
1

Reinforcement Learning of CPG-regulated
Locomotion Controller for a Soft Snake Robot
Xuan Liu , Student Member, IEEE, Cagdas D. Onal , Member, IEEE, and Jie Fu , Member, IEEE

Abstract—Intelligent control of soft robots is challenging due
to the nonlinear and difficult-to-model dynamics. One promising
model-free approach for soft robot control is reinforcement
learning (RL). However, model-free RL methods tend to be
computationally expensive and data-inefficient and may not yield
natural and smooth locomotion patterns for soft robots. In this
work, we develop a bio-inspired design of a learning-based goal-
tracking controller for a soft snake robot. The controller is
composed of two modules: An RL module for learning goal-
tracking behaviors given the unmodeled and stochastic dynamics
of the robot, and a central pattern generator (CPG) with the
Matsuoka oscillators for generating stable and diverse locomotion
patterns. We theoretically investigate the maneuverability of
Matsuoka CPG’s oscillation bias, frequency, and amplitude for
steering control, velocity control, and sim-to-real adaptation of
the soft snake robot. Based on this analysis, we proposed a
composition of RL and CPG modules such that the RL module
regulates the tonic inputs to the CPG system given state feedback
from the robot, and the output of the CPG module is then
transformed into pressure inputs to pneumatic actuators of the
soft snake robot. This design allows the RL agent to naturally
learn to entrain the desired locomotion patterns determined
by the CPG maneuverability. We validated the optimality and
robustness of the control design in both simulation and real
experiments, and performed extensive comparisons with state-of-
art RL methods to demonstrate the benefit of our bio-inspired
control design.

Index Terms—Soft Robot Control; Deep Reinforcement Learn-
ing; Biomimetics; Learning and Adaptive Systems; Neural Os-
cillator.

I. INTRODUCTION

DUE to their flexible geometric shapes and deformable
materials, soft continuum robots have great potential to

perform tasks in dangerous and cluttered environments, includ-
ing natural disaster relief and pipe inspection [1]. However,
planning and control of such robots are challenging, as these
robots have infinitely many degrees of freedom in their body
links, and soft actuators with stochastic, unknown dynamics
and delayed responses.

In this work, we develop a bio-inspired locomotion con-
troller for soft robot snakes to achieve serpentine-like loco-
motion for set-point tracking tasks. Specifically, we consider
utilizing the properties of CPGs, which consists of a special

This work was supported in part by the National Science Foundation under
grant #1728412. (Corresponding author: Jie Fu)

Xuan Liu and Cagdas Onal are with the Robotics Engineering De-
partment at Worcester Polytechnic Institute, Worcester, MA, US (e-mail:
xliu9@wpi.edu; cdonal@wpi.edu).

Jie Fu is with the Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL, US (e-mail: fujie@ufl.edu, fax number:
352-392-8671).

group of neural circuits that are able to generate rhyth-
mic and non-rhythmic activities for organ contractions and
body movements in animals. Such activities can be activated,
modulated, and reset by neuronal signals mainly from two
directions: bottom-up ascendant feedback information from
afferent sensory neurons or top-down descendant signals from
high-level modules including mesencephalic locomotor region
(MLR) [2] and motor cortex [3], [4].

Fig. 1. Schematic view of learning-based CPG controller.

In literature, bio-inspired control methods have been studied
for the control design of rigid robots’ locomotion, includ-
ing legged [5]–[9] and serpentine locomotion [10]–[15]. The
general approach is to generate motion patterns mimicking
animals’ behaviors and then track these trajectories with a
closed-loop control design. In [2], the authors developed a tra-
jectory generator for a rigid salamander robot using Kuramoto
CPGs and used low-level PD controllers to track the desired
motion trajectories generated by the oscillator. Ryu et al. [12]
established the velocity control CPG by adapting its frequency
parameter with additional linear dynamics. In [14], the authors
introduced a control loop that adjusts the oscillation patterns
including frequency, amplitude, and phase of the oscillation
for adapting to the changes in the terrain. Their results show
the advantage of the Hopf oscillator on the direct access to
the oscillation patterns for different locomotion purposes. In
[16], the Matsuoka oscillator is combined with the amplitude
modulation method to realize steering control of a rigid
snake robot. However, these approaches have not provided a
way to maneuver the oscillation patterns intelligently. Recent
work has combined learning-based method and CPG systems
for control of rigid robotic systems. Sartoretti et al. [17]
proposed a decentralized approach, where each actuator of an
articulated rigid snake robot is controlled independently by
a neural network (NN) controller learned with an end-to-end
RL algorithm. Another recent work [15] employed a spiking
neural net (SNN) under the regulation of reward-modulated
spike-timing-dependent plasticity (R-STDP) to map visual
information into wave parameters of a phase-amplitude CPG
net, which generates desired oscillating patterns to locomote

ar
X

iv
:2

20
7.

04
89

9v
2

 [
cs

.R
O

]
 8

 J
ul

 2
02

3

https://orcid.org/0000-0003-4373-1359
https://orcid.org/0000-0002-3307-1273
https://orcid.org/0000-0002-4470-2827

2

a rigid snake robot chasing a red ball. The similar idea of
combining learning and CPG is also investigated in the legged
robot. Tran et al. [9] employed a Q-learning selector to make
decision on switching among different CPG patterns in a
disturbance recovery task during bipedal locomotion. In [18],
the authors proposed a CPG-RL method that directly learns
the neural oscillator’s intrinsic amplitude and frequency, and
coordinate the decoupled oscillator network to control the
legged locomotion of a quadruped robot.

For a rigid snake robot, existing literature [2] has introduced
a model-based control design combined with CPG for motion
planning. Despite the success of bio-inspired control with
rigid snake robots, the same control scheme may not work
as desired for soft snake robots. This is because, in these
approaches, the trajectories generated by CPG require high-
performance low-level controllers for tracking. The tracking
performance cannot be reproduced with soft snake robots due
to the nonlinear, delayed, and stochastic dynamical response
from the soft actuators.

To this end, we develop a bio-inspired learning-based con-
trol framework for soft snake robots with two key components:
To achieve intelligent and robust goal-tracking with changing
goals, we use model-free RL [19], [20] to map the feedback
of soft actuators and the goal location, into control commands
of a CPG network. The CPG network consists of coupled
Matsuoka oscillators [21]. The Matsuoka CPG network acts
as a low-level motion controller to generate actuation inputs
directly to the soft snake robots for achieving smooth and
diverse motion patterns. The two networks form a variant of
cascade control with only one outer-loop, as illustrated in
Fig. 1. Comparing to other neural oscillators used in [15],
[17], [18], the Matsuoka oscillator has the following special
properties

1) It is in the class of half-center [22] oscillator model
that describes mutually inhibiting mechanism in a pair
of neurons. Such mechanism produces alternate activities
of flexors and extensors, which can be used to directly
control a pair of actuators mimicking antagonistic mus-
cles;

2) It has clear boundary conditions for the parameters such
that the neurons can generate free-response oscillation
when satisfying the boundary condition [23];

3) On the basis of free-response oscillation, the entrainment
property [24], [25] allows the intelligent controller to au-
tonomously regulate the oscillation pattern of the system
with forced-response oscillation input;

4) It is a piece-wise linear system with local linearity in
certain quadrants.

Based on the above properties of the Matsuoka oscillator,
we showed that several dynamic properties of the Matsuoka
oscillators can be leveraged in designing the interconnection
between RL and CPG. We have proved that the steering
control can be realized by modulating both the amplitudes
bias and duty cycles of the neural stimuli inputs of the CPG
network, and the velocity control can be realized by tuning the
oscillating frequencies of the CPG net. These findings enable
us to flexibly control the slithering locomotion with a CPG

network given state feedback from the soft snake robot and
the control objective.

This paper is an extension of our preliminary work [26]
that designs a learning-based set-point tracking control for soft
snake robots. In comparison to [26], we make the following
improvements:

1) Theoretical analysis of steering maneuverability: We
analyze the property of the biased oscillation in the
Matsuoka oscillator. Using describing function analysis,
we show that when the tonic inputs of the Matsuoka
oscillator are bounded and satisfy certain constraints, the
bias of the output signal becomes linearly related to the
tonic inputs. This feature makes the steering control of
the snake robot easier to learn for an RL agent.

2) Free-response Oscillation Constraints (FOC) for sim-
to-real transfer: We investigate the transient property of
the Matsuoka Oscillator from free-response oscillation to
forced-response oscillation. Using this property, we intro-
duce a fixed free-response tonic input signal to help regu-
late the amplitude and oscillation frequency of the forced
tonic inputs which are generated by the RL policy. The
new approach is referred to as Free-response Oscillation
Constrained Proximal Policy Optimization Option-Critics
with Central Pattern Generator (FOC-PPOC-CPG). This
approach improves the transferability of the RL control
policy learned in the simulation to the real robot.

3) Improve reward density with potential field function:
We newly introduce a potential-field-based reward shap-
ing to accelerate the learning process.

4) Comprehensive sim-to-real tests and analysis: We
added new experiments comparing the learning efficiency
and adaptability of the policy between the proposed
method and vanilla Proximal Policy Optimization (PPO)
[20]. Based on the experimental results for both sim-
ulation and reality, we show that our soft snake robot
equipped with a properly designed “vertebrate” (the CPG
system) can be more easily controlled by the RL agent.
Our approach also achieves more reliable locomotion per-
formance under various goal-reaching locomotion tasks
that are unseen during the training process.

The paper is structured as follows: Section II provides an
overview of the robotic system and the state space represen-
tation. Section III presents the design and configuration of the
CPG network. Section IV discusses the key properties of the
CPG network and the relation to the design of an artificial
neural network for the RL module. Section V introduces a
curriculum and reward design for learning a goal-tracking
locomotion controller with a soft snake robot. Section VI
presents the experimental validation and evaluation of the
controller in both simulated and real snake robots.

II. SYSTEM OVERVIEW OF THE SOFT SNAKE ROBOT

As shown in Fig. 2, our soft snake robot is a subtype of
WPI-SRS series robot [27]. It consists of 4 pneumatically
actuated soft links. The soft links are made of Ecoflex™ 00-
30 silicone rubber. Each soft link of the robot has two air
chambers mimicking antagonistic muscle (detailed structure

3

Fig. 2. Mechatronics design of the soft snake robot.

of the soft body can be found in [27], [28]). The links
are connected through rigid bodies enclosing the electronic
components that are necessary to control the snake robot. Each
rigid body contains an ESP32 module (powered by a Lithium-
polymer battery) for control command communication and
a pair of SMC-S070C-SCG solenoid valves that control the
inflation and deflation of the air chambers. Only one chamber
on each link is active (pressurized) at a time. In addition, the
rigid body components have a pair of one-direction wheels to
model the anisotropic friction of real snakes.

The configuration of the robot’s coordinate is shown in
Figure 4. At time t, state h(t) ∈ R2 is the planar Cartesian
position of the center of mass (COM) of the snake’s head,
ρg(t) ∈ R2 is the planar displacement vector pointing from
snake’s head COM to the goal position, dg(t) ∈ R is the
distance traveled along the head-to-goal-direction from the
initial head COM position, v(t) ∈ R2 is the instantaneous
planar velocity vector of the snake’s head COM, θg(t) is
the angle between vector ρg(t) and vector v(t), and the
locomotion speed vg(t) ∈ R is the length of the projection
of v(t) on the head-to-goal-direction. According to [29], the
bending curvature of each body link at time t is computed by
κi(t) =

δi(t)
li(t)

, for i = 1, . . . , 4, where δi(t) and li(t) are the
relative bending angle and the length of the middle line of the
i-th soft body link.

