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Abstract—In robotic deformable object manipulation (DOM)
applications, constraints arise commonly from environments
and task-specific requirements. Enabling DOM with constraints
is therefore crucial for its deployment in practice. However,
dealing with constraints turns out to be challenging due to
many inherent factors such as inaccessible deformation models
of deformable objects (DOs) and varying environmental setups.
This article presents a systematic manipulation framework for
DOM subject to constraints by proposing a novel path set
planning and tracking scheme. First, constrained DOM tasks
are formulated into a versatile optimization formalism which
enables dynamic constraint imposition. Because of the lack of
the local optimization objective and high state dimensionality,
the formulated problem is not analytically solvable. To address
this, planning of the path set, which collects paths of DO feedback
points, is proposed subsequently to offer feasible path and motion
references for DO in constrained setups. Both theoretical analyses
and computationally efficient algorithmic implementation of
path set planning are discussed. Lastly, a control architecture
combining path set tracking and constraint handling is designed
for task execution. The effectiveness of our methods is validated
in a variety of DOM tasks with constrained experimental settings.

Index Terms—Dexterous manipulation, manipulation planning,
motion and path planning, deformable objects.

I. INTRODUCTION

DEFORMABLE object manipulation (DOM) yields a fun-
damental branch of robotic manipulation with broad do-

mestic and industrial applications. Though significant progress
has been achieved [1]-[4], autonomous DOM is far from ready
for deployment in common real-life tasks. Aside from long-
standing challenges such as unattainable models of deformable
objects (DOs) and unstructured task procedures [5], [6], one
core limitation hindering DOM from practical usage is that
existing methodologies are unable to conduct tasks subject to
constraints well (see Fig. 1). Constraints are quite ubiquitous
in DOM for the common presence of constrained environments
and task-specific setups. For instance, avoidance of collision
with environment obstacles [7], [8] and regulation of DO over-
deformation [3], [4], [9] impose various forms of constraints.
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Fig. 1. Piece of cloth is intended to be led by the robot to pass the narrow
passage 1 or 2 to reach the desired position. Which passage (1 is closer but
narrower) to pass and how to pass it are unknown. Path set planning aims to
find an appropriate spatial path for a DO in constrained environments.

Given the inherent complexity of deformation modeling, con-
trol, and interaction in most DOM tasks, performing them with
constraints is nontrivial.

Compared to rigid object manipulation, constraints in DOM
can usually be harder to be managed. Firstly, the environments
and task procedures in DOM are usually unstructured, which
makes interactions hardly predictable and therefore results in
a high collision risk. Secondly, DOs’ time-varying modalities
of shape and size dramatically increase the task indeterminacy
and often require extra regulation. In consequence, the capabil-
ity to cope with constraints, particularly the constraints related
to various interactions and DOs’ deformation, is crucial for the
utility and applicability of newly developed DOM methods.
Nevertheless, conducting DOM in the presence of constraints
is difficult and remains insufficiently studied to date. Previous
works focused more on the deformation control problem and
usually assumed unconstrained setups [1]-[3], [10]-[13]. Even
if some constraints were involved, they would rely on explicit
deformation modeling or simulation to determine feasible DO
states and robot motions prior to manipulation, leading to DO-
specific and task-specific methods with quite high complexity
[7], [14], [15]. Currently, a general approach able to effectively
handle constraints in DOM is still absent.

This article investigates DOM with constraints and proposes
a novel path set planning and tracking pipeline. As illustrated
in Fig. 2, constraint regulation, path set planning and tracking
modules in the proposed manipulation framework constitute
new additions to conventional pure control approaches [1]-
[4]. Taking into account representative constraints, DOM tasks
with constraints are first formulated into a versatile optimiza-
tion formalism which enables dynamic constraint imposition.
This imposition mechanism is implemented through constraint
regulation in order to reinforce the task feasibility under
constraints. With constraints, the formulated problem is not

ar
X

iv
:2

40
2.

11
42

9v
1 

 [
cs

.R
O

] 
 1

8 
Fe

b 
20

24

mailto:huangjing@mae.cuhk.edu.hk
mailto:xychu@mae.cuhk.edu.hk
mailto:maxin1988maxin@gmail.com
mailto:samuelau@cuhk.edu.hk
mailto:samuelau@cuhk.edu.hk


2

Fig. 2. Block diagram illustrating the pipeline of the proposed manipulation
framework for DOM with constraints.

directly solvable by pure control approaches, necessitating the
introduction of planning methodologies. There are no unified
and easily tractable motion/path planning methods in DOM. To
address this, path set planning for the visual feedback vector is
presented in this article. The path set collects feedback points’
paths and encodes essential path and motion references for the
DO. Equally importantly, it is efficiently obtainable based on
the modified optimal planners that involve passage encoding
and selection without relying on explicit deformation model-
ing or simulation. Both theoretical analyses and algorithmic
implementation for path set planning are detailed. Finally, the
control architecture subsumes constraint regulation, path set
tracking, and local minimum handling to execute the task in
a path set tracking manner. To sum up, this scheme integrates
path planning into constrained DOM efficiently via a generic
task-level planning and local-level control paradigm.

A. Related Work

The related work of this article mainly includes manipu-
lation with constraints, deformation control, and motion/path
planning for DOM. Manipulation with constraints is a classical
topic in robotics. Early works dealt with constraints by exploit-
ing the redundancy in robot degree of freedom (DOF) with
the task-priority framework [16], [17], where constraints were
imposed as secondary tasks, e.g., configuration singularities
[18], joint limits [19], [20], and workspace obstacles [21].
Based on a hierarchy of quadratic programs, the framework
incorporating inequalities was proposed and elaborated in [22],
[23], but secondary tasks were still satisfied in the least-square
sense. Task sequencing was introduced in [24], [25] which
separated the global task into several subtasks and dynamically
activated subtasks for constraint imposition.

Deformation control has been extensively studied mostly
in unconstrained settings [5], [6]. Model-based methods were
broadly used in early studies, where the DO was endowed
with an explicit physical model [7], [26]-[28]. While precise
deformation simulation is achievable using finite element
methods (FEMs) [10], [29], the cumbrous tuning and high
computational cost inhibit its real-time application. Model-free
approaches have thus become much more prevalent recently.
In general, the model-free property is achieved through nu-
merical methods [11], [12], or the adoption of generic model
assumptions applicable to most DOs [1]-[4], [13]. Numerical
methods approximate the unknown map from robot motions to
deformation measurements using techniques like fast Gaussian

process regression [13] and Broyden’s method [30]. Once an
approximate map is available, the deformation control will
take feedback control such as passivity-based control [11],
and direct error-driven control [12]. Commonly-used generic
model assumptions include the affine deformation model [1],
energy-based formulation of DOs [2], and diminishing rigidity
Jacobian [3], [4], many of which are embedded into an adap-
tive control framework. Recent years have seen an increasing
number of machine learning techniques applied to DOM,
which can also be classified as model-free approaches. Some
works use deep neural networks to learn the deformation mod-
els [31]-[34]. Rather than separately addressing the unknown
models, the action policy of robots is more and more often
directly learned by reinforcement learning [35]-[38]. Although
learning-based approaches now are restricted to the specific
trained tasks, they are promising due to their potential to
combine both model prior and data [6].

The presence of constraints makes DOM far more difficult
and DOM with constraints has not been sufficiently studied to
date. Environmental collision and the elastic limit were taken
into account when planning paths for elastic objects [7] and
elastic rods [15], where an explicit geometrical representation
of DOs and the elasticity model were utilized. When manipu-
lating deformable linear objects (DLOs), the stretching range
was constrained in [14]. In [32], the manipulation plan of the
DO (e.g., a rope) was learned from raw images by a generative
adversarial network (GAN) wherein environment obstacles
were processed by learning feasible DO paths. Avoidance of
excessive stretching and collision was implemented by null-
space projection based on the assessed deformation model in
[3], [4]. In existing work, constraint imposition highly relies
on the adopted manipulation framework. Specifically, in DOM
planning phase, constraints are validity check conditions. In
DOM control, constraints are resolved with the classical task-
priority strategy in manipulator control without a higher level
of integration into the holistic task.

Manipulation planning has been investigated in many DOM
tasks. A survey on model-based DOM planning can be found
in [39]. Most existing works are application-specific, e.g.,
manipulation of DLOs, planar objects, and clothes [14], [40]-
[42]. Some studies focus on elementary motion paradigms
such as folding and bending [43]. In general, only standard
planning algorithms are utilized in these works to find a path
to the target state characterized by extracted DO geometrical
or topological properties. Then the robot follows the planned
path by using the prespecified actuating relation between the
robot and DO. More relevant to our proposed work is DO path
planning where a feasible path is searched for to connect DO’s
initial and target configurations in complex environments. In
such problems, sampling-based approaches are employed [39].
First, random DO configurations are sampled based on the
preset deformation model assumption, whose feasibility is later
examined by criteria such as collision, internal energy, and
geometric properties. A nominal feasible path is then found for
robot execution [44], [45]. The main drawback of this avenue
is that sample generation and examination are complicated
and rely on computationally costly simulation. Moreover, it is
not resilient to model inaccuracy and actuation error since no
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feedback is exploited. To alleviate these, DO state prediction,
motion planning, and control were combined in an interleaved
way in [8] with many task specifications. Recently, planning
in the latent space of the learned DO dynamics model has
been more and more explored [46], [47].

