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Robust and Efficient Trajectory Planning for
Formation Flight in Dense Environments
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Ruilin Wang, Sheng Zhong, Xin Zhou, Yanjun Cao, Chao Xu, and Fei Gao

Abstract—Formation flight has a vast potential for aerial robot
swarms in various applications. However, existing methods lack
the capability to achieve fully autonomous large-scale formation
flight in dense environments. To bridge the gap, we present a
complete formation flight system that effectively integrates real-
world constraints into aerial formation navigation. This paper
proposes a differentiable graph-based metric to quantify the
overall similarity error between formations. This metric is invari-
ant to rotation, translation, and scaling, providing more freedom
for formation coordination. We design a distributed trajectory
optimization framework that considers formation similarity,
obstacle avoidance, and dynamic feasibility. The optimization is
decoupled to make large-scale formation flights computationally
feasible. To improve the elasticity of formation navigation in
highly constrained scenes, we present a swarm reorganization
method that adaptively adjusts the formation parameters and
task assignments by generating local navigation goals. A novel
swarm agreement strategy called global-remap-local-replan and
a formation-level path planner is proposed in this work to
coordinate the global planning and local trajectory optimizations.
To validate the proposed method, we design comprehensive
benchmarks and simulations with other cutting-edge works in
terms of adaptability, predictability, elasticity, resilience, and
efficiency. Finally, integrated with palm-sized swarm platforms
with onboard computers and sensors, the proposed method
demonstrates its efficiency and robustness by achieving the largest
scale formation flight in dense outdoor environments.

Index Terms—Aerial swarms, formation flight, obstacle avoid-
ance, motion planning, distributed trajectory optimization.

I. INTRODUCTION

FORMATION flight has become a fundamental capability
for autonomous swarms to achieve coordinated aerial

maneuvers. In cluttered wilds and complex urban areas, for-
mation navigation has a wide potential in search and rescue
[1], collaborative mapping [2], package delivery [3], and so
on. However, effectively integrating real-world constraints into
an aerial formation remains an unresolved problem. This
article aims to empower aerial swarms to maintain cooperative
formation behaviors in dense environments by proposing a
complete formation flight system.

Inspired by natural swarm systems like bird flocks and
fish schools, an ideal formation flight system should possess
the capability to flexibly adapt and deform in dense envi-
ronments. By striving to maintain the swarm in a “critical
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(a) Snapshot of 16 quadrotors navigating in a triangular queue shape 

(b) Rviz diagram of the formation flight

Fig. 1. Large-scale formation flight in the dense outdoor environment. (a)
Snapshot of the moment the swarm robots prepare to fly through the woods.
(b) Rviz diagram of the executed trajectories. The grid map is merged using
log data offline. Please watch our attached videos for more information about
the experiments at https://www.youtube.com/watch?v=uEMyvPxYqmA.

state”, swarm formation can dynamically balance the conflicts
between maintaining formation and avoiding obstacles.

While extensive research works focus on navigation in
formation, few achieve robust formation flights in obstacle-rich
areas. Three core challenges limit practical formation applica-
tions: (a) The inherent conflict between formation maintenance
and obstacle avoidance is inevitable and difficult to mitigate.
(b) Predefined formations lack elastic adaptability in response
to constrained environments. (c) The swarm system cannot
rapidly recover from disordered states caused by unknown
obstacles or sudden changes in the desired formation shape.

Based on the above challenges, we conclude that an ideal
formation flight system should have the ability to maintain
formation while avoiding obstacles, adjust swarm formation
distributions according to constrained environments, and reor-
ganize the formation quickly after emergencies. These char-
acteristics are summarized as the PAPER criteria:

• Portability: Aerial robotic swarms should comprise
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lightweight platforms with scalable systems and dis-
tributed architecture. A scalable system means the main
components, such as estimation, decision, planning, and
control modules, are all the same on each robot. A
distributed architecture is inherently robust against indi-
vidual hardware failures. These are the basis for large-
scale formation flight.

• Adaptability: When facing obstacles, robots should lo-
cally adapt their trajectories to avoid collision in a way
that does the least damage to the overall formation
performance. This ability mitigates the conflict between
formation maintenance and obstacle avoidance.

• Predictability: Reactive local feedback methods are short-
sighted and can not consider the constraints in advance.
Robots should optimize the motions over a prediction
horizon so that the formation can respond smoothly to
the future environmental changes in its vicinity, which is
necessary for dense areas.

• Elasticity: A feasible and safe trajectory for a fixed for-
mation shape may not exist in constrained environments,
such as narrow corridors or holes. Therefore, swarm
robots need to have elastic and flexible deformation
capabilities by adjusting formation distributions (such as
the scale of shape or task assignments) while keeping the
full maneuverability of the formation.

• Resilience: Formation flight could encounter many unfa-
vorable situations caused by unknown obstacles or sud-
den changes of desired formation shape. The navigation
system should be able to resiliently reorganize and guide
the whole formation so that the flight can recover from
disordered states timely.

A complete formation flight system should meet the above
PAPER criteria and ensure that the conditions for each criterion
are compatible with the others.

Our previous work [4] only partially met the first three terms
of PAPER criteria. We tackled formation flight as a coupled
collaborative trajectory optimization problem, suitable primar-
ily for small-scale formation scenarios. However, resolving
cooperative constraints of the formation using the graph-
based similarity metric was computationally heavy, resulting in
increased overhead during each optimization iteration. More-
over, integrating dynamic inter-robot relationships within the
coupled trajectory optimization problem considerably affected
the efficiency of the optimization process, rendering it less
appropriate for larger formations or more complex scenarios.

In this paper, we present a complete formation flight system
that satisfies all PAPER criteria. To address the challenges in
[4], we introduce a decoupled formation optimization method
to significantly improve computational efficiency. This method
consists of two components. Firstly, an optimal formation
position sequence is pre-computed, avoiding repetitive metric
calculation during the optimization process. Secondly, a fixed
time interval sampling method is used to convert dynamic
inter-robot relationships into static constraints, greatly reduc-
ing the complexity of the optimization problem. These im-
provements make our method suitable for large-scale swarms.
Besides, the previous method lacks the capability of reorga-
nizing the swarm formation, which may lead to disordered

formation flights under adverse conditions, especially when
the initial positions or task assignments are inappropriate. To
address this, we propose a swarm reorganization method that
can elastically adjust formation distributions by optimizing
formation parameters and task assignments in response to
external constraints. Subsequently, we develop a swarm agree-
ment strategy called global-remap-local-replan, which enables
rapid implementation of the swarm reorganization results
to achieve consensus among swarm agents. Additionally, a
formation-level global path-finding method, which treats the
swarm formation as one entity, is also designed to guide the
swarm out of the obstacle deadlocks. Finally, we integrate the
estimation, mapping, decision, planning, and control modules
into palm-sized swarm platforms [5] with onboard computers
and sensors, enabling large-scale formation flight in dense
environments. Detailed contributions are as follows.

1) We introduce an optimal formation position sequence,
pre-computed using the differentiable graph-based met-
ric [4]. This sequence represents the optimal position with
the lowest similarity error, reducing the need for repetitive
computation during the optimization process.

2) We design a decoupled spatial-temporal trajectory op-
timization framework that effectively handles dynamic
inter-robot relationships, obstacle avoidance, and dynamic
feasibility. Compared to our prior work [4], we achieve
higher computational efficiency for large-scale swarms.

3) We present a swarm reorganization method to achieve
elastic deformation of swarm distributions, which simul-
taneously solves optimal formation alignment and task
assignment problems (ALAS for short). This method
improves the elasticity of swarm formation against con-
strained environments. It relieves the dependence on the
appropriate formation alignments and task assignments.

4) We design a global-remap-local-replan strategy (GRLR
for short) that leverages the advantages of centralized
formation parameter remapping and decentralized local
trajectory replanning. With this strategy, the distributed
asynchronous swarm is able to quickly recover from
disordered states and return to formation flight quickly.

5) We integrate all these modules into a hierarchical forma-
tion flight system. Extensive benchmarks and simulations
are conducted to validate the PAPER criteria of our
method. A series of real-world experiments are designed
to demonstrate the outstanding performance of the pro-
posed distributed autonomous formation flight system.

II. RELATED WORKS

A. Distributed Swarm Trajectory Planning
Extensive works exist for trajectory planning of distributed

swarms. The concept of velocity obstacle (VO) is leveraged
and generalized by Van Den Berg et al. [6]–[8] to accomplish
reciprocal collision avoidance for multiple robots. However,
the smoothness of the resulting trajectories cannot be guaran-
teed by VO-based approaches, which significantly impairs the
usability of the actual robot systems.

In order to produce high-quality collision-free trajectories,
optimization-based methods are widely introduced in the lit-
erature on distributed multicopter swarms [9]–[11]. Zhou et
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al. [12] incorporate Voronoi cell tessellation into a receding
horizon QP scheme to prevent collision among the robots
while planning. In [13], Chen et al. employ SCP to address
the multiagent planning problem in non-convex space by
incrementally tightening the collision constraints. Baca et al.
[14] combine MPC with a conflict resolution strategy to ensure
mutual collision avoidance for outdoor swarm operations. Nev-
ertheless, the computational load of the above optimization-
based methods is large, which could hamper the applicability
of the planners in highly dense scenarios.

Recently, Zhou et al. [5] present a distributed autonomous
quadrotor swarm system using spatial-temporal trajectory op-
timization, which generates collision-free motions in dense en-
vironments merely in milliseconds. Our distributed formation
trajectory optimization is based on this work.
B. Formation Flight in Free Space

Various techniques have been proposed to achieve multi-
robot navigation in formation, which include virtual structures
[15], leader-follower [16], navigation functions [17], reactive
behaviors [18], consensus-based local control laws [19], and
barycentric-coordinate-based control [20]. However, most of
the existing methods only consider obstacle-free cases.

Weinstein et al. [21] present a VIO-swarm system that
performs all modules onboard and can execute formation flight
without inter-robot collisions in free space. Parker et al. [22]
present a distributed formation control method and relax the
dependency of the common reference frame.