In [30], we developed a physics-based simulator that models
the inflation and deflation of the air chamber and the resulting
deformation of the soft bodies with tetrahedral finite elements.
The simulator runs in real time using GPU. We use the
simulator for learning the locomotion controller in the soft
snake robot, and then apply the learned controller to the real
robot.

III. DESIGN OF A CPG NETWORK FOR THE SOFT SNAKE
ROBOT LOCOMOTION

In this section, we introduce our CPG network design
consisting of interconnected Matsuoka oscillators [23], [24].
Primitive Matsuoka CPG: A primitive Matsuoka CPG con-
sists of a pair of mutually inhibited neuron models. The
dynamical model of the primitive Matsuoka CPG is given as

follows:

Kfτrẋ
e
i = −xei − azfi − byei −

N∑
j=1

wjiy
e
j + uei + c,

Kfτaẏ
e
i = zei − yei ,

Kfτrẋ
f
i = −xfi − azei − byfi −

N∑
j=1

wjiy
f
j + ufi + c,

Kfτaẏ
f
i = zfi − yfi ,

(1)

where the subscripts e and f represent variables related to
the extensor neuron and flexor neuron, respectively. The tuple
(xqi , y

q
i), q ∈ {e, f} represents the activation state and self-

inhibitory state of i-th neuron respectively, zqi = g(xqi) =
max(0, xqi)

1 is the output of i-th neuron, b ∈ R is a weight
parameter, uei , u

f
i are the forced tonic inputs to the oscillator,

and Kf ∈ R is the frequency ratio. The set of parameters in
the system includes the discharge rate τr ∈ R, the adaptation
rate τa ∈ R, the mutual inhibition weights between flexor and
extensor a ∈ R, the inhibition weight wji ∈ R representing
the coupling strength with the neighboring primitive oscillator,
and the free-response oscillation tonic input c ∈ R (c = 0 in
our previous work [26]). In our system, all coupled signals
including xqi , y

q
i and zqi (q ∈ {e, f}) are inhibiting signals

(negatively weighted), and only the tonic inputs are activating
signals (positively weighted). In the current system, we have
N = 4 primitive Matsuoka CPGs. For simplicity, we introduce
a vector

u = [ue1, u
f
1 , u

e
2, u

f
2 , u

e
3, u

f
3 , u

e
4, u

f
4]
T (2)

to represent all tonic inputs to the CPG net.
Structure of the Matsuoka CPG Network for the Soft
Snake Robot: Extending from a primitive Matsuoka CPG
system to the multi-linked snake robot, we construct a CPG
network shown on the right of Fig. 3. The network includes
four linearly coupled primitive Matsuoka oscillators. It is an
inverted, double-sized version of Network VIII introduced
in Matsuoka’s paper [23]. The network includes four pairs
of nodes. Each pair of nodes (e.g., the two nodes colored
green/yellow) in a row represents a primitive Matsuoka CPG
(1). The edges correspond to the coupling relations among the
nodes. In this graph, all the edges with hollowed endpoints
are positive activating signals, while the others with solid
endpoints are negative inhibiting signals. The oscillators are
numbered 1 to 4 from head to tail of the robot. In order to
build the connection between the CPG network and robot
actuators, we define the output of the i-th primitive Matsuoka
CPG as

ψi = aψzi = aψ(z
e
i − zfi), (3)

where aψ is a ratio coefficient of zi. Given the Bounded Input
Bounded Output (BIBO) stability of the Matsuoka CPG net
[21], the outputs ψ = [ψ1, ψ2, ψ3, ψ4]

T from the primitive
oscillators can be limited within [−1, 1] by adjusting the ratio
aψ . We let ψi = 1 for the full inflation of the i-th extensor
actuator and zero inflation of the i-th flexor actuator, and vice

1The maximum function is noted as g(·) = max(0, ·) in this paper.

4

Fig. 3. Illustrating the input-output connection of the PPOC-CPG net.

Fig. 4. Notation of the state space configuration of the robot.

versa for ψi = −1. The actual pressure input to the i-th
chamber is λi · ψi, where λi is the maximal pressure input
of each actuator. The primitive oscillator with green nodes
controls the oscillation of the head joint. This head oscillator
also contributes as a rhythm initiator in the oscillating system,
followed by the rest parts oscillating with different phase
delays in sequence. Figure 3 shows all activating signals to
the CPG network.
Configuring the Matsuoka CPG Network: To determine
the hyper-parameters in the CPG network that generate a
more efficient locomotion pattern, we employed a genetic
programming (GP) algorithm similar to [31]. In this step, all
tonic inputs are assigned with value 1 for the simplicity of
fitness evaluation.

We define the fitness function–the optimization criteria–in
GP as F (vg,T , θg,T , dg,T) = a1|vg,T | − a2|θg,T | + a3|dg,T |,
where g indicates a fixed goal initiated in the heading direction
of the snake robot, T indicates the terminating time of fitness
evaluation for each trial, and all coefficients a1, a2, a3 ∈ R+

are constants2.
To achieve stable and synchronized oscillations of the whole

2In experiments, the following parameters are used: a1 = 40.0, a2 =
100.0, a3 = 50.0, and T = 6.4 sec.

system, the following constraint must be satisfied [21]:

(τa − τr)
2 < 4τrτab, (4)

where τa, τr, b > 0. To satisfy this constraint, we can set the
value of b much greater than both τr and τa, or make the
absolute difference |τr − τa| sufficiently small.

In other words, this fitness function is a weighted sum
over the robot’s instantaneous speed, deviation angle, and total
traveled distance on a fixed straight line at the terminating time
T . In this scenario, a better-fitted configuration is supposed to
maintain oscillating locomotion and reaches faster locomotion
speed |vg,T | along the original heading direction at time T . In
addition, the locomotion pattern is required to have a smaller
deviation between the robot’s heading direction and the goal
direction (with a small |θg|), and with overall a longer traveled
distance along the robot’s heading direction (|dg|).

The desired parameter configuration found by GP is given
in Table. II in Appendix A.

IV. MANEUVERABILITY ANALYSIS AND DESIGN OF THE
LEARNING-BASED CONTROLLER WITH THE MATSUOKA

CPG NETWORK

When provided with equally constant tonic inputs, the
designed Matsuoka CPG system can generate stable oscillation
patterns to efficiently drive the soft snake robot slithering
forward. However, a single CPG network cannot achieve
intelligent locomotion and goal-tracking behaviors with po-
tentially time-varying goals. For an intelligent controller, the
free turning and accelerating (or decelerating) behaviors are
the fundamental skills to realize autonomous locomotion in
the goal-tracking tasks. In this paper, we denote these two
maneuverability demands as – steering control and velocity
control (see Fig. 5). The later parts will focus on investigating
the properties of the Matsuoka CPG system to prove that
it is controllable from both steering and velocity control
perspectives. We design a proper connection between RL
actions and controllable coefficients of the Matsuoka CPG
system so that both steering and velocity control of the snake
robot can be efficiently learned by the RL agent.

5

Fig. 5. An overview of the maneuverability of Serpentine locomotion with the Matsuoka oscillator.

For steering control, we prove that the bias of tonic inputs
is linearly proportional to the bias of the CPG output in both
amplitude and duty cycle dimensions. This property inspires
a rule that transforms the action outputs of the RL policy into
the tonic inputs of the CPG system.

Next, we excavate two mechanisms that are helpful for
velocity control. First, we show that the frequency ratio coeffi-
cient Kf allows the RL agent to tune the locomotion velocity
by directly adjusting the oscillation frequency. Second, by
introducing the free-response oscillation constraint, we provide
a way to adjust the converging amplitude of the oscillation
driven by the RL agent. With experiments, we show that the
free-response oscillation constraint is very helpful for reducing
performance drop in the sim-to-real problem.

A. Steering control with imbalanced tonic inputs

Most existing methods based on CPG realize steering by
either directly adding a displacement [2] to the output of
the CPG system, or using a secondary system such as an
artificial neural network to compose the weighted outputs
from multiple CPG systems [5]. In this section, we present
a different approach based on the maneuverability of the
Matsuoka oscillator–tuning tonic inputs to realize the biased
wave patterns of CPG outputs for steering the slithering
locomotion of the soft snake robot3.

For the RL controller to steer our snake robot smoothly
through the Matsuoka CPG system, we need to find a clever
way to make the steering dynamics easy to learn for the RL
algorithm. In other words, the relation between tonic inputs
and the output bias of each primitive Matsuoka oscillator in
the CPG network needs to be simple and clear. In the original
design of the Matsuoka oscillator, the flexor and extensor
tonic inputs are independent of each other. This setting not
only increase the dimension of action space for the RL agent
but also makes the relationship between tonic inputs and the
output bias more complicated. To simplify this problem, we
first introduce a new relation defined as complementation to
reform the relation between ue and uf .

3The fact that the biased wave output of the Matsuoka CPG system could
cause the turning behavior of the snake robot comes from a previous work
[16], which shows that the steering angle of a slithering snake robot on the
planner ground can be linearly controlled by the bias of the oscillatory output
of the Matsuoka oscillator as the command signal of joint actuators.

Definition 1: (Complementation) For two real signals u(t)
and v(t), and a known bounded range D : [a, b] where D ⊆ R,
we say u(t) and v(t) are complementary to each other in range
D when u(t), v(t) ∈ D for all t ∈ R+ and u(t)+v(t) ≡ b−a.

Another important definition for this section is a relation
between two periodic signals named entrainment based on the
related theory in [24], [25].

Definition 2: (Entrainment) Given a neural oscillator system
with its natural frequency ωn > 0. If the neural oscillator’s
output is synchronized to the coupled input with frequency ω,
then this system is entrained with the coupled input signal.
The relation between the neural oscillator’s output and the
coupled input signal is called entrainment. If the two signals
are perfectly entrained, they are supposed to have the same
oscillation amplitude and bias in addition to the synchronized
oscillation frequency.

From our previous work [26], we have observed in experi-
ment that the steering bias of a primitive Matsuoka oscillator
is proportional to the amplitude of ue when ue and uf are
complementary within the range [0, 1]. This key observation
inspires us a dimension reduction technique to the input space
of the CPG net: Instead of controlling uei , u

f
i for i = 1, . . . , n

for a n-link snake robot, we only need to control uei for
i = 1, . . . , n and let ufi = 1−uei . As the tonic inputs have to be
positive in Matsuoka oscillators, we define a four dimensional
action vector α = [α1, α2, α3, α4]

T ∈ R4 and map α to tonic
input vector u⃗ as follows,

uei =
1

1 + e−αi
, and ufi = 1− uei , for i = 1, . . . , 4. (5)

This mapping bounds the tonic input within [0, 1]. The reduced
input dimension enables a more efficient policy search in RL.

Based on this design, we show that there are certain
combinations of tonic inputs in a Matsuoka oscillator that
are capable of generating imbalanced output trajectories and
therefore result in the turning behavior of the robot. We present
three possible cases of the forced tonic inputs that could
maneuver the turning behavior of the snake robot:

1) The two tonic inputs are different constants.
2) The two tonic inputs are wave functions with imbalanced

duty cycles.
3) The two tonic inputs are wave functions with imbalanced

duty cycles, and both wave functions are added by
different constant offsets.

6

(a)

(b)

(c)

(d)

(e)

Fig. 6. Relation between oscillation bias and extensor tonic input ue when
setting different a values to obtain (a) Kn = 0.19 (b) Kn = 0.39 (a)
Kn = 0.53 (b) Kn = 0.66 (a) Kn = 0.79.

