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A Secure Robot Learning Framework for Cyber
Attack Scheduling and Countermeasure

Chengwei Wu , Member, IEEE, Weiran Yao , Member, IEEE, Wensheng Luo , Member, IEEE, Wei Pan ,
Guanghui Sun , Hui Xie , Senior Member, IEEE, and Ligang Wu , Fellow, IEEE

Abstract—The problem of learning-based control for robots has
been extensively studied, whereas the security issue under malicious
adversaries has not been paid much attention to. Malicious adver-
saries can invade intelligent devices and communication networks
used in robots, causing incidents, achieving illegal objectives, and
even injuring people. This article first investigates the problems of
optimal false data injection attack scheduling and countermeasure
design for car-like robots in the framework of deep reinforcement
learning. Using a state-of-the-art deep reinforcement learning ap-
proach, an optimal false data injection attack scheme is proposed to
deteriorate the tracking performance of a robot, guaranteeing the
tradeoff between the attack efficiency and the limited attack energy.
Then, an optimal tracking control strategy is learned to mitigate
attacks and recover the tracking performance. More importantly,
a theoretical stability guarantee of a robot using the learning-
based secure control scheme is achieved. Both simulated and
real-world experiments are conducted to show the effectiveness of
the proposed schemes.

Index Terms—Deep reinforcement learning, optimal attack
scheduling, robot, secure control.

I. INTRODUCTION

ROBOTIC systems are playing a more and more important
role in daily life and industry, freeing people from triv-

ial and dangerous work and improving efficiency. Along with
the increasing development of computers, communication net-
works, and intelligent sensing devices, modern robots equipped
with these devices lead to higher performance and more func-
tionalities, the increase of which, however, exposes robots to

Manuscript received 23 December 2022; accepted 11 April 2023. Date of
publication 5 June 2023; date of current version 4 October 2023. This work is
supported in part by the National Natural Science Foundation of China under
Grant 62033005, Grant 62203136, Grant 62022030, Grant 62173107, Grant
62106062, and in Part by the Key R&D Program of Heilongjiang Province
under Grant 2022ZX01A18. This paper was recommended for publication by
Associate Editor G. Huang and Editor W. Burgard upon evaluation of the
reviewers’ comments. (Corresponding author: Ligang Wu.)

Chengwei Wu, Weiran Yao, Wensheng Luo, Guanghui Sun, and Ligang Wu
are with the Department of Control Science and Engineering, Harbin Insti-
tute of Technology, Harbin 150001, China (e-mail: chengweiwu@hit.edu.cn;
yaoweiran@hit.edu.cn; wensheng.luo@hit.edu.cn; guanghuisun@hit.edu.cn;
ligangwu@hit.edu.cn).

Wei Pan is with the Department of Computer Science, The University of
Manchester, M13 9PL Manchester, U.K., and also with the Department of
Cognitive Robotics, Delft University of Technology, 2628 CD Delft, Netherlands
(e-mail: wei.pan@tudelft.nl).

Hui Xie is with the State Key Laboratory of Robotics and System, Harbin
Institute of Technology, Harbin 150001, China (e-mail: xiehui@hit.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TRO.2023.3275875.

Digital Object Identifier 10.1109/TRO.2023.3275875

adversaries. When robots exchange information between intel-
ligent sensors and electrical control units over open and shared
communication networks, malicious attackers can compromise
the integrity of robotic systems by executing cyber attacks, de-
teriorating the performance of robotic systems [1], [2]. Attacks
can be executed in different modules, such as the sensor/actuator,
communication network, and physical interface. For instance,
in [3] Iranian air forces captured an American Lockheed Martin
RQ-170 Sentinel unmanned aerial vehicle (UAV) by spoofing
the Global Position System (GPS) data in 2011. In [4] attackers
trick the yacht’s navigation system by spoofing the GPS, putting
the yacht off course. Maggi et al. [5] detailed exactly how an
industrial robot is attacked by advanced hackers. Additionally,
in the movie The Fate of the Furious (2017), there exist clips
in which hundreds of cars run amok in the street because they
are taken over by adversaries. Although the stability and safety
problems of robotic systems have been paid much attention to
and various results have been reported [6], [7], [8], [9], their
security problems cannot be solved by using previous results.
To protect the performance of robots from deterioration, even
destruction, the study of designing robotic systems with high
assurance is a hot topic, attracting researchers from control and
computer science communities. This paper intends to establish a
secure robot learning framework for cyber attack scheduling and
countermeasure, analyzing how an adversary with limited attack
energies constructs an optimal attack scheme to invade robots
and proposing a secure control algorithm against adversaries.

A. Related Literature Review

Malicious attacks on robots can be regarded as adversarial
actions with the intent of compromising the availability and
integrity of transmitted information. There exist dramatic differ-
ences between system faults and attacks, making existing fault-
tolerant control schemes fail to work in modern robots against
malicious attacks. Faults occur without explicit objects, while
attacks are camouflaged and designed elaborately [10], [11],
[12]. For example, an unmanned aerial vehicle can crash when
faults occur. If cyber attacks are executed, adversaries can take
over unmanned aerial vehicles. Generally speaking, attacks can
be classified into several types, including the denial of service
(DoS) attack, the false data injection attack (deception attack),
the replay attack, and the zero-dynamics attack [13]. Although
the topic of securing robotic systems in the presence of malicious
attacks is in its early stage, several remarkable results have been
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reported in the literature. In [14], it has demonstrated how to
capture and control a UAV through spoofing of GPS data, and
the necessary conditions to capture a UAV have been established.
Considering stealthy attacks on ground vehicle sensors, the
authors of [10] proposed a resilient iterative filtering approach to
estimate system states by using redundant sensor measurements.
With the aid of software and hardware redundancy, effective
attack detection and defense framework have been designed for
a quadcopter against different types of attacks in [15], in which
adversaries do not have access to the proposed scheme. In [16],
the nonlinear dynamics of mobile robots have been utilized to
construct an attack detection scheme, which can generate alarms
promptly when sensor/actuator attacks occur. Such a scheme
has also been validated on two types of robots with various
attack scenarios. A switching distributed control approach has
been given to secure multirobot systems against actuator DoS
attacks and sensor deception attacks in [17]. For more related
results, we refer readers to [18], [19], [20], and references
therein.

Some other alternative approaches to securing modern robots
under cyber attacks can refer to schemes for cyber-physical sys-
tems because the typical application of cyber-physical systems is
a modern robotic system. Several conclusions and elegant secure
algorithms have been proposed in the past two decades based on
the control-theoretical approach. To name a few, if a defender
successfully attempts to recover the system state under sparse
cyber attacks, the number of attacked sensors cannot exceed
half of the number of sensors [21], [22]. When DoS attacks are
described as a stochastic model (Markov model and Bernoulli
model), the critical value of the probability of success of the
attack, under which the estimate and stability performances can
be guaranteed, has been derived in [23]. According to these
conclusions, some improved algorithms have been proposed for
cyber-physical systems against malicious adversaries, see for
example, a switching observer-based estimate scheme in [24], a
linear quadratic secure controller in [25], and a learning-based
secure tracking control algorithm in [26]. The detection and
secure control schemes have been provided for cyber-physical
systems against replay attacks in [27], [28]. As much stealthier
attacks, false data injection attacks have been widely investi-
gated, for example, attack detection schemes [29], [30], secure
state estimate algorithms [31], [32], resilient controllers [33],
[34]. From an attacker’s perspective, researchers have investi-
gated how to construct effective attack sequences to deteriorate
system performance, such as DoS attack scheduling [35], [36]
and false data injection attack scheme [37], [38], based on which
system defenders can design more effective countermeasures.
Furthermore, combined with the game-theoretical approach,
defenders and adversaries are described in a unified framework,
and saddle-point equilibrium policies have been derived for both
sides [39], [40], [41].

Although progress has been made in securing cyber-physical
systems, the aforementioned results rely on exact system knowl-
edge, which may not be obtained easily. Reinforcement learn-
ing approach provides an alternative way to design systems
policies without using such knowledge. Various reinforcement
learning algorithms have been proposed [42], [43], [44], [45],

[46], [47], [48], based on which an attitude retention scheme
has been reported for a robotic fish with sim-to-real trans-
fer [49], quadrupedal locomotion in challenging terrain [50],
learning-based control and filtering approaches with stability
guarantee [51], [52], [53], [54] have been reported. Considering
the complexity and scale of cyber-physical systems, the deep re-
inforcement learning approach has been applied to solve security
problems of cyber-physical systems, including secure control,
attack detection, and game-based defending policy design (see
a survey [55] for more details). Similarly, adversaries can also
utilize the deep reinforcement learning approach to construct
attack schemes [56]. However, how to design an optimal attack
scheme and optimal countermeasure in the framework of deep
reinforcement learning with stability guarantee is not investi-
gated for modern robotic systems under malicious attacks in
literature.