As the scale of swarms increases, researchers begin to
notice that it is difficult to maintain the formation only
by trajectory planning, especially when there are deadlocks
between robots. Turpin et al. [23] consider the problem of
concurrent assignment and collision-free trajectory generation.
Turpin gives centralized and decentralized solutions to this
problem, allowing flight formation on a large scale. Morgan
et al. [24] also use model predictive control to solve task
assignment and trajectory generation simultaneously when
given the desired formation shape. In addition to considering
task assignments, Agarwal and Akella [25] consider formation
alignment problems to optimize the formation parameters such
as scale and location. This method reduces the cost of forming
formation and speeds up convergence. However, these methods
ignore the influence of constrained environments, in which
formation should elastically deform to navigate.
C. Formation Flight in constrained Environments

In constrained environments, where various obstacles and
limitations exist, formation flight can be a challenging task that
requires constant adjustments to maintain the swarm structure.
An immediate solution is to design composite control laws
that combine formation flight and collision avoidance by using
multiple layered potential fields [26], which are prone to
deadlock. A better solution is to allow the formation shape to
deform while maintaining the overall swarm structure. Han et
al. [27] propose a complex-valued graph Laplacian-based for-
mation controller that regulates the scaling of formation shape
during swarm maneuvering like passing through corridors. In
[28], Zhao proposes a leader-follower control law enabling
the affine transformation of formation in response to environ-
mental changes. And the bearing-based local controller [29],

[30] exhibits translational, scaling, and rotational invariance
of formation flight. However, these methods rely on leaders
or predefined trajectories and struggle with complex obstacles
or sudden potential collisions.

Compared to the local feedback methods, predictive
optimization-based methods proactively plan the future motion
of swarm robots, striking a balance between formation flight
and obstacle avoidance. Alonso-Mora et al. [31] control swarm
robots by optimally rearranging the desired formation and
planning local trajectories for each drone. However, since there
is no inter-vehicle coordination in the distributed planners,
formation maintenance is not conducted during local planning.
Peng et al. [32] propose a method to improve flight safety
by enabling the affine transformation of formation shape and
treating it as a soft constraint during B-spline optimization.
However, this approach requires optimizing the trajectories of
all robots simultaneously and cannot be applied to large-scale
swarms. To tackle formation preservation, Parys et al. [33] pro-
pose a distributed model predictive formation controller. This
framework imposes relative position constraints on the swarm
and coordinates the agents to break passively once obstacles
violate positional constraints. Overall, these approaches offer
unique solutions for trajectory planning in swarm robotics,
but they each have limitations when dealing with different
scenarios and scales of robotic systems.

To address these drawbacks, we formulate the overall for-
mation requirement with a differentiable metric in trajectory
optimization. This allows us to fully utilize the collabora-
tion ability of the swarm, effectively avoid deadlock, and
foresee obstacle avoidance. Besides, we adopt a distributed
and decoupled optimization method to ensure dynamic real-
time performance. This approach can be applied to large-scale
swarms while still maintaining efficient trajectory planning.

III. SYSTEM OVERVIEW

This paper aims to optimize the autonomy of swarm robots
in real-world environments by coordinating their movements
to form a desired formation shape. To accomplish this, we
adopt a distributed swarm aerial robot system and propose a
spatial-temporal trajectory optimization for formation flight.
To enhance the system’s robustness, we also address the case
of swarm disorder by incorporating an adaptive swarm reor-
ganization method and an efficient swarm agreement strategy.
A. Swarm Aerial Robot System

The swarm aerial robot system is composed of palm-sized
quadrotor platforms [5] with depth stereo camera1 for imagery
and depth sensing, as shown in Fig. 2. The software modules,
including state estimation, environment perception, decision-
making, trajectory planning, and flight control, run in real-
time on an onboard computer2. This lightweight and scalable
platform suit dense environments.

We use visual-inertial odometry (VIO) [34] to estimate
each robot’s pose with respect to its start frame, and we
recover the transformations related to the start frames with

1https://www.intelrealsense.com/depth-camera-d435/
2https://www.nvidia.com/en-us/autonomous-machines/embedded-

systems/jetson-xavier-nx/
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Portability:  Sec.III

Adaptability: Sec.IV

Predictability: Sec.V

Elasticity: Sec.VI Resilience: Sec.VII

Dense Camera UWB

Controller

IMU

VIO

Drift CorrectionMapping

WIFI

Network

Swarm 
Trajectories

Aligned Shapes
and

Assigned Tasks 

Formation-level 
Global Path Finding

Global-remap-Local-replan 
Strategy

Graph-based Formation Similarity Metric

Distributed Spatial-temporal Formation 
Trajectory Optimization

Palm-sized swarm platform

Optimal Formation Position Sequence

Formation Alignment and 
Task Assignment Optimization

…

Fig. 2. Illustration of the system architecture. In order to facilitate understanding, we divide the various modules of the formation flight system according to
the PAPER criteria mentioned in Sec.I. The main challenge in integrating PAPER criteria into a swarm formation flight system is to ensure that the conditions
for each criterion are compatible with the others. Therefore we build a hierarchical formation flight system. We use different colors to represent different
levels in the system. Moreover, the information broadcast through the network is from the same color module.

only anonymous bearing measurements in our previous work
[35]. For simplicity, the transformations are known in our
experiments by requiring robots to take off from pre-defined
locations. To correct the localization drift between swarm
robots, we use a drift correction method [5] with onboard
ultra-wideband (UWB).

The distributed system architecture enables each robot to
fully utilize its computing resources to process more informa-
tion, relieving the pressure of network communication. The
robots share only important information, such as trajectories,
for high-fidelity wireless communication, and there is no
ground station to send control inputs.

B. Distributed Local Formation Trajectory Optimization

The local formation trajectory optimization is distributed
and asynchronous, which enables each robot to generate its
trajectory only depending on local information and does not
require the same start timestamp or same time duration of
trajectory. Each robot evaluates the formation state by calcu-
lating the formation similarity error and generates its optimal
formation position sequence (Sec.IV) to maintain the de-
sired formation shape. Then a subsequent trajectory optimiza-
tion module generates spatial-temporal formation trajectories
(Sec.V) for real-time navigation. The above process cycles
periodically within the receding horizon. The distributed local

formation trajectory optimization can always maintain the
overall formation when navigating in a complex environment.
C. Swarm Reorganization and Agreement Methods

Only relying on the distributed local trajectory optimization
may lead to poor formation flight quality when encountering
narrow corridors or instant transformation of formation shapes.
Therefore, we propose swarm reorganization (Sec.VI) and
agreement methods (Sec.VII) to achieve the swarm consensus
quickly. Inspired by the flock flying behavior of birds, we
design a global-remap-local-replan (GRLR for short) strategy,
which only centrally remaps crucial parameters of swarm
formation and makes the swarm formation converge quickly
through distributed replanning local trajectory. Firstly, when
the stable state of the swarm formation is destroyed or about
to be destroyed, the swarm robots designate a leader (drone
0 in this paper). The crucial parameters of swarm formation
are calculated separately by formation alignment and task
assignment optimization (ALAS for short) and formation-level
global pathfinding method. From the perspective of swarm
reorganization and agreement, the conflict between swarm
formation and obstacle is alleviated by optimizing formation
alignment, and the speed of formation convergence is greatly
accelerated by optimizing task assignment. GRLR strategy is
simple but very effective by combining distributed methods’
efficiency and centralized ones’ optimality.
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IV. ADAPTIVE DESCRIPTION OF SWARM FORMATION

A. Graph-based Formation Definition

In this paper, a swarm formation of N robots is modeled
by an undirected graph G = (V, E), where V := {1, 2, ..., N}
is the set of vertices, and E ⊂ V × V is the set of edges. In
graph G, the vertex i represents the ith robot with position
vector pi = [xi, yi, zi] ∈ R3 . An edge eij ∈ E that connects
vertex i ∈ V and vertex j ∈ V means that robot i and j
can measure the geometric distance between each other. In
our work, each robot can obtain the positions of all robots
{p1, ...,pi, ...,pN}, thus the graph G is complete. Then we
determine the adjacency matrix A ∈ RN×N and degree matrix
D ∈ RN×N of the formation graph G by

Aij = wij =∥ pi − pj ∥2, (1)

Dij =

{∑N
j=1Aij , if i = j,

0, otherwise,
(2)

where the non-negative edge weight wij is the squared dis-
tance between the ith and jth robots, and ∥ · ∥ denotes the
Euclidean norm. Thus, the corresponding Laplacian matrix is

L = D−A. (3)

With the above matrices, the symmetric normalized Lapla-
cian matrix of graph G is defined as

L̂ = D−1/2LD−1/2 = I−D−1/2AD−1/2, (4)

where I ∈ RN×N is the identity matrix. L̂ contains the
information that is invariant to scale, translation, and rotation.

Finally, we use graph theory to describe various desired
formation shapes, such as squares, hexagons, and pyramids.
By specifying the positions pd

i = [xdi , y
d
i , z

d
i ] ∈ R3, i =

1, ..., N , computing L̂des is simple. It’s important to note that
the desired formation shape is independent of the coordinate
system as long as the relative positions are provided.
B. Differentiable Formation Similarity Error Metric

To assess the deviation from the desired formation, we
propose a differentiable formation similarity error metric as

fs = fs(p1, ...,pi, ...,pN ) = fs(A,D) = fs(L̂, L̂des)

=∥ L̂− L̂des ∥2F= tr{(L̂− L̂des)
T (L̂− L̂des)},

(5)

where tr{·} denotes the trace of a matrix, L̂ is the symmetric
normalized Laplacian of the current swarm formation, L̂des

is the counterpart of the desired formation. Frobenius norm
∥ · ∥F is used in our distance metric. As a graph representation
matrix, L̂ contains information about the graph structure [36].
This allows fs to consider only the geometric shape of the
formation, and not be influenced by scaling, translation, or
rotation. Additionally, fs is a dimensionless value that solely
reflects the error in formation shape similarity.