B. Contributions

To endow robots with the crucial capability to conduct DOM
under constraints, this article provides an efficient and general
approach to combining path planning and control. Specifically,
the following key contributions are made:

1) A novel manipulation framework for DOM with con-
straints based on path set planning and tracking. In this
framework, dynamic constraint imposition is employed in
the task formulation. The strategy to determine constraint
imposition states is also developed.

2) Comprehensive analyses of the formulated path set plan-
ning problem for the visual feedback vector in the feature
deformation description method. Novel, general, and ef-
ficient algorithms for path set generation compatible with
existing optimal planners are proposed.

3) A holistic control architecture integrating constraint reg-
ulation, path set tracking, and local minimum resolution
to accomplish the constrained manipulation task in a path
set tracking manner.

The remainder of this article is structured as follows. Section
II formulates DOM tasks with constraints after specifying typ-
ical constraints and task setups. Section III details the concept
and key properties of path sets for feedback vectors as well
as path planning preparations. Section IV proposes algorithms
for path set generation. Section V introduces path set tracking
control in DOM execution. Section VI presents experimental
results. Finally, Section VII concludes this article.

II. FORMULATION OF DOM TASKS WITH CONSTRAINTS

In this section, we first specify representative constraints in
DOM considered in this work and introduce the task setups.
Then the task formulation with dynamic constraint imposition
is given in an optimization formalism.

A. Constraint Specification

1) DO-Obstacle Collision Constraint: Restricted and con-
fined workspace is ubiquitous in manipulative tasks. Unless
stated otherwise, the constraint of being collision-free between
the DO and environment is imposed by default. Suppose O is
the set of DO points pO ∈ R3. E is an obstacle composed of
points pE ∈ R3. The DO distance to E takes the minimum
among all the point distances, i.e.,

d(O, E) = min
pO∈O,pE∈E

∥pO − pE∥2. (1)

The repulsive potential is usually calculated as PE(O) =
kE

2d2(O,E) , kE ∈ R+. The collision constraint requires

c1 : d(O, E) > 0. (2)

PE(O) needs to be smaller than a threshold.

2) Robot-Obstacle Collision Constraint: For the interaction
between the robot and obstacles, only collision of the end-
effector r ∈ R3 is considered. Robot’s distance to the obstacle
d(r, E) and the repulsive potential PE(r) are defined analo-
gously as above. Thus the obstacle avoidance constraint for
the robot is

c2 : d(r, E) > 0. (3)

There usually exists rigid fixture between DO and end-effector,
and d(O, E) > 0 naturally guarantees d(r, E) > 0. However, to
accurately and safely control the robot and for analysis clarity,
the distinction between them is preferable.

3) DO Shape Constraint: A distinctive class of constraints
in DOM originate from the DO. To depict deformation, we
consider the classical discrete description method. A small
number of key feedback points are exploited, based on which
deformation features are constructed to extract deformation
properties of interest. Specifically, K feedback points psi ∈
R3 are picked on the DO with associated image projections
si ∈ R2. The deformation feature y ∈ Rm is structured by

y = F(S) (4)

where S = [sT1 sT2 ... sTK ]T ∈ R2K is the visual feedback
vector. F(·) : R2K 7→ Rm for m ≤ 2K is the feature
extraction function. While features are versatile in deformation
description, an underlying risk is undesired over-deformation,
e.g., over-compression or over-stretch [8], [9], which may
cause severe DO damages such as plastic deformation and
pathological damages of living tissues [48]. To avoid this,
the DO shape constraint is introduced to manage vulnerable
shape characteristics h ∈ Rh not directly controlled in y. h
is constrained in a range

c3 : h ≤ h ≤ h. (5)

h is assumed to be given by h = H(S) also from S.

B. Task Formulation With Dynamic Constraint Imposition

The goal of a DOM task is typically framed as manipulating
the DO to achieve the desired feature yd specifying the defor-
mation target. Let Sd be the corresponding desired feedback
vector for yd. Note Sd need not be uniquely determined by
yd = F(Sd) since F(·) can be non-injective. For instance,
y may partially rely on the relative distribution of S, e.g.,
the centroid of S. We assume y is at least complete, which
implies that there exists some feedback point in S with a
determinate target position. The completeness of y is required
in the planning phase to eliminate the indeterminacy of Sd.
In manipulation, the end-effector and the DO are connected
rigidly at a fixed grasping position so that robot motions ∆r
are seamlessly transferred to the DO [9]. With the visual feed-
back, the manipulator is controlled kinematically by specifying
the end-effector velocity ṙ.

Consider a DOM task subject to the constraints specified
above. In practice, to efficiently accomplish a task, some con-
straints need not be strictly enforced throughout the entire task.
One motivating example is shown in Fig. 3. To move the DO
(e.g. a sponge strip) into the constrained target region, over-
compression of the DO is performed first. When passing the
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Fig. 3. Robot needs to manipulate the DO to pass through a narrow passage.
In this task, over-compression and collision with the environment have a high
probability to happen.

narrow passage, the DO can contact the wall easily. However,
such temporary constraint violations should be allowed for
better task feasibility and efficiency. Therefore, appropriate
constraint regulation is necessary to achieve dynamic con-
straint activation. To this end, constraints involved in the task
are indexed from 1 to l as ci, i = 1, 2, ..., l. A binary activation
vector a = [a1 a2 ... al]

T ∈ {0, 1}l with ai = 1 if and only if
ci is active encodes the constraint activation state.

For releasable constraints in ci, the binary classification of
ai is conducted according to task conditions. Suppose T ∈
R+ is the total task time and all the respected constraints are
formulated as an equality ci = 0 in form. Then a general
formalism of DOM tasks with constraints is

min ∥y(T )− yd∥2

s. t. c(t)Ta(t) = 0, 0 ≤ t ≤ T
(6)

where the constraint vector c ∈ Rl aggregates all the indexed
constraints. For a feasible task, the final norm of the error term
ey(t) = y(t)−yd can fall to zero, i.e., min ∥y(T )−yd∥2 = 0.
So the problem to be solved is finding a robot motion policy
of ṙ(t) that achieves the minimum error norm while fulfills
the active constraints in c(t) at each time step t.

The constraints introduced in the last subsection are consid-
ered in task formulation. To get a concise form consistent with
(6) and facilitate dynamic constraint imposition, the following
modifications are applied. First, constraints are appointed as
c1 to c3 in order. ci = 0 formally implies no violation of ci.
Otherwise, ci = 1. Second, the indicators ai are specified. For
safety reasons, the end-effector collision constraint (c2) always
remains active, so a2 ≡ 1, while the DO-obstacle collision
constraint and DO shape constraint (c1 and c3) are allowed
to be relaxed on some conditions to ensure the feasibility and
efficiency of task execution. Therefore,

a = [a1 1 a3]
T. (7)

Incorporating specifications of c and a above, the task in
the form of (6) is

min ∥y(T )− yd∥2

s. t. c1a1 + c2 + c3a3 = 0.
(8)

This formulation enables dynamic constraint imposition, mak-
ing it more versatile and practical, but it is hardly solvable for

1) There is no local optimization objective available relat-
ing the current feature y(t) and the desired yd which
meanwhile meets the constraints in c(t);

2) The objective function and constraints are formulated by
different state variables.

Algorithm 1: RRT∗ for An Individual Feedback Point.

1 V ← {si,init}; E ← ∅; δ ← kδd(si, C);
2 for i = 1, 2, ..., N do
3 srand ← SampleFree(δ);
4 snearest ← Nearest(G = (V,E), srand);
5 snew ← Steer(snearest, srand);
6 if ObstacleFree(snearest, snew) then
7 Snear ← Near(G = (V,E), snew, rnear);
8 V ← V ∪ {snew};
9 smin ← GetParent(Snear, snew);

10 E ← E ∪ {(smin, snew)};
11 Rewire(G = (V,E), Snear, smin, snew);

12 return G = (V,E);

As such, pure control approaches become inapplicable. Re-
lying on explicit deformation modeling or simulation will be
unscalable, sophisticated, and computationally costly. In this
article, path planning is resorted to for providing both local
motion reference and global path reference for the DO.

III. PATH SET OF VISUAL FEEDBACK VECTOR IN DOM
In order to establish the relationship between intermediate

S(t),y(t) and their final states, path planning is imperative to
find reasonable reference paths for si. This helps to alleviate
the task indeterminacy and to figure out feasible DO motions
in complex environments. This section elaborates on the con-
cept of path set for the feedback vector S, related properties,
and preparations for path set planning.