B. Contributions of This Article

In the control community, none of the existing methods ad-
equately addresses optimal attack and countermeasure design
problems in the presence of strong nonlinearities. The method
in [52] focused on typical control problems without attack,
while the method in [53] focused on state estimation problems
and cannot be applied to the secure control problem. We draw
inspiration from [52], [53] to deal with (strong) nonlinearity.
However, under attacks, the secure control problem for nonlinear
dynamical systems cannot be trivially solved by directly apply-
ing the methods in [52] and [53] or their combinations. In this
article, we integrate the control method, e.g., controller design
based on a nominal model, and the reinforcement learning-based
method to investigate the optimal false data injection attack and
countermeasure design problems for modern robotic systems.
We first provide a nominal controller for a robot without attacks.
Such a controller is capable of stabilizing the system. Then,
we consider that the adversaries intend to perturb the control
signals by injecting false data. A learning frame is settled for
a malicious adversary to construct optimal false data attacks,
following which a defender is also described in a learning frame.
Algorithms are provided to learn optimal false data injection
attacks and optimal countermeasures. More importantly, the
Lyapunov theory provides strict mathematical proof to show
that robotic systems under the learning-based secure scheme are
stable. The differences between our paper and existing related
results are described in Table I. The main contributions of this
article can be summarized as follows.

1) This article is, for the first time, focused on the optimal
false data injection attack problem for modern robots
described by nonlinear systems. Standing from the ad-
versary’s perspective, a learning-based attack algorithm
is provided to deteriorate the tracking performance with
minimal attack energies. The advantage of such an algo-
rithm is that the robot’s kinematic model is not linearized.
When attacks occur, the nonlinear model can describe the
real dynamics. In contrast, a linear model may fail [38],
[57], which further implies that the attack scheme relying
on a linear model cannot reveal the attack effect.
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TABLE I
COMPARISONS WITH THE EXISTING METHODS

Fig. 1. Secure framework in this article.

2) A learning-based secure countermeasure is proposed to
militate the optimal false data injection attacks. More
importantly, the stability of robotic systems under the
learned policy is strictly proved by combining the Lya-
punov theory. The proof shows that deep reinforcement
learning is not merely an empirical approach and that the
stability guarantee can be achieved.

3) Compared with our previous work [52], [53], [54] de-
signing a learning-based filter and controller, the security
problem is solved in this article. Comparisons also show
that our previous work cannot work when attacks are
implemented, further showing that it is important to design
a secure control countermeasure to mitigate attacks.

The rest of this article is organized as follows. Section II pro-
vides the preliminaries and formulates the problem to be solved.
Section III presents the learning-based false data injection attack
algorithm. Section IV gives the secure robot learning framework
for mitigating attacks. Section V provides the simulation and
real-world experiment results. Finally, this article is concluded
in Section VI, and Section VII provides some discussion.

Notation: The notations used throughout the article are de-
fined as follows. Rn denotes the Euclidean space of n. The
superscript “�” denotes the matrix transpose. E{x} means the
expectation of the stochastic variable x. ‖x‖ denotes 2-norm of
the vector.

II. PRELIMINARIES AND PROBLEM FORMULATION

This article mainly focuses on designing a secure learning
framework for a robot under malicious false-data injection at-
tacks. The blueprint of such a framework is given in Fig. 1, where
three layers are included. First, a nominal controller, which can
be chosen from existing results, is provided for the robot in the

basic layer. Second, an adversary monitors the sensor data trans-
mitted by the communication network and learns optimal false
data attacks to inject into the control signals in the attack layer.
Third, a learning-based secure control algorithm is designed to
mitigate attacks in the secure control layer.

For a robot in Fig. 1, for example, a manipulator, mobile robot,
or quadrotor, its dynamics can be described by the following
equation:

ẋ = f(x) + g(x)u

where x ∈ Rnx is the system state, u ∈ Rnu is the control input,
and f(x) and g(x) are nonlinear smooth functions.

Either using the control theory or using the reinforcement
learning approach, one can design a controller1 for the robotic
system. To address the secure control problem of robots under
unknown malicious attacks, we combine control theory and
the reinforcement learning approach to design a secure control
framework, based on which the secure algorithms eliminate the
exact knowledge of the system model and make the robot satisfy
the performance described in Definition 1.

Definition 1: A system is exponentially stable if there exists
a scalar 0 < λ < 1 and a scalar c > 0 such that the following
inequality holds:

‖x(t)‖ ≤ c‖x(0)‖λt.

In this article, we take a car-like mobile robot (CMR) as an
example to detail the design process and effectiveness of the
proposed secure framework. The robot in Fig. 1 is a CMR.
Specifically, a nominal controller is provided for the CMR to
follow the desired trajectory. A malicious attacker modifies con-
trol signals by injecting false data attacks. The system defender
provides a solution to the security problem of a CMR under cyber
threats. In the following context, details are given and discussed.

A. Kinematic Model of a CMR

Fig. 2 depicts a CMR in our lab and its physical model. The
motion of such a CMR can be described by a vector [x, y, θ]�,
where the pair (x, y) represents the position of the robot, and θ
is the heading angle of the CMR. For the CMR, its kinematic
model is described as follows [58]:

ẋ = v cos θ, ẏ = v sin θ, θ̇ =
v

L
tanφ (1)

where v is the velocity of the robot to be designed, L is the
wheelbase, and φ is the steering angle of the front wheels to be
designed.

1We use both the controller and policy alternatively in this article.
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Fig. 2. Car-like robot in our lab and its physical model.

For a CMR, it is reasonable to assume that the velocity v
satisfies vmin ≤ v < vmax with vmin and vmax being the minimum
as well as maximum velocities, respectively. The steering angle
of the front wheels φ satisfies φ ∈ [−π

6 ,
π
6 ]. These constraints

will be considered when the secure control algorithms designed
in this article are implemented.

Remark 1: In [58], it has shown that the accuracy of the
kinematic model in (1) is acceptable. Additionally, Wang and
Low [59] provided a general and unifying kinematic model
of mobile robots with wheel skidding and slipping. Although
these physical constraints are not addressed in this article, the
algorithms to be designed in the following content can be directly
adopted to learn the corresponding false data injection attacks
and secure control signals, where the error model (4) is replaced
with that of [59].

The following virtual robot generates the desired trajectories:

ẋr = vr cos θr, ẏr = vr sin θr, θ̇r =
vr
L

tanφr (2)

where vr is the velocity of the reference robot and φr is the
steering angle of the front wheels.

Based on (1) and (2), the error dynamics under the global
coordinate (XOY ) is described as

ėx = v cos θ − vr cos θr

ėy = v sin θ − vr sin θr

ėθ =
v

L
tanφ− vr

L
tanφr (3)

where ex = x− xr, ey = y − yr, and eθ = θ − θr.
According to the geometric relationship, the local coordinate

frame of the error system can be described as⎡
⎣xe

ye
θe

⎤
⎦ =

⎡
⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤
⎦
⎡
⎣exey
eθ

⎤
⎦

based on which we can derive

ẋe = v − vr cos θe + ye
v

L
tanφ

ẏe = vr sin θr − xe
v

L
tanφ

θ̇e =
v

L
tanφ− vr

L
tanφr. (4)

As shown in Fig. 1, our framework to be designed includes
three layers. Accordingly, the control commands v and φ trans-
mitted to the actuator consist of three parts, that is, a nominal con-
troller [vb φb], a malicious attack [va φa], and a secure controller
[vd φd]. For the model in (1), there exist many excellent control
schemes, see for example [60], [61], [62] and the references
therein. Here, the scheme in [60], which will be regarded as a
nominal controller in this article due to its robustness and ease
of implementation, is given below.

Lemma 1: [60] If the reference inputs vr, φr and the deriva-
tives v̇r, φ̇r are bounded, the closed-loop tracking error system
(4) can be globally stabilized by the following control scheme:

vb = −k1xe + vr cos θe, φb = arctan
ωL

vb
(5)

where

ω = − k2θ̄e + ωr − k0vryef̄ + α̇, ωr =
vr
L

tanφr

f̄ =
sin θe cosα+ (cos θe − 1) sinα

θ̄e

α = α(t, xe, ye) = ρ(t)h̄(t, xe, ye)

ρ̇ = − (|vr|+ |ωr|)ρ, ρ(0) = 1

α̇ = − (|vr|+ |ωr|)α+ ρ
∂h̄

∂t

+ ρ

(
∂h̄

∂xe
(vb − vr cos θe) +

∂h̄

∂ye
vr sin θe

)

θ̄e = θe − α

and k0, k1, and k2 are positive scalars to be designed. h̄ is a
C2-class function, whose properties and alternative expressions
can refer to [60].