In particular, under the distributed framework, each robot
can only change its positions to reduce the overall formation
similarity error. Therefore, the only variable for robot i in (5)
is pi, and fs(p1, ...,pi, ...,pN ) can be simplified as fs(pi).

Our metric is analytically differentiable with respect to the
position of each robot. For robot i, we use the weights of its

(a) Optimal formation position 

(b) Optimal formation position sequence 

Desired Formation

Optimal formation position

Formation similarity error

timestamp: 0 timestamp: j timestamp: 𝑀𝑀𝑐𝑐

𝐩𝐩𝑖𝑖,𝑗𝑗∗𝐩𝐩𝑖𝑖,0∗
𝐩𝐩𝑖𝑖,𝑀𝑀𝑐𝑐
∗

Fig. 3. Illustration of optimal formation position sequence using a 2D
formation. (a) The surface shows the profile of the similarity metric when
one UAV moves in the plane and the other three remain still. The minimum
suggests the optimal formation position to form the desired shape. (b) The
sequence of optimal formation positions corresponds to the timestamps.

N adjacent edges {ei1, ei2, ..., , eiN} to form a weight vector
wi = [wi1, wi2, ..., , wiN ]T . By the chain rule, the gradient
of fs with respect to pi can be written as

∂fs
∂pi

=
∂fs
∂wT

i

∂wi

∂pi
. (6)

According to our metric (5), the gradient of fs with respect
to each weight wij can be computed as follow

∂fs
∂wij

= tr{(∂fs
∂L̂

)T (
∂L̂

∂wij
)},

∂fs

∂L̂
=
∂||L̂− L̂des||2F

∂L̂
= 2(L̂− L̂des),

∂L̂

∂wij
= −∂(D

−1/2AD−1/2)

∂wij
.

(7)

Then the gradient ∂fs/∂wi can be written as

∂fs/∂wi = [∂fs/∂wi1, ∂fs/∂wi2, ..., ∂fs/∂wiN ]T . (8)

As for ∂wi/∂pi, the Jacobian can be easily derived since the
weight function (1) is a differentiable quadratic form.

C. Optimal Formation Position Sequence

In our previous work [4], we incorporated fs directly into
the trajectory optimization, making formation flight a coupled
trajectory optimization problem. While this method is suitable
for small-scale formation flight, it becomes computationally
inefficient as the number N of robots increases. Considering
the simplified equation for coupled trajectory optimization

min
pi,0,...,pi,Mc

Mc∑
j=0

fs(pi,j) + Jother, (9)
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where pi,j represent the jth sample point of ith robot tra-
jectory in (19) for convenience. Jother represents all other
cost functions, and Mc is the number of sample points with
corresponding timestamps. The primary purpose of calcu-
lating fs is to supply gradient information for minimizing
formation similarity error. However, since the graph G is a
complete graph, computing fs has a complexity of O(N2).
Consequently, the coupled trajectory optimization (9) also
exhibits high complexity of O(N2) in each iteration, limiting
its applicability to large-scale swarm operations.

To address this issue, we must identify an equivalent ap-
proach with reduced computational complexity to replace the
function of fs in (9). We introduce the concept of optimal
formation position p∗

i,j for robot i at timestamp j, which
is the position that minimizes the formation similarity error
fs. Fig. 3(a) illustrates this concept using a 2D formation as
an example. It is evident from the figure that there exists
an optimal formation position p∗

i,j that results in a mini-
mal formation similarity error, and the partial derivative is
∂fs/∂p

∗
i,j = 0. In the future period with a sequence of times-

tamps {0, ..., j, ...,Mc}, we represent the expected positions
of robot i with the optimal formation position sequence
p∗
i = {p∗

i,0, · · · ,p∗
i,j , . . . ,p

∗
i,Mc
}, as shown in Fig. 3(b). By

precomputing p∗
i , we can utilize its quadratic distance to

replace the gradient information offered by fs in (11), thus
decreasing the computational requirements as follows

fs(pi.j)⇒ ∥pi,j − p∗
i.j∥2. (10)

Since the optimal solutions of fs and quadratic distance cost
are equivalent, the trajectory approaches the positions with
minimal formation similarity error, maintaining the desired
formation. Thus, we can effectively solve the coupled trajec-
tory optimization with a two-step procedure

① p∗
i = argmin

Mc∑
j=0

fs(pi.j),

p∗
i==⇒ ② min

pi,0,...,pi,Mc

∥pi.j − p∗
i.j∥2 + Jother.

(11)

As a result, the previously required calculation of fs in each
trajectory optimization process is replaced by the computation
of the quadratic distance, simplifying the optimization prob-
lem. This significantly reduces computational demands and
enables large-scale swarm formation.

Formula (11) indicates that trajectory optimization in Sec.V
is performed on discretized points. Non-uniform discretized
points may lead to poor trajectories and sub-optimal perfor-
mance. Therefore it is crucial to ensure a uniform distribution
of these points to maintain the effectiveness of the optimization
process. In engineering practice, since graphs G are con-
structed from a series of discretized timestamps as depicted
in Fig. 3(b), each p∗

i,j is independent.
To ensure a smoother trajectory, we introduce the uniform

optimal formation position sequence p̂∗
i , which is generated by

considering the formation similarity error Js and the uniform
distribution cost Ju

p̂∗
i = argminλsJs + λuJu, (12)

Js =

Mc∑
j=0

fs(p̂
∗
i,j),

Ju = E(U2)− E(U)2 =
∥U∥22
Mc

− ∥U∥
2
1

(Mc)2
,

(13)

where λs and λu are the relative weights. E(·) is mathematic
expectation and the squared distance vector U ∈ RMc is

U = (∥p̂∗
i,1 − p̂∗

i,0∥22, · · · , ∥p̂∗
i,Mc
− p̂∗

i,Mc−1∥22). (14)

We use the quasi-Newton method [37] to solve this uncon-
strained optimization problem (12) and generate uniform p̂∗

i

for the later trajectory optimization (18). By doing so, the
trajectory resulting from these discretized points in Sec.V can
be smoother and avoid sudden spatial changes.

V. SPATIAL-TEMPORAL TRAJECTORY OPTIMIZATION FOR
FORMATION FLIGHT

A. Trajectory Representation

The differential flatness of multicopters [38] benefits tra-
jectory generation without integrating differential equations.
Moreover, the motion planning of multicopters can be per-
formed on low-dimensional smooth trajectories. In this paper,
we adopt a state-of-the-art trajectory representation named
MINCO [39] to achieve minimum control effort spatial-
temporal trajectory planning for swarm aerial robots in three-
dimensional environments. MINCO conducts spatial-temporal
deformation of the flat-output M -piece trajectory p(t) by
decoupling the space and time parameters with a linear-
complexity mapping M

p(t) =Mq,T(t), ∀t ∈ [t0, tM ], (15)

where q = (q1, · · · ,qM−1)
T ∈ R3×(M−1) are the adjacent

intermediate points between each pair of connected pieces and
T = (T1, · · · , TM )T ∈ RM

>0 the time duration of each piece.
A m-dimensional M -piece trajectory p(t) is represented by

piecewise polynomials. And ith piece pi(t) is defined as a
multi-degree polynomial (Q = 5 in this paper)

pi(t) = cTi β(t), ∀t ∈ [0, Ti], (16)

where ci ∈ R(Q+1)×m is the coefficient matrix and β(t) =
[t0, t1, · · · , tQ]T is the natural basis.

For an s-integrator (s = 3 in this paper) chain dynamics
system, a M -piece 2s− 1 degree trajectory p(t) is defined by
constant boundaries and minimum control effort {q,T}. Fur-
thermore, MINCO is advanced in convert {q,T} to {c,T} us-
ing a linear-time and space parameter mapping c =M(q,T),
where c = (cT1 , · · · , cTM )T is polynomial coefficients.

B. Problem Formulation

After determining the desired formation shape in Sec.IV,
we expect a cluster of trajectories for swarm robots, which are
smooth, collision-free, and formation maintained. In practice,
navigating swarm robots in an unknown dense environment
with FOV-limited sensors and onboard computer requires
an efficient real-time planner focusing on local information.
Besides, centralized optimization is limited by the scale of
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the swarm. Therefore, we choose a distributed local trajectory
optimization for formation flight as follows

min
q,T

∫ tM

t0

∥p(s)(t)∥2dt+ ρ · TΣ, (17a)

s.t. p(t) =Mq,T(t),∀t ∈ [t0, tM ], (17b)

p[s−1](0) = p̄0, (17c)

p[s−1](tM ) = p̄f , (17d)

H(p(t), ..., p(s)(t)) ⪯ 0,∀t ∈ [t0, tM ]. (17e)

We define costs (17a) for smoothness and aggressiveness to
achieve smooth and efficient flight. ρ is time regularization
parameter, TΣ =

∑M
i=1 Ti. The state of robot p(t) (17b) is pa-

rameterized by the optimization variables {q,T}. p[s−1](t) =
(p(t)T , ṗ(t)T , ..., p(s−1)(t)T )T ∈ Rms represents the higher-
order derivatives of a chain dynamic system with s-integrator.
Boundary conditions involve initial state p̄0 ∈ Rms (17c) and
terminal state p̄f ∈ Rms (17d). Continuous-time constraintsH
(17e) include swarm formation similarity, dynamic feasibility,
obstacle avoidance, and swarm reciprocal avoidance.
C. Constraints Transcription

To solve the continuous constrained optimization problem
(17) in real-time, we use the optimization variable of MINCO
(15) to eliminate all kinds of equality constraints (17b)-(17d).
And penalty function method [40] is used to deal with the
inequality constraints (17e). Then, every integral is evaluated
by a finite sum of sample points. Finally, the continuous
constrained optimization problem is converted to a discrete
unconstrained optimization problem

min
q,T

∑
x

λ⋆J̃⋆(q,T, δ), (18)

where J̃⋆ are various terms of cost function or penalties, and
λ⋆ are relative weights. Subscripts ⋆ = {f, e, t, o, r, d} (f )
swarm formation similarity, (e) denote control effort, (t) total
time, (o) obstacle avoidance, (r) swarm reciprocal avoidance,
(d) dynamic feasibility. δ is the sampling time interval.