A. Optimal Path Planning for An Individual Feedback Point

We first briefly discuss optimal path planning for an individ-
ual feedback point in the DOM context. Suppose point si in a
complete deformation feature vector y has the definite target
region Sgoal, a feasible path from its initial position si,init
to Sgoal optimizing a user-defined cost function is obtainable
using optimal planers such as sampling-based algorithms [49]-
[51]. Any optimal planner can be utilized for single point path
planning and RRT∗ (optimal rapidly-exploring random tree) is
taken as the subroutine in our implementation.

Constraints in (8) cannot be enforced at the path planning
stage of a single point. One crucial quantity in planning is the
minimum clearance between the path and obstacles. In par-
ticular, sampling is restricted in the δ-interior of the obstacle-
free configuration space Xfree, denoted by intδ(Xfree) with
intδ(Xfree) = {x ∈ Xfree | Bx,δ ⊆ Xfree} and Bx,δ being the
closed ball of radius δ centered at x. A small δ may cause DO’s
percolation of obstacles when following the planned path. A
large δ is advantageous since more free space is provided for
DO motion. But prior to the task, determining a feasible δ as
large as possible in a confined workspace will take multiple
trials. The distance between si and DO boundary C is

d(si, C) = min
sj∈C
∥si − sj∥2. (9)

δ > d(si, C) is merely necessary for obstacle avoidance for
the undeformed DO, which is not necessarily satisfiable in
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Fig. 4. Path 1 is optimal under classical path optimization criterion, e.g.,
path length and execution time, but it admits a quite narrow passage (E4, E5).
Path 2 better trades off the path length and workspace along the path.

planning. δ is now assigned as kδd(si, C) for kδ > 1 and will
be further refined. Algorithm 1 shows the RRT∗-based optimal
path planning for an individual feedback point. The sampling
space is restricted to intδ(Xfree) in function SampleFree(δ)
and the rest follows the same procedure in [49], [50], where
the cost associated with a node adopts the shortest path length
to the root si,init.

B. Passage-Aware Path Planning

Since determining the large feasible δ-interior for planning
is hard in constrained environments, we propose to exploit
passage passing states in path planning, which allows a suit-
able path to be found even with a small δ. Denote workspace
obstacles as Ei(i = 1, ...,M). For any pair Ei, Ej (1 ≤ i <
j ≤M ), it forms a generic passage (Ei, Ej). For simplicity, the
passage is represented by the obstacle centroid segment with
obstacle dimensions extruded. A total of (M2 ) such passages
exist, but not all of them correspond to physically valid ones.
Using the visibility condition [52], (Ei, Ej) is classified as a
valid passage if the passage segment is collision-free with
other obstacles. Formally, a path in Xfree is a continuous
function σ : [0, 1] 7→ Rdim(X ) with finite length in Rdim(X ).
To handle constrained environments, path’s passage passing
information is encoded. For a path node σ(τ) (τ ∈ [0, 1] is
given by path length parameterization), the passages passed
by σ from the start σ(0) to σ(τ) are stored in order as a
list Pσ(τ) = {(Ei, Ej), ..., (Ep, Eq)}. Pσ(τ, i) indexes the i-th
passage in Pσ(τ). ∥(Ei, Ej)∥2 returns the passage width and
min ∥Pσ(τ)∥2 returns the minimum passage width if Pσ(τ) is
nonempty. In planning, passage passing is updated every time
a new edge is checked as Algorithm 2.

The aim of encoding passages is to select the path with
sufficient workspace while being optimal under the chosen
criterion. Nevertheless, these two objectives often conflict. In
Fig. 4, two paths connect the same start and goal positions but
pass different passages. Path 1 will be considered better under
classical path optimization criteria such as the path length.
However, it is also associated with narrower workspace, which
is not desirable for DOM in constrained environments. As
aforementioned, determining a large δ-interior in the path
planning phase of a single point on DO is difficult. Instead,
workspace traversed by a single path is more accessible. The

Algorithm 2: Update A New Node Cost in (10).

1 Input an snear ∈ Snear and snew;
2 L(snew)← snear.cost ∗ snear.min passage width+
∥l(snear, snew)∥2;

3 snew.min passage width←
snear.min passage width;

4 foreach valid passage (Ei, Ej) do
5 if l(snear, snew) passes (Ei, Ej) AND

∥(Ei, Ej)∥2 < snew.min passage width then
6 snew.min passage width← ∥(Ei, Ej)∥2;

7 snew.cost← L(snew)/snew.min passage width;

goal is to pick the path best trading off the path length cost
and narrow passages it goes through. To this aim, a composite
cost function is defined as

fσ = Len(σ)/fP (σ) (10)

where Len(σ) returns the path length. fP (σ) can be taken as
min ∥Pσ(1)∥2 to reflect the preference for wider passages. In
case of no traversed passages (Pσ(1) = ∅), a large value εP
is assigned to fP for each path node.

To find the optimal path depicted in (10), the node cost is
computed as (10) in Algorithm 1 subroutines GetParent()
and Rewire(). Since (10) is monotonic in terms of path
concatenation and bounded, sampling-based optimal planners
are asymptotically optimal to attain the optimal path [50]. In
practice, small Len(σ) and fP (σ) can occur concurrently. To
further ensure exclusion of overly narrow passages, fP (σ) is
truncated downwards. In sum, fP (σ) is

fP (σ) =


εP Pσ(1) = ∅
εP min ∥Pσ(1)∥2 ≤ fP
min ∥Pσ(1)∥2 otherwise.

(11)

εP is a small positive value satisfying 0 < εP ≪ f
P

. f
P

can
be interpreted as the minimum passage width requirement for
the ongoing DOM task. In this way, paths passing passages
with widths smaller than f

P
will be rejected.

C. Prerequisites for Visual Feedback Vector Path Set Planning

Optimal path planning and its passage-aware variant for a
single DO point deal with only one si ∈ S. This subsection
concentrates on some crucial preparations for the development
of the final path set planning method: the determination of
S target Sd and the feasibility requirement for a path set.
Path set planning for visual feedback vector aims to generate
coordinated feasible paths for all separated points in S simul-
taneously. Despite the apparent similarity, it is different from
typical multi-robot path planning [53]-[56] because points in
S are physically related rather than independent agents.

1) Target Determination for Visual Feedback Vector: A
prerequisite of path planning is a determinate target position.
Though the completeness requirement of y helps to restrict
possible candidates, yd does not suffice to define Sd uniquely
if infinitely many Sd satisfy yd = F(Sd) (see Fig. 24 for
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an example). Extra criteria thus need to be introduced to
figure out an appropriate Sd. In such cases, we formulate Sd

determination as the following optimization problem

arg min
S
J (S0, S)

s. t. F(S) = yd

c(T )T13 = 0

(12)

where J (·) ≥ 0 is the evaluation function for S candidates
which takes both obstacle avoidance and manipulation cost
into account. S0 is the initial value of S. The all-ones vector
13 indicates that all constraints are imposed in the target state.
The specific form of J (·) and solution details are provided in
Appendix A. In the following development, we will assume
that Sd is available and a pivot sp ∈ S is identified to be used
in single point path planning. The pivot can be seen as the
point in S most influential by criteria such as feature Jacobian
Frobenius norm or displacement in the task.

2) Feasibility Requirement for Path Set: This part discusses
the feasibility requirement for path sets in manipulation from
S0 to Sd. One fundamental feasibility requirement for paths
in the path set is related to path homotopy. Two collision-
free/feasible paths σ1, σ2 with the same initial and final
positions are path homotopic if there exists a continuous
function called homotopy ψ : [0, 1] 7→ Σfree, where Σfree is
the set of paths in Xfree, such that ψ(0) = σ1, ψ(1) = σ2 and
ψ(x) ∈ Σfree, ∀x ∈ [0, 1]. Intuitively, homotopic paths can
be continuously transferred to one another in Xfree [58]. Since
feedback points are picked on the DO, their paths are path
homotopic-like, which is simply verified by noticing that si
can always exchange their positions within the space occupied
by the DO (thus in Xfree) at any moment.

Two paths share identical initial and final positions in the
homotopic relationship. For this reason, a straight-line path is
first employed to construct such point paths. Suppose σi is
the path of si from s0,i to sd,i. σi,j|d is the straight-line path
from sd,i to sd,j , which connects the termini of σi and σj
with the segment in between and satisfies σi,j|d(0) = σi(1).
σi,j|d ∈ Σfree commonly holds since such path connection is
a local operation on the path. Similarly, the straight-line path
σi,j|0 connects s0,i and s0,j . For path σ1 and σ2 satisfying
σ1(1) = σ2(0), their concatenated path can be defined with
path length parametrization as

σ1 ∗ σ2(τ) =

{
σ1(τ/r) τ ∈ [0, r],

σ2((τ − r)/(1− r)) τ ∈ (r, 1].
(13)

r is the ratio between σ1 length and the concatenated σ1 ∗ σ2
length. By the associativity of path concatenation, the concate-
nated path of σj,i|0, σi, and σi,j|d denoted by σ′

i,j is

σ′
i,j = σj,i|0 ∗ σi ∗ σi,j|d. (14)

In this work, σi and σj are said to be path homotopic-like if
σ′
i,j and σj are path homotopic. It is easy to see that σ′

j,i and
σi are path homotopic will also lead to σi and σj are path
homotopic-like, simply implying that the path homotopic-like
relation is symmetric (see Appendix B for proof). Symmetry
makes the following homotopy properties and path transfer
operations between any two point paths to be unordered. Let

Fig. 5. Path 1 and 2 are path homotopic. The composed path set (suppose
paths are processed to have the same path ends) is infeasible. On the right,
the segment between point 1 and 2 collides with the obstacle. Their path set
is not strong homotopic-like, but the shown pose is feasible in DOM.