The robot runs under network conditions. The Euler dis-
cretization method is utilized to obtain the discrete dynamics
of the CMR. Then, (1) can be discretized as

x(k + 1) = x(k) + v(k) cos θ(k)Δt

y(k + 1) = y(k) + v(k) sin θ(k)Δt

θ(k + 1) = θ(k)
v(k)

L
tanφ(k)Δt (6)

where Δt is the discretization period.
The discretized form of the reference model is described as

xr(k + 1) = xr(k) + v cos θr(k)Δt

yr(k + 1) = yr(k) + v sin θrΔt

θr(k + 1) = θr(k) +
vr
L

tanφr(k)Δt. (7)

The discretized form of the error system (4) is as follows:

xe(k + 1) = xe(k) + (v(k)− vr(k) cos θe(k)

+ye(k)
v

L
tanφ(k)

)
Δt

ye(k + 1) = ye(k) + (vr(k) sin θr(k)
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Fig. 3. Illustration of the man-in-the-middle attack.

−xe(k)
v(k)

L
tanφ(k)

)
Δt

θe(k + 1) = θe(k) +

(
v(k)

L
tanφ(k)

−vr(k)

L
tanφr(k)

)
Δt. (8)

B. Attack Model

As shown in Fig. 1, a malicious adversary executes false data
injection attacks to compromise control commands when control
commands are transmitted to the actuator via the communica-
tion network. Under such attacks, the control commands are
described as follows:

v(k) = va(k) + vb(k)

φ(k) = φa(k) + φb(k)

where va(k) and φa(k) are the false data attacks, which will
be designed in Section III. vb(k) and φb(k) are nominal control
signals designed by using Lemma 1.

For adversaries, we assume that the following knowledge is
known to them.

1) Adversaries inject malicious attacks without violating the
physical constraints of the robot, by which adversaries not
only can save the limited attack energies but guarantee the
effectiveness of attacks to some degree.

2) Adversaries can access the communication network by
using some attack methods, such as the man-in-the-middle
attack, a blueprint given in Fig. 3. Additionally, adver-
saries can intercept the communication network between
the sensor and the controller and eavesdrop on sensor data.

C. Motivation Example

This section only provides a numerical example to show the
necessity of protecting a CMR’s performance from deteriora-
tion. The experimental results are given in Section VI. The con-
trol scheme in Lemma 1 is used to demonstrate the tracking per-
formance of the CMR with and without attacks, respectively. De-
fine k0 = 6, k1 = 1, k2 = 3, and h̄ = 1.2 tanh(x2

e + y2e) sin k.
The initial state of a CMR is set as x = 1, y = 0.5, and θ = 0.
The reference trajectory is given as a U-shaped trajectory. When
the CMR is not attacked, Fig. 4(a) shows the tracking trajectory
without any attacks. In the simulation, we assume that the
control commands are modified randomly by adversaries. As

Fig. 4. Tracking performance with and without attacks. (a) Tracking perfor-
mance without attacks. (b) Tracking trajectory under random false data injection
attacks.

Fig. 5. Tracking performance under the algorithm in [52]. (a) Tracking per-
formance without attacks. (b) Tracking performance under random attacks.
(c) Tracking performance under state-dependent attacks. (d) Tracking perfor-
mance under optimal attacks.

a comparison, false data injection attacks are generated ran-
domly2 are implemented when the CMR runs along the desired
path. Fig. 4(b) shows the tracking trajectory under attacks.
From these simulation results, we can conclude that a CMR is
vulnerable to malicious adversaries. The CMR cannot run fol-
lowing the given U-shaped trajectory with a satisfying tracking
performance. Accordingly, it is of great importance and neces-
sity to provide countermeasures to prevent a robot’s performance
from deteriorating. Furthermore, the performance of the attack
depends both on the amount of information available and on
the way adversaries utilize it. As demonstrated in Fig. 5, false
data injection attacks can deteriorate the tracking performance
under a learning-based control algorithm. By comparing Fig.
5(b)–(d), it is obvious that optimal attacks can achieve the best
attack performance. These motivate us to investigate the optimal
false data injection attack and defense countermeasure design.

D. Problem Formulation

As can be seen from the above example and literature review
in Section I, cyber threats can deteriorate and even destroy the

2Here, we only use random attacks to show the malicious effects on a CMR.
Malicious adversaries can design an attack strategy based on their goals.
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performance of robotic systems. This article mainly focuses on
solving two problems. One is how to construct optimal false data
injection attacks to disturb robotic systems. The other is how to
design a secure control algorithm for robotic systems against
false data injection attacks. These two problems to be solved are
described mathematically as follows.

Problem 1: An attacker intends to deteriorate the tracking
performance by injecting false data attacks with minimum attack
cost. Then, the optimal attack design problem can be formulated
as follows:

ua(k) = arg max
ua(k)

Jadv

subject to x̄(k + 1) = x̄(k) + v(k) cos θ̄(k)Δt

ȳ(k + 1) = ȳ(k) + v(k) sin θ̄(k)Δt

θ̄(k + 1) = θ̄(k) +
v(k)

L
tanφ(k)Δt

vmin ≤ v ≤ vmax, φ ∈
[
−π

6
,
π

6

]
where x̄(k), ȳ(k), as well as θ̄(k) are the states of a CMR under
attacks, and

ua(k) =
[
va(k) φa(k)

]�
v(k) = va(k) + vb(k), φ(k) = φa(k) + φb(k)

Jadv = lim
N→∞

1

N

N∑
k=1

{
X̄�(k)QaX̄(k)− u�a (k)Raua(k)

}

X̄(k) =
[
x̄(k)− xr(k) ȳ(k)− yr(k) θ̄(k)− θr(k)

]�
and Qa ≥ 0 and Ra > 0 are weighting matrices.

Problem 2: Under attacks, the defender’s objective is to find
an optimal secure controller to mitigate attacks with a minimum
control cost. Following this objective, the optimal secure control
problem is formulated as follows:

ud(k) = arg min
ud(k)

Jsec

subject to x̃(k + 1) = x̃(k) + v(k) cos θ̃(k)Δt

ỹ(k + 1) = ỹ(k) + v(k) sin θ̃(k)Δt

θ̃(k + 1) = θ̃(k)
v(k)

L
tanφ(k)Δt

vmin ≤ v ≤ vmax, φ ∈
[
−π

6
,
π

6

]
where x̃(k), ỹ(k), as well as θ̃(k) are the states of a CMR under
the secure control, and

ud(k) =
[
vd(k) φd(k)

]�
v(k) = va(k) + vb(k) + vd(k)

φ(k) = φa(k) + φb(k) + φd(k)

Jsec = lim
N→∞

1

N

N∑
k=1

{
X̃�(k)QdX̃(k) + u�d (k)Rdud(k)

}

X̃(k) =
[
x̃(k)− xr(k) ỹ(k)− yr(k) θ̃(k)− θr(k)

]�
and Qd ≥ 0 and Rd > 0 are weighting matrices.

III. OPTIMAL FALSE DATA INJECTION SCHEDULING

In this section, a learning framework is proposed to design
the optimal false data injection attacks to deteriorate the per-
formance of the CMR. Several effective reinforcement learning
algorithms have been proposed and applied widely, for exam-
ple, deterministic policy gradient algorithm [45], trust region
policy optimization algorithm [46], proximal policy optimiza-
tion algorithm [47], and soft actor-critic reinforcement learn-
ing algorithm [48], each of which can be used here to solve
Problem 1, and learn the optimal false data injection attacks.
Here, we adopt the soft actor-critic reinforcement learning algo-
rithm to solve the optimal attack problem.

A. Markov Decision Process of a CMR Under Attacks

A reinforcement learning setup includes the agent and the
environment, which interact with each other to improve the
agent’s ability. The environment is described by a Markov
decision process defined by a tuple 〈S, A, P, R, γ〉, where
S is the state space, A means the action space, P denotes
the transition probability distribution, R represents the attack
cost,3 and γ ∈ [0, 1) is the discount factor. Then, combining the
attacked CMR and reference dynamics in the discrete form, the
Markov decision process can be described as

x̄1(k + 1) ∼ P (x̄1(k + 1)|x̄1(k), ua(k)) (9)

where x̄1(k) ∈ S with x̄1(k) = [x̄(k) ȳ(k) θ̄(k) xr(k) yr(k)
θr(k)]

�, P(x̄1(k + 1)|x̄1(k), ua(k)) represents the transition
probability from x̄1(k) to x̄1(k + 1) under the attack ua(k).

B. Learning-Based Optimal False Data Injection Attack
Algorithm

This section presents the definitions of the attack cost and
action-value function, following which the attack policy to be
learned is derived. Then, the gradients of the policies are given.
An algorithm is presented to learn the false data injection attacks.

1) Notations in the Learning-Based Attack Algorithm: Ac-
cording to Problem ****1, the attack costR(k) is defined as

R(k) = X̄�(k)QaX̄(k)− u�a (k)Raua(k).