It is noted that the third case is a linear combination of the first
two. As a result, as long as the first two cases are proved to
share the same property, the third one naturally holds. Next,
we provide the frequency domain analysis of the Matsuoka
oscillator to explain why the first two cases of tonic inputs
enable imbalanced oscillation for the turning behavior.
Steering with biased amplitude of constant tonic inputs:
To show that a pair of constant tonic inputs with different
bias values can result in a biased oscillating output trajectory,
we need to find out the relation between the bias of the
output z and the bias of tonic inputs, when the tonic inputs
are constant and complementary in [0, 1]. In this situation,
a primitive Matsuoka oscillator needs to be a zero damping
harmonic system to maintain limit cycle oscillation. When the
system has zero damping, the ratio between the amplitudes
of state xq and output zq for q ∈ {e, f}, referred to as Kn,
is obtained from a second-order linear ordinary differential
equation ((B.9) in Appendix B-C) derived from (1):

Kn =
τr + τa
τaa

, (6)

where τr and τa are the discharge rate and the adaptation
rate in (1), and parameter a is the mutual inhibition weight
between flexor and extensor of a primitive Matsuoka oscillator.
The derivation of (6) can be found in Appendix B-C.

When the Matsuoka oscillator’s output only consists of free-
response oscillation, we can establish the following relation
between the output bias(z) and the tonic input bias(u).

Proposition 1: If a primitive Matsuoka oscillator satisfies
the following three conditions: 1) the dynamical model of the
primitive Matsuoka oscillator is harmonic, 2) the tonic inputs
ue and uf are constants and complementary to each other,
3) states xe and xf are perfectly entrained, then the oscillation
bias of outputs z and the bias of inputs u satisfies the following
linear relationship,

bias(z) =
Kn

(b− a)Kn + 1
bias(u), (7)

where z = ze − zf , u = ue − uf , and the coefficient Kn

satisfies Kn = (τr + τa)/(τaa).
Proof: See Appendix C-A.

Equation (7) suggests that there is a linear relationship
between bias(u) and bias(z) in a primitive Matsuoka oscillator.
We further validate this conclusion through the numerical
simulation of a single primitive Matsuoka oscillator. We cal-
culate the mean oscillation bias (numerical average4) of the
simulated state output z and compare it with the estimated bias
based on (7) (linear reference). Figure 6 shows the curve of
bias(z) varies with bias(u) ∈ [−1, 1] in a primitive Matsuoka
oscillator.

Figure 6 and theoretical analysis (see Appendix C-B) show
that for bias(u) ∈ (2a

a+b+1 − 1, 1 − 2a
a+b+1), the linear rela-

tionship mentioned in Proposition 1 is applicable to the data
of bias(z) and bias(u) collected by simulating the original
Matsuoka system in (1). It is also observed that the applicable

4Based on Fourier series analysis, given a continuous real-valued P -
periodic function z(t), the constant term of its Fourier series has the form
1
P

∫
P z(t)dt.

7

Fig. 7. Relation between oscillation amplitude and duty cycle bias.

range of bias(u) for Proposition 1 to hold increases with
Kn. As shown in Fig. 7, when bias(u) ∈ [−1, 2a

a+b+1 − 1] ∪
[1− 2a

a+b+1 , 1], the original Matsuoka system stops oscillating,
which means the system stays at a set point equilibrium. In this
case, bias(z) and bias(u) follow another linear relationship,

bias(z) =


bias(u)−(1+2c)

2(1+b) , if bias(u) ∈ [−1, 2a
a+b+1 − 1]

bias(u)+(1+2c)
2(1+b) , if bias(u) ∈ [1− 2a

a+b+1 , 1].

(8)

The derivation of the above relationship is provided in Ap-
pendix C-B.

In the next paragraph, we show that there is also a linear
relationship between bias(z) and bias(u) of the Matsuoka
oscillator when ue and uf are periodical signals with biased
duty cycles.
Steering with the biased duty cycle of periodic tonic
inputs: We show a different approach to control the steering
of the snake robot given that both uei and ufi are square wave
functions and are complementary to each other.

Proposition 2: If a primitive Matsuoka oscillator satisfies
the following three conditions: 1) the dynamical model of the
primitive Matsuoka oscillator is harmonic, 2) the tonic inputs
ue and uf are square wave signals and are complementary to
each other, 3) ue is entrained with ze, and uf is entrained with
zf , then the oscillation bias of z and the bias of u satisfies
the following linear relationship,

bias(z) =
1 + 2m

b− a+ 2
bias(u), (9)

where z = ze − zf , u = ue − uf , and

m =
1

π

1

2Kn − 1 + 2
π (a+ b) sin−1(Kn)

is a constant coefficient (r indicates amplitude of state x).
Proof: See Appendix C-C.

(a)

(b)

(c)

Fig. 8. Relation between bias(z) and bias(u) for the tonic inputs satisfying
Proposition 2.

The simulated results also supports Proposition 2 when the
Matsuoka system is taking periodic tonic inputs with biased
duty cycles. Figure 8 shows that with various Kn values,
the linear relationship in (9) fits well with the curve between
bias(u) and bias(z) collected by simulating the original Mat-
suoka system in (1).

Combining the conclusions in Proposition 1 and Proposi-
tion 2, we make the following remark,

Remark 1: If a primitive Matsuoka oscillator has periodical
tonic input signals ue and uf that are complementary to each
other, with imbalanced duty cycles and both wave functions
are added by different constant offsets, then bias(z) is linearly
related to the bias(u), where z = ze − zf , u = ue − uf .

Proposition 1 and 2 show that the oscillation bias of the
Matsuoka CPG system is easy to maneuver through the biased
tonic input signals. Since the oscillation bias is the key
to steering in the snake’s slithering locomotion, these two
propositions provide us insight to the design of RL module so

8

as to improve the efficiency in learning the steering behavior
of the snake robot.

B. Velocity control with frequency modulation

Fig. 9. Relating oscillating frequency and amplitude to the average linear
velocity of serpentine locomotion.

Generally, the linear velocity of serpentine locomotion is
affected by the snake’s oscillation amplitude and frequency.
In this subsection, we show that the amplitude and frequency
can be controlled by two coefficients of the Matsuoka CPG
system to change the locomotion velocity of the soft snake
robot.

First, the following relation between the frequency ratio Kf

and the natural frequency ω̂i of the i-th oscillator is established
in [24, (5),(6)],

ω̂i ∝
1√
Kf

, i ∈ {1, 2, 3, 4}. (10)

Second, the oscillating amplitude Âi of the i-th oscillator
is linearly proportional to the amplitude of free-response
oscillation tonic input c when c > 0 and uei , u

f
i are constants

[24], that is,
Âi ∝ c, i ∈ {1, 2, 3, 4}. (11)

Equations (10) and (11) show that the frequency and
amplitude of the Matsuoka CPG system are independently
influenced by the frequency ratio Kf and the free-response
oscillation tonic inputs c. Therefore, these two coefficients can
be considered major factors for the Matsuoka CPG system to
control the velocity of the soft snake robot’s locomotion. In
Fig. 9, we collect 2500 uniform samples within the region
c ∈ [0.4, 0.8], and Kf ∈ [0.45, 1.05] and record the velocities
generated in the simulator. We observe that with a fixed c, the
average velocity increase monotonically with the frequency
ratio Kf . We also observe that with the same Kf , the change
of c does not affect the locomotion velocity significantly.
While with different values of c, the efficiency of Kf in
affecting the locomotion velocity is different. This means that
we can mainly use Kf to adjust the locomotion velocity,
but the value of c needs to be carefully selected. Given this
analysis, we use Kf to control the velocity of the robot. It is
noted that the frequency ratio Kf only influences the strength
but not the direction of the vector field of the Matsuoka CPG
system. Thus, modulating Kf would not affect the stability of
the whole CPG system.

C. Modulating forced-response oscillation amplitude with
free-response oscillation tonic input constraint

(11) shows that the free-response oscillation tonic input c
could affect the output amplitude of the Matsuoka oscillator
when ue and uf are constants. We further discover that a
positive value of the free response tonic input c could set
a threshold for the amplitude of the force-response tonic
inputs ue and uf , such that they need to pass this amplitude
threshold in order to control the oscillation of the CPG system.
In the experiment section, we show that this property of c
can significantly improve the sim-to-real performance of our
control framework.

In our previous work [26], when c = 0, there is no free-
response oscillation in the system. When a Matsuoka oscillator
has no free-response oscillation pattern, its output oscillation
amplitude and bias are only controlled by the forced input
signal given by the control tonic inputs ue and uf . When the
inertia in the simulated learning environment is high and the
contact friction force is low, the RL agent learns to generate
the forced-response oscillation tonic inputs with very small
amplitude to keep a more stable heading direction during
the locomotion. However, if we need the RL control policy
to be able to initiate the CPG oscillation with an increased
amplitude on the real robot (e.g. for traversing a terrain with
higher friction resistance), the learned policy would not meet
the requirement.

When c ̸= 0, we conclude that in the Matsuoka oscillator,
the amplitude Au of the force-response tonic inputs ue and
uf must satisfy the inequality Au > A0 to completely entrain
with the output z (A0 is the entrainment threshold for ue and
uf to synchronize the output z of the Matsuoka oscillator
[25]). The equation of A0 is given as follows

A0(c, ω) =
c√

τ2
aω

2+1

τrτa|ω2
n−ω2|

c+1
An

, (12)

where An > 0 is the free-response oscillation amplitude and

ωn =
1

τaKf

√
(τr + τa)b

τra
− 1

is the free-response oscillation frequency [24]. The detailed
derivation of A0 is provided in Appendix B-D. According to
[24, (30)], we have

A0(c, ω) ≈
c√

τ2
aω

2+1

τrτa|ω2
n−ω2| (2Kn − 1 + 2

π (a+ b) sin−1(Kn))
.

(13)

In (13), if c = 0, A0 ≡ 0. In this case, there is no limiting
threshold for the control policy to entrain the CPG output z
with ue, uf . When ω is fixed and c > 0, then the threshold
A0 > 0 and A0 increases with c. Notice that Au > A0 must
be satisfied for the free-response oscillation of the Matsuoka
system be attenuated by the system damping. This also means
the force-response tonic inputs ue, uf entrain the CPG output
z. In this scenario, the control policy needs to increase Au
to control the CPG system effectively. It is also noted that
A0 → 0 as ω → ωn, therefore there are two ways for the

9

RL agent to realize the entrainment status: one is keeping the
oscillation frequency ω close to the free-response oscillation
frequency ωn, and the other is increasing the value of Au
to make Au > A0. Therefore, the combination of the two
directions can encourage the intelligent controller to produce
force-response tonic inputs that can not only approach desired
oscillating amplitude, but also pursue frequency resonance
with the original CPG system. Based on this special property
of the Matsuoka oscillator, we propose a new method – FOC-
PPOC-CPG to enforce better entrainment between RL control
signals and the CPG states.

According to the relation between A0 and c, we can use c
to keep the oscillation amplitude of the Matsuoka oscillator
at different levels. One previous work [32] has shown that
the oscillation amplitude of the Matsuoka oscillator can be
used to improve the slithering locomotion velocity of a rigid
snake robot in different environments with different friction
coefficients. Hence, we can use c to adapt the body undulation
amplitude of the soft snake robot to different environments
with various contact properties. With this approach, we can
improve the sim-to-real performance of an RL snake controller
by tuning its signal amplitude, instead of relying on the
environment-based methods such as domain randomization
[33] or other data augmentation techniques, which are com-
putationally expensive.