ΣS be the set consisting of paths of points si ∈ S. For the
path set ΣS , we say it is set homotopic-like if any two paths
in ΣS are path homotopic-like.
ΣS is required to be set homotopic-like. While in Cartesian

space, this is insufficient to guarantee the manipulation feasi-
bility of the DO. See Fig. 5 for an example where a homotopic-
like path set is infeasible. To fix this, we further need ΣS to
be strong homotopic-like. For homotopic paths σ1, σ2, their
straight-line homotopy has the following form

ψ(x, τ) = (1− x)σ1(τ) + xσ2(τ), x, τ ∈ [0, 1]. (15)

If the straight-line homotopy ψ(x, τ) always lies in Σfree,
σ1, σ2 are said to be strong path homotopic, which infers
that the hypersurface swept by ψ(x, τ) is collision-free [59].
Similarly to above, σi and σj are strong path homotopic-like
if σ′

i,j (σ
′
j,i) and σj (σi) are strong path homotopic. For a set

of feasible paths, the corresponding definition is given as
Definition 1: (Strong homotopic-like path set) A set of

feasible paths ΣS is said to be strong homotopic-like if any
two paths in ΣS are strong path homotopic-like.

Such a homotopy relationship is also utilized similarly in
path analysis of unmanned aerial vehicles (UAVs) as uniform
visibility deformation [60], [61], originated from the concept
of visibility domain [62], but has not been applied to DOM.
By convention, both the empty set and singleton are strong
homotopic-like. In practice, being strong homotopic-like repre-
sents a strong condition for path set feasibility. More precisely,
it is sufficient but not necessary for ΣS to be feasible in
DOM. For instance, Fig. 5 demonstrates a case where ΣS is
not strong homotopic-like but can be feasible (also see [63]).
Physically, the essential condition for a path set to be feasible
can be stated as, for any two paths (with end concatenation)
in the set, there exists a homotopy that locates in the space
traversed by the DO, but this is difficult to verify a priori as the
DO-traversed space is unavailable and hard to predict in the
planning phase. In this article, our discussion is restricted to
the strong homotopic-like path set with simplicity, verifiability,
and fairly good generality.

IV. PATH SET GENERATION BASED ON PATH TRANSFER

For the goal of generating a feasible ΣS depicted above,
a novel method built upon translation among feedback point
paths and local path deformation is proposed in this section.
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Fig. 6. The pivot is the angle vertex and its path is designated by the solid green line. The transferred paths are designated by dashed green lines, which
connect S0 and Sd,ref . The final paths after truncation and concatenation are shown on the left.

The basic procedure for occasions where prespecified transfer
assumptions hold is first elaborated. After that, path transfer
in more general constrained conditions is presented. The chief
advantages of the methods consist in 1) efficiency based on
optimal path planning for the pivot, 2) guarantee of the strong
homotopic-like property by construction.

A. Basic Procedure

To illustrate the basic procedure of path set generation based
on path transfer, we first address the simple situation where
sufficient workspace is available. There are three steps: 1)
Reference pivot path generation, 2) Path transfer within S, and
3) Postprocessing. The first step plans a path σp for the pivot
sp using optimal planners, which later will serve as the base
path. A large δ set in the sampling space intδ(Xfree) benefits
the validity of transferred paths. But a too large δ will result in
a smaller sampling space and may prohibit finding a feasible
path. To get an appropriate δ, we consider the largest distance
to sp among points in S, i.e., Θ(S, sp) = maxsi∈S(∥si−sp∥2).
In the algorithm, we can further take the maximum between
Θ(S0, s0,p) and Θ(Sd, sd,p), i.e.,

δp = max(Θ(S0, s0,p), Θ(Sd, sd,p)). (16)

It is possible that sampling in intδp(Xfree) makes the
planner unable to find a feasible path for sp, because δp may
be an overlarge clearance and the path search fails in a shrunk
interior of Xfree. For simplicity and clarity in illustrating the
basic procedure, the following transfer assumptions are made
in this part:

1) A feasible path of sp can be found in intδp(Xfree).
2) Sd,ref is a feasible configuration.

Sd,ref is the configuration of S directly transferred by the
pivot motion v = sd,p − s0,p, i.e., Sd,ref = {sd,ref | sd,ref =
s0,i+v, s0,i ∈ S0}. Note σp is planned without passage encod-
ing when the transfer assumptions are met since intδp(Xfree)
guarantees sufficient workspace for path sets.

In the second step, σp is transferred to other points in S to
form a strong homotopic-like path set. If a path σ is transferred
by a vector vt ∈ Rdim(X ), the new path is determined as
σt(τ) = σ(τ) + vt. For each point in S, there is a path σt,i
transferred from σp given by

σt,i = σp + si − sp. (17)

Algorithm 3: Path Set Generation Based on Forward
Path Transfer.

1 ΣS ← ∅;
2 sp, Sd,ref , Sd ← Algorithm 5;
3 δp ← max(Θ(S0, s0,p), Θ(Sd, sd,p));
4 σp ← RRT∗ in Algorithm 1;
5 foreach si ∈ S0 do
6 σt,i ← σp + si − s0,p;

// search path σt,i and return smin,i

7 smin,i ← SearchByDistance(σi, sd,i, Li);
8 σi ← σt,i ∗ l(smin,i, sd,i);
9 ΣS ← ΣS ∪ {σi};

10 return ΣS ;

The resultant path set is denoted as Σt(S, sp, σp) with triple
arguments. Clearly, Σt(S, sp, σp) is strong homotopic-like
since σp ⊆ intδp(Xfree) and ∥si − sp∥2 ≤ δp, ∀ si ∈ S,
which implies that all the transferred paths are feasible and
moreover, the straight-line homotopy between paths lies in
intδp(Xfree) since paths are located within a tunnel centered
at σp. When performing path transfer, there exist two different
options since both Σt(S0, s0,p, σp) and Σt(Sd, sd,p, σp) can be
adopted. Considering the chronological order of S0 and Sd, if
Σt(S0, s0,p, σp) is utilized, we call the transfer forward path
transfer. Correspondingly, backward path transfer refers to the
transfer of Σt(Sd, sd,p, σp).

The transferred path set has not yet connected S0 and Sd

because of their different point distributions. In postprocessing
(the third step), local path concatenation is conducted to
complete the transferred paths. The strong homotopic-like
property can be preserved in general due to the spatial locality
of postprocessing. In forward path transfer, the destination of
Σt(S0, s0,p, σp) is Sd,ref with identical point distribution of
S0. From Sd,ref to Sd, point distribution deforms and various
path completion methods exist, e.g., straight-line concatenation
and minimum distance projection to the transferred path. In
this work, the points on σt,i with distance equal to the segment
length Li = ∥sd,i−sref,i∥2 to sd,i are found as the connection
position candidates

SL,i = {sl ∈ σt,i | ∥sd,i − sl∥2 = Li} (18)

where sref,i = σt,i(1) ∈ SL,i as a trivial member. The point
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Fig. 7. Directly planned pivot path σp may be not beneficial for generating
feasible transferred paths. It is repositioned to benefit the path transfer process.
Dashed lines represent directly transferred paths.

in SL,i with the shortest accumulated path length is selected
as smin,i. To complete the path to sd,i, the portion of σt,i from
smin,i to its end σt,i(1) is truncated and the left path, denoted
as σ′

t,i, is reconnected to sd,i with a straight-line path, i.e.,
σi = σ′

t,i ∗ l(smin,i, sd,i) where l(·) is the straight-line path
between two points, which is generally feasible. A similar
procedure also applies to backward path transfer.

See Fig. 6 for an example and conceptual illustration of
the basic forward path transfer procedure and Algorithm 3 for
the algorithmic implementation. From an ideal path tracking
perspective, the backward transferred path set ΣS(Sd, sd,p, σp)
usually has inferior practicality since deformation (local path
concatenation part) needs to be accomplished first when there
is much manipulation (transferred path part) to be finished.
Therefore, the forward path transfer is selected. When the
transfer assumptions hold, the probabilistic completeness of
the path set planning method using the basic procedure is
guaranteed by the algorithm for pivot path planning. The path
set feasibility is ensured with the path set optimality reflected
by the pivot path optimality.