When the reinforcement learning algorithm is trained,
the action-value function (also known as the Q function)
Qπa

(x̄1(k), ua(k)) is maximized to find a solution to Problem 1,
where πa denotes the attack policy to be learned. The expression
of Qπa

(x̄1(k), ua(k)) is computed as

Qπa
(x̄1(k), ua(k)) = γEx̄1(k+1) [Vπa

(x̄1(k + 1))] +R(k)

where Ex̄1(k+1)[·] is the expectation of
∑

x̄1(k+1) Pk+1|k[·]
over the distribution of x̄1(k + 1), Pk+1|k = P(x̄1(k +

3In reinforcement learning literature, it is called reward.
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1)|x̄1(k), ua(k)), πa(ua(k)|x̄1(k)) is the probability of choos-
ing the attack ua(k) at state x̄1(k) from the attack policy πa,
and

Vπa
(x̄1(k)) =

∞∑
k

∑
ua(k)

πa (ua(k)|x̄1(k))
∑

x̄1(k+1)

Pk+1|k

× (R(k) + γVπa
(x̄1(k + 1))) .

If we can find a solution to the following optimal problem,
Problem 1 can be solved

π∗a = argmax
πa

Qπa
(x̄1(k), ua(k)) (10)

where π∗a is the optimal attack policy, and ua(k) samples from
this optimal attack policy.

Next, the soft actor-critic reinforcement learning approach is
introduced to learn the optimal attack policyπ∗a. In the soft actor-
critic algorithm, an entropy item Ha(π(ua(k + 1)|x̄1(k + 1)))
is introduced to adequately explore the action space. Then, the
optimal problem described in (10) is rewritten as

π∗a = argmax
πa

(Qπa
(x̄1(k), ua(k))

+αaHa (πa (ua(k + 1)|x̄1(k + 1)))) (11)

where αa is a parameter used to regulate the importance of
Ha(π(ua(k + 1)|x̄1(k + 1))), and

Ha (πa (ua(k + 1)|x̄1(k + 1)))

= −
∑
ua(k)

πa (ua(k)|x̄1(k)) ln (πa (ua(k)|x̄1(k)))

= −Eπa
[ln (πa (ua(k)|x̄1(k)))] .

According to the above description, the reinforcement learn-
ing algorithm is to solve the following problem:

π∗a = arg max
πa∈Πa

(
R(k) + γEx̄1(k+1) [Vπa

(x̄1(k + 1))

−αaEπa
[ln (πa (ua(k)|x̄1(k)))]])

where Πa is the policy set.
In the soft actor-critic algorithm, the policy evaluation and

policy improvement steps repeatedly execute to learn the optimal
attack policy π∗a. In the policy evaluation step, a Bellman backup
operator T πa is utilized to repeatedly compute the soft action-
value function Qπa

(x̄1(k), ua(k)), the computation of which is
as follows:

T πaQπa
(x̄1(k), ua(k)) = R(k)

+ γEx̄1(k+1) [Vπa
(x̄1(k + 1))]

where

Vπa
(x̄1(k)) = Eπa

[Qπa
(x̄1(k), ua(k))

− ln (πa (ua(k)|x̄1(k)))] .

In the policy improvement step, the policy is updated by

πnew
a = arg min

π′a∈Π
DKL

(
π′a (·|x̄1(k))

∥∥∥e 1
αQπold

a (x̄1(k),·)

Zπold
a

)
(12)

whereπold
a is the policy from the last update,Qπold

a is the Q-value
of πold

a , DKL means the Kullback–Leibler divergence, and Zπold
a

denotes a normalization factor. Then, (12) can be rewritten as

π∗a = arg min
πa∈Πa

Eπa
[α ln (πa (ua(k)|x̄1(k)))

−Qπa
(x̄1(k), ua(k))] . (13)

To solve the optimization problem formulated in (13), deep
neural networks are utilized to approximate, respectively, the
action-value function Qπa,θa(x̄1(k), ua(k)), and the policy
πa,ϕa

(ua(k)|x̄1(k)), where θa and ϕa are employed to param-
eterized neural networks. In the following, the updating rules
(i.e., the gradients) and a learning algorithm are given.

2) Updating Rules and Implementation of the Attack Algo-
rithm: The parameter θa is trained by minimizing the following
Bellman residual:

JQπa
(θa) = Ex̄1(k),ua(k)∼Ma

[
1

2

(
Qπa,θa

(x̄1(k), ua(k))

−R(k)− γEx̄1(k+1)[Vπa,θ̄a
(x̄1(k + 1))]

)2]

the gradient estimate of which is as follows:

∇θaJQπa
(θa) = ∇θaJQπa

(θa)
(
Qπa,θa

(x̄1(k), ua(k))

−R(k)− γQπa,θ̄a(x̄1(k + 1), ua(k + 1))

+γαa ln(πa,ϕa
(ua(k + 1))|x̄1(k + 1)))

whereMa denotes the dataset generated by the system.
The parameter ϕa is trained by minimizing the following

equation with the reparameterization trick [48]:

Jπa
(ϕa) = Eπa,ϕa

[αa ln (πa,ϕa
(fϕa

((ε(k); x̄1(k))|x̄1(k))))

−Qπa,θa (x̄1(k), fϕa
((ε(k); x̄1(k))))]

the gradient estimate of which is

∇ϕa
Jπa

(ϕa) = ∇ϕa
αa ln(πa,ϕa

(ua(k)|x̄1(k)))

+
(
∇ua(k)αa ln(πa,ϕa

(ua(k)|x̄1(k)))

−∇ua(k)Qπa
(x̄1(k), ua(k))

)
×∇ϕa

fϕa
(ε(k); x̄1(k))

where ua(k) = fϕa
(ε(k); x̄1(k))with ε(k) being a noise vector.

The parameter αa is trained by minimizing the following:

J(αa) = Eπa

{
−αa lnπa(ua(k)|x̄1(k))− αaH̄a

}
where H̄a is a target entropy.

According to the gradients derived above, Algorithm 1 is
given to training deep neural networks to learn the optimal false
data injection attacks. The convergence analysis of Algorithm 1
can refer to [48], and it is omitted here for want for space.

Remark 2: Here, only the optimal false data injection attack
design problem is addressed, while the attack detection scheme
is not designed. To save the secure control cost, a χ2 attack
detector can be designed by combining the learning-based filter
in our previous work [53], [54].
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Algorithm 1: Learning-Based False Data Injection Attack
Algorithm.

1: Initialize parameters θa, ϕa, αa, and τ
2: Apply the controller in Lemma 1 to collect replay

memoryMa

3: Set the target parameter θ̄a as θ̄a ← θa
4: while Training do
5: for each data collection step do
6: Inject ua(k) into the control commands of the CMR

with ua(k) sampling from the policy
πa,ϕ(x̄1(k)|ua(k))

7: Update the memoryMa ←Ma ∪ x̄1(k)
8: end for
9: for each gradient step do

10: θa ← θa − ιQa
∇θaJQπa

(θa),
11: ϕa ← φa − ιπa

∇ϕa
Jπa

(ϕa)
12: αa ← αa − ιαa

∇αa
J(αa)

13: θ̄a ← τθa + (1− τ)θ̄a,
14: end for
15: end while
16: Output optimal parameters θ∗a, ϕ∗a

IV. LEARNING-BASED COUNTERMEASURE

From an adversary’s perspective, a CMR’s tracking perfor-
mance can deteriorate by injecting malicious attack commands
generated using Algorithm 1. In this section, we provide a
solution to Problem 2, that is, a learning-based secure control
algorithm with stability guarantee is proposed, under which the
malicious attacks can be mitigated. Here, the soft actor-critic
learning algorithm is modified by introducing a Lyapunov func-
tion constraint, which is used to guarantee that the tracking
error of the CMR under the secure controller preserves the
exponential stability. In what follows, related notation and the
secure algorithm are detailed.

A. Markov Decision Process of a CMR With a Secure
Controller

Similar to the descriptions in Section III, the Markov decision
process of a CMR with a secure controller consists of five
elements, that is, the state space S̄ , the action space Ā, the control
cost C̄, the transition probability P̄ , and the discounted factor γ̄.
The involution of such a process is as follows:

X̃(k + 1) ∼ P̄
(
X̃(k + 1)|X̃(k), ud(k)

)
(14)

where X̃(k) ∈ S̄ , and ud(k) ∈ Ā.
Remark 3: Differently from the Markov decision process for

the attack case in (9), X̃(k) is regarded as the state in (14).
Readers may be curious about this setup. Generally, x̄1(k) can
be also defined as the state in (14). However, satisfying results
cannot be obtained when we train the deep neural networks to
learn the secure controller. Instead, if X̃(k) is defined as the state,
a secure controller can be successfully trained. We argue that
the objective of the learning-based secure countermeasure is to
recover the tracking performance (i.e., X̃(k)→ 0). When X̃(k)

instead of x̄1(k) is defined as the state, deep neural networks
can use more explicit input, removing unnecessary inferencing.