In our previous work [4], we used the fixed number sam-
pling points p̂i,j = pi((j/κi) · Ti) to transform the optimiza-
tion problem, where pi(t) is the ith piece trajectory and κi is
the fixed sample number on this piece. However, considering
that the total time TΣ changes during the optimization process,
the fixed number sampling points p̂i,j are difficult to space
on the whole trajectory equally. Therefore, we take fixed time
interval sampling points for the whole trajectory to ensure the
accuracy of the penalty function sampling transformation

p̃j(t) = pi(jδ −
i−1∑
l=1

Tl),

j ∈ {0, · · · , κ}, κ = ⌊TΣ
δ
⌋,

(19)

where κ is the sample number and Tl is the preceding time
for any 1 ≤ l < i.

For the trajectory planning of swarm robots, the fixed time
interval sampling points p̃j(t) can simplify the optimization
problem. Compared with p̂i,j , the timestamp corresponding to
p̃j(t) is fixed, so the states of other robots at this timestamp

are also constant during the optimization process. Therefore,
it is feasible to calculate the states of other robots w.r.t p̃j(t)
according to the broadcast trajectories before optimization.
Then we can solve the uniform formation position sequence
optimization (12) in advance and use p̂∗

i to replace the
formation similarity metric fs in trajectory optimization (17a)
of ith robot. This decoupled formation trajectory optimization
results in higher computational efficiency, making our method
suitable for large-scale swarm robots.

Despite the optimization problem is not differentiable when
sampling number κ changes, the cost function remains con-
tinuous w.r.t. time duration T. In this paper, we use the quasi-
Newton method proposed in [37] to solve the non-smooth
discrete unconstrained optimization problem (18).

D. Cost Functions and Gradients

Given the fixed sampling time interval δ, we can evaluate
the cost functions and gradients of the whole trajectory by
a finite sum of sampling points p̃j(t). The cost of various
general purpose penalties at jth sampling points is

P⋆(c,T, jδ) = P⋆(p̃j(t)), (20)

then the cost function J̃⋆ in (18) is calculated as follows

J̃⋆(q,T, δ) = J⋆(c,T, δ),

= δ

κ∑
j=0

ω̄jP⋆(c,T, jδ)+ (21)

1

2
(TΣ − κδ) [P⋆(c,T, κδ) + P⋆(c,T, TΣ)] ,

where (ω̄0, ω̄1, · · · , ω̄κ−1, ω̄κ) = (1/2, 1, · · · , 1, 1/2) are the
orthogonal coefficients following the trapezoidal rule [41].
And MINCO allows any second-order continuous cost func-
tion J̃⋆(q,T) to be represented by J⋆(c,T). Hence, ∂J̃⋆/∂q
and ∂J̃⋆/∂T can be efficiently obtained from ∂J⋆/∂c and
∂J⋆/∂T respectively, which is benefit to the construction and
solution of the optimization problem. In (19), the sampling
time t = jδ−

∑i−1
l=1 Tl is related to the preceding time Tl, so

the gradient of J⋆ w.r.t ci and Tl are computed as

∂J⋆
∂ci

=
∂J⋆
∂P⋆

∂P⋆

∂p̃j(t)

∂p̃j(t)

∂ci
, (22)

∂J⋆
∂Tl

=
∂J⋆
∂P⋆

∂P⋆

∂p̃j(t)

∂p̃j(t)

∂t

∂t

∂Tl
, (23)

∂p̃j(t)

∂ci
= β(t),

∂p̃j(t)

∂t
= ˙̃pj(t),

∂t

∂Tl
=

{
0, l = i,

−1, l < i,
(24)

where the calculation of ∂J⋆/∂P⋆ is simple and the details of
P⋆(p̃j(t)) for various general purpose are given as follow.

1) Cost of Swarm Formation Similarity Pf : In Sec.IV-C,
we decouple the formation similarity error metric from trajec-
tory optimization by constructing an unconstrained optimiza-
tion problem to calculate the uniform optimal formation posi-
tion sequence p̂∗

i for each sampling point. This improvement
avoids multiple calculations of formation similarity metric fs.
Then, we use the quadratic form to calculate the cost of swarm
formation similarity

Pf (p̃j(t)) = max{∥ p̃j(t)− p̂∗
i,j ∥2, 0}3. (25)
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2) Control Effort Je: The sth (s = 3 in this paper) control
input for the trajectory and its gradients are written as

Je =

M∑
i=1

∫ Ti

0

∥ p(s)i (t) ∥2 dt, (26)

∂Je
∂ci

= 2

(∫ Ti

0

β(s)(t)β(s)(t)T dt

)
ci, (27)

∂Je
∂Ti

= cTi β
(s)(Ti)β

(s)(Ti)
T ci. (28)

3) Total Time Jt: In order to ensure the aggressiveness of
the trajectory, we minimize the total time Jt =

∑M
i=1 Ti. The

gradients are given by ∂Jt/∂c = 0 and ∂Jt/∂T = 1.
4) Cost of Obstacle Avoidance Po: Inspired by [42], obsta-

cle avoidance penalty Jo is computed using Euclidean Signed
Distance Field (ESDF). We penalize the sampling points which
are too close to the obstacles

Po(p̃j(t)) = max{ψo(p̃j(t)), 0}3, (29)

ψo(p̃j(t)) = do − do(p̃j(t)), (30)

where do is the safety threshold set according to the actual
situation and do(p̃j(t)) is the distance between p̃j(t) and the
closest obstacle around it. The gradient of Po w.r.t p̃j(t) is

∂Po

∂p̃j(t)
= −∇dT , (31)

where the ∇d is the gradient of ESDF in p̃j(t).
5) Cost of Swarm Reciprocal Avoidance Pr: We penalize

p̃j(t) when it is too close to the trajectories pϕ(t), ϕ ∈ Φ at
the fixed timestamp t = jδ, where Φ represents the all other
robots in the swarm. Compared to our previous work [4], the
state of other robots with fixed timestamp pϕ(jδ) are constant
during the optimization process and do not produce a gradient
w.r.t T for the cost function Jr. So the optimization problem
and the gradients are simplified.

The cost of swarm reciprocal avoidance is defined as

Pr(p̃j(t)) =
∑
Φ

max{ψr(p̃j(t), pϕ(jδ)), 0}3, (32)

ψr(p̃j(t), pϕ(jδ)) = d2r− ∥ p̃j(t)− pϕ(jδ) ∥2, (33)

where dr is the safe clearance between each robot. And the
gradient of Pr w.r.t p̃j(t) is

∂Pr

∂p̃j(t)
= −2(p̃j(t)− pϕ(jδ))T . (34)

6) Cost of Dynamic feasibility Pd: We limit the maximum
value of velocity and acceleration to guarantee that the robots
can execute the trajectory.

Pd(p̃j(t)) = Pd,v(p̃j(t)) + Pd,a(p̃j(t)),

Pd,v(p̃j(t)) = max{∥ ˙̃pj(t) ∥2 −v2m, 0}3,
Pd,a(p̃j(t)) = max{∥ ¨̃pj(t) ∥2 −a2m, 0}3,

(35)

where vm and am are the maximum velocity and acceleration.

E. Discussion on solution quality of trajectory optimization

The proposed trajectory optimization process (17) aims
to solve a challenging multi-stage Linear Quadratic Mini-
mum Time (LQMT) problem, which is inherently non-convex
and non-linear. Additionally, incorporating ESDF for obstacle
avoidance introduces further non-convex constraints. As a
result, guaranteeing the global optimal solution with the quasi-
Newton method is not always possible. To address concerns
regarding local minima and infeasible solutions, we have
implemented measures that prioritize safety and dynamic fea-
sibility while maintaining high-performance formation flight.

Firstly, we utilize hybrid-A* searching algorithm [42] to
generate initial trajectories that are collision-free and dynami-
cally feasible, ensuring a valid final solution trajectory. During
optimization, we give greater weight to obstacle avoidance
and dynamic constraints to prioritize safety and feasibility.
Additionally, we conduct collision checks on trajectories to
enhance safety. Moreover, our distributed swarm optimization
framework effectively mitigates the impact of local minima on
overall formation performance. Implementing these measures,
our method reliably achieves robust formation flight while
maintaining computational efficiency.

VI. SWARM REORGANIZATION METHOD

During the formation navigation, the swarm could encounter
many unfavorable conditions, such as highly constrained
space, inappropriate assignment of tasks, and sudden forma-
tion switching commands. To recover from these situations,
we present a swarm reorganization method. The method aims
to generate high-quality local goals which satisfy the desired
formation distribution and respect the current states of each
robot. With these local goals, the swarm can reform the desired
shape quickly, even in highly constrained environments such
as narrow corridors or holes.

Unlike high-frequency distributed formation trajectory op-
timization, the swarm reorganization method only runs at a
low frequency when the stable state of formation flight is
destroyed or about to be destroyed. The method first calculates
the formation constraint awareness and then solves an optimal
formation ALignment and task ASsignment problem (ALAS).
The former awareness distributedly quantifies the conflict
between formation maintenance and obstacle avoidance of
each robot, while the latter solves the ALAS problem centrally.
A. Formation Constraint Awareness

First, we need to derive weights to indicate how severely the
environment constrains the robots. These weights are called
formation constraint awareness, which should be determined
by the current formation status and obstacle information.