B. Path Set Generation in General Constrained Conditions

In fact, transfer assumptions impose rather strict restrictions.
In general constrained conditions, they may easily fail to hold.
Then, the objective of pivot path planning lies in finding a path
σp with a large distance to obstacles while being optimal under
the chosen criterion. To achieve this, an exhaustive trial of the
interior clearance could be performed by decreasing it from
δp to zero in a binary-search way, which requires invoking
the path planning routine multiple times. Furthermore, as σp
is no longer necessarily in intδp(Xfree), direct path transfer
in (17) will lead to infeasible path segments if the transferred
point σp(τ) + si − sp is in collision. Also, postprocessing
via direct path concatenation will be infeasible if Sd,ref

is infeasible. These make up the main challenges of path
set generation in general constrained conditions. To address
these, passage-aware encoding path planning is utilized for
σp. Then, for coordinated path set generation, a deformable
path transfer procedure is proposed with two parts: 1) Pivot
path repositioning, and 2) Deformable path transfer.

1) Pivot Path Repositioning: Pivot path repositioning mod-
ifies the pivot path to achieve more coordinated transferred
paths. As illustrated in Fig. 7, a raw σp found by (10) does not
take account of its specific passage passing positions. As such,
unfavorable passage passing locations often exist. This will

Algorithm 4: Path Set Generation Using Deformable
Path Transfer in General Constrained Conditions.

1 Σt,Σ
∗
S ← ∅;

2 sp, Sd ← Algorithm 5;
3 σp ← RRT∗ in Algorithm 1 with composite cost (10);
4 Σt ← (17) using σp;
5 foreach Pσp(1, i) ∈ Pσp(1) do
6 {σt,1(η1,i), ..., σp(ηp,i), ..., σt,K(ηK,i)} ←

Σt ∩ Pσp
(1, i);

7 ∥Σt ∩ Pσp
(1, i)∥2 ← (19);

8 if ∥Pσp
(1, i)∥2 < ∥Σt ∩ Pσp

(1, i)∥2 then
9 σ∗

p(ηp,i)← (20);

10 else if (Σt ∩ Pσp
(1, i)) ⊈ Pσp

(1, i) then
11 σ∗

p(ηp,i)← Move σp(ηp,i) in passage such that
Σt ∩ Pσp(1, i) ∈ initδ(Xfree);

12 else
13 Discard Pσp

(1, i) and σp(ηp,i);

14 foreach [ηp,i, ηp,i+1] do
// including the first interval
[0, ηp,1] and the last interval [ηp,−1, 1]

15 σ∗
p(τ)← (21);

16 Σt ← (17) using σ∗
p ;

17 foreach si ∈ S0 do
18 {σ∗

t,i(0), ..., σ
∗
t,i(ηi,j), ..., σ

∗
t,i(1)} ← (22);

19 σ∗
t,i ← Reposition σt,i as (21);

20 Σ∗
S ← Σ∗

S ∪ σ∗
t,i;

21 return Σ∗
S ;

make transferred paths overly infeasible because infeasible
parts of transferred paths are far away from the passage. To
tackle this, the pivot path is repositioned to a more reasonable
configuration. Denote the intersection point between σp and
the passage line of Pσp

(1, i) as σp(ηp,i). For a directly trans-
ferred path σt,j obtained by (17), its intersection point with
the same passage line is σt,j(ηj,i). For the directly transferred
path set Σt(S, sp, σp), {σt,1(η1,i), ..., σp(ηp,i), ..., σt,K(ηK,i)}
collects all the intersection points with Pσp(1, i) lines. The
chord Σt ∩Pσp(1, i) is defined as the intersection segment of
passage Pσp

and path set Σt, whose length is given by

∥Σt ∩ Pσp
(1, i)∥2 = max

1≤k,j≤K
∥σk(ηk,i)− σj(ηj,i)∥2. (19)

Namely, a chord is determined by the intersection ends be-
tween the path set and passage line. Also note that ∥Σt ∩
Pσp

(1, i)∥2 can be greater than ∥Pσp
(1, i)∥2 because the chord

investigates the passage line rather than the segment.
Pivot path repositioning adjusts σp and consequently the dis-

tribution of {σ1(η1,i), ..., σp(ηp,i), ..., σK(ηK,i)} to facilitate
following path transfer. For ∥Pσp

(1, i)∥2 < ∥Σt∩Pσp
(1, i)∥2,

the following centering criterion is considered

arg min
σp(ηp,i)

∥σ̄1−K,i − P̄σp(1, i)∥2

s. t. σp(ηp,i) ∈ Pσp
(1, i) ∩ initδ(Xfree)

(20)
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Fig. 8. Though the pivot path is repositioned, the directly transferred paths are
still possible to be infeasible. Deformable path transfer deforms the infeasible
path segments to obtain feasible transferred paths.

where σ̄1−K,i is the center of the chord. P̄σp
(1, i) is the center

of passage Pσp(1, i). Pσp(1, i) ∩ initδ(Xfree) sets a small
clearance δ between σp and obstacles. If ∥Pσp(1, i)∥2 ≥ ∥Σt∩
Pσp

(1, i)∥2, sufficient passage space is available. σp(ηp,i)
can be simply translated along the passage to make directly
transferred paths lie in initδ(Xfree). If the chord totally lies
within the passage, σp(ηp,i) does not need to be repositioned.
σp(ηp,i) and the passage Pσp(1, i) are discarded to avoid
deteriorating the final path’s smoothness.

In each remaining passage, a new intersection point of
σp, designated as σ∗

p(ηp,i), is given by (20) which is readily
solvable. Using new passage intersection points and path end
points as references, σp is repositioned in an iterative manner.
We utilize a linear mapping between two successive points
for repositioning. σ∗

p(ηp,i)− σp(ηp,i) is the shift at Pσp
(1, i).

Analogously, the next shift is σ∗
p(ηp,i+1) − σp(ηp,i+1). The

path segment σp(τ) for ηp,i ≤ τ ≤ ηp,i+1 is given as

σ∗
p(τ) = σp(τ) +

τ − ηp,i
ηp,i+1 − ηp,i

(σ∗
p(ηp,i+1)− σp(ηp,i+1))

+
ηp,i+1 − τ
ηp,i+1 − ηp,i

(σ∗
p(ηp,i)− σp(ηp,i)). (21)

As passage regions are assumed small compared to the total
path length, the feasibility of the shifted path σ∗

p(τ) is assured
by the fact that two path segment ends are placed within two
successive passages respectively.

2) Deformable Path Transfer: Pivot path repositioning ad-
justs σp locally without changing its topological properties.
Deformable path transfer allows σp to be transferred even if
the transfer assumptions fail. The core to achieving this is
a topology-preserving path deforming process. Firstly, trans-
ferred paths σt,i are regenerated utilizing the basic procedure
with the repositioned pivot path σ∗

p . To tailor potential infea-
sible parts of transferred paths, deformable path transfer is
proposed. If σt,i collides with an obstacle Enear nearby, it
needs to reshape the collision part. Since σ∗

p is repositioned,
the collision of σt,i indicates that Enear is associated with
some narrow passages. Suppose this passage is Pσt,i

(1, j) and
the intersection point is σt,i(ηi,j). σt,i(ηi,j) collides with Enear
and the path collision segment is characterized by two path
nodes before and after collision σt,i(τc,1), σt,i(τc,2) (τc,1 <
ηi,j < τc,2) respectively (see Fig. 8).

Fig. 9. Conceptual illustration of the local path width. The dashed purple line
is the local path width of a path point (the starting point of the red normal
vector arrow), which is truncated by obstacles.

Similarly to the path-guided optimization (PGO) approach
in [61] which turns a locally infeasible path to a feasible one
effectively, the infeasible segment of σt,i is modified with σ∗

p

acting as the guiding path. Particularly, in the direction of
σ∗
p(ηp,j)− σt,i(ηi,j), σt,i(ηi,j) is moved to Xfree. The exact

shifted position of σt,i(ηi,j) is determined by proportionally
compressing the chord of the directly transferred path set.
Using the pivot intersection point as a fixed reference, each
intersection point is shifted within the passage, i.e.,

∥σ∗
t,i(ηi,j)− σ∗

p(ηp,j)∥2
∥σt,i(ηi,j)− σ∗

p(ηp,j)∥2
= min(

γ1
β1
,
γ2
β2

) (22)

where σ∗
t,i(ηi,j) represents the new intersection point. Suppose

Pσp
(1, j) = (Ej,1, Ej,2). Then γ1 = d(σ∗

p(ηp,j), Ej,1) is
the distance between σ∗

p(ηp,j) and Ej,1. β1 is the maximum
distance between σ∗

p(ηp,j) and other intersection points which
is closer to Ej,1 than Ej,2, i.e.,

β1 = max
i
∥σt,i(ηi,j)− σ∗

p(ηp,j∥2 for

d(σt,i(ηi,j), Ej,1) < d(σt,i(ηi,j), Ej,2). (23)

γ2 and β2 are analogously defined for Ej,2. In the sense of (22),
it is guaranteed that all paths have feasible passage intersection
points to lead the following deformable path transfer.