In the later part of this paper, our experiment results (see
Section VI-E) verify the merit of c in improving the sim-to-
real performance of our snake locomotion controller.

D. The Neural Network Controller

We have now determined the encoded input vector of the
CPG net to be vector α (tonic inputs) and frequency ratio Kf .
This input vector of the CPG is the output vector of the NN
controller. The input to the NN controller is the state feedback
of the robot, given by s = [||ρg||, vg, θg, θ̇g, κ1, κ2, κ3, κ4]T ∈
R8 (see Fig. 4). Next, we present the design of the NN
controller.

The key insight for the design of the NN controller is
that the robot needs not to change velocity very often for
smooth locomotion. This means the updates for tonic inputs
and the frequency ratio can be set to be at two different time
scales. With this insight, we adopt a hierarchical reinforcement
learning method called the option framework [34], [35] to
learn the optimal controller. The controller uses the tonic
inputs as low-level primitive actions and frequency ratio as
high-level options of the CPG net. The low-level primitive
actions are computed at every time step. The high-level option
changes infrequently. Specifically, each option is defined by
⟨I, πy : S → {y} ×R4), βy⟩ where I = S is a set of initial
states, and πy is the intra-option policy. By letting I = S,
we allow the frequency ratio to be changed at any state in the
system. Variable y ∈ [0, 1] is a value of frequency ratio, and
βy : S → [0, 1] is the termination function such that βy(s) is
the probability of changing from the current frequency ratio
to another frequency ratio.

The options share the same NN for their intro-option
policies and the same NN for termination functions. However,

these NNs for intro-option policies take different frequency
ratios. The set of parameters to be learned by policy search
include parameters for intra-option policy function approxima-
tion, parameters for termination function approximation, and
parameters for high-level policy function approximation (for
determining the next option/frequency ratio). Proximal Policy
Optimization Option-Critics (PPOC) in the OpenAI Baselines
[36] is employed as the policy search in the RL module.

Let us now review the control architecture in Figure 3. We
have a Multi-layer perceptron (MLP) neural network with two
hidden layers to approximate the optimal control policy that
controls the inputs of the CPG net in (1). The output layer of
MLP is composed of action α (green nodes), option in terms
of frequency ratio (pink node), and the terminating probability
(blue node) for that option. The input of NN consists of a state
vector (yellow nodes) and its output from the last time step.
The purpose of this design is to let the actor network learn the
unknown dynamics of the system by tracking the past actions
in one or multiple steps [5], [37], [38]. Given the Bounded
Input Bounded Output (BIBO) stability of the Matsuoka CPG
net [21] and that of the soft snake robots, we ensure that the
closed-loop robot system with the FOC-PPOC-CPG controller
is BIBO stable. Combining with (5) which enforces a limited
range for all tonic inputs, this control scheme is guaranteed
to generate bounded inputs, which lead to bounded outputs in
the system.

V. CURRICULUM AND REWARD DESIGN FOR EFFICIENT
LEARNING-BASED CONTROL

In this section, we introduce the design of the curriculum
and reward function for efficiently learning a goal-tracking
controller given the proposed FOC-PPOC-CPG scheme.

A. Task curriculum

Fig. 10. Task difficulty upgrade from level i−1 to level i. As the curriculum
level increases, goals are sampled at a narrower distance and wider angle, and
the acceptance area gets smaller.

Curriculum teaching [39] is used to accelerate motor skills
learning given complex goal-tracking tasks. We design the
curriculum such that the agent starts with easy-to-reach goals
at level 0. As the level increases, the agent learns to perform
more challenging goal-tracking tasks.

The curriculum levels are designed as follows: At the task-
level, i, the center of the goal is sampled from the 2D space
based on the current location and head direction of the robot.
For each sampled goal, we say the robot reaches the goal if it
is ri distance away from the goal. The sampling distribution
is uniform in the fan area determined by the range of angle θi

10

and distance bound [ρli, ρ
u
i] in the polar coordinate given by

the predefined curriculum.
As shown in Fig. 10, when the task-level increases, we have

ri < ri−1, θi > θi−1, ρui > ρui−1, and ρui − ρli < ρui−1 − ρli−1.
This means that the robot has to be closer to the goal in
order to succeed and receive a terminal reward, the goal
is sampled in a range further from the initial position of
the robot. We select discrete sets of {ri}, {θi}, [ρli, ρ

u
i] and

determine a curriculum table. A detailed example of the
learning curriculum is given in Table III. We train the robot
in simulation starting from level 0. The task-level is increased
to level i+1 from level i if the controller reaches the desired
success rate σi, for example, σi = 0.9 indicates at least 90
successful completions of goal-reaching tasks out of n = 100
trials at level i.

B. Reward design

The design of the reward function is to guide the robot to
the set point goals. We consider building the artificial potential
field [40] such that the robot is attracted by the goal g. We
use a simple conical potential field for each goal. For any
position represented by coordinate x in Cartesian space, let
vector eg = xg − x, the norm ||eg|| indicates the distance
between the position of the robot’s head and the goal. The
constant attracting force at x becomes

fg(x) =
eg

||eg||
.

Given the single goal-tracking scenario without obstacles, we
have the potential field reward for goal-tracking as

U(x) =
vs · fg(x)
||eg||

,

where vs is the velocity vector of the soft snake robot.
Combining with the definition of goal-reaching tasks and

their corresponding level setups, the reward at every time step
is defined as

R(vg, θg) = cvvg + cgU + cg cos θg

i∑
k=0

1

rk
I(||ρg|| < rk),

(14)
where cv, cg ∈ R+ are constant weights, vg is the length of the
projection of the snake’s head COM velocity v on the head-
to-goal-direction, ρg is the linear displacement vector between
the head COM of the robot and the goal position, θg is the
angle between vector v to vector ρg in Fig. 4, rk defines the
goal range in task-level k, for k = 0, . . . , i, and I(ρg < rk)
is an indicator function that outputs one if the robot head is
within the goal range for task-level k.

This reward trades off two objectives. The first term,
weighted by cv , encourages high locomotion velocity toward
the goal. The second term, weighted by cg , rewards the learner
based on the position of the robot to the goal, and the level of
the curriculum the learner has achieved for the goal-reaching
task. For every task, if the robot hasn’t entered the goal range,
it receives a potential field reward only. When the robot enters
the goal range in task-level i, it receives a summation of

rewards 1/rk for all k ≤ i (the closer to the goal the higher this
summation), shaped by the approaching angle θg (the closer
the angle to zero, the higher the reward).

If the agent reaches the goal defined by the current task-
level, a new goal is randomly sampled in the current or next
level (if the current level is completed). There are two failing
situations, where the desired goal is re-sampled and updated.
The first situation is starving, which happens when the robot
stops moving for a certain amount of time, referred to as the
starvation time. The second case is missing the goal, which
happens when the robot keeps heading in the wrong direction
as opposed to moving towards the goal (vg(t) being negative)
for a certain amount of time.

VI. EXPERIMENTAL EVALUATION

Fig. 11. The currently used motion capture system for goal-tracking tasks.

In this section, we evaluate the proposed method in both
simulation and real environments. We first introduce the exper-
imental setup to explain how the data of the robot is collected
during locomotion, as well as the training configuration for
the RL algorithm. Then we compare the properties of control
signals between our method and the vanilla PPO as locomotion
controllers for goal-reaching tasks in simulation. In the com-
parison analysis, we highlight the performance drop of each
method from simulation to real to extrapolate the advantage of
our method. Last, we further test and analyze the sim-to-real
robustness in difficult goal-reaching tasks that are never seen
at the training stage, and the real robot performance against
disturbance.

A. Experimental Setup

Environment Sensing and Data Collection: The states
of the real snake robot are captured by a single web camera
hanging on the ceiling of the experiment room. The robot body
detection is realized by using Aruco – a library in OpenCV for
QR codes detection and localization [41]. These QR codes are
printed and attached to the rigid bodies of the snake robot and
the goal position. Figure 11 shows the experiment setup for the
real snake robot goal-reaching tasks. Once the QR codes on
the robot bodies and the goal(s) are detected, their pixel-wise
coordinate vectors are calculated with distortion corrected.
Given the camera calibration information, we can translate the
pixel data of all QR codes into the real world 2D coordinates,
and then transform it into positional information and the body

11

posture of the robot. The control policy function running on
the desktop computer receives the observation states, generates
the control commands and passes them through WiFi commu-
nication. The ESP32 chips on the snake bodies translate the
commands into Pulse Width Modulation (PWM) signals to
activate or deactivate the valves [28], [30] on the snake robot.

Reinforcement Learning Configuration: We use a four-
layered NN with 128× 128 hidden layer neurons as a general
configuration for the actor and critic networks of all RL
methods mentioned in this section. The back-propagation of
the critic net was done with Adam Optimizer and a step size
of 5 × 10−4. For data collection of each trial trajectory, the
starvation time for the failing condition is 60 ms. The missing
goal criterion is triggered whenever vg(t) (the velocity on the
goal-direction, see Fig. 4) stays negative for over 60 time
steps. In order to compensate for the mismatch between the
simulation and the real environment, most notably the friction
coefficients, we employ a domain randomization technique
[33], in which a subset of physical parameters are sampled
from several uniform distributions. The range of distributions
of domain randomization (DR) parameters used for training
are in Table IV (see Appendix A).

For PPOC-CPG and FOC-PPOC-CPG, we first train the
policy net with fixed options (at this moment, the termination
probability is always 0, and a fixed frequency ratio Kf = 1.0 is
used). When both the task-level and the reward cannot increase
anymore, we allow the learning algorithm to change the option,
i.e., pick a different frequency ratio Kf along with termination
function β, and keep training the policy until the highest level
in the curriculum is passed.

In the PPOC-CPG method, the value of the free-response
tonic input c is equivalently considered zero since it is not
formally introduced in the previous control design [26]. Ac-
cording to the definition of A0 ((12)), the amplitudes of both
ue and uf need to be greater than A0 in order to dominate
in controlling the outputs of the Matsuoka CPG system. The
value of A0 should not be greater than the upper bound of
ue and uf , which is 1 defined by (5). Among a group of
candidates ranging from 0.25 to 2, we choose c = 0.75 as our
free-response oscillation constraint for the FOC-PPOC-CPG
controller. This value is valid for our system because when
we set c = 0.75 and all other coefficients of the CPG network
(Table II) to (12), the result shows A0 ∈ [0.24, 0.34] ⊂ [0, 1],
with ω ∈ [3.77, 5.02]. It is noted that the range of ω here
is calculated from multiple sampled sequences of ue and uf

recorded in the real snake goal-reaching tasks. Since we are
testing the sim-to-real performance, all methods involved in
this comparison are trained in the simulator for sufficiently
long iterations (12500 episodes) to ensure convergence. Each
method is trained 10 times with different random seeds and the
controller with the best performance is selected to be tested
on the real robot. All curriculum parameters (Table III) and
domain randomization parameters (Table IV) are fixed for all
three methods involved.

The whole training process of each method runs on 4 sim-
ulated soft snake robots in parallel on a workstation equipped
with an Intel Core i7-9700K, 32GB of RAM, and one NVIDIA
RTX2080 Super GPU.

B. Verification of steering property of PPOC-CPG

(a) (b)

Fig. 12. (a) Bias input and output of the RL-driven CPG node for different
turning angles (mean values connected). (b) Linear relation between input and
output bias of the RL-driven CPG node during locomotion.