Inspired by our previous work [43], we hope to describe the
conflict degree based on the relationship between different gra-
dient information. Firstly, we retrieve the ESDF distance do(p)
and the corresponding obstacle gradient ∇d(p). Meanwhile,
we calculate the current gradient ∇fs(p) of the formation
similarity term. Secondly, we calculate the cosine β of the
angle between gradients ∇d(p) and ∇fs(p)

β =
∇d(p) ∇fs(p)

∥ ∇d(p) ∥∥ ∇fs(p) ∥
. (36)
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Fig. 4. Illustration of formation alignment and task assignment. (a) Before
solving ALAS problem, the initial formation goals suffer from a large
transition distance to robots and disordered assignments that may lead to
deadlock. (b) With robots at the same positions, after solving ALAS, the
formation goals enjoy low distance costs and better assignments.

Then we utilize the sigmoid function to map the cosine of the
angle to a conflict coefficient η

η(β) =
1

1 + e(αβ+γ)
, (37)

where α regulates how fast this awareness rises as the cosine
value β increases, γ regulates the dead zone and the activation
zone of this angle-based awareness. The conflict coefficient η
is maximum when the directions of ∇d(p) and ∇fs(p) are
opposite, which indicates the most conflicting case. And η
reaches a minimum when the two gradients have the same
direction, which means no conflict.

The formation constraint awareness should also consider
the influence of the gradient magnitude and the distance of
the current closest obstacle. Hence, we design the formation
constraint awareness gi of ith robot as

gi = λ · η(β) · ∥ ▽Jf (p) ∥
do(p)

. (38)

We apply the calculation to each robot in the swarm and thus
get a formation constraint awareness vector g = {g1, . . . , gN}
of the whole swarm. To distinguish the most constrained ones,
we use softmax function to amplify the variance of awareness
vector g and normalize the vector

w = softmax(g). (39)

λ in (38) is used to adjust the variance of elements in w. w is
the final awareness vector describing the degree of formation-
obstacle conflict of the robots in the swarm.

B. Formation Alignment and Task Assignment Optimization

For formation flights in constrained scenes, e.g. in nar-
row corridors, the unconstrained robots with lower constraint
awareness possess larger space to freely coordinate with
other robots, since the obstacles don’t hinder the formation
requirement. On the contrary, the constrained robots with
larger awareness always fall into the conflict between for-
mation maintenance and obstacle avoidance. Hence, refining
the positions of unconstrained robots to match up with the
constrained ones is more reasonable when generating local
goals for formation reorganization. In this work, we use w

Obstacles

(a) (b)

Current 
robots

Initial 
formation

points

Realigned 
formation

points

Fig. 5. Illustration of the weighted formation alignment problem in a narrow
corridor. When a hexagon formation enters the corridor, the original formation
distribution(pink points) cannot be maintained anymore. The upper and lower
robots(red points) are severely pressed by the obstacles, and hence have the
largest constraint awareness. After solving the awareness-weighted formation
alignment, the swarm obtains a new desired formation distribution(blue points)
that best matches up with the constrained robots.

in Sec.VI-A to weigh the robots when adjusting the formation
distributions and place more weights on the constrained robots.

In this section, we only elaborate on the ALAS problem
for local goal generation. Afterward, the global-remap-local-
replan strategy uses the generated local goals to reorganize the
formation, which is detailed in Sec.VII-A.

Let lgi = [lgix, lgiy, lgiz]
T , i = 1, ..., N represents the cur-

rent positions of robots. The desired formation shape template
is given by N positions qj = [qjx, qjy, qjz]

T , j = 1, ..., N .
Then, the aligned formation positions q′

j can be written as

q′
j = s · qj + d, (40)

where s ∈ R is the scaling factor, d ∈ R3 denotes the
translation factor. In this work, the formation alignment is
determined by a scaling factor and a translation factor.

ALAS is composed of formation alignment and task assign-
ment as shown in Fig. 4. The former aims to find the optimal
alignment of the desired formation based on a weighted
Euclidean distance cost. And the latter solves the optimal
assignment that matches the agents with the local goals.

The task assignment problem is formulated as

min
σ

n∑
i

∥ lgi − (s∗ · qσ(i) + d∗) ∥2, (41)

where σ ∈ SN is the assignment map of the formation task
and SN is the symmetric group of all permutations from the
set {1, ..., N} to itself. Problem (41) solves the assignment
that minimizes the overall transition distance between current
robots and the aligned local goals.

The formation alignment problem is formulated as

min
s,d

n∑
i

wi· ∥ lgi − (s · qσ∗(i) + d) ∥2, (42)

where σ∗ represents the optimal assignment, wi is the aware-
ness weight from Sec.VI-A. Problem (42) generates a standard
formation that best fits into the current robot positions accord-
ing to a distance cost weighted by the constraint awareness.
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Fig. 5 illustrates how the alignment adjusts the formation
distribution when the swarm is traversing a corridor.

Problems (41) and (42) are coupled. The whole ALAS prob-
lem has three decision variables: scaling factor s, translation d,
and assignment σ. The goal of ALAS is to find an optimal set
of decision variables that minimize both (42) and (41). Note
that there is no awareness weight wi multiplied in formulation
(41). Because in the assignment optimization, we only care
about the total Euclidean distance cost, which is irrelevant to
the degree of the constraint of any agent.

However, for formation alignment using only scaling factor
s and translation d, [25] proves that the corresponding assign-
ment σ can be optimized in a decoupled manner, rather than
alternating the two optimization phases iteratively. In [25], the
optimal assignment solution σ∗ is shown invariant w.r.t the
changes in formation scaling factor s and translation d. And
the solution of (41) can be directly optimized by solving the
following integer programming with new pseudo costs κij

min
σ=(xij)

n∑
i=1

n∑
j=1

κijxij ,

where κij = −lgT
i qj .

(43)

The formulation (43) is independent of the scale parameter
s and translation d. Hence, (43) can be first solved prior to
the formation alignment phase. Then we determine the best
alignment using the optimized assignment σ∗. The formation
alignment problem with awareness weights is still convex and
the closed-form solution to (41) is given In Appendix.A.

Given the solution of ALAS, the position of generated local
goal lg′

i for the ith robot is calculated by

lg′
i = s∗ · qσ∗(i) + d∗. (44)

After the ALAS optimization, the distribution of generated
local goals is in the desired formation shape, and respects the
formation-obstacle conflict of each robot.

VII. SWARM AGREEMENT METHOD

A. Global-remap-local-replan Strategy

The swarm system cannot quickly recover from disordered
states caused by unknown obstacles or sudden changes in the
desired formation shape. To address this challenge, we propose
a novel approach that utilizes a global-remap-local-remap
(GRLR) strategy for trajectory generation. This approach
enables us to efficiently navigate complex environments while
maintaining the swarm in a “critical state” of the desired
formation, effectively balancing coordination and adaptability.

For distributed framework, communication helps the robot
to obtain information about others and generate better coordi-
nation behavior. Especially in the case of formation transfor-
mation, collaborative decision-making can make the swarm
formation converge quickly. However, circular dependencies
sometimes occur due to communication delays, making it
difficult to guarantee the consistency of decisions. Therefore,
We design a Global-Remap-Local-Replan (GRLR) strategy
for the swarm formation system, which only centrally remaps
crucial parameters of formation and maintains the formation
coordination through distributed replanning local trajectory.

0
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2
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1
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1
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i

Goal

Robot
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Initial local goals
Refined local goals

Conflict reference trajectory
Conflict-free reference trajectory

ALAS method

Fig. 6. Illustration of GRLR strategy. (a) The local-replan strategy generates
initial local goals within the planning horizon. Due to the conflict reference
trajectories, the swarm robots are expected to deadlock with the current
formation behavior. Therefore, the global-remap strategy calls ALAS method
to realign the shape and reassign the task of initial local goals. (b) After
solving the refined local goals, the global-remap strategy generates conflict-
free reference trajectories. In this way, the swarm formation will converge
quickly with the new formation behavior.

Algorithm 1 Global-remap strategy
Notation: Global reference trajectory Tref , Local trajectory
Pi, Initial local goals lgi, Global goals Gi, Assign-
ments σ, Scale s, Translation d ;

1: Initialize: CallGlobalRemap← False,
2: for each robot i do
3: gi ← ConstrainedAwareness(Pi); ▷ detailed in (38)
4: if gi > gd then ▷ gd is threshold of gi
5: CallGlobalRemap← True;
6: w← softmax(g);
7: end if
8: end for
9: if SimilarityError(·)> esim,d then ▷ detailed in (5)

10: CallGlobalRemap← True;
11: w← softmax(I);
12: end if
13: if CallGlobalRemap then
14: σ∗ ← Assignment(σ, s,d); ▷ detailed in (41)
15: s∗,d∗ ←Alignment(w, σ∗); ▷ detailed in (42)
16: lg∗

i ←RemapLocalGoals(σ∗, s∗,d∗);
17: G∗

i ←RemapGlobalGoals(Gi, σ
∗);

18: T ∗
ref ←GlobalTrajectoryReplan(lg∗

i ,G
∗
i );

19: Return T ∗
ref ;

20: end if

GRLR strategy comprises the local-replan for a single robot
and the global-remap for a formation-level system. The local-
replan is a receding horizon incremental planning strategy
[44], which allows each robot plans a trajectory within its lim-
ited sensing range. The local goals are selected on the global
reference trajectories within planning horizon Ψp, as shown in
Fig. 6 (a). The global-remap is an efficient centralized strategy
that only remaps the local goals by solving ALAS method and
refines the global reference trajectory, as shown in Fig. 6 (b).
GRLR strategy is very suitable for distributed asynchronous
systems, and there is no deadlock in swarm systems even in
the presence of network delays.
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The main workflow of the proposed global remap strategy
is described in Algorithm.VII-A. Before generating the new
formation behavior, the global-remap strategy checks if there
are any emergence events (Line 1-12), such as the stable state
of the swarm formation being destroyed (Line 9) or about
to be destroyed (Line 4). Unlike the local-replan strategy is
triggered at a fixed frequency, the global-remap strategy is
started by emergent events (Line 13). Then the ALAS method
is called to solve the optimal assignment σ∗ and alignment
s∗,d∗ (Line 14-15). Global-remap strategy remaps the local
goals lg∗

i and global goals G∗
i and generates a new global

trajectory T ∗
ref for each robot (Line 16-19). Finally, robots

form the new formation by executing the local-replan strategy.
In this work, we utilize this semi-distributed GRLR strategy

to make the swarm formation adaptable to unknown obstacles
or sudden changes in the desired formation shape by replan-
ning local trajectories at 1 Hz and checking emergent events
for triggering the global-remap strategy at 20 Hz.