B. Learning-Based Secure Control Algorithm

This section describes how to design a secure control algo-
rithm to mitigate false data injection attacks learned by using
Algorithm 1. Based on the defender’s objective, some nota-
tions of the learning-based secure control algorithm are given.
A Lyapunov function is introduced to preserve stability, and
the Lyapunov function constraint is added during the training
process. Next, we detail how to design such a secure control
algorithm.

1) Notations in the Learning-Based Secure Control Algo-
rithm: The defender’s objective is to use the minimum control
cost to recover the tracking performance. Therefore, the cost
C̄(k) is defined as

C̄(k) = X̃�(k)QdX̃(k) + u�d (k)Rdud(k)

where Qd ≥ 0 and Rd > 0 are weighting matrices.
Based on the definition of control cost C̄(k), the de-

fender’s objective is to minimize the action-value function
Qπd

(X̃(k), ud(k))withπd being the secure policy to be learned.
The definitions of Qπd

(X̃(k), ud(k)) and Vπd
(X̃(k)) are omit-

ted due to lack of space due to similarity to the previous defini-
tions.

If we can find a solution to the following optimization prob-
lem, Problem 2 can be solved

π∗d = argmin
πd

Qπd

(
X̃(k), ud(k)

)
(15)

where π∗d is the optimal secure policy and ud(k) samples from
such an optimal secure policy.

To guarantee that the entropy of action can be maximized,
the value-action function Qπd

(X̃(k), ud(k)) adding the entropy
itemHd is rewritten as 4

Qπd

(
X̃(k), ud(k)

)
= C̄(k) + γ̄EX̃(k+1)

[
Vπd

(X̃(k + 1))

−αdHd(πd(ud(k + 1)|X̃(k + 1)))
]

whereαd means a temperature parameter, which is used to adjust
the relative importance of the entropy item. The entropy of policy
is defined as Hd(πd(u(k + 1)|X̃(k + 1))), the expression of
which is similar toHa(π(ua(k + 1)|x̄1(k + 1))).

Then, the learning-based secure control algorithm is to solve
the following optimization problem, which is equivalent to
Problem 2:

π∗d = arg min
πd∈Πd

(
C̄(k) + γ̄EX̃(k+1)

[
Vπd

(X̃(k + 1))

−αdHd

(
πd

(
u(k + 1)|X̃(k + 1)

))])
(16)

where Πd is the policy set.

4In the soft actor-critic reinforcement learning algorithm, the objective
of which is to maximize both the reward and the entropy of action,
the entropy item αdHd(πd(ud(k + 1)|X̃(k + 1))) is introduced. Instead,
−αdHd(πd(ud(k + 1)|X̃(k + 1))) is used here to minimize the secure con-
trol cost C̄(k) but maximize the entropy of action.
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Since the learning-based secure control algorithm to be de-
signed is also in the actor-critic framework, both the policy
evaluation and policy improvement steps need to be executed
repeatedly to learn the optimal attack policy π∗d. Similarly, the
Bellman backup operation is utilized to repeatedly compute
the soft action-value function Qπd

(X̃(k), ud(k)) including the
entropy item in the policy evaluation step. The Bellman backup
operation can refer to that in Section III.

By minimizing the control cost while maximizing the entropy
of action, π∗d can be solved by

π∗d = arg min
πd∈Πd

Eπd

[
αd ln

(
πd

(
ud(k)|X̃(k)

))

+Q
(
X̃(k), ud(k)

)]
. (17)

Here, suppose we directly construct deep neural networks to
approximate the action-value function and the policy and use the
updating rules similar to those given in Section III. In that case,
the secure controller can also be learned. In such a scenario, the
secure countermeasure is an empirical algorithm whose stability
cannot be guaranteed. A main improvement of the secure control
algorithm to be proposed in this article is that the stability of
the tracking error system can be preserved by using the secure
controller. Therefore, the Lyapunov function often used in the
control community is introduced. As discussed in our previous
results [52], [53], [54], a direct choice of the Lyapunov function
is the action-value functionQπd

(X̃(k), ud(k)). If we can ensure
thatQπd

(X̃(k), ud(k)) preserves the properties of the Lyapunov
function in the learning process, that is, Qπd

(X̃(k + 1), ud(k +
1))−Qπd

(X̃(k), ud(k)) < −βC̄(k) with β being a scalar in
the learning process, it is possible to analyze the stability of the
tracking error system.

Thus, the policy is improved by solving the following con-
strained optimization problem:

π∗d = arg min
πd∈Πd

Eπd

[
αd ln

(
πd

(
ud(k)|X̃(k)

))

+Q
(
X̃(k), ud(k)

)]
subject to

Qπd
(X̃(k + 1), ud(k + 1))−Qπd

(X̃(k), ud(k)) < −βC̄(k).
(18)

To design a learning-based secure control algorithm to obtain
a solution to (18), the deep neural networks with parameters θd
and ϕd are constructed to approximate Qπd,θd(X̃(k), ud(k)),
and the policy πd,ϕd

(ud(k)|X̃(k)), respectively. Next, the up-
dating rules for parameters θd and ϕd and the learning-based
secure control algorithm are detailed.

2) Updating Rules and Implementation of the Secure Al-
gorithm: Here, θd is also trained by minimizing the Bellman
residual defined as follows:

JQπd
(θd) = EX̃(k),ud(k)∼Md

[
1

2

(
Qπd,θd

(
X̃(k), ud(k)

)

−C̄(k)− γ̄EX̃(k+1)

[
Vπd,θ̄d

(X̃(k + 1))
])2]

the gradient estimate of which is as follows:

∇θdJQπd
(θd) = ∇θdQπd,θd

(
Qπd,θd

(X̃(k), ud(k))

−C̄(k)− γQπd,θd(X̃(k + 1), ud(k + 1))

−γαd ln(πd,ϕd
(ud(k + 1))|X̃(k + 1))

)
whereMd denotes the dataset generated by the system.

Remark 4: The function Qπd,θd(X̃(k), ud(k)) is set as the
Lyapunov function in the training process. However, such a
function is parameterized by deep neural networks. The positive
definite property of a Lyapunov function cannot always be
satisfied. A trick can be used when Qπd,θd(X̃(k), ud(k)) is
computed in the training process, for example, use its absolute
value.

Combining the reparameterization trick and a Lagrangian
multiplier, ϕd is trained by minimizing the following equation:

Jπd
(ϕd) = Eπd,ϕd

[
αd ln

(
πd,ϕd

(fϕd
((ε(k); X̃(k))|X̃(k)))

)
+Qπd,θd

(
X̃(k), fϕa

((ε(k); X̃(k)))
)]

+ λ
(
Qπd,θd(X̃(k + 1), ud(k + 1))

−Qπd
(X̃(k), ud(k)) + βC̄(k)

)]
the gradient estimate of which is

∇ϕd
Jπd

(ϕd) = ∇ϕd
αd ln(πd,ϕd

(ud(k)|X̃(k)))

+
(
∇ud(k)αd ln(πd,ϕd

(ud(k)|X̃(k)))

−∇ud(k)Qπd
(X̃(k), ud(k))

)
×∇ϕd

fϕd
(ε(k); X̃(k))

+ λ∇ud+1
Qπd

(
X̃(k + 1), ud(k + 1)

)
×∇ϕd

fϕd
(ε(k); X̃(k + 1))

where ud(k) = fϕd
(ε(k); X̃(k)).

In the training process, αd and λ are updated by maximizing
the following equaiton:

J(αd) = Eπd

[
αd lnπd(ud(k)|X̃(k)) + αdH̄d

]
J(λ) = λE

[
Qπd,θd(X̃(k + 1), fθd(X̃(k + 1); ε(k)))

−Qπd
(X̃(k), ud(k)) + βC̄(k)

]
where H̄d is the target entropy.

Using the above updating rules, Algorithm 2 is proposed
to train the parameters of deep neural networks. Once deep
neural networks have been successfully trained, secure control
commands sampling from policy πd can be applied to recover
the CMR tracking performance.
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Algorithm 2: Learning-Based Secure Control Algorithm.
1: Randomly initialize parameters θd, ϕd, αd, and λ

2: Set the target parameter θ̄d as θ̄d ← θd
3: Apply the controller in Lemma 1 and the attack ua(k)

learned by Algorithm 1 to collect replay memoryMd

4: while Training do
5: for each data collection step do
6: Sample ud(k) from the policy πd,θd(X̃(k)|ud(k))

7: Apply ud(k) to generate data X̃(k)
8: Update the replay memoryMd ←Md ∪ X̃(k)
9: end for

10: for each gradient step do
11: θd ← θd − ιQd

∇θdJQπd
(θd),

12: ϕd ← ϕd − ιπd
∇ϕd

Jπd
(ϕd)

13: αd ← αd − ια∇αd
Jαd

(αd)
14: λ← λ− ιλ∇λJλ(λ)
15: θ̄d ← τθd + (1− τ)θ̄d,
16: end for
17: end while
18: Output optimal parameters θ∗d, φ∗d

C. Stability Analysis

As declared in the above section, the stability of the tracking
error system under the learned secure control scheme can be
ensured. Here, the strict proof is provided. Before proceeding,
an assumption is given to complete the Proof of Theorem 1.

