it concludes that DGVF (15) fails to guaran-
tee spontaneous-ordering platoon under external disturbances
with intensities greater than the threshold di = [3, 3, 3]T, i ∈
Z10
1 .

V. CONCLUSION

In this paper, we have presented a DGVF algorithm such
that multiple robots are capable of forming a spontaneous-
ordering platoon and moving along a predefined desired path
in the n-dimensional Euclidean space. In particular, we add
the path parameter as a virtual coordinate for each robot and
then interact with neighboring robots’ virtual coordinates and
a target virtual coordinate. In this way, the robots are governed
to approach the desired path and achieve a platoon in an
arbitrary ordering. The conditions are derived to guarantee
the global convergence of the proposed DGVF subject to
time-varying interaction topologies and external exponentially
vanishing disturbances. Moreover, the DGVF algorithm only
requires low communication costs by transmitting only virtual
coordinates among robots, which is desirable in real appli-
cations. 2D multi-USV waterway navigation experiments and
3D numerical simulations have shown the effectiveness and
robustness of the proposed DGVF even if some robots break
down and suffer from small disturbances. Future work will
focus on string stability analysis of the spontaneous-ordering
platoon with time-varying neighbors.

APPENDIX A
PROOF OF LEMMA 1

First of all, recalling |ωi,k(t)| > r,∀t ≥ 0, ∀i ̸= k ∈ V in
Claim 4) of Definition 2, one has that ωi,k(t) ̸= 0, ωi,k(t) ̸=
r, ∀t > 0 can be guaranteed if Claim 4) holds, i.e., the
finite-time-escape behavior is avoided. Then, we will prove
|ωi,k(t)| > r,∀t ≥ 0, ∀i ̸= k ∈ V by contradiction.

Let ω̃i := ωi − ω∗, be the coordinate error between the
i-th virtual coordinate ωi and the target virtual coordinate
ω∗, Fi := [∂fi,1, . . . , ∂fi,n]

T ∈ Rn, and Ki := diag{ki,1,
. . . , ki,n} ∈ Rn×n, and substitute Eq. (15) into Eq. (12) yields[
Φ̇i

˙̃ωi

]
=

[
−Ki(In + FiF

T
i )Φi

F T
iKiΦi

]
+

[
−Fi(−ciω̃i + ηi + ei) + d̃i

−ciω̃i + ηi + ei

]
,

(32)

where Φi is given in (12), In ∈ Rn×n is an identity matrix,
d̃i := d̂i − di are the estimated disturbance errors and ei :=
ci(ω̂i − ω∗). Recalling Remark 4, conditions C3 and C5, one
has

lim
t→T1

d̃i(t) = 0 and lim
t→∞

ei(t) = 0, (33)

exponentially.
Since condition C1 ensures that |ωi,k(0)| > r, ∀i ̸= k ∈ V

at the initial time, we assume that there exists a finite time
T > 0 such that |ωi,k(t)| > r, ∀i ̸= k ∈ V for t ∈ [0, T )
but not t = T , which implies that at least one pair of virtual
coordinates satisfies

ωi,k(T ) ≤ r. (34)

During the time interval t ∈ [0, T ), the closed-loop sys-
tem (32) is well defined due to the fact that |ωi,k(t)| > r, ∀i ̸=
k ∈ V . Then, we can pick a candidate Lyapunov function

V (t) =
1

2

∑
i∈V

{
ΦT

iKiΦi + ciω̃
2
i

}
+
∑
i∈V

∑
k∈Ni

∫ R

|ωi,k|
α(τ)dτ,

(35)

which is nonnegative and differentiable in t ∈ [0, T ). The
partial derivatives of V (t) w.r.t. Φi, ω

∗, ωi are, respectively,

∂V (t)

∂ΦT
i

=ΦT
iKi,

∂V (t)

∂ω∗ = −ciω̃i,

∂V (t)

∂ωi
=ciω̃i −

∑
k∈Ni

α(|ωi,k|)
ωi,k

|ωi,k|
= ciω̃i − ηi, (36)

it follows from Eqs. (32) and (36) that the time derivative
of V (t) is

dV

dt
=
∑
i∈V

{
∂V

∂ΦT
i

Φ̇i +
∂V

∂ωi
ω̇i +

∂V

∂ω∗ ω̇
∗
}

=
∑
i∈V

{
ΦT

iKi

(
−Ki(In + FiF

T
i )Φi − Fi(−ciω̃i

+ ηi + ei) + d̃i
)
+ (ciω̃i − ηi)ω̇i − ciω̃iω̇

∗
}
. (37)