We use a simulated experiment to show that our FOC-
PPOC-CPG control policy has learned the turning behavior
with the biased tonic input signal, and the Matsuoka CPG
system can linearly map the biased tonic input to the biased
actuation signal as Proposition 1 and Proposition 2 predicted.
In the experiment, we test the converged FOC-PPOC-CPG
policy on multiple set-point goals placed in certain direc-
tions (−90◦,−70◦,−60◦,−45◦,−30◦) with a fixed distance
(1 meter), which approximately represent the desired turning
angles of the locomotion tasks. For each goal position, we
carry out 5 trials and record the tonic inputs data and CPG
output data of the head CPG node of the soft snake robot.
The reason for choosing the head node is because this node’s
behavior best reflects the desired steering direction of the RL
agent. Figure 12a shows a violin plot of the tonic input bias
and the CPG output bias for different turning angles (the
bias signals are calculated by (C.10)). It is observed from
Fig. 12a that both bias signals are monotonically related to the
desired turning angle (initial goal-direction). Figure 12b shows
the linear regression result based on all data points. We can
observe a clear linear relationship between bias(z) and bias(u)
of the head CPG node (with the coefficient of determination
equal to 0.978, a value closer to 1 indicate higher linearity).
This result provides stronger support for Proposition 1 and
Proposition 2.

C. Control signal comparison between PPOC-CPG and
vanilla PPO

First, we compare PPOC-CPG and vanilla PPO in terms
of the smoothness of the control input learned in simulation.
We train both PPOC-CPG and vanilla PPO in the same
environment until convergence. Figure 13 shows segments of
the control signal ψ1 generated by the vanilla PPO controller
and PPOC-CPG controller controlling the simulated soft snake
robot in a straight line goal-tracking task. From Fig. 13a
it is observed that the signal generated by the vanilla PPO
policy oscillates at a relatively higher frequency (about 10Hz
on average) with irregular oscillation patterns. Such kind of
control signals are not feasible for the actuators in reality. This
is because the inflation and deflation of soft air chambers on

12

(a) (b) (c)

(d) (e) (f)

Fig. 13. Sample actuation signal ψ1 for the first link generated by (a) vanilla PPO and (d) PPOC-CPG from time step 0 to time step 300. Followed by phase
plane portraits of ψ1 (b) by vanilla PPO from time step 0 to 300, (e) by PPOC-CPG from time step 0 to 300, (d) by vanilla PPO from time step 400 to
700, (f) by PPOC-CPG from time step 400 to 700.

the snake robot have a certain delay so that the soft pneumatic
actuators are not able to track fast oscillating signals. On the
other end, the curve in Fig. 13d shows that the agent trained
with PPOC-CPG can converge to a stable limit cycle trajectory
at a relatively lower but more natural frequency (1.6Hz) for
serpentine locomotion. Our approach shows its advantage of
being able to generate smoother oscillatory control signals
even when the inputs to the CPG system are discontinuous.
Fig. 13 also compares the phase plane portraits recorded
at different time stages of the two learning methods. From
Fig. 13b and Fig. 13c, we observe that the oscillating signal
generated by vanilla PPO policy performs irregular oscillation
in the first 300 time steps, and cannot converge to a stable limit
cycle when it evolves to time step 700. While in Fig. 13e and
Fig. 13f, despite a little deviation from the first 300 time steps,
the outputs of the CPG network eventually converge to a stable
limit cycle within 700 time steps. This experiment shows that
the CPG system is capable of stabilizing the oscillation pattern
in simple locomotion tasks for the soft snake robot.

D. Comparison of our reward design and a sparse reward
function

Fig. 14. Learning process of FOC-PPOC-CPG with dense reward and sparse
reward.

We compare the learning process of the revised reward
function with our previous one that only rewards the agent for
goal reaching events [26] (for each case we record 5 learning
trials). In average, the agent with dense reward is able to reach
and converge to level-12, while the agent with sparse reward
only converges to level-8 (see Table III). The calculated results
in Fig. 14 show that the system trained with dense reward
function outperforms that with a sparse reward design.

In the next section (Section VI-E), these methods are
compared in the real robot to demonstrate the advantage of
the proposed PPOC-CPG control.

E. Sim-to-real Performance of FOC-PPOC-CPG

1) Performance comparison with original PPOC-CPG and
Vanilla PPO: Since FOC-PPOC-CPG is designed for improv-
ing the sim-to-real transfer learning performance of the PPOC-
CPG method, we first compare the sim-to-real performance
of the FOC-PPOC-CPG with the original PPOC-CPG and
Vanilla PPO in single goal-reaching tasks. For the real robot
tests, all three controllers trained by the simulator are directly
applied without further training. We test the controllers by
setting goals in three directions (mid, left and right) with fixed
angles, distances, and an accuracy radius of r = 0.175 meters.
Each direction takes 10 trials for all three methods in both
simulation and reality.

To evaluate the sim-to-real performance, we calculate the
average locomotion speed (vg) and the success rate for goal-
reaching tasks collected from both simulation and real ex-
periments. According to Section IV-C, the contact resistance
forces in the simulator are smaller than in the real environment,
when applying the RL control policy learned in the simulator
directly to the real robot, the performance of the real robot is
often worse than the simulated agent. In the rows of real robot
evaluations in Table I, we use down-arrows and percentage
values to show the extent of performance drop compared to the

13

Fig. 15. Sample comparison of trajectories generated by Vanilla PPO policy, PPOC-CPG policy, and FOC-PPOC-CPG policy in reality.

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT APPROACHES.

Metrics Vanilla PPO PPOC-CPG FOC-PPOC-CPG
Simulated average speed (m/s) 0.14 0.137 0.135
Simulated success rate 0.95 0.99 0.98
Real average speed (m/s) 0.027 (↓ 80.7%) 0.063 (↓ 54%) 0.121 (↓ 11%)
Real success rate 0.5 (↓ 42.1%) 0.82 (↓ 17.1%) 0.9(↓ 8.1%)

(a) (b)

Fig. 16. Sample way-point trajectories followed by improved PPOC-CPG controller in simulation and real in (a) zigzag and (b) square.

simulating performance with the same method. From Table I,
it is observed that although the Vanilla PPO controller learns
the best locomotion speed in the simulator at the cost of
goal-reaching accuracy, its locomotion pattern cannot fit the
real robot well. The real robot experiences a drastic drop in
performance on both locomotion speed (80.7%) and success
rate (42.1%). For the original PPOC-CPG, though it has
achieved an overall better performance than Vanilla PPO, its
sim-to-real performance drop is still relatively high, with a
54% of speed drop and 17% of accuracy drop. After adding
the free-response oscillation constraint to the CPG system,
the new policy reaches almost the same performance as the

original PPOC-CPG in the simulator. In Section IV-C we have
shown that the free-response oscillation tonic input c > 0
could help maintain the oscillation amplitude of the control
signal of FOC-PPOC-CPG during the learning process. It is
noticed that the maintained amplitude of the control signals
does not improve the locomotion speed and goal-reaching
accuracy at the training stage in the simulation. However, when
the learned policy of FOC-PPOC-CPG is applied to the real
robot without further training, it performs significantly better
than the previous two methods in both locomotion speed and
success rate.

Figure 15 shows a more intuitive result by comparing sam-

14

(a) (b)

(c)

Fig. 17. Disturbance recovery for goal-reaching task followed by FOC-PPOC-CPG controller in real experiments. The presented sub-figures are: (a) x-y plane
trajectory, (b) control signals for the actuators, and (c) video snapshot of recorded robot motion.

ple trajectories of the above three methods in different goal-
reaching tasks performed on the real robot. The trajectories
show that the robot controlled by Vanilla PPO policy moves
much slower than the other two. And it moves in a less
symmetric way for the left and right turning tasks. While
the original PPOC-CPG and FOC-PPOC-CPG show similar
symmetry properties in the trajectory shapes, the difference
is that the controller trained with FOC-PPOC-CPG moves
almost twice as fast as that trained with PPOC-CPG. This
comparison is presented in the video5 “PPO Learning methods
comparison.mp4”.

Since PPO is an on-policy RL algorithm and has been
established for many years, we also use a more up-to-date
off-policy RL algorithm – Twin Delayed Deep Deterministic
policy gradient (TD3) [42] to replace the role of PPO in our
framework, and train it with a shorter learning period (2000
episodes) to verify the generality of our approach. The results
and a brief discussion can be viewed in our Supplementary
document 6.

2) Performance in reaching unseen goals: We also investi-
gate the sim-to-real performance of FOC-PPOC-CPG in harder
goal-reaching tasks. Figure 16 compares the head trajectories
in Cartesian space for two different setups of way-point goals.
The testing trajectories include a square turning trajectory
for testing consecutive sharp turning in the same direction
(Fig. 16b), and a zigzag trajectory for testing continuous sharp
turning in opposite directions (Fig. 16a). Both way-point goal
series have sharper turning angles than the highest level in the
training curriculum in Table III. Video “Half square trajectory
sim2real.mp4” and “Zigzag trajectory sim2real.mp4” provide
the dynamic view of Fig. 16a and Fig. 16b respectively. From

5All videos in this paper can be viewed from http://shorturl.at/cgms1
6The Supplementary document is available at https://shorturl.at/ntAKM

the example videos, it is observed that in both trajectories, the
speed drop of the real robot is still around 10%, which is not
worse than single goal-reaching tasks in Table I. It is noted
that in both Fig. 16a and Fig. 16b, it takes the real robot longer
distances to make the sharp turning. This is also due to the
larger ground resistance forces in reality.

3) Robustness to External disturbance: We also test the
FOC-PPOC-CPG controller’s ability to keep tracking the de-
sired target when the robot is disturbed by an external push-
ing force. Figure 17a and video “Disturbance recovery.mp4”
shows an example trajectory of a disturbed goal-reaching
task. It is observed from Fig. 17c that the FOC-PPOC-CPG
controller reacts accordingly to its situation during the loco-
motion. When the deviation between the robot’s head and the
goal is relatively smaller before the disturbance (before 4.1s),
the robot gently oscillates and adjusts its turning direction
gradually towards the goal-direction. At around 9.04s, when
the robot is pushed away from its desired direction, one can
observe a clear redirection to the left-hand side of the robot’s
heading direction. The FOC-PPOC-CPG is able to adjust and
make sharp turning to return to the correct direction and still
reach the goal without wasting too much time on the recovery.

VII. CONCLUSION

This paper develops a bio-inspired controller for learning
agile serpentine locomotion with a CPG net mimicking the
central nervous system of natural snakes. The contribution of
this paper is two-fold: First, we investigate the properties of
the Matsuoka oscillator for achieving diverse locomotion skills
in a soft snake robot. Second, we construct a FOC-PPOC-CPG
net that uses a CPG net to actuate the soft snake robot, and a
neural network to efficiently learn a closed-loop near-optimal
control policy that utilizes different oscillation patterns in the

http://shorturl.at/cgms1
https://shorturl.at/ntAKM

15

CPG net. This learning-based control scheme shows promising
results in goal-reaching tasks in soft snake robots.

This control scheme can be applicable to a range of bio-
mimic motion control for robotic systems and may require
different designs of the CPG network given insights from the
corresponding biological systems. We have been investigating
the generality of the proposed control scheme on different
robotic systems and obtained promising early results (see
Supplementary document). Our current research focuses on
introducing sensory inputs into the CPG system, which enables
reactive responses to contact forces with the external environ-
ment and generates an obstacle-aided locomotion controller
for the soft snake robot. It is also interesting to investigate
distributed control designs that can scale to high-dimensional
soft snake robot or other biomimic robotic systems.