Assumption 1: An Markov chain induced by a policy πd is
ergodic with a unique distribution probability qπd

(X̃(k)) with
qπd

(X̃(k)) = limk→∞ P̄(X̃(k) | ρ, πd, k).
Theorem 1: Assumption 1 holds. Provided that there are

scalars α̃1 > 0, α̃2 > 0, β ≥ 0 such that the Lyapunov function
Q(k)5 learned by using Algorithm 2 satisfies the following
conditions:

α̃1C̄(k) ≤ Q(k) ≤ α̃2C̄(k) (19)

EX̃(k)∼μπd

[
EX̃(k+1)∼P̄πd

[Q(k + 1)]−Q(k)
]

≤ − βEX̃(k)∼μπd

[
C̄(k)

]
. (20)

Then the tracking error of a CMR is guaranteed to be exponen-
tially stable in mean square, i.e.,∥∥∥EX̃(k)∼μπd

[
X̃(k)

]∥∥∥ ≤ σk α̃2

α̃1

∥∥∥EX̃(0)∼μπd

[
X̃(0)

]∥∥∥
where

μπd
(X̃(k)) � lim

N→∞

1

N

N∑
k=0

P̄
(
X̃(k) | ρ, πd, k

)

is the state distribution, and σ ∈ (0, 1).
Proof: Based on Assumption 1, the sampling distribution

μπd
(X̃(k)) exists. When k →∞, qπd

(X̃(k)) = P̄(X̃(k)
| ρ, πd, k). Using the Abelian theorem, the sequence

5For simplicity, Q(k) � Qπd
(X̃(k), ud(k)).

{ 1
N

∑N
k=0 P̄(X̃(k) | ρ, πd, k), N ∈ Z+} also converges, and

μπd
(X̃(k)) = qπd

(X̃(k)). According to the above discussion,
(20) is rewritten as∫
S

lim
N→∞

1

N

N∑
k=0

P̄(X̃(k)|ρ, πd, k)

×
(
EP̄πd(X̃(k+1)|X̃(k))[Q(k + 1)]−Q(k)

)
dX̃(k)

≤ −βEX̃(k)∼qπd

[
C̄(k)

]
. (21)

In Algorithm 2, we can learn a bounded Lyapunov function
Q(k). Then, P̄(X̃(k)|ρ, πd, k)Q(k) is bounded for ∀X̃(k) ∈ S .
Besides, the sequence { 1

N

∑N
k=0 P̄(X̃(k)|ρ, πd, k)Q(k)} con-

verges to the function qπd
(X̃(k))Q(k) in a pointwise way.

Based on Lebesgue’s dominated convergence theorem, if a
sequence fn(X̃(k)) converges pointwise to a function f and is
dominated by some integrable function g(X̃(k)) in the sense
that ∣∣∣fn(X̃(k))

∣∣∣ ≤ g(X̃(k)) ∀X̃(k) ∈ S ∀n.

Then, the following equation can be obtained:

lim
n→∞

∫
S
fn(X̃(k))dX̃(k) =

∫
S
lim
n→∞

fn(X̃(k))dX̃(k).

Using the above equation, (21) can be described as∫
S

lim
N→∞

1

N

N∑
k=0

P̄(X̃(k) | ρ, πd, k)

×
(∫
S
P̄πd

(
X̃(k + 1)|X̃(k)

)

×Q(k + 1)dX̃(k + 1)−Q(k)
)
dX̃(k)

= lim
N→∞

1

N

(
N+1∑
k=1

EP (X̃(k)|ρ,πd,k)
[Q(k)]

−
N∑

k=0

EP̄(X̃(k)|ρ,πd,k)
[Q(k)]

)

= lim
N→∞

1

N

N∑
k=0

(
EP̄(X̃(k+1)|ρ,πd,k+1)[Q(k + 1)]

−EP̄(X̃(k)|ρ,πd,k)
[Q(k)]

)
.

There always exists a scalar σ such that the following equation
holds: (

1

σ
− 1

)
α̃2 −

β

σ
= 0.

Combining the above equation and the condition in (19) yields
the following result:

1

σι+1
EP̄(x̃ι+1|ρ,πd,ι+1)[Q(ι+ 1)]− 1

σι
EP̄(x̃ι|ρ,πd,ι)[Q(ι)]

=
1

σι+1

(
EP̄(x̃(ι+1)|ρ,πd,ι+1)[Q(ι+ 1)]
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Fig. 6. Simulation results of the circular trajectory. Top: Tracking control of a CMR using the nominal controller in Lemma 1. Middle: Tracking control of a
CMR under false data injection attacks designed by Algorithm 1. Bottom: Tracking control of a CMR under the secure controller learned using Algorithm 2.

−EP̄(x̃(ι)|ρ,πd,ι)[Q(ι)]
)

+
1

σι

(
1

σ
− 1

)
EP̄(ι|ρ,πd,ι)[Q(ι)]

≤ 1

σι

(
−β

σ
+

(
1

σ
− 1

)
α̃2

)
C̄(k)

which implies

EP̄(X̃(ι+1)|ρ,πd,ι+1)[Q(ι+ 1)]

σι+1
−

EP̄(X̃(ι)|ρ,πd,ι)
[Q(ι)]

σι
≤ 0.

To sum the above inequality from ι = 0, 1, . . . , k − 1 yields

1

σk
EP̄(X̃(k)|ρ,πd,k)

[Q(k)]− EP̄(X̃(0)|ρ,πd,0)
[Q(0)] ≤ 0

which implies

EX̃(k)∼μπd

[
C̄(k)

]
≤ σk α̃2

α̃1
EX̃(0)∼μπd

[
C̄(0)

]
.

Furthermore, we can obtain the following inequality:

EX̃(k)∼μπd

[
X̃(k)

]
≤ σk α̃2

α̃1
EX̃(0)∼μπd

[
X̃(0)

]
.

Therefore, the tracking error using the learned policy exponen-
tially converges. �

V. SIMULATION AND EXPERIMENTS

Both simulation and real-world experiment results are pro-
vided to demonstrate the effectiveness of the proposed schemes

in this section. The CMR is driven to follow two typical tra-
jectories (i.e., circular and eight-type trajectories), respectively.
To keep the parameters and constraints of the CMR in the
simulation the same as those in the experiment, set the wheelbase
L = 0.88 m, the steering angle −π

6 ≤ φ ≤ π
6 , and the velocity

−1.5 m/s ≤ v ≤ 1.5 m/s. Both the simulation and experimental
results are provided in three scenarios presented (i.e., without
attacks, under attacks, and under the defense scheme).

A. Simulation

We first provide the simulation results to validate the proposed
optimal false data injection attack scheme and the secure coun-
termeasure. In the simulation, six different initial poses of the
CMR are given randomly. The sampling period is set as 0.1 s.
The desired circular trajectory is generated by the commands
vr(k) = 0.7 m/s and φr(k) =

π
30 . The desired eight-type trajec-

tory is defined as xr(k) = 12 sin( 2kπ150 ), yr(k) = 12 sin( kπ
150 ).

Case 1: Tracking control of a CMR using the nominal con-
troller in Lemma 1

For parameters of the nominal controller in Lemma 1, define
k0 = 6, k1 = 1, k2 = 3, and h̄ = 1.2 tanh(x2

e + y2e) sin k. The
first row in Figs. 6 and 7 shows the tracking performance of
the nominal controller. As can be seen from these simulation
figures, the CMR can track the desired circular and eight-type
trajectories quickly. Without false data injection attacks, such a
controller works well.

Case 2: Tracking control of a CMR under false data injection
attacks designed by Algorithm 1
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Fig. 7. Simulation results of the eight-type trajectory. Top: Tracking control of a CMR using the nominal controller in Lemma 1. Middle: Tracking control of a
CMR under false data injection attacks designed by Algorithm 1. Bottom: Tracking control of a CMR under the secure controller learned using Algorithm 2.