B. Formation-level Global Path Finding

Algorithm 2 Formation-level Global Path Finding
Notation: Tree T , State z, Path cost c, Path P;

1: Initialize: Ta ← ∅ ∪ {zstart}, Tb ← ∅ ∪ {zgoal},
cbest ←∞, FoundSolution← False;

2: for i = 1 to N do
3: zrandom ← Sample(zstart, zgoal, cbest);
4: if not FoundSolution then
5: znew ← GreedyExtendTree(Ta, zrandom);
6: zconn ← NearestVertice(znew, Tb);
7: cnew ← Connect(znew, zconn, Ta, Tb);
8: if cnew < cbest then
9: cbest ← cnew;

10: FoundSolution← True;
11: end if
12: else
13: znew ← ExtendTree(Ta, zrandom);
14: Znear ← NearVertex(znew, Ta);
15: Ta ← Rewire(znew,Znear);
16: zconn ← NearestVertice(znew, Tb);
17: cnew ← Connect(znew, zconn, Ta, Tb);
18: if cnew < cbest then
19: cbest ← cnew;
20: end if
21: end if
22: SwapTrees(Ta, Tb);
23: end for
24: P← RetrievePath(Ta, Tb);
25: Return P;

We propose a method for formation-level global path find-
ing. Given a start and goal configuration, the planner generates
a feasible path connecting them with collision-free intermedi-
ate formations. A bidirectional RRT approach is employed to
address this path-finding problem.

Many navigation tasks expect the formation to maneuver
with a desired scale. In practice, an oversized formation could
reduce the vehicle’s communication quality, while an overly

small formation scale could increase the risk of inter-vehicle
collisions. Unlike the method in [45] which only samples
position p ∈ R3 of the formation center, our method adds
the formation scale s into the sampling space and makes the
formation configuration z = {p, s} ∈ R3 × R+. In this way,
the objective of maintaining desired scale, i.e., minimizing the
changes in scale along the path, can be handled by minimizing
the L2-norm distance of path in the configuration space z.

Navigation in dense environments requires the robots to
maintain a formation while letting the obstacles pass through
the formation. The method in [46] samples the center position
p, and then the scale factor s is solved by optimizing the
formation placement in obstacle-free convex regions. However,
this approach does not allow any obstacle to intersect with the
convex hull of the formation and hence wastes many solutions.
In contrast, our method directly samples the whole states of the
formation configuration z to fully explore the solution space.
For each edge of our RRT algorithm, a collision check is
conducted on each robot rather than the formation’s whole
convex hull to allow obstacles to pass.

The main workflow of our bidirectional RRT planner is
described in Algorithm.2, where two trees Ta and Tb grow
towards each other from the initial state zstart and the goal
state zgoal respectively. Before the first solution is found, the
bidirectional planner extends the trees in an RRT-Connect [47]
manner (Line 5-7). In GreedyExtendTree() and Connect(),
the greedy heuristic [47] is adopted to aggressively explore
the environment and make tree-connection attempts. After
a feasible solution is found, i.e. a finite path cost cnew is
returned by Connect(), the function Sample() computes an
informed sampling set with the new cost cnew as depicted in
[48]. Then the standard Bidirectional-RRT* [49] procedures
are conducted in each loop to update the trees (Line 13-17).
Since the path cost is L2-norm distance in the configuration
space z, informed sampling [48] and Bidirectional-RRT* [49]
can guarantee the asymptotic optimality of the path solution.

This formation-level path planner is deployed to render
a global path when the global environment information is
available. Then global trajectories connecting the waypoints
of the global path are generated using MINCO [39], and the
framework in Sec.V is employed to optimize the local motions.

VIII. BENCHMARK

In the benchmark, it is important to assess the distortion
degree of the current formation Fc fairly relative to the
desired one Fd during flight. Inspired by [22], we solve
the following nonlinear optimization problem to find the best
similarity transformation (Sim(3) transformation) that aligns
Fc with Fd. Then the average formation distance degree edist
is calculated at the normalized formation scale

edist =
1

so · L

∫
L

min
R, t, s

n∑
i=1

||pd
i − (sRpc

i + t)||2dl, (45)

where pd
i and pc

i represent the position of ith robot in forma-
tion Fd and Fc, respectively. The Sim(3) transformation is
composed of a rotation R ∈ SO(3), a translation t ∈ R3 and a
scale expansion s ∈ R+. Moreover, so is the initial formation
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TABLE I
FORMATION PARAMETERS OF THE PROPOSED METHOD

Parameter Symbol Value
Similarity error threshold esim,d 0.05
Constraint awareness threshold gd 2/N

Parameter for regulation in (37) α 5
Parameter for regulation in (37) λ 25
Parameter for regulation in (37) γ -1
Sampling time interval (s) δ 0.5
Planing Horizon (m) Ψp 7.5
Max velocity (m/s) vm 1.0
Max acceleration (m/s2) am 6.0
Weight for control effort λe 10000.0
Weight for total time λt 80.0
Weight for swarm reciprocal avoidance λr 10000.0
Weight for obstacle avoidance λo 10000.0
Weight for swarm formation similarity λf 10000.0
Weight for dynamic feasibility λd 10000.0

(a)

(b) (c) (d) (e)

Fig. 7. Random forest map and formation types of benchmarks. (a) Random
forest map. (b) Regular hexagon shape. (c) Irregular shape. (d) Triangular
prism shape. (e) Octahedron shape.

scale, and L is the length of formation trajectory L. Optimizing
the transformation in (45) and applying it to formations, the
influence of scaling and rotation is squeezed out so that all the
formations can be equitably rated by measuring the position
error w.r.t the desired formation. A larger edist represents a
larger distortion from the desired formation Fd. Besides, we
also calculate the average formation similarity degree esim

esim =
1

so · L

∫
L
∥ L̂− L̂des ∥2F dl, (46)

where L̂ and L̂des are detailed in (5) and the formation
similarity error ∥ L̂ − L̂des ∥2F is proposed in Sec.IV. We
show important parameters in Table I used in the follow-
ing benchmarks, simulations, and real-world experiments. All
benchmarks are run on a desktop with an Intel i7-12700 CPU.
A. Adaptability of Graph-based Formation Definition

To demonstrate the adaptability of graph-based formation
definition in Sec.IV, we conduct numerous benchmarks com-
pared to the mainstream formation definition methods con-
cluded in [50], which are categorized based on the controlled
variables, namely position-based [51], distance-based [52] and
displacement-based methods [53].

We implement these methods in our framework and adapt
them to the dense environments by replacing the original cost

Js in (12) to generate uniform optimal formation position
sequence p̂∗

i for each robot i. For the position-based method,
we set drone 0 as the leader and predefined the absolute
relative positions for all other robots to specify the desired
formation. So its cost is Js,1 = 0. The distance-based method
optimizes the error of desired inter-agent distances

Js,2 =
∑
j∈N

(
∥pi − pj∥ −

∥∥pd
i − pd

j

∥∥)2 , (47)

where N is the number of robots, and pd
i is the desired

position vector for the ith robot. The displacement-based
method optimizes the error of desired relative displacements

Js,3 =
∑
j∈N

∥∥(pi − pj)− (pd
i − pd

j )
∥∥2 . (48)

Then we simulate four different geometric formation types
in a high-density environment of 40×15m size with randomly
generated obstacles, as shown in Fig. 7 (a). 2D and 3D
formations with irregular and regular geometries are consid-
ered, namely formation types in a regular hexagon, irregular
geometry, triangular prism, and octahedron, as shown in Fig. 7
(b)-(e). To fully compare the adaptability of these methods,
we design four different scenarios considering both scaling
and rotational variation of formation shape. The formation’s
initial and final positions may differ in scale and rotation.
Then the scenarios are corresponding categorized as ’Same
to same’, ’Rotation change’, ’Scale change’, and ’Scale &
rotation change’. We test each method 20 times for each
scenario and formation type. The corresponding results over
edist (45) and esim (46) are summarized in Table II.

Unlike our graph-based formation definition, in other meth-
ods, changing the scale and rotation of the formation is not
permitted during the flight. As shown in Table II, in the same
formation type and same scenario, the data states that our
method achieves promising results with almost the lowest esim
and edist. Moreover, our method shows the lowest error growth
rate when the scenario becomes more complicated. In the same
scenario, the distortion degrees of all methods decrease with
the change of formation type from 2D to 3D centrosymmetric
structure, which shows that the formation maintenance is also
related to the structural stability of the formation itself. In
addition, the distance-based method is invariant to the rotation
and achieves relatively acceptable performance in the ’Rota-
tion change’ scenario. Nevertheless, it can not handle size-
variant cases. Similarly, other methods are sensitive to rotation
or scaling, leading to significant performance degradation in
such scenarios. Generally speaking, our graph-based formation
definition method achieves scaling and rotational invariance.
The invariance improves the formation flight’s adaptability and
outperforms the mainstream methods in complicated scenarios.