Lastly, deformable path transfer leverages a similar proce-
dure of linear mapping in (21) to obtain feasible transferred
paths. Transferred paths are feasible in general if obstacle
dimensions are negligible. Collision in the vicinity of the
passage can be resolved by adding more repositioning points
in the collision region to push the path away from obstacles.
To concatenate the transfer path end and the desired si, the end
position of σt,i is set as sd,i in deformable path transfer so that
no extra postprocessing is required in a unified pipeline. See
Algorithm 4 for the overall procedure of path set generation
in general constrained conditions.

V. PATH SET TRACKING CONTROL FOR TASK EXECUTION

This section elaborates on the manipulation control of DOM
tasks formulated in Section II and endowed with the planned
path set of the feedback vector in Section III, IV. The proposed
control architecture builds up a path set tracking controller
composed of several core components. First, constraint regu-
lation is discussed. Then, a path set tracking control structure
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Fig. 10. Block diagram of the overall control system. The dashed line implies
that this flow is active in certain conditions.

interleaving path set tracking and end-effector path tracking is
presented to ensure the task progress.

A. Constraint Regulation

Constraint regulation determines the activation states of
constraints dynamically imposed in (8). Relaxation of a con-
straint implies that under the given condition, it is difficult
to let manipulation proceed with the constraint imposed. In
principle, constraints should only be relaxed when necessary
and reimposed timely. In this work, environment information
is exploited in conjunction with the planned path set to
determine the activation states of releasable constraints c1
and c3. Specifically, local path width serves as the metric of
constraint violation risk (see Fig. 9). Intuitively, it gauges the
available workspace volume in the vicinity of the path. The
associated local path width of σ is µ : [0, 1] 7→ R+ defined as

µ(τ) = ∥N (σ, τ) ∩ P(σ, τ) ∩ Xfree ∥2 (24)

where N (σ, τ) represents the path’s normal plane at σ(τ).
P(σ, τ) is the plane on which the path lies locally near σ(τ).
Both are available analytically utilizing path’s local geometry
properties. Further intersection with Xfree gives rise to the
local path width segment at σ(τ).

Because of the passage encoding of paths, local path width
computation can be saved when locating narrow workspace.
Narrow passages will correspond to local minima of µ(τ). It
thus suffices to recognize narrow passages’ positions. There
are in general multiple paths in ΣS , but only one needs to be
considered due to the shared passage encoding information and
surroundings of paths in ΣS . In particular, the pivot position
sp(t) and its planned path σp are employed as references in
constraint regulation. The risky segments in terms of constraint
violation are obtained by

W = {σp(τ) | τ ∈ PN
σp
(1)}. (25)

PN
σp
(1) stands for the narrow passage neighborhoods, which

can be selected from Pσ(1) via ∥Pσp(1, i)∥2 ≤ ∥Σt ∩
Pσp(1, i)∥2 or specified conditions related to the ongoing task.
W serves as the main criterion for the activation of c1, i.e.,
suppose the path is perfectly tracked, a1 is simply given by
the following rule

a1 =

{
0 sp(t) ∈W
1 otherwise.

(26)

TABLE I
COST FUNCTIONS OF CONSTRAINTS AND TRANSPOSED GRADIENTS

ci c1 c2 c3

fci
kE,1

2d2(O,E)

kE,2

2d2(r,E)
1
2
∥H(S)− h+h

2
∥2

∂fci
∂r

−kE,1(po−E)TJd,i

d4(O,E)

−kE,2d(r,E)T

d4(r,E)
(H(S)− h+h

2
)TJH

A looser activation criterion of the DO shape constraint c3
is employed considering its temporal characteristic. Transient
violation of c3 is acceptable and adverse effects on the DO are
assumed to be caused only after a long violation. Therefore,
c3 is allowed to be temporarily relaxed in the task and will be
checked in the target configuration.

B. Path Set Tracking And Constraint Adjustment

Fig. 10 details the overall control system. Note that the
planned path set serves the gross motion reference purpose
for achieving the target Sd by tracking ΣS . However, precise
path set tracking for multiple paths throughout the task is
difficult under constraints and also not a must. In other words,
the ultimate goal is making the DO achieve Sd while being
feasible during the task. For clarity, the tracking control is first
discussed without constraint violation, followed by scenarios
with active constraints. For real-time visual feedback vector
S(t), its distance to the path set ΣS is defined as

e(t) = S(t)− ΣS (27)

with ei = si − σi := si − arg min ∥si − sσi
∥2, sσi

∈ σi. The
corresponding path argument of sσi

is τe,i, i.e., sσi
= σi(τe,i).

The target position of S(t) at the current step is obtained with
a small increment ξ along the path, i.e., σi(τe,i+ξ), and τe,i+ξ
saturates at one. The tracking error term is

eS(t) = S(t)− ΣS(τe + ξ) (28)

where ΣS(τe+ξ) returns the forward shifted projection vector
SΣ = [σ1(τe,1 + ξ)T, ..., σk(τe,k + ξ)T]T. A simple feedback
controller for S can be constructed as Ṡ = −KSeS where
KS is a positive definite gain matrix.

The developed methods are compatible with different de-
formation modeling techniques. Here we simply assume that
the (approximate) deformation Jacobian Jd, which relates end-
effector velocity ṙ and Ṡ by Ṡ = Jdṙ, is accessible via means
like Broyden’s method [64]. Ideally, the tracking control law

ṙS = −J†
dKSeS (29)

where □† denotes the Moore-Penrose pseudoinverse, can be
utilized. In typical constraint-free deformation control studies,
e.g., [1], [2], S will eventually converge to Sd to accomplish
the task with a bounded error.

In the presence of constraints, the velocity command ṙci
adjusting a single constraint ci is readily attainable by gradient
descent of the cost function fci . As shown in Table I, fci is for-
mally simple, e.g., repulsive potential for collision constraints
and squared distance to the admissible range center. fc2 and
fc3 are directly related to r. But the gradient of fc1 w.r.t. r is
not easily obtainable. To execute the move induced by ṙc1 , the
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Fig. 11. (a) When path set tracking errors are conflicting, the generated robot
motion can be very small to stick the task. (b) Take the single point case as
an example, the path tracking motion and the constraint motion can conflict
each other easily.

motion transformation from r to po = arg mind(pi, E),pi ∈
O is needed. Nonetheless, it is unachievable in model-free
approaches due to the uncertainty of po. To address this, an
approximation is used assuming po shares a similar motion
transformation with its nearest feedback point. If psi has the
shortest inner-distance to po (shortest path length inside the
DO shape silhouette [65]), its deformation Jacobian Jd,i is
leveraged for motion command generation

ṙc1 = kc1J
T
d,i(po − E) (30)

where Jd,i is the submatrix associated with si in Jd. This
approximation is assumed valid if the DO size is not too
large. fc3 is in a quadratic form. In ∂fc3

∂r , JH = ∂H
∂r is the

deformation Jacobian of H(·).
With multiple constraints, priority scheduling first satisfies

hard constraints and then imposes secondary ones. Constraints
are sequenced in a prioritized order: c2 → c1 → c3, depending
on the practical importance and potential severity of violation.
The robot collision constraint d(r, E) > 0 is always enforced
for safety. Constraints related to DOs rank lower. By itera-
tive nullspace projection of velocity, the constrained motion
velocity is obtained as

ṙc = ṙc2 +Nc2 ṙc1 +Nc2Nc1 ṙc3 (31)

where Nci is the nullspace projector to ṙci . If the constraint
is not active, ai = 0, ṙci = 0,Nci = I.

C. Interleaving Path Set Tracking and Direct End-effector
Path Tracking

In practice, single-arm or dual-arm robotic systems are often
used. It is hard to coordinate ṙS and ṙc due to the limited
DOFs provided by the end-effectors. Notably, the manipulator
is unable to precisely track the path set when the dimension of
S exceeds end-effector DOFs. Consider the Lyapunov function
Q = eTSeS/2. Using the tracking controller in (29), its time
derivative yields

Q̇ = eTS(Ṡ − ṠΣ) = −eTSKSJdJ
†
deS − eTSṠΣ (32)

where ėS = Ṡ− ṠΣ. Jd has more rows (2K) than columns (2
for a single arm, 4 for dual arms) in most scenarios, resulting
in an underactuated system. As such, JdJ

†
d is only positive

semi-definite. In path set tracking, we can reasonably assume
that eTSṠΣ = 0 with a small increment ξ in ΣS(τe+ ξ). When
S is near Sd, the forward tracking term on path saturates at Sd,

i.e., ṠΣ = 0. These make Q̇ ≤ 0 and local minima possible
to happen.

More importantly, the overall task execution can easily get
stuck if ṙS and ṙc are simply switched with the constraint
activation state. This is because tracking and constraint ad-
justment motions are often inconsistent or even conflicting as
illustrated in Fig. 11(b). A high-level task conduction pipeline
ensuring the task progress is thus required. For this, a scheme
which interleaves path set tracking with constraints and direct
end-effector control is introduced. Firstly, path set tracking
coordination is used for a unified tracking target. Note that ei
terms may be conflicting and counteract each other, rendering
ṙS quite small and SΣ almost intact to stick the tracking as Fig.
11(a). To alleviate this, a more coordinated path set tracking
error is needed. Using the pivot path σp as a unified tracking
reference, the tracking error term is given as

eS(t) = S(t)− ΣS(τe,p + ξ). (33)

In this way, tracked positions on all paths have the same path
length parameter to decrease the probability of conflicting ei.
Further, if a severe conflict is detected by calculating the inner
product with ep = sp−σp(τe,p+ξ), the conflicting component
in ei is removed by orthogonal projection.