TABLE II
HYPERPARAMETERS FOR ALGORITHM 1

Here, we show that optimally designed false data injection
attacks can deteriorate the CMR tracking performance. Table II
gives the hyperparameters used in Algorithm 1. The rectified
linear unit is chosen as the activation function for deep neural
networks. Each attack policy is trained to 1000 episodes under
the nominal controller. Ten optimal attack policies are learned,
from which we choose one to attack the CMR. Note that the
CMR needs to run a time period before it follows the desired
trajectories. Such a time period depends on the initial pose of the
CMR. If the initial states of the CMR are close to those of the
desired trajectories, the time period is short; otherwise, it is long.
Considering the fact that malicious adversaries often execute
attacks when the CMR runs stably, the attacks are implemented
at k = 20 (i.e., 2s) in training. The second row in Figs. 6 and 7
demonstrate the simulation results of the CMR under the learned
false data injection attacks. The circular and eight-type paths

TABLE III
HYPERPARAMETERS FOR ALGORITHM 2

cannot be followed with a satisfying performance. Although a
robust tracking controller is adopted, the tracking performance
of the CMR deteriorates. In this case, the CMR can crash into ob-
stacles, other robots, and humans, causing damage to robots and
even injuring humans. If robots in an industrial production line
are attacked, defective products will be dramatically produced.
Simulation results in this case not only show the effectiveness
of the proposed attack scheme but also highlight the necessity
and significance of securing robots.

Case 3: Tracking control of a CMR under the secure controller
learned using Algorithm 2

In this case, we show that the tracking performance of an
attacked CMR can be recovered by using the secure controller
in Algorithm 2. The hyperparameters used in Algorithm 2 are
provided in Table III. The activation function of the neural
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Fig. 8. Tracking performance with other attacks and without attacks under
Algorithm 2. (a) Tracking performance with random attacks. (b) Tracking
performance with state-dependent attacks. (c) Tracking performance under
Algorithm 2 when random attacks occur. (d) Tracking performance under
Algorithm 2 when state-dependent attacks occur. (e) Tracking performance
without attacks: circle trajectory. (f) Tracking performance without attacks:
eight-type trajectory.

network and the number of training episodes are the same as
those in Case 2. One secure policy is chosen from the ten trained
secure policies to mitigate attacks. The simulation results are
depicted in the third row in Figs. 6 and 7, from which we can
see that the tracking performance is recovered. To further show
the effectiveness of the proposed secure control algorithm,
random and state-dependent attacks are taken into account.
Fig. 8(a) and (c) demonstrates the tracking performance under
random attacks and Algorithm 2, respectively. Although both
random attacks and state-dependent attacks often considered in
the literature can deteriorate tracking performance, the optimal
attacks designed in this article outperform the above two, further
indicating that the performance of the attack depends both on
the amount of information available and on the way attackers
use it. Tracking performance under state-dependent attacks and
Algorithm 2 are, respectively, depicted in Fig. 8(b) and (d). These
results demonstrate that the proposed secure control algorithm
mitigates optimal attacks and works well under other kinds of
attacks. When no attacks occur, Fig. 8(e) and (f), respectively,
show the simulation results for circle and 8-type trajectories un-
der Algorithm 2, demonstrating the effectiveness of the proposed
secure control algorithm without attacks occurring.

Under the secure controller, there still exists a small tracking
error. If the fine-tuning method is used to train deep neural
networks continuously, such errors can also decrease. Alter-
native approaches are to tune the parameters in the nominal

Fig. 9. Experiment setup. The real-time kinematic position system (RTK) is
used to locate the CMR. The inertial measurement unit (IMU) is utilized to
measure the heading angle of the CMR. The pose information obtained by the
RTK and IMU is transmitted to the computer to calculate the control commands.
Then, these control signals are sent to the actuators of the CMR. The hacker
eavesdrops on the sensing data, based on which false data injection (FDI) attacks
are computed and injected into control commands to disturb the locomotion of
the CMR.

Fig. 10. Snapshots of different experiment environments.

controller. Readers may wonder why defenders design another
control scheme to mitigate attacks rather than directly tuning the
parameters of the nominal controller. The relation between these
parameters and the performance is implicit. Nobody knows how
long it takes if defenders tune parameters to recover the perfor-
mance. Robots can cause damage before expedient parameters
are found. On the other hand, since malicious adversaries can
alter attacks, it is impossible always to tune these parameters.

B. Experiments

Here, we directly deploy the trained neural networks in
the CMR. The setup of the experiment is given in Fig. 9.
The experiments are conducted in two different real-world
environments, snapshots of which are provided in Fig. 10.
Three scenarios are also considered in these two environments.
The desired circular trajectory is xr(k) = 9 cos(kπ90 ),
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Fig. 11. Experiment results of circular and eight-type trajectories. First column: Tracking control of a CMR using the nominal controller in Lemma 1. Second
column: Tracking control of a CMR under false data injection attacks designed by Algorithm 1. Last column: Tracking control of a CMR under the secure controller
learned using Algorithm 2.

yr(k) = 9 sin(kπ90 ). The desired eight-type trajectory is defined
as xr(k) = 12 sin(kπ75 ), yr(k) = 12 sin( kπ

150 ). Fig. 11 shows
the results of the experiment. The experiment videos are avail-
able at http://aius.hit.edu.cn/ASecureRobotLearningFramework
forCyberAttackSchedulingandCountermeasure/list.htm. From
these experimental results, we can conclude that malicious
adversaries can deteriorate the performance of the CMR by
using the designed false data injection attack algorithm, and the
performance of a CMR under attacks can be recovered by using
the proposed secure learning control framework.

VI. CONCLUSION

The problems of constructing optimal false data injection
attacks and countermeasure design for a robot have been solved
in this article. By describing the dynamics of a CMR under
false data injection attacks as a Markov decision process, a deep
reinforcement learning algorithm has been given to determine
the optimal attacks based on which the tracking performance
of the robot can deteriorate. A secure robot learning control
algorithm has been proposed combining both the reinforcement

learning approach and the Lyapunov stable theory. Using such
an algorithm, the performance of a robot under malicious attacks
can be recovered effectively. More importantly, the stability of
the tracking error system has been preserved by introducing
the Lyapunov function, and the strict mathematical proof has
been given. Since stability is a fundamental requirement of a
control system, while most existing deep reinforcement learning
approaches are empirical, the proposed framework can make
deep reinforcement learning approaches widely applied to de-
sign control schemes, guaranteeing stability from the theoret-
ical perspective. Rich simulations and experiments have been
conducted to show the effectiveness of the proposed learning
framework.

VII. DISCUSSION

Security is critical for robots equipped with modern devices
and communication. Several cyber attack incidents mentioned in
Section I show the necessity of designing secure control schemes
for robots.
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Although some secure algorithms have been proposed, most
depend on the linear model. When attacks occur, there exists no
guarantee that linear models can still describe the actual system
dynamics. In the literature, the proposed algorithms are applied
to linear models rather than practical applications. Consequently,
the effectiveness of existing results is not thoroughly evaluated.
The optimal false data injection attack design and secure control
have been formulated in a nonlinear form in this article. Using the
deep reinforcement learning approach, a secure robot learning
framework was established, using which the performance of a
robot under malicious cyber threats can be recovered effectively,
and the stability of the tracking error can be guaranteed.

This article has two critical improvements. One is that the
trained neural networks in the simulation are directly deployed
in a CMR of our lab. Surprisingly, trained neural networks drive
the CMR well (see Section V). This can be explained by using a
nominal controller, which could guarantee both the simulation
and the experiment achieve satisfying results. Moreover, we
conducted another experiment on a cable-driven robot in which
the trained neural networks in the simulation were directly
deployed. The experimental results6 also show that the use of a
nominal controller helps solve the sim-to-real transfer problem.
The other lies in that optimal attack and secure control design
problems formulated in nonlinear forms are solved using the
deep reinforcement learning approach. This not only ensures that
the proposed framework can be more widely applied but also
suggests a possibility of making deep reinforcement learning
approaches widely applied to designing control schemes due to
the stability guarantee of our approach.

REFERENCES

[1] G. W. Clark, M. V. Doran, and T. V. Andel, “Cybersecurity issues in
robotics,” in Proc. IEEE Conf. Cogn. Comput. Aspects Situation Manage.,
2017, pp. 1–5.

[2] M. Olivato, O. Cotugno, L. Brigato, D. Bloisi, A. Farinelli, and L. Iocchi,
“A comparative analysis on the use of autoencoders for robot security
anomaly detection,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2019,
pp. 984–989.

[3] Wikipedia, “Iran–U.S. RQ-170 incident,” [Online]. Available: https://en.
wikipedia.org/wiki/Iran%E2%80%93 U.S._RQ-170_incident

[4] A. H. Rutkin, ““spoofers” use fake GPS signals to knock a yacht off
course,” [Online]. Available: https://www.technologyreview.com/2013/
08/14/177015/spoofers-use-fake-gps-signals-to-knock-a-yacht-off-
course/

[5] F. Maggi, D. Quarta, M. Pogliani, M. Polino, A. M. Zanchettin, and S.
Zanero, “Rogue robots: Testing the limits of an industrial robot’s secu-
rity,” Trend Micro, Politecnico di Milano, Mlan, Italy, Tech. Rep., 2017,
pp. 1–21.

[6] W. Dong, “Tracking control of multiple-wheeled mobile robots with
limited information of a desired trajectory,” IEEE Trans. Robot., vol. 28,
no. 1, pp. 262–268, Feb. 2012.