B. Predictability of Spatial-Temporal Trajectory Optimization

To prove the predictability of formation trajectory optimiza-
tion in Sec.V, we compare our work with the virtual rigid body
(VRB) method [26], a SOTA formation control framework
that avoids obstacles using potential fields. Moreover, we also
compare the performance between the spatial-only and spatial-
temporal optimization to illustrate the importance of the time
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TABLE II
PERFORMANCE COMPARISON BETWEEN FORMATION DEFINITION METHODS

Formation type Regular hexagon Irregular shape Triangular prism Octahedron

Scenario Method
Error

edist(%) esim(%) edist(%) esim(%) edist(%) esim(%) edist(%) esim(%)

Same to same

Position 39.120 0.384 35.649 0.384 34.506 0.374 21.534 0.341
Displacement 16.231 0.172 15.023 0.159 14.952 0.125 11.645 0.153
Distance 15.489 0.164 14.295 0.131 14.009 0.118 10.285 0.113

Ours 15.443 0.161 14.287 0.128 14.012 0.119 10.281 0.112

Rotation change

Position 57.456 0.945 51.298 0.732 49.821 0.612 34.124 0.542
Displacement 39.456 0.412 31.012 0.439 29.546 0.345 23.125 0.353
Distance 27.513 0.312 22.312 0.234 21.031 0.201 14.173 0.159

Ours 19.234 0.218 17.032 0.171 15.013 0.151 12.146 0.138

Scale change

Position 59.654 1.098 58.416 0.784 53.246 0.741 37.845 0.555
Displacement 42.516 0.629 40.021 0.624 39.412 0.398 29.845 0.395
Distance 59.542 1.030 59.105 0.799 54.126 0.632 38.451 0.578

Ours 18.332 0.192 18.196 0.185 16.023 0.179 12.264 0.164

Scale & rotation change

Position 62.584 1.304 60.124 0.796 56.213 0.832 41.856 0.635
Displacement 45.627 0.755 40.194 0.631 40.168 0.423 31.288 0.504
Distance 62.154 1.250 61.059 0.804 54.317 0.684 42.138 0.684

Ours 20.231 0.243 18.345 0.204 16.851 0.183 12.357 0.175

TABLE III
PERFORMANCE COMPARISON BETWEEN FORMATION NAVIGATION METHODS

Formation type Regular hexagon

Scenario Method
Error

success rate(%) length(m) edist(%) esim(%)

Sparse

VRB [26] 75 22.978 57.962 0.984
Spatial-only 100 21.923 15.023 0.152

Spatial-temporal 100 21.756 11.240 0.138

Medium

VRB [26] 25 - - -
Spatial-only 100 22.130 14.927 0.158

Spatial-temporal 100 21.932 13.274 0.153

Dense

VRB [26] 0 - - -
Spatial-only 100 22.283 17.630 0.185

Spatial-temporal 100 22.133 15.443 0.161

(a) Random initial conditions WITHOUT ALAS 

(b) Random initial conditions WITH ALAS 

(a) Random initial conditions WITHOUT ALAS 

(b) Random initial conditions WITH ALAS 
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Fig. 8. Comparison of formation flight under improper initial conditions with
and without ALAS. (a) In the case without ALAS, the executed trajectories
(orange lines) are winding, and the formation shape (red lines) converges
slowly due to the crossed global trajectories (blue lines). (b) In the case of
ALAS, swarm reorganization makes the formation flight process orderly.

domain for formation flight. We simulate seven drones flying
in a regular hexagon from one side to another with a velocity
limit of 0.5m/s. The cluttered area is of 30× 15m size, and
three obstacle densities are tested for comparison. Parameters
are finely tuned for the best performance of each method.

The results are summarized in Table III, which indicates
that the VRB method [26] has an unsatisfactory success rate
when dealing with medium and dense obstacles. This is mainly
due to the short-term obstacle avoidance generated by multiple
interacting potential fields, which often leads to local minima
near the corridors, causing robots to become trapped and fail.
However, optimization methods consider the future movement
of formation, so they can balance the formation maintenance
and obstacle avoidance but not break the formation shape.
Therefore, optimization methods achieve better performance
and maintain the success rate.

We can also conclude that the spatial-temporal method is
much more effort-efficient, robust, and flexible when consid-
ering temporal optimization. The spatial-only method cannot
adjust the trajectory in the time domain, which leads to ex-
cessive spatial deformations of the trajectory. So the trajectory
length and the formation error esim and edist are larger in the
spatial-only method.

C. Elasticity of Swarm Reorganization Method

To validate the swarm reorganization methods in Sec.VI,
we design two benchmarks to illustrate the necessity of task
assignment and the adaptability of formation alignment.
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(a) Constrained environment WITHOUT ALAS 

(b) Constrained environment WITH ALAS 

(c) Comparison of constraint aware and similarity error with & without ALAS

Fig. 9. Comparison of formation flight in a constrained environment with and without ALAS. The light blue area represents a wall with a hole in which
swarm robots should shrink to pass through. (a) In the case without ALAS, the formation shape (red lines) is deformed to force through the area. (b) In the
case with ALAS, the formation shape actively gets smaller to pass the area. (c) Formation flight with ALAS can decrease each robot’s constraint awareness
(red dotted lines). This improvement maintains the formation shape with lower similarity error (red lines).

Firstly we design a comparison of regular hexagon forma-
tion flight under improper initial conditions with and without
ALAS to validate the necessity of formation task assignment,
as shown in Fig. 8. The blue lines represent each robot’s global
trajectory and its assigned tasks in the formation. In Fig. 8(a),
the global trajectories are partially crossed due to inappropriate
task assignment, leading to trajectory optimization conflicts.
So the executed trajectories shown by orange lines look
very disordered, and the formation shape shown by red lines
converges slowly. In Fig. 8(b), the above problems are effec-
tively resolved by considering ALAS. After one calculation of
ALAS, the swarm robots reassign formation tasks and quickly
reach a swarm consensus. Then the swarm formation smoothly
converges to the desired shape and navigates to the destination
in an energy-efficient way. The results of this test validate the
necessity of task assignment.

Then, we compare formation flight with and without ALAS
when passing through a constrained hole to display the adapt-
ability of ALAS. The results in Fig. 9(a) and Fig. 9(b) show
that the formation shape may be deformed when passing
through the corridor without ALAS. Otherwise, the case
with ALAS can adaptively adjust the formation shape to
the constrained environments. From the quantitative analysis
results in Fig. 9(c), the case with ALAS can quickly adjust the
formation scale and make the swarm reach a consensus so that
the formation similarity error and constraint awareness of each
robot decline rapidly. However, in the case without ALAS, a
higher similarity error and constraint awareness are maintained
until the swarm formation leaves the hole, which means
the swarm formation is always within the limitations of the

TABLE IV
COMPARISON BETWEEN GLOBAL PATH FINDING METHODS

Alonso-Mora’s method [46] Ours
Sampling time (s) 2.0 2.0
Desired scale (m) 3.0 3.0
Path length (m) 50.77 24.10
Min scale along the path (m) 1.88 2.98

(b) Our method (a) Alonso-Mora’s method 

Start

End

Start

End

Fig. 10. Comparison of Alonso-mora’s method and our formation-level path
finding method in the same constrained map. (a) This method samples convex
regions (purple polyhedra) in free space and connects them if the intersections
are traversable in formation. Because the convex regions must be generated
in the safe space, this method is too conservative to generate a longer path
with a smaller scale. (b) Our method directly samples the whole states of the
3D-scale formation configuration to fully explore the solution space to allow
the formation to pass through tiny obstacles.

environment so that the formation shape cannot converge. This
benchmark proves the adaptability of formation alignment.
D. Resilience of Swarm Agreement Method

To highlight the resilience of our swarm agreement method,
we compare Alonso-Mora’s global planning method [46] and
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Fig. 11. Comparison of time consumption between previous work and
proposed work [4]. We compare the performance of two methods in the 15-
robots scenario. The detailed comparison results are shown in Table V.

TABLE V
PERFORMANCE COMPARISON IN 15-DRONES SCENARIO

Previous method [4] Proposed method
Time consumption (ms) 141.7 38.2
success rate (%) 95.0 100.0
length (m) 47.387 45.282
edist (%) 12.439 11.724
esim (%) 0.147 0.139

our formation-level path finding method in a constrained map,
as shown in Fig. 10. This map comprises several blocks and
some tiny obstacles, in which swarm robots need to find
the path that allows the formation to pass safely. We test
the planners 20 times, and Table IV shows the averaged
resultant data. The results state that Alonso-Mora’s method
[46] is unsatisfactory in dealing with this scenario. Method
[46] has no penalty for scale changes of formation, which
could choose the corridor route that leads to sudden changes
in formation scale. Moreover, it can not handle tiny obstacles
and thus yield to a longer path with smaller scales, as shown
in Fig. 10(a). Unlike Alonso-Mora’s method, our formation-
level path-finding method directly samples in the augmented
3D-scale space and can better maintain the desired formation
scale. As shown in Fig. 10(b), our method generates a much
shorter path and only sacrifices a small quantity of formation
scale. Therefore, our method can handle the map with blocks
and tiny obstacles and find safe guidance for swarm formation,
which is more suitable for dense environments.
E. Efficiency of Decoupled Formation Optimization

We compare our proposed decoupled formation optimiza-
tion with the previously coupled formation optimization [4]
which directly calls formation similarity distance metric (5)
multiple times in the optimization process. To ensure a
fair comparison, we exclude the ALAS problem during this
benchmark. Both methods’ results are shown in Fig. 11.
The previous method [4] only supports small-scale swarm
formation since the computation time grows exponentially.
Thanks to the decoupled approach, the time consumption of
our proposed method for a swarm of 42 robots is not more
than 150ms, which can support the real-time application for
large-scale swarms.

We select the experimental data from the 15-drones sce-
nario, as presented in Table V. Our method not only achieves

Fig. 12. Illustration of palm-sized swarm aerial robots.

Fig. 13. Composite snapshots of a regular tetrahedron formation passing
through a corridor. The swarm rotates and compresses the formation shape
to fly through the narrow space from right to left. The blue line shows the
outline of the formation shape.

significantly shorter computation times than the previous
method, but also demonstrates better performance in terms
of formation maintenance, success rate, and trajectory length.
This validates the effective decoupling of our method, leading
to comprehensive performance improvements.