APPENDIX A
DATA

This section includes the parameter configuration of the
Matsuoka CPG network and the hyper parameter setting of
domain randomization for the experiment.

TABLE II
PARAMETER CONFIGURATION OF THE MATSUOKA CPG NET

CONTROLLER FOR THE SOFT SNAKE ROBOT.

Parameters Symbols Values
Amplitude ratio aψ 2.0935
∗Self-inhibition weight b 10.0355
∗Discharge rate τr 0.7696
∗Adaptation rate τa 1.7728
Period ratio Kf 1.0

Mutual inhibition weights ai 4.6062

Coupling weights wij 8.8669
wji 0.7844

TABLE III
CURRICULUM SETTINGS

Levels Distance range (m) Turning angles (◦) Goal radius (m)
1 1.2 ∼ 1.5 −10 ∼ 10 0.5
2 1.2 ∼ 1.5 −10 ∼ 10 0.4
3 1.2 ∼ 1.5 −15 ∼ 15 0.3
4 1.2 ∼ 1.5 −20 ∼ 20 0.25
5 1.2 ∼ 1.5 −30 ∼ 30 0.2
6 1.0 ∼ 1.5 −40 ∼ 40 0.18
7 1.0 ∼ 1.5 −45 ∼ 45 0.15
8 1.0 ∼ 1.5 −50 ∼ 50 0.12
9 0.9 ∼ 1.5 −60 ∼ 60 0.09

10 0.9 ∼ 1.5 −60 ∼ 70 0.06
11 0.9 ∼ 1.5 −70 ∼ 70 0.05
12 0.8 ∼ 1.5 −80 ∼ 80 0.05

TABLE IV
DOMAIN RANDOMIZATION PARAMETERS

Parameter Low High
Ground friction coefficient 0.1 1.5
Wheel friction coefficient 0.05 0.10

Rigid body mass (kg) 0.035 0.075
Tail mass (kg) 0.065 0.085

Head mass (kg) 0.075 0.125
Max link pressure (psi) 5 12

Gravity angle (rad) -0.001 0.001

APPENDIX B
FOUNDATION

A. Describing function analysis of the Matsuoka Oscillator

According to Fourier theory, we denote the main sinusoidal
and constant component in Fourier expansion of the vanilla
state x(t) as

xF (t) = A cos(ωt) + d (B.1)
= A(cos(ωt) + r),

where r = d/A, r ∈ R is the ratio of bias to the amplitude
of the signal. We assume xF (t) only contains cosine term for
simplicity. And because this paper only discusses amplitude
and bias properties of the signals, such simplification will not
affect the following derivations. We use zF (t) = g(xF (t))−
ϵ(t) = max (xF (t), 0)− ϵ(t) to represent the main sinusoidal
property of z(t) = g(x(t)) = max (x(t), 0). In a single period
[−π

ω ,
π
ω],

g(xF (t)) =

{
0 elsewhere
A(cos (ωt) + r) t ∈ [− arccos (−r)

ω , arccos (−r)ω]
.

Using Fourier expansion, the output state zF (t) can also be
expressed as:

g(xF (t)) = g(A(cos(ωt) + r))

= Ag(cos(ωt) + r)

= A(K(r) cos(ωt) + L(r)) + ϵ(t)

= zF (t) + ϵ(t) (n ≥ 1), (B.2)

such that

zF (t) = A(K(r) cos(ωt) + L(r)), (B.3)

where

K(r) =


0 (r < −1)
1
π (r

√
1− r2 − cos−1(r)) + 1 (−1 ≤ r ≤ 1)

1 (r > 1),

(B.4)

and

L(r) =


0 (r < −1)
1
π (

√
1− r2 − r cos−1(r)) + r (−1 ≤ r ≤ 1)

r (r > 1).

(B.5)

The derivation of K(r) and L(r) are based on Fourier series
analysis (see Appendix B-B). Both K(r) and L(r) are con-
strained by −1 ≤ r ≤ 1 for xF (t) to be non-negative in the
period [−π

ω ,
π
ω].

Function ϵ(t) is the summation of all remaining high
frequency terms in the Fourier expansion of zF (t).

When t ∈ [− arccos (−r)
ω , arccos (−r)ω], zF (t) = xF (t), we

have

ϵ(t) = xF (t)−A{K(r) cos (ωt) + L(r)}

= −A
π
{(r

√
1− r2 − arccos r) cos (ωt) +

√
1− r2

− r arccos r}.

16

When t ∈ [−π
ω ,−

arccos (−r)
ω] ∪ [arccos (−r)ω , πω], zF (t) = 0,

we have

ϵ(t) = 0−A{K(r) cos (ωt) + L(r)}

= −A{[1
π
(r
√
1− r2 − arccos r) + 1] cos (ωt)

− 1

π
(
√
1− r2 − r arccos r)− r}.

Then we can numerically calculate the bound of ϵ(t) for
certain A and ω. For instance, if A = 1 and ω = 1, we have

ϵ(t) ∈ [0, 0.2055] when

t ∈ [−arccos (−r)
ω

,
arccos (−r)

ω
]

ϵ(t) ∈ [−2.0009, 0] when

t ∈ [−π
ω
,−arccos (−r)

ω
] ∪ [

arccos (−r)
ω

,
π

ω
].

B. Calculation of K(r) and L(r)

Given xF (t) = A(cos (ωt) + r) as an even function, the
general Fourier expansion of zF (t) = g(xF (t)) is:

zF (t) =
1

2
a0 +

∞∑
n=1

an cos(nωt) (B.6)

=
1

2
a0 + a1 cos(ωt) + ϵ(t).

where

a0 =
1

π

∫ π

−π
g(A(cos (ωt) + r))dt

a1 =
1

π

∫ π

−π
g(A(cos (ωt) + r)) cos(ωt)dt.

In this case, both the bias a0 and the amplitude a1 become
functions of r. Combining with (B.2), we use AK(r) to
represent a1 and AL(r) to represent a0, which are calculated
as follows:

K(r) =
a1
A

=
ω

π

∫ π/ω

−π/ω
g((cos(ωτ) + r)) cos(ωτ)dτ.

Let t = ωτ , we have

K(r) =
1

π

∫ π

−π
g((cos(t) + r)) cos(t)dt

=
1

π

∫ cos−1(−r)

− cos−1(−r)
(cos(t) + r) cos(t)dt

=
1

π
(r
√
1− r2 − cos−1(r)) + 1 (−1 ≤ r ≤ 1),

and

L(r) =
a0
A

=
1

π

∫ π

−π
g(cos(t) + r)dt

=
1

π

∫ cos−1(−r)

− cos−1(−r)
(cos(t) + r)dt

=
1

π
(
√
1− r2 − r cos−1(r)) + r (−1 ≤ r ≤ 1).

C. Derivation of Kn

Based on (1), we first set xi(t) = xei (t) − xfi (t), yi(t) =
yei (t) − yfi (t), zi(t) = zei (t) − zfi (t), ui(t) = uei (t) − ufi (t).
Then by taking subtraction between flexor and extensor in (1)
and neglect phase related coupling terms from other primitive
CPGs, we have

Kfτr
d

dt
(xei − xfi) = −(xei − xfi)− a(zfi − zei)

− b(yei − yfi) + (uei − ufi)

Kfτa
d

dt
(yei − yfi) = (zei − zfi)− (yei − yfi),

which can be simplified to

Kfτr
d

dt
xi = −xi + azi − byi + ui (B.7)

Kfτa
d

dt
yi = zi − yi.

If xei and xfi satisfy the perfect entrainment assumption,
such that the amplitude Axe

i
= Axf

i
= Ax, and the bias

rxe
i
= rxf

i
= rx, and the phase delay between xei and xfi is π

ω

(half of the period). Then we have zFi
= K(rx)xFi

. Similar
to the notation in Appendix B-A, the marker Fi indicates
the fundamental sinusoidal and constant component in Fourier
expansion of the corresponding variable. Let Kf = 1, (B.7)
can be further simplified to

τr
d

dt
xFi + xFi = aK(rx)xFi − byFi + uFi (B.8)

τa
d

dt
yFi + yFi = K(rx)xFi .

Next, an ordinary differential equation can be obtained by
merging the two equations in (B.8) as,

τrτa
d2

dt2
xFi + (τr + τa − τaaK(rx))

d

dt
xFi (B.9)

+((b− a)K(rx) + 1)xFi = τa
d

dt
uFi + uFi .

When the system is harmonic, the coefficient of the first-
order derivative of (B.9) becomes zero, then

K(rx) =
τr + τa
τaa

≜ Kn. (B.10)

Coefficient Kn is a special case of K(rx) in the harmonic
Matsuoka oscillator.

D. Amplitude Threshold of Transition from Free Oscillation
to Forced Entrainment

In order to extract the free-response oscillation component,
let ũ = u− 1, c̃ = c+ 1 then (1) is equivalent to

Kfτrẋ
e
i = −xei − azfi − byei −

N∑
j=1

wjiy
e
j + ũei + c̃,

Kfτaẏ
e
i = zei − yei ,

Kfτrẋ
f
i = −xfi − azei − byfi −

N∑
j=1

wjiy
f
j + ũfi + c̃,

Kfτaẏ
f
i = zfi − yfi ,

(B.11)

17

Since uqi ∈ [0, 1] (for q ∈ {e, f}) and c ≥ 0, we have
ũqi ∈ [−1, 0] (for q ∈ {e, f}), and c̃ ≥ 1. Now c̃ becomes
the only positive term in the primitive Matsuoka system in
(B.11). According to Matsuoka’s derivation in [24, (26)],
from (B.11), the free-response oscillation amplitude of the
Matsuoka oscillator can be written as

An =
c̃

K−1(Kn) + (a+ b)L(K−1(Kn))
. (B.12)

Assume the fundamental harmonic component of the vanilla
action signal αi generated by RL policy has the following form

αFi
= A cos (ωt).

Then substitute αFi
into (5), we have

ueFi
≈ 1

1 + e−A cos (ωt)
. (B.13)

And

ũeFi
≈ 1

1 + e−A cos (ωt)
− 1. (B.14)

Because the sigmoid function in ũeFi
is monotonically increas-

ing with αFi
, the frequency of ũeFi

is the same as the frequency
of αFi . The amplitude of ũeFi

is

Aũ =
maxt (ũ

e
Fi
(t))−mint (ũ

e
Fi
(t))

2
=

1

2

eA − 1

eA + 1
. (B.15)

And the bias of ũeFi
can be calculated as

rũ =
maxt (ũ

e
Fi
(t)) + mint (ũ

e
Fi
(t))

2
= −1

2
. (B.16)

It is noted that ũeFi
and ũfFi

are complementary to each other
by Definition 1. Thus ũeFi

and ũfFi
share the same amplitude

and bias.
By taking time average of all variables in (B.11) and

ignoring the coupling term from other primitive Matsuoka
oscillator nodes, we have the equation of the amplitude of
the inner state xqFi

(q ∈ {e, f}) as

Ax[rx + (a+ b)L(rx)] = c̃+ rũ = c̃− 1

2
. (B.17)

Next, since (B.11) can be reduced to

τr
d

dt
xFi

+ xFi
= aK(rx)xFi

− byFi
+ ũFi

(B.18)

τa
d

dt
yFi

+ yFi
= K(rx)xFi

,

where ũFi
= ũeFi

− ũfFi
. We derive the describing function

from ũFi(t) to xFi(t). Applying the Laplace transform to
(B.18), we have

G(s,A) =
1

τrs+ 1−K(rx)(a− b
τas+1)

(B.19)

=
τas+ 1

1 + (τrτaω2
n − 1)K(rx)

Kn
+ τrτas2 + (Kn −K(rx))τaas

.