From the fact ˙̃ωi = ω̇i − ω̇∗, one has

ciω̃iω̇i − ciω̃iω̇
∗ = ciω̃i

˙̃ωi. (38)

Meanwhile, it follows from the definition of α(s) in (18) that∑
i∈V(ηiω̇

∗) = ω̇∗ ∑
i∈V ηi = 0, which implies that∑

i∈V
ηiω̇i =

∑
i∈V

ηi(ω̇i − ω̇∗) =
∑
i∈V

ηi ˙̃ωi. (39)
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Combining Eqs. (38) and (39) together yields∑
i∈V

{
(ciω̃i − ηi)ω̇i − ciω̃iω̇

∗
}
=

∑
i∈V

(ciω̃i − ηi) ˙̃ωi. (40)

Substituting Eq. (40) and ˙̃ωi in Eq. (32) into Eq. (37) yields
dV

dt
=
∑
i∈V

{
− ΦT

iKiKiΦi − ΦT
iK

T
iFiF

T
iKiΦi

− (−ciω̃i + ηi)
2 − 2ΦT

iKiFi(−ciω̃i + ηi)

− ΦT
iKiFiei +ΦT

iKid̃i − (−ciω̃i + ηi)ei

}
. (41)

From the definition of Fi,Φi,Ki in (32), one has that
F T
iKiΦi = ΦT

iK
T
iFi is a scalar, which implies that

− ΦT
iK

T
iFiF

T
iKiΦi − (−ciω̃i + ηi)

2

− 2ΦT
iKiFi(−ciω̃i + ηi)− ΦT

iKiFiei − (−ciω̃i + ηi)ei

=− (ΦT
iKiFi − ciω̃i + ηi +

ei
2
)2 +

e2i
4
. (42)

Moreover, one has

ΦT
iKid̃i ≤

ΦT
iKiKiΦi

2
+
d̃T
id̃i
2
. (43)

Then, it follows from Eqs. (41), (42) and (43) that

dV (t)

dt
=−

∑
i∈V

{
ΦT

iKiKiΦi

2
+ a2i

}
+
∑
i∈V

{
e2i
4

+
d̃T
id̃i
2

}
(44)

with

ai := ΦT
iKiFi − ciω̃i + ηi +

ei
2
. (45)

From the condition of limt→T1
d̃i(t) = 0 and limt→∞ ei(t) =

0, i ∈ V, exponentially in (33), one has limt→∞
∑

i∈V
ei(t)

2/4 = 0, limt→∞
∑

i∈V d̃i(t)
Td̃i(t)/2 = 0, which implies

that there exists a constant δ > 0 such that∑
i∈V

{
ei(t)

2

4
+
d̃i(t)

Td̃i(t)

2

}
≤ δ, ∀t ∈ [0, T ). (46)

Let

Ω :=−
∑
i∈V

{
ΦT

iKiKiΦi

2
+ a2i

}
≤ 0, (47)

it follows from Eqs. (44), (46), (47) that
dV (t)

dt
≤− Ω+ δ,

which implies

0 ≤ V (T ) ≤
∫ T

0

Ω(s)ds+ δT + V (0) (48)

according to the comparison principle [54]. From Eq. (47),
one has

∫ T

0
Ω(s)ds ≤ 0. Moreover, since δT and V (0) are

both bounded, So is V (T ).
However, recalling the assumption of ωi,k(T ) ≤ r in (34),

it follows from Eq. (18) that α(|ωi,k(T )|) = ∞, which further
implies that V (T ) = ∞. It contradicts the bounded value
V (T ) in (48), which indicates that there exists no such a finite
T satisfying ωi,k(T ) ≤ r, ∀i ̸= k ∈ V (i.e., T = ∞). Then,
we conclude |ωi,k(t)| > r,∀t ≥ 0, ∀i ̸= k ∈ V . The proof of
Claim 4) is thus completed.
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