Next, to efficiently circumvent collision regions and proceed
with the task, direct end-effector control is interleaved with
path set tracking. The manipulation system tends to enter the
same collision region repeatedly because of the task setup
similarity after conducting ṙc, making itself sluggish. An
effective option is to explicitly control the robot to get out of
the collision region by tracking a locally planned end-effector
path σEE . σEE is planned locally with an appropriate end-
effector target position rd that helps the DO pass the collision
region. Feasibility of σEE is evaluated by the homotopy
property of the path set {σp, σEE}. When tracking σEE , DO-
related constraints, i.e., c1, c3, are not enforced as ṙ is directly
controlled. Once the plant leaves the collision region, tracking
of the path set ΣS will be recovered.

VI. EXPERIMENTAL RESULTS

We have implemented and tested the proposed path set
planning and tracking methods for DOM tasks in different con-
strained setups. Both the implementation of path set planning
algorithms and physical robot experiments with constraints are
displayed in this section.

A. Implementation Details

The camera image space is the default configuration space
in path set planning. The upstream recognition of obstacles and
DOs is assumed available and obstacles are processed as poly-
gons. Feedback points and derived deformation features can be
specified manually. For single path planning, RRT∗ is amended
with the composite cost in (10) and built upon the kd-tree. The
cost and the minimum passage width passed through by the
optimal path from the start node to each path node are stored as
node attributes. The passage list Pσp

(1) is retrieved via a one-
way traversal of the planned σp. Then the forward transferred
path set and chords are obtained for repositioning σp to σ∗

p .
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(a) (b)

(c) (d)

Fig. 12. Path planning comparison between the path length cost and the
composite cost in RRT∗. (a) Path length cost. (b)-(d) Composite cost (10).

If infeasible transferred path segments exist, deformable path
transfer is subsequently performed. In robot experiments, the
7-DOF Flexiv Rizon manipulators with a clamp-type end-
effector are used. Grasps are preset properly but can also be
founded actively with actuated grippers using our method in
[66]. All computations are performed on a laptop with Ubuntu
18.04, Intel Core i7-7700 CPU@2.8GHz × 8, and 16 GB of
RAM. The visual module (image perception, segmentation,
and point tracking using Lucas-Kanade method) and online
numerical Jd update run at the camera frame rate of 30Hz.
The end-effector velocity command is generated at a lower
frequency of 25Hz. Raw sampled paths are smoothed and
densified in quadratic B-spline format for tracking. The whole
architecture is implemented in the robot operating system
(ROS) to simplify the communication and synchronization
between the sensing and execution units.

B. Path Set Generation Results

We first show the path set planning implementation results.
Examples are showcased from Fig. 12 to Fig. 14. In single
pivot path planning, the shortest path length cost is compared
with. As expected, for the same planning problem, the planner
using path length cost may result in limited workspace along
the path, e.g., Fig. 12(a). Using the composite cost in (10)
which also takes into account traversed passages, workspace,
and path length are traded off to attain the path. In 12(b)-(d),
there are four vertical valid passages in the environment. When
the passage configuration changes, the planner returns different
paths. Specifically, the displacement from the start to the target
is horizontal. The planned paths choose the wider passage
between vertically aligned passages ((E1, E2) vs. (E2, E3),
(E4, E5) vs. (E5, E6)). If passages are of similar widths, such
as (E4, E5) and (E5, E6) in Fig. 12(c), the one leading to a
shorter path length is selected. Such passage encoding and
selection capacities in pivot path planning are important in

(a) (b)

(c) (d)

Fig. 13. Path set generation. Pivot paths are in green. Transferred paths are in
blue. Red segments show the repositioning mapping between σp and σ∗

p . (a)
Direct forward path transfer. (b)-(d) Path transfer in constrained conditions.

(a) (b)

Fig. 14. Path set generation with multiple points. (a) Four feedback points
(K = 4). (b) Eight feedback points (K = 8).

restrictive environments where the transfer assumptions fail.
More workspace for manipulation will be provided by the path
set transferred from the pivot path.

Based on passage-aware pivot path planning in constrained
environments, path set generation is conducted. Fig. 13 dis-
plays the benchmark case of path set generation with only
two feedback points. The pivot is arbitrarily appointed in this
part. Despite wide passages exist in Fig. 13(a), the transfer
assumptions are not met since no feasible path can be planned
in initδp(Xfree) (δp = 70, ∥(E2, E3)∥2 = ∥(E5, E6)∥2 = 120 <
2δp). This also shows that the transfer assumptions are very
restrictive in practice. The pivot path σp is then planned with
a small δ < δp in initδ(Xfree). δ can be very small in order to
ensure σp is found since the original transfer assumption σp ∈
initδp(Xfree) will not be used in following path set generation.
The directly forward transferred path σt is infeasible due to
collision. Meanwhile, the strong homotopic-like property of
the resulting path set does not hold. This entails repositioning
of σp and deformable path transfer proposed for general
constrained conditions. As illustrated in Fig. 13(b)-(d), the
repositioned pivot path σ∗

p is shifted to create more free space
for following path transfer. In Fig. 13(b) and (c), σ∗

p directly
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Fig. 15. (a) Tracking performance: tracking error (∥s1 −σ1(τe,1 + ξ)∥2), distance to path (∥s1 −σ1∥2). (b) Target error: in planned path (path length from
σ1(τe,1 + ξ) to σ1(1)), in configuration space (∥s1 − sd,1∥2). (c) End-effector (EE) and DO’s distances to the obstacle. (d) Local path width along σ1.
Metrics in the constrained experiment are shown in (e)-(h). The processes of constraint adjustment and tracking σEE are depicted by blue dashed lines.
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Fig. 16. (a) Planned and real paths of feedback point s1 on a fabric sheet in
the unconstrained experiment. A collision between the sheet and the obstacle
occurs. (b) Constrained experiment.

leads to feasible transferred paths as the passed passages have
widths larger than δp. But transferred paths from σ∗

p are not
guaranteed to be feasible. In Fig. 13(d), the transferred path
translated from the repositioned σ∗

p collides with obstacles
due to the narrow (E1, E2). It is thus further deformed to be
feasible. The path set generation pipeline is not limited by the
feedback number and pivot selection. For instance, Fig. 14
shows examples of four and eight feedback points in different
constrained setups with arbitrarily picked pivots.

C. Single Point Manipulation

Single point manipulation tasks are performed as the bench-
mark tests. Both the feature vector y and the feedback vector
S only contain a feedback point s1. The robot needs to
manipulate the DO so that s1 can reach sd,1. For comparison,
two sets of tests are performed with similar setups. The uncon-
strained tests only enable path set tracking. The constrained
tests impose collision constraints c1, c2.

1) Unconstrained Single Point Manipulation: In this ex-
periment, a fabric sheet anchored on the operation table is
manipulated. In the tracking controller, KS = I, the forward
shift in the tracking error term ξ = 0.05. Fig. 16(a) shows the
planned reference path and the real path of s1. The associated
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Fig. 17. (a) Bending-move task snapshot. (b) Motion process of the angle fea-
ture. Red and green points are initial and target feedback points, respectively.
Blue lines depict angle sides.

data are demonstrated in Fig. 15(a)-(c). Fairly good tracking
performance is achieved with the maximum deviation from
the reference path below 10 px in Fig. 15(a). In Fig. 15(b),
the target error measured in the planned path refers to the
path length between σ1(τe,1 + ξ) and σ1(1) = sd,1 to reflect
the tracking progress. The target error in configuration space
is ∥s1 − sd,1∥2. Both error measurements exhibit a similar
temporal evolution tendency to decline to zero monotonically.
However, as illustrated in Fig. 16(a) and Fig. 15(c), both
the DO and end-effector collide with the obstacle while their
distances to the obstacle decrease to zero. Moreover, a long
duration (∼ 6.5−17.5 s) of DO-obstacle collision is observed.
The end-effector collides with the obstacle around 8.5− 10 s.
For this reason, the task would fail if these constraints are
strictly imposed as in practice, which necessitates proper
constraint handling. Fig. 15(d) illustrates the local path width
of σ1 calculated using centered numerical differentiation. The
field of view (640 × 480 px) is set as the outer boundary of
Xfree. The short local minimum indicates the position where
a narrow passage region is encountered.

2) Constrained Single Point Manipulation: A plastic sheet
is used in this experiment to avoid significant sheet folding and
consequent occlusion of s1. All experimental settings remain
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unchanged except that collision constraints c1 and c2 are now
imposed, for which distances d(O, E) and d(r, E) are extracted
in real time to check violation.