IX. REAL WORLD EXPERIMENTS AND SIMULATION

A. Real world Experiments

Our method is integrated with an autonomous distributed
aerial swarm system stated in Sec.III. The swarm shares some
information, such as trajectories, through a broadcast network,
which is the only connection among all robots. As shown in
Fig. 12, we use a palm-sized quadrotor platform [5] with local
sensors and an onboard computer. Software modules such as
estimation, perception, planning, and control are all running
onboard in real-time. The maximum number of swarm robots
during real-world experiments is 16. Three different real-world
experiments are designed to verify the proposed formation
flight system’s characteristics fully.

In the first experiment, as shown in Fig. 13, four quadrotors
in a 3-D regular tetrahedron formation manage to pass through
a narrow corridor safely. During the flight, the swarm adap-
tively rotates and compresses the formation shape in response
to environmental changes. This test proves that the scaling and
rotational invariance provides more flexibility for formation
flights in constrained spaces.

Then we design a 3-D formation shape transformation
experiment to testify the reorganization ability of our method,
as shown in Fig. 14. In Fig. 14(a), the desired formation is cube
shape, but the swarm robots navigate from the unconverged
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(a) Screenshot and Rviz diagram of the unconverged initial formation

(b) Screenshot and Rviz diagram of the cube formation

(c) Screenshot and Rviz diagram of the double-layer arrow formation

(d) Graph of similarity error over formation flight time
(e) Top view of Rviz diagram of 
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Fig. 14. Illustration of 3-D formation transformation experiment. The blue circle represents quadrotors assigned to the upper position, and the yellow circle
represents a lower position. The white line represents the outline of the formation shape. (a) Formation flight starts from unconverged initial positions and
improper initial task assignments. So swarm robots call the GRLR strategy to reorganize the formation parameters. (b) After 3 seconds, swarm robots converge
to the desired cube shape. Then swarm receives a formation transformation command and quickly calls the GRLR strategy. (c) After 3 seconds, swarm robots
converge to the desired double-arrow shape. (e) The executed trajectories (light blue lines) indicate that swarm formation is convergent most time. (d) A more
accurate numerical analysis states that similarity error decreases quickly after calling the GRLR strategy.

initial positions and improper initial task assignments. In the
beginning, the swarm robots quickly call the GRLR strategy,
then make the formation shape quickly converge to the desired
square shape, as shown in Fig. 14(b). Then, the swarm robots
receive a formation transformation command from the station
laptop and converge to a double-arrow shape, as shown in
Fig. 14(c). The top view of the navigation process is shown
in Fig. 14(e). From the light blue executed trajectories, we
can see that the flight behavior of swarm robots tends to
be consistent during time [4, 10] and time [14, 20]. Moreover,
during time [0, 4] and time [10, 14], swarm robots try to reach
a swarm consensus and frequently adjust flight behavior to
form the desired formation shape. A more accurate numerical
analysis can be seen from Fig. 14(d). When the formation
system is far from the convergence state or meets a forma-
tion transformation command, swarm robots adjust formation
alignment and task assignment by calling the GRLR strategy
at the time corresponding to the dotted line. According to the
similarity error represented by the red line, we can see that
except for the non-convergence state at the initial moment and

sudden formation transformation, the swarm formation can
maintain the desired shape while avoiding obstacles.

Finally, we conduct a 16-drone swarm formation flight
experiment outdoors. To the best of our knowledge, this is
the largest fully autonomous formation flight experiment in a
complex outdoor environment. As shown in Fig. 1, 16 drones
form a triangular queue shape and successfully traverse an
obstacle-rich area without collision. This area has many street
trees, stakes, and street lamps. This experiment proves the
robustness and large-scale ability of our proposed method. For
more details, please view the experimental video3.
B. Simulation Experiments

In order to comprehensively show the characteristics of the
proposed formation flight method, we also conduct several
simulation experiments to supplement the real-world experi-
ments. All simulation experiments are run on a desktop with
an Intel i7-12700 CPU in real-time.

Firstly, we design a formation multiple transformation sim-
ulation to testify swarm reorganization ability when coping

3https://www.youtube.com/watch?v=uEMyvPxYqmA
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Fig. 15. Formation multiple transformation simulation. The different colors of the trajectories and robots correspond to the different timestamps. We choose
four specific timestamps, and the corresponding formation shapes constitute “FAST” (http://zju-fast.com/).
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Fig. 16. Formation flight in a maze map. The formation-level global path
(blue line) avoids walls while ignoring small obstacles. Then swarm formation
follows the global path and generates local trajectories to avoid all obstacles
and maintains the formation shape.

Fig. 17. Large-scale formation flight from far to near. It can be seen from the
executed trajectories that the swarm robots still maintain the formation while
avoiding obstacles.

with emergency changes in dense environments, as shown in
Fig. 15. The different colored trajectories represent the time
flow of the formation flight from left to right. The robots
of the same color correspond to the formation shape at that
timestamp. The command of formation transformation is given
in real-time instead of being set in advance. The swarm
robots must overcome the instantaneous change of desired
formation shape and quickly converge to the new formation
state. Thanks to the excellent ability of the proposed method
to rapidly transform formation in complex environments, we
finally generated the acronym ”FAST” for our laboratory.

Then, we set up a special maze simulation environment
consisting of walls and many small obstacles such as posts and
rings. In this simulation, we aim to verify swarm agreement
ability. The formation-level global path finding method first
runs in the global map, which is a centralized method proposed
in Sec.VII-B. Then, it generates a global path that considers
the scale of formation shape, as shown by the blue lines in
Fig. 16. The blue cube shapes represent sampling points. After
that, 8 robots form a cube formation, navigate following the
global path and generate local formation trajectories using
distributed methods in Sec.V. This simulation demonstrates
that our formation flight system can better accommodate
the obstacle constraints and provide safer guidance for the
formation flight.

Finally, to test our method’s effectiveness with large-scale
irregular formations, we design a double-arrow formation
consisting of 30 drones. As depicted in Fig. 17, the swarm
successfully avoids the obstacles, and the desired formation is
well preserved during the flight.

X. CONCLUSION AND FUTURE WORK

In this paper, we analyze the core dilemmas to achieve
formation flight in dense environments in detail and accurately
summarize PAPER criteria to solve the above problems. Then
we propose a hierarchical formation flight architecture com-
posed of graph-based formation definition, distributed forma-
tion trajectory optimization, swarm reorganization method, and
swarm agreement methods. The proposed complete formation
flight system satisfies all PAPER criteria and achieves excellent
performance in maintaining cooperative formation flight in
dense environments. We design comprehensive benchmarks

http://zju-fast.com/
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in terms of adaptability, predictability, elasticity, resilience,
and efficiency to verify the outstanding performance of our
proposed method. Finally, we conduct abundant real-world ex-
periments and simulations to prove that we solve the problem
of autonomous formation flight in dense environments within
large-scale swarms.

In the future, we intend to further improve the efficiency
of distributed formation flight method through local infor-
mation propagation of sub-graphs. Furthermore, while our
work currently requires an operator to manually determine the
formation shape, the research on optimizing formation shape is
a promising area. We believe it has the potential to showcase
more intelligent and cooperative swarm behavior, ultimately
leading to an enhanced task capacity.

APPENDIX

A. The Closed-form Solution of Alignment Problem

Now we derive the closed-form solution to the formation
alignment problem. Assume after the assignment phase, we
have the current robot position lgi and desired formation qi

with optimal matches. We use ci to denote the ith term of the
alignment objective in (42). Then we have

ci = wi· ∥ lgi − (sqi + d) ∥2,
= wi (lgi − sqi − d)T (lgi − sqk − d),

= wilg
T
i lgi + s2 wi q

T
i qi − 2swi lg

T
i qi+

2swi q
T
i d− 2wilg

T
i d+ wid

Td.

(49)

We use F to denote the alignment objective in (42). Then the
objective F can be written as

F (s,d) =

n∑
i

ck,

= blg + s2 bq − 2s blg,q

+ 2s q̂Td− 2l̂g
T
d+ dTd,

(50)

where

blg =

n∑
i

wi lg
T
i lgi,

bq =

n∑
i

wi q
T
i qi,

blg,q =

n∑
i

wi lg
T
i qi,

(51)

q̂ =

n∑
i

wiqi, l̂g =

n∑
i

wipi. (52)

Since the awareness weights wi are the outputs of a softmax
function, we have the property

∑n
i wi = 1. Note that we

use this property to simplify the last term in (50). Now we
need to prove that the objective F in (50) is convex w.r.t.
scale parameter s and translation d. The Hessian matrix of
the objective is given by

H =

[
∂2F
∂s2

∂2F
∂s∂d

∂2F
∂d∂s

∂2F
∂d2

]
=

[
2bq 2q̂T

2q̂ 2I3×3

]
∈ R4×4. (53)

The eigenvalues λ of the Hessian are as follows

λ =

{
2, 2, (bq + 1)±

√
(bq + 1)2 − 4bw

}
, (54)

where

bw = bq − q̂T q̂,

=

n∑
i

wi q
T
i qi − (

n∑
i

wi qi)
T (

n∑
i

wi qi).
(55)

We need to prove that (55) is non-negative, then all the
eigenvalues in (54) will be non-negative, thus the Hessian is
semi-positive definite, the objective in (50) will be convex
w.r.t. variables s and d.

For the non-negative weights wi, we have the property∑
i wi = 1 from the softmax function, so we construct a

convex function h(x) = xTx, and apply weighted Jensen’s
Inequality. We get

w1 h(q1) + · · ·+ wn h(qn) ≥ h(w1q1 + · · ·+ wnqn), (56)

⇒
n∑
i

wi q
T
i qi ≥ (

n∑
i

wi qi)
T (

n∑
i

wi qi). (57)

Thus (55) is nonnegative, the objective F is convex. Then we
can obtain the closed-form solution of this alignment problem
by solving{

∂F/∂s = 2s bq − 2blg,q + 2q̂Td = 0,

∂F/∂d = 2s q̂− 2l̂g + d = 0.
(58)

The close-form solution of problem (42) is given by

s∗ =
blg,q − l̂g

T
q̂

bq − q̂T q̂
,

d∗ = l̂g − s∗ q̂.
(59)
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