[7] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs for safety critical systems,” IEEE Trans. Autom.
Control, vol. 62, no. 8, pp. 3861–3876, Aug. 2017.

[8] Q. Zhou, S. Zhao, H. Li, R. Lu, and C. Wu, “Adaptive neural network
tracking control for robotic manipulators with dead zone,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 30, no. 12, pp. 3611–3620, Dec. 2019.

[9] V. M. Gonçalves, B. V. Adorno, A. Crosnier, and P. Fraisse, “Stable-by-
design kinematic control based on optimization,” IEEE Trans. Robot.,
vol. 36, no. 3, pp. 644–656, Jun. 2020.

6The video is available at http://aius.hit.edu.cn/ASecureRobotLearning
FrameworkforCyberAttackSchedulingandCountermeasure/list.htm.

[10] N. Bezzo, J. Weimer, M. Pajic, O. Sokolsky, G. J. Pappas, and I. Lee,
“Attack resilient state estimation for autonomous robotic systems,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2014, pp. 3692–3698.

[11] Y. Jin, Y. Zhang, Y. Jing, and J. Fu, “An average dwell-time method for
fault-tolerant control of switched time-delay systems and its application,”
IEEE Trans. Ind. Electron., vol. 66, no. 4, pp. 3139–3147, Apr. 2019.

[12] J. Sun, H. Zhang, Y. Wang, and S. Sun, “Fault-tolerant control for stochastic
switched IT2 fuzzy uncertain time-delayed nonlinear systems,” IEEE
Trans. Cybern., vol. 52, no. 2, pp. 1335–1346, Feb. 2022.

[13] A. Teixeira, D. Pérez, H. Sandberg, and K. H. Johansson, “Attack models
and scenarios for networked control systems,” in Proc. 1st Int. Conf. High
Confidence Networked Syst., 2012, pp. 55–64.

[14] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys, “Unmanned
aircraft capture and control via GPS spoofing,” J. Field Robot., vol. 31,
no. 4, pp. 617–636, 2014.

[15] F. Fei et al., “Cross-layer retrofitting of UAVs against cyber-physical
attacks,” in Proc. IEEE Int. Conf. Robot. Autom., 2018, pp. 550–557.

[16] P. Guo, H. Kim, N. Virani, J. Xu, M. Zhu, and P. Liu, “RoboADS: Anomaly
detection against sensor and actuator misbehaviors in mobile robots,” in
Proc. 48th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw., 2018,
pp. 574–585.

[17] S. Lee and B.-C. Min, “Distributed control of multi-robot systems
in the presence of deception and denial of service attacks,” 2021,
arXiv:2102.00098.

[18] S. Banik and S. D. Bopardikar, “Attack-resilient path planning using
dynamic games with stopping states,” IEEE Trans. Robot., vol. 38, no. 1,
pp. 25–41, Feb. 2022.

[19] M. Santilli, M. Franceschelli, and A. Gasparri, “Dynamic resilient contain-
ment control in multirobot systems,” IEEE Trans. Robot., vol. 38, no. 1,
pp. 57–70, Feb. 2022.

[20] F. Mallmann-Trenn, M. Cavorsi, and S. Gil, “Crowd vetting: Rejecting
adversaries via collaboration with application to multirobot flocking,”
IEEE Trans. Robot., vol. 38, no. 1, pp. 5–24, Feb. 2022.

[21] H. Fawzi, P. Tabuada, and S. Diggavi, “Secure estimation and control for
cyber-physical systems under adversarial attacks,” IEEE Trans. Autom.
Control, vol. 59, no. 6, pp. 1454–1467, Jun. 2014.

[22] C. Wu, Z. Hu, J. Liu, and L. Wu, “Secure estimation for cyber-physical
systems via sliding mode,” IEEE Trans. Cybern., vol. 48, no. 12,
pp. 3420–3431, Dec. 2018.

[23] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S.
S. Sastry, “Kalman filtering with intermittent observations,” IEEE Trans.
Autom. Control, vol. 49, no. 9, pp. 1453–1464, Sep. 2004.

[24] A.-Y. Lu and G.-H. Yang, “Secure switched observers for cyber-physical
systems under sparse sensor attacks: A set cover approach,” IEEE Trans.
Autom. Control, vol. 64, no. 9, pp. 3949–3955, Sep. 2019.

[25] L. An and G.-H. Yang, “LQ secure control for cyber-physical systems
against sparse sensor and actuator attacks,” IEEE Trans. Control Netw.
Syst., vol. 6, no. 2, pp. 833–841, Jun. 2019.

[26] C. Wu, W. Pan, G. Sun, J. Liu, and L. Wu, “Learning tracking control
for cyber–physical systems,” IEEE Internet Things J., vol. 8, no. 11,
pp. 9151–9163, Jun. 2021.

[27] Y. Mo and B. Sinopoli, “Secure control against replay attacks,” in Proc.
47th Annu. Allerton Conf. Commun., Control, Comput., 2009, pp. 911–918.

[28] F. Miao, M. Pajic, and G. J. Pappas, “Stochastic game approach for
replay attack detection,” in Proc. 52nd IEEE Conf. Decis. Control, 2013,
pp. 1854–1859.

[29] K. Manandhar, X. Cao, F. Hu, and Y. Liu, “Detection of faults and
attacks including false data injection attack in smart grid using kalman
filter,” IEEE Trans. Control Netw. Syst., vol. 1, no. 4, pp. 370–379,
Dec. 2014.

[30] X. Luo, Y. Li, X. Wang, and X. Guan, “Interval observer-based detection
and localization against false data injection attack in smart grids,” IEEE
Internet Things J., vol. 8, no. 2, pp. 657–671, Jan. 2021.

[31] L. Hu, Z. Wang, Q.-L. Han, and X. Liu, “State estimation under false data
injection attacks: Security analysis and system protection,” Automatica,
vol. 87, pp. 176–183, 2018.

[32] Z. Kazemi, A. A. Safavi, F. Naseri, L. Urbas, and P. Setoodeh, “A
secure hybrid dynamic-state estimation approach for power systems under
false data injection attacks,” IEEE Trans. Ind. Inform., vol. 16, no. 12,
pp. 7275–7286, Dec. 2020.

[33] A. Abbaspour, A. Sargolzaei, P. Forouzannezhad, K. K. Yen, and A. I.
Sarwat, “Resilient control design for load frequency control system under
false data injection attacks,” IEEE Trans. Ind. Electron., vol. 67, no. 9,
pp. 7951–7962, Sep. 2020.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 30,2023 at 11:03:50 UTC from IEEE Xplore.  Restrictions apply. 

https://en.wikipedia.org/wiki/Iran%E2%80%93 ignorespaces U.S._RQ-170_incident
https://en.wikipedia.org/wiki/Iran%E2%80%93 ignorespaces U.S._RQ-170_incident
https://www.technologyreview.com/2013/08/14/177015/spoofers-use-fake-gps-signals-to-knock-a-yacht-off-course/
https://www.technologyreview.com/2013/08/14/177015/spoofers-use-fake-gps-signals-to-knock-a-yacht-off-course/
https://www.technologyreview.com/2013/08/14/177015/spoofers-use-fake-gps-signals-to-knock-a-yacht-off-course/
http://aius.hit.edu.cn/ASecureRobotLearningFrameworkforCyberAttackSchedulingandCountermeasure/list.htm
http://aius.hit.edu.cn/ASecureRobotLearningFrameworkforCyberAttackSchedulingandCountermeasure/list.htm


WU et al.: SECURE ROBOT LEARNING FRAMEWORK FOR CYBER ATTACK SCHEDULING AND COUNTERMEASURE 3737

[34] W. Lucia, B. Sinopoli, and G. Franze, “A set-theoretic approach for
secure and resilient control of cyber-physical systems subject to false data
injection attacks,” in Proc. Sci. Secur. Cyber- Phys. Syst. Workshop, 2016,
pp. 1–5.

[35] H. Zhang, P. Cheng, L. Shi, and J. Chen, “Optimal denial-of-service attack
scheduling with energy constraint,” IEEE Trans. Autom. Control, vol. 60,
no. 11, pp. 3023–3028, Nov. 2015.

[36] J. Qin, M. Li, J. Wang, L. Shi, Y. Kang, and W. X. Zheng, “Op-
timal denial-of-service attack energy management against state esti-
mation over an SINR-based network,” Automatica, vol. 119, 2020,
Art. no. 109090.

[37] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against state
estimation in electric power grids,” ACM Trans. Inf. Syst. Secur., vol. 14,
no. 1, pp. 1–33, 2011.

[38] S. Gao, H. Zhang, Z. Wang, and C. Huang, “A class of optimal switching
mixed data injection attack in cyber-physical systems,” IEEE Robot.
Autom. Lett., vol. 6, no. 2, pp. 1598–1605, Apr. 2021.

[39] A. Gupta, C. Langbort, and T. Başar, “Dynamic games with asymmetric
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