More precisely, the frequency transfer function is

G(ω,A) (B.20)

=
jτaω + 1

1 + (τrτaω2
n − 1)K(rx)

Kn
− τrτaω2 + j(Kn −K(rx))τaaω

(B.21)

where ωn = 1
τa

√
(τa+τr)b
τra

− 1. Because the gain from ũFi(t)

to xFi(t) is |G(ω,A)|, the amplitude of xFi(t) is given by
|G(ω,A)|Au. Since the amplitude of xFi(t) is twice of Ax,
and the amplitude of uFi

(t) is twice of Au, we have the
relation between Ax and Au expressed as

Ax = |G(ω,A)|Aũ = |G(ω,A)|Au. (B.22)

Given (B.9), (τr+τa−τaaK(rx)) is the coefficient of first-
order differential variable, also known as damping coefficient.
When K(rx) = Kn = τr+τa

τaa
, the original oscillation system

is harmonic. For the damped oscillation system, the damping
coefficient should be positive such that K(rx) < Kn, or equiv-
alently, K(rx)

Kn
< 1. In this situation, there will be only forced-

response oscillation, and all free-response oscillations diminish
due to the positive damping. From (B.4) and (B.5) we know
both K(r) and L(r) are monotonic, and therefore K−1(r) and
L−1(r) are monotonic as well. When K(rx) < Kn,

An =
c̃

K−1(Kn) + (a+ b)L(K−1(Kn))
(B.23)

<
c̃

rx + (a+ b)L(rx)
,

that is
rx + (a+ b)L(rx) <

c̃

An
. (B.24)

From the other end, let Kx ≜ K(rx), we have

Ax = |G(ω,A)|Au (B.25)

=
Au

√
τ2aω

2 + 1√
[1 + (τrτaω2

n − 1)Kx

Kn
− τrτaω2]2 + (Kn −Kx)2τ2aa

2ω2

≜
Au

√
τ2aω

2 + 1√
[1 + (τrτaω2

n − 1)U − τrτaω2]2 +K2
n(1− U)2τ2aa

2ω2
,

where U ≜ K(rx)
Kn

, and U ⊆ (0, 1]. Next, define a function
Q(U) as

Q(U) ≜ [(τrτaω
2
n − 1)U − (τrτaω

2 − 1)]2 (B.26)

+K2
n(1− U)2τ2aa

2ω2.

When ω > ωn and τrτaω2
n− 1 > 0, or ω < ωn and τrτaω2

n−
1 < 0,

Qmin(U) = Q(1) = τ2r τ
2
a (ω

2 − ω2
n)

2. (B.27)

Thus when U ⊆ (0, 1] is satisfied, we have

Ax < Au

√
τ2aω

2 + 1

τrτa|ω2 − ω2
n|
. (B.28)

Combining (B.28), (B.24) and (B.17), we have

Au

√
τ2aω

2 + 1

τrτa|ω2
n − ω2|

c̃

An
> c̃− 1

2
> c̃− 1. (B.29)

Thus we have

Au >
c̃− 1√

τ2
aω

2+1

τrτa|ω2
n−ω2|

c̃
An

=
c√

τ2
aω

2+1

τrτa|ω2
n−ω2|

c+1
An

≜ A0(c, ω).

(B.30)

18

Substitute An in the above equation with its approximation in
[24, (30)], we have

A0(c, ω) ≈
c√

τ2
aω

2+1

τrτa|ω2
n−ω2| (2Kn − 1 + 2

π (a+ b) sin−1(Kn))

(B.31)

Since c ≥ 0, when ω is fixed, A0 linearly increases with c.

APPENDIX C
THEORY

A. Proof of Proposition 1

Proof: As seen in (B.9), when uei and ufi of the i−th
oscillator satisfy constant constraints in Problem 1, the tonic
inputs become time-invariant, such that d

dtui(t) = 0. If the
oscillation is harmonic (K(rx) = Kn), then (B.9) can be
rewritten as

τrτa
d2

dt2
xi + (τr + τa − τaaKn)

d

dt
xi (C.1)

+((b− a)Kn + 1)xi = 2uei − 1,

Then the above equation can be interpreted as a non-
homogeneous spring-damper system with a constant load. By
setting

x̃i ≜ xi −
2uei − 1

(b− a)Kn + 1
,

and substitute xi with x̃i in (C.1), we can obtain its homoge-
neous form as:

τrτa
d2

dt2
x̃i+(τr+τa−τaaKn)

d

dt
x̃i+((b−a)Kn+1)x̃i = 0.

(C.2)
Here x̃i is the unbiased variable of xi, and thus the bias of xi
naturally becomes

bias(xi) =
2uei − 1

(b− a)Kn + 1
=

1

(b− a)Kn + 1
bias(ui).

(C.3)

Since zi and xi are entrained (Definition 2), zi = zei −z
f
i =

g(xei)− g(xfi) = Knxi, we have

bias(zi) = Knbias(xi) =
Kn

(b− a)Kn + 1
bias(ui). (C.4)

B. Applicable range of Proposition 1

Let xei < 0, xfi > 0, from (1), we have

zei = max(xei , 0) = 0, zfi = max(xfi , 0) = xfi .

Thus
zi = zei − zfi = −xfi .

Since uei and ufi are constants in Proposition 1, we have

xei + axfi = uei + c (C.5)

xfi + bxfi = ufi + c. (C.6)

Let ui = uei − ufi , xi = xei − xfi , the above two equations can
be reduced to

ui = xei + (1 + b− a)zi. (C.7)

According to Definition 1, uei + ufi = 1, then we have

uei =
1 + ui

2
, ufi =

1− ui
2

.

Substitute xfi in (C.5) with (C.6), and then substitute uei , u
f
i

with ui, we have

xei =
1 + b+ a

2(1 + b)
ui +

1 + b− a

1 + b
(
1

2
+ c). (C.8)

Substitute the above equation of xei to (C.7) to obtain

ui =
1 + b+ a

2(1 + b)
ui +

1 + b− a

1 + b
+ (1 + b− a)zi,

which can be rearranged to

zi =
1

2(1 + b)
ui −

1

1 + b
(
1

2
+ c), (c ≥ 0).

Similarly, for the case when xei < 0, xfi > 0, we have

zi =
1

2(1 + b)
ui +

1

1 + b
(
1

2
+ c), (c ≥ 0).

Since zi and ui are both constants, bias(zi) = zi and
bias(ui) = ui. In summary, we have

bias(zi) =

{
1

2(1+b)bias(ui)− 1
1+b (

1
2 + c) (xei < 0, xfi > 0)

1
2(1+b)bias(ui) + 1

1+b (
1
2 + c) (xei > 0, xfi < 0).

(C.9)

The derivation in this section shows that, when the value of
uei and ufi causes the Matsuoka system fall into a quadrant
such that xeix

f
i < 0, the system converges to a set point

equilibrium. At this moment the conclusion in Proposition 1 is
not applicable to the system. The system should instead follow
the relation described in (C.9).

The boundary case is at xei = 0, xfi > 0 or xfi = 0, xei > 0.
For xei = 0, xfi > 0, substitute xei = 0 to (C.5) and (C.7), we
can obtain the equation

bias(ui) = ui =
2a

a+ b+ 1
− 1.

Similarly when xfi > 0, xei = 0, we have

bias(ui) = ui = 1− 2a

a+ b+ 1
.

C. Proof of Proposition 2
Proof: For simplicity we denote Aq ≜ Axq

i
and rq ≜ rxq

i

for q ∈ {e, f}. Instead of looking into the relation between ui
and zi, we focus on the bias between the two states.

According to the perfect entrainment assumption [24] and
Definition 2, let ui be resonant to zi. We define the duty cycle
of a wave function as D(·). Let the period of zi be T = 2π (a
different value of T would not affect the result of calculation),
based on the Fourier expansion, the bias of ui can be expressed
as

bias(ui) =
1

T

∫ T/2

−T/2
ui(t)dt (C.10)

=
1

2π

∫ π

−π
ui(t)dt

= 2
1

2π

∫ π

−π
uei (t)dt− 1 = 2D(uei)− 1.

19

Because the bias terms of xi and ui are time-invariant,
from (B.7), we can extract the bias component to form a new
equation as follows

bias(xi) = a · bias(zi)− b · bias(yi) + bias(ui) (C.11)
bias(yi) = bias(zi).

Assume xi can be approximated by its main sinusoidal
component and the period of both xi and zi is represented
by T . From (B.1) and (B.2) we have

bias(xi) =
1

T

∫ T/2

−T/2
xidt =

1

T

∫ T/2

−T/2
(xei − xfi)dt

=
1

T

∫ T/2

−T/2
Ae(cos(ωt) + re)−Af (cos(ωt) + rf)dt

= Aere −Afrf ,

bias(zi) =
1

T

∫ T/2

−T/2
zidt =

1

T

∫ T/2

−T/2
(zei − zfi)dt

=
1

T

∫ T/2

−T/2
(Ae(K(re)cos(ωt) + L(re))

−Af (K(rf) cos(ωt) + L(rf)))dt

= Ae(L(re)− 1

π
)−Af (L(rf)−

1

π
) +

1

π
(Ae −Af).

Apply Taylor expansion on L(r) (Appendix B-B) at r = 0,
we have

L(r) =
1

π
+
r

2
+ o(r), r ∈ (−1, 1).

Then we have

bias(zi) =
1

2
Aere − 1

2
Afrf +

1

π
(Ae −Af) (C.12)

=
1

2
bias(xi) +

1

π
(Ae −Af).

According to [24], the amplitude Aq (for q ∈ {e, f}) has
the form

Aq =
bias(uq) + c

rq + (a+ b)L(rq)
.

When the system is harmonic, according to [24, (30)], we have

re = rf = K−1(Kn),

such that

Ae −Af =
bias(uei)− bias(ufi)

K−1(Kn) + (a+ b)L(K−1(Kn))
(C.13)

≈ bias(ui)
2Kn − 1 + 2

π (a+ b) sin−1(Kn)
. (C.14)

Let m = 1
π

1
2Kn−1+ 2

π (a+b) sin−1(Kn)
, (C.12) can be rewritten

as

bias(zi) =
1

2
bias(xi) +mbias(ui). (C.15)

Substitute bias(zi) in (C.11) with (C.15), we can obtain the
pure relation between bias(xi) and bias(ui) as

(1−m(b− a))bias(ui) = (
1

2
(b− a) + 1)bias(xi). (C.16)

In this case, the relation between bias(zi) and bias(ui) can be
expressed as

bias(zi) =
1−m(b− a)

b− a+ 2
bias(ui) +mbias(ui) (C.17)

=
1 + 2m

b− a+ 2
bias(ui).

REFERENCES

[1] C. Majidi, “Soft robotics: A perspective–Current trends and prospects
for the future,” Soft Robotics, vol. 1, no. 1, pp. 5–11, 2014.

[2] A. J. Ijspeert, “Central pattern generators for locomotion control in
animals and robots: a review,” Neural Networks, vol. 21, no. 4, pp.
642–653, 2008.

[3] A. Roberts, S. Soffe, E. Wolf, M. Yoshida, and F.-Y. Zhao, “Central
circuits controlling locomotion in young frog tadpoles,” Annals of the
New York Academy of Sciences, vol. 860, no. 1, pp. 19–34, 1998.

[4] R. Yuste, J. N. MacLean, J. Smith, and A. Lansner, “The cortex as a
central pattern generator,” Nature Reviews Neuroscience, vol. 6, no. 6,
p. 477, 2005.

[5] T. Mori, Y. Nakamura, M.-A. Sato, and S. Ishii, “Reinforcement learning
for CPG-driven biped robot,” AAAI Conference on Artificial Intelligence,
vol. 4, pp. 623–630, 2004.

[6] G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, and G. Cheng,
“Learning CPG-based biped locomotion with a policy gradient method:
Application to a humanoid robot,” The International Journal of Robotics
Research, vol. 27, no. 2, pp. 213–228, 2008.

[7] J. Nassour, P. Hénaff, F. Benouezdou, and G. Cheng, “Multi-layered
multi-pattern CPG for adaptive locomotion of humanoid robots,” Bio-
logical cybernetics, vol. 108, no. 3, pp. 291–303, 2014.

[8] F. Dzeladini, N. Ait-Bouziad, and A. Ijspeert, “CPG-based control of
humanoid robot locomotion,” Humanoid Robotics: A Reference, pp. 1–
35, 2018.

[9] D. H. Tran, F. Hamker, and J. Nassour, “A humanoid robot learns to
recover perturbation during swinging motion,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 50, no. 10, pp. 3701–
3712, 2020.

[10] A. Crespi, A. Badertscher, A. Guignard, and A. J. Ijspeert, “Swimming
and crawling with an amphibious snake robot,” IEEE International
Conference on Robotics and Automation, pp. 3024–3028, 2005.

[11] A. Crespi and A. J. Ijspeert, “Online optimization of swimming and
crawling in an amphibious snake robot,” IEEE Transactions on Robotics,
vol. 24, no. 1, pp. 75–87, 2008.

[12] J.-K. Ryu, N. Y. Chong, B. J. You, and H. I. Christensen, “Locomotion
of snake-like robots using adaptive neural oscillators,” Intelligent Service
Robotics, vol. 3, no. 1, p. 1, 2010.

[13] Z. Bing, L. Cheng, G. Chen, F. Röhrbein, K. Huang, and A. Knoll, “To-
wards autonomous locomotion: CPG-based control of smooth 3D slither-
ing gait transition of a snake-like robot,” Bioinspiration & Biomimetics,
vol. 12, no. 3, p. 035001, 2017.

[14] Z. Wang, Q. Gao, and H. Zhao, “CPG-inspired locomotion control for
a snake robot basing on nonlinear oscillators,” Journal of Intelligent &
Robotic Systems, vol. 85, no. 2, pp. 209–227, 2017.

[15] Z. Bing, Z. Jiang, L. Cheng, C. Cai, K. Huang, and A. Knoll, “End
to end learning of a multi-layered SNN based on R-STDP for a target
tracking snake-like robot,” International Conference on Robotics and
Automation, pp. 9645–9651, 2019.

[16] X. Wu and S. Ma, “Neurally controlled steering for collision-free
behavior of a snake robot,” IEEE Transactions on Control Systems
Technology, vol. 21, no. 6, pp. 2443–2449, 2013.

[17] G. Sartoretti, W. Paivine, Y. Shi, Y. Wu, and H. Choset, “Distributed
learning of decentralized control policies for articulated mobile robots,”
IEEE Transactions on Robotics, vol. 35, no. 5, pp. 1109–1122, 2019.

[18] G. Bellegarda and A. Ijspeert, “CPG-RL: Learning central pattern
generators for quadruped locomotion,” IEEE Robotics and Automation
Letters, vol. 7, no. 4, pp. 12 547–12 554, 2022.

[19] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,”
in Advances in Neural Information Processing Systems, S. Solla,
T. Leen, and K. Müller, Eds., vol. 12. MIT Press, 1999.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf

https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf

20

[20] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347,
2017.

[21] K. Matsuoka, “Sustained oscillations generated by mutually inhibiting
neurons with adaptation,” Biological cybernetics, vol. 56, no. 5-6, pp.
367–376, 1985.

[22] T. G. Brown, “The intrinsic factors in the act of progression in the
mammal,” Proceedings of The Royal Society B: Biological Sciences,
vol. 84, no. 572, pp. 308–319, 1911.

[23] K. Matsuoka, “Mechanisms of frequency and pattern control in the
neural rhythm generators,” Biological cybernetics, vol. 56, no. 5-6, pp.
345–353, 1987.

[24] ——, “Analysis of a neural oscillator,” Biological Cybernetics, vol. 104,
no. 4-5, pp. 297–304, 2011.

[25] ——, “Frequency responses of a neural oscillator,” 2013. [Online].
Available: https://matsuoka1.jimdofree.com/app/download/7896851691/
Frequency Response jimdo.pdf?t=1378121835

[26] X. Liu, R. Gasoto, Z. Jiang, C. Onal, and J. Fu, “Learning to locomote
with artificial neural-network and CPG-based control in a soft snake
robot,” in 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2020, pp. 7758–7765.

[27] M. Luo, Z. Wan, Y. Sun, E. H. Skorina, W. Tao, F. Chen, L. Gopalka,
H. Yang, and C. D. Onal, “Motion planning and iterative learning control
of a modular soft robotic snake,” Frontiers in robotics and AI, vol. 7,
p. 599242, 2020.

[28] M. Luo, E. H. Skorina, W. Tao, F. Chen, S. Ozel, Y. Sun, and C. D.
Onal, “Toward modular soft robotics: Proprioceptive curvature sensing
and sliding-mode control of soft bidirectional bending modules,” Soft
robotics, vol. 4, no. 2, pp. 117–125, 2017.

[29] M. Luo, M. Agheli, and C. D. Onal, “Theoretical modeling and
experimental analysis of a pressure-operated soft robotic snake,” Soft
Robotics, vol. 1, no. 2, pp. 136–146, 2014.

[30] R. Gasoto, M. Macklin, X. Liu, Y. Sun, K. Erleben, C. Onal, and J. Fu,
“A validated physical model for real-time simulation of soft robotic
snakes,” in IEEE International Conference on Robotics and Automation,
2019.

[31] A. J. Ijspeert, J. Hallam, and D. Willshaw, “Evolving swimming con-
trollers for a simulated lamprey with inspiration from neurobiology,”
Adaptive Behavior, vol. 7, no. 2, pp. 151–172, 1999.

[32] G. Wang, X. Chen, and S.-K. Han, “Central pattern generator and
feedforward neural network-based self-adaptive gait control for a crab-
like robot locomoting on complex terrain under two reflex mechanisms,”
International Journal of Advanced Robotic Systems, vol. 14, no. 4, p.
1729881417723440, 2017.

[33] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” International Conference on Intelligent
Robots and Systems, pp. 23–30, 2017.

[34] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning,”
Artificial Intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[35] D. Precup, Temporal abstraction in reinforcement learning. University
of Massachusetts Amherst, 2000.

[36] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, “Openai baselines,” https:
//github.com/openai/baselines, 2017.

[37] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real
transfer of robotic control with dynamics randomization,” International
Conference on Robotics and Automation, pp. 1–8, 2018.

[38] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun,
and M. Hutter, “Learning agile and dynamic motor skills for legged
robots,” Science Robotics, vol. 4, no. 26, 2019.

[39] A. Karpathy and M. Van De Panne, “Curriculum learning for motor
skills,” Canadian Conference on Artificial Intelligence, pp. 325–330,
2012.

[40] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor, W. Burgard,
L. E. Kavraki, S. Thrun, and R. C. Arkin, Principles of robot motion:
theory, algorithms, and implementation. MIT Press, 2005.

[41] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and M. Marı́n-
Jiménez, “Automatic generation and detection of highly reliable fiducial
markers under occlusion,” Pattern Recognition, vol. 47, no. 6, pp. 2280–
2292, 2014.

[42] S. Chen, B. Tang, and K. Wang, “Twin delayed deep deterministic
policy gradient-based intelligent computation offloading for iot,” Digital
Communications and Networks, 2022.

Xuan Liu (Student Member, IEEE) received the
B.S. degree from Beijing University of Posts and
Telecommunications, Beijing, China in 2015, and
the M.S. degree in computer science from the Uni-
versity of Southern California, Los Angeles, CA,
USA. He is currently a Ph.D. student at the De-
partment of Robotics Engineering, Worcester Poly-
technic Institute, Worcester, MA, USA.

His research interests include formal methods,
stochastic control, reinforcement learning and em-
bodiment control in bio-inspired soft robotics.

Cagdas D. Onal (Member, IEEE) is the Dean’s
Associate Professor and Arseneault Faculty Fellow
in Robotics Engineering at Worcester Polytechnic
Institute. He received the B.Sc. and M.Sc. degrees
from the Mechatronics Engineering Program, Sa-
banci University, Turkey, in 2003 and 2005. He
received his PhD in Mechanical Engineering from
Carnegie Mellon University in 2009. Before joining
WPI, he was a Postdoctoral Associate in the Com-
puter Science and Artificial Intelligence Laboratory
(CSAIL) at MIT. His research interests include soft

robotics, printable robotics, alternative actuation/sensing mechanisms, bio-
inspiration, control theory, and wearable robotics. He is the director of WPI
Soft Robotics Lab and leads the NSF Future of Robots in the Workplace-
Research and Development (FORW-RD) NRT Program at WPI. Prof. Onal
is the recipient of an NSF CAREER award on origami-inspired soft robotic
systems.

His current research interests include soft robotics, origami-inspired print-
able robotics, alternative actuation/sensing mechanisms, bio-inspiration, dy-
namic modeling, and control theory.

Jie Fu (Member, IEEE) received the B.S. and M.S.
degrees from Beijing Institute of Technology, Bei-
jing, China, in 2007 and 2009, and the Ph.D. degree
in mechanical engineering from the University of
Delaware in 2013. She is currently an Assistant Pro-
fessor at the Department of Electrical and Computer
Engineering, University of Florida, Gainesville, FL,
USA.

Her research interests include stochastic control,
reinforcement learning, algorithmic game theory and
formal methods.

https://matsuoka1.jimdofree.com/app/download/7896851691/Frequency_Response_jimdo.pdf?t=1378121835
https://matsuoka1.jimdofree.com/app/download/7896851691/Frequency_Response_jimdo.pdf?t=1378121835
https://github.com/openai/baselines
https://github.com/openai/baselines

	Introduction
	System Overview of the Soft Snake Robot
	Design of a CPG Network for the Soft Snake Robot Locomotion
	Maneuverability Analysis and Design of the Learning-based Controller with the Matsuoka CPG Network
	Steering control with imbalanced tonic inputs
	Velocity control with frequency modulation
	Modulating forced-response oscillation amplitude with free-response oscillation tonic input constraint
	The Neural Network Controller

	Curriculum and Reward Design for Efficient Learning-based Control
	Task curriculum
	Reward design

	Experimental Evaluation
	Experimental Setup
	Verification of steering property of PPOC-CPG
	Control signal comparison between PPOC-CPG and vanilla PPO
	Comparison of our reward design and a sparse reward function
	Sim-to-real Performance of FOC-PPOC-CPG
	Performance comparison with original PPOC-CPG and Vanilla PPO
	Performance in reaching unseen goals
	Robustness to External disturbance

	Conclusion
	Appendix A: Data
	Appendix B: Foundation
	Describing function analysis of the Matsuoka Oscillator
	Calculation of K(r) and L(r)
	Derivation of Kn
	Amplitude Threshold of Transition from Free Oscillation to Forced Entrainment

	Appendix C: Theory
	Proof of Proposition 1
	Applicable range of Proposition 1
	Proof of Proposition 2

	References
	Biographies
	Xuan Liu
	Cagdas D. Onal
	Jie Fu