At the beginning, path tracking proceeds normally. d(O, E)
approaches the collision threshold (15 px) at around 3.5 s for
the first time. The following adjustment leads to repetitive
motions in 3.5 − 15.5 s as demonstrated by curve zigzags in
Fig. 15(e)-(g). On s1 path in Fig. 16(b), a chattering section
is caused which restricts s1. As a result, a task-stuck state is
recognized. A conservative criterion is adopted here that only
after the violation takes place consecutively over five times,
the current situation would be regarded as being stuck. To
leave this region, i.e., bypass the obstacle, a local end-effector
path σEE depicted by the cyan path in Fig. 16(b) is planned
and tracked during 15.5− 28 s. When ṙ is controlled to track
σEE , the path tracking error of s1 will not necessarily decline.
In this experiment, a significant deviation from the reference
path in Fig. 16(b) can be observed. Constraints related to the
DO are relaxed in tracking σEE . Thus temporary DO-obstacle
collision is allowed as what happens during 22.5 − 25.5 s in
Fig. 15(g) near the local path width minimum in Fig. 15(h).
After passing the obstacle by following σEE , tracking σ1 is
recovered and interleaved timely. The small chattering at the
final stage in Fig. 15(e),(f) is caused by frequent switches
of the shifted projection term SΣ, which can be resolved by
higher path resolution and more robust algorithmic settings.

D. Multiple-Point Feature Manipulation

The second series of experiments concentrate on features
composed of multiple feedback points that better characterize
DO deformation. In particular, we consider the bending-move
task described by feature y = [sT1 α]

T ∈ R3, S = [sT1 sT2 sT3 ]
T

and α = acos(v12 · v13 / (∥v12∥2 ∥v13∥2)). v12 = s2 − s1,
v13 = s3−s1 are two side vectors. Physically, the task intends
to bend the DO to a given angle meanwhile move the angle
vertex s1 to its target region. Both sd,1 and αd are specified
when defining the task. y is thus complete and s1 plays the role
of the pivot in planning. A symbolic box obstacle of ⊔ shape
is placed and the DO is made of a folded fabric sheet. Initially,
the DO is outside of the obstacle and unbent. Once S0 and yd

are provided, the first step is to determine the target feedback
vector Sd by solving (12). In this experiment, the DO shape
constraint in the target determination is imposed on the angle
side length change ratio as ∆∥v1i∥2/∥v1i,0∥2 ≤ 2%, i = 2, 3.
Since the transfer assumptions hold in this setup, the basic
procedure for path set generation is utilized.

Fig. 17(b) illustrates the motion processes of each feedback
point and the constructed feature. Experimental data are de-
picted in Fig. 18 and Fig. 19. Because of the truncation and
concatenation of transferred paths, the resulting paths may not
be optimal or smooth compared to directly planned paths.
Taking s3 as an example, there exists a sharp turn at the
truncation position in σ3. But the feasibility of the holistic path
set is ensured despite non-optimal transferred paths. For path
tracking precision, unsurprisingly, the pivot path σ1 is tracked
more accurately given its tracking priority, while coarser
tracking is exhibited by s2, s3. In tracking, the tracked position
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and EE-obstacle distances.
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Fig. 19. (a) ∥si−σi∥2. (b) ∥si− sd,i∥2. (c) ∥si−σi(τe,i+ ξ)∥2. (d) Path
length on σi from σi(τe,i + ξ) to σi(1) = sd,i.

on each path is coordinated and synchronized in accordance
with the pivot tracking progress to avoid conflicting tracking
terms. The components in tracking errors e2, s3 contradictory
to the pivot tracking error e1 are removed if a serve conflict
is detected, making precise path tracking harder to achieve.
In consequence, when yd is reached with the preset error
threshold (5 px for ∥s1 − sd,1∥2, 5◦ for |α − αd|), s2 and
s3 are not necessarily located in their reference target regions
in Sd. This is also shown in Fig. 19(b), where the static errors
of ∥si − sd,i∥2, i = 2, 3 are of notably greater values than the
pivot error ∥s1 − sd,1∥2.

To robustly reach the target, when feedback points approach
their targets, their tracked positions on paths will saturate at the
path ends, i.e., σi(τe,i+ξ) = σi(1) = sd,i. This transfer occurs
when the pivot’s absolute tracking error becomes sufficiently
small. At around 11 s, all path tracking errors decrease to zero
sharply in Fig. 19(d) because the pivot s1 enters the preset
neighborhood of sd,1 (∥s1 − sd,1∥2 < 20 px) and its tracking
target is fixed at sd,1 ever after. This tracking target transfer
causes abrupt increases of all tracking errors in Fig. 19(c)
since SΣ jumps to Sd immediately. Overall, path set tracking
is first conducted to complete gross motions until the pivot is
close to its target. Then feedback points’ tracking targets are
fixed at their desired positions for finer modification until yd

is achieved. When s1 gets close to sd,1, the feature angle α
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(a) (b)

Fig. 20. A foam block is placed close to the folded fabric strip in comparison
experiments. (a) Passing the foam without collision in the path set tracking
approach. (b) Collision in the pure control method.
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Fig. 21. Bending angle and DO-obstacle distance in comparison: (a) path set
planning and tracking control, (b) pure deformation control.

still presents a large error. As shown by the target errors in
Fig. 19(b) and the feature in Fig. 17(b), manipulation at the
final stage mainly bends the object so that s3 moves to an
appropriate position to reach αd = 100◦. In Fig. 18(b), no
collision is detected. The shape constraint is also obeyed. The
multimedia material of more trials in various setups can be
found in the supplementary video file.

E. Comparison With Pure Deformation Control

The path set tracking approach and pure deformation control
in DOM are compared in typical constrained conditions. The
following classical control method is utilized

ṙ = −J†
FKFey (34)

where KF and ey are the gain and feature error, respectively.
The motion-to-feature Jacobian is JF = JyJd and the feature
Jacobian Jy = ∂y

∂S . The bending-move task remains unchanged
but an obstacle (a foam block) is placed near the fabric strip
to create a confined environment for the motion of the manip-
ulated sheet end (see Fig. 20). The initial and target feature
configurations are appointed as the same in the two methods.
Two metrics are monitored for comparison purpose. One is
the obstacle avoidance measured by the distance d(O, E). The
other is the angle value α, which is also the shape constraint

(a) (b)

Fig. 22. Insertion and narrow passage passing tasks in application case study.
(a) Insert the Ethernet cable to the port region. (b) Lead the clothes to pass
the chosen narrow passage.

quantity to reflect whether over-bending occurs. Specifically,
the sheet is straight at rest and α is around 180◦. The target
bending angle is αd = 121◦. If the bending angle falls below
90◦, it will be regarded as over-bending. The confined setup of
Fig. 20 makes the transfer assumption 1 fail to hold because
not all feedback points are in intδp(Xfree) in (16). Since there
is only one obstacle, a smaller δp is used when planning the
pivot path. The collision portion on σt,3 is then guided by an
inflated obstacle polygon, yielding a path segment enclosing
the obstacle in Fig. 20.

Fig. 21(a) showcases the metrics in the path set tracking
approach. No DO-obstacle collision occurs since the distance
remains greater than zero. Meanwhile, no significant over-
bending happens and the minimum α is around 110◦, implying
that the target is reached safely without extreme sheet bending.
The metrics in the experiment utilizing the feedback controller
in (34) are depicted in Fig. 21(b). There is also no collision
detected. But the minimum bending angle falls to around 70◦.
Furthermore, α is smaller than the over-bending threshold for
over 10 s. When the foam block is placed closer, the collision
between the sheet and obstacle is observed in deformation con-
trol as shown in Fig. 20(b). In pure control methods, constraint
violation is often caused because constraints in the task cannot
be well formulated and managed. The states of DOs and robots
are thus partially indeterminate and undesirable situations may
occur. Conversely, such occasions are effectively mitigated
with a coordinated path set as the motion and path references
in the path set tracking approach.

F. Application Case Study

In the last part, we present application cases of the overall
scheme in some common domestic and industrial scenarios.
Two classes of DOM tasks are carried out: box insertion and
narrow passage passing. Box-insertion is the combination of
single-point manipulation and the box-like obstacle in previous
subsections. Specifically, the DO of a prolate profile is initially
positioned outside of an open box in the box’s close vicinity.
Analogously to Fig. 3, the robot needs to move the object
into a target region central in the box in a feasible manner.
The whole process mimics common intersection motions. The
major challenge of accomplishing it lies in figuring out a
feasible DO motion and deformation process. Conventional
approaches either rely on a deformation process simulated in
advance or plan robot motions interactively, both of which are



16

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 23. (a), (b) Initial and final configurations of the fabric sheet in the insertion task. (c), (d) Initial and final configurations of the Ethernet cable in the
insertion task. (e), (f) Towel at rest and after passing the chosen passage. (g), (h) T-shirt at rest and after passing the chosen passage.

heavily model-based and computationally costly. By simply
employing DO feedback points’ spatial path set and tracking,
the problem is converted into a more tractable one able to
involve constraints easily.

Fig. 23(a)-(d) displays insertion tasks manipulating a fabric
sheet and an Ethernet cable. Inserting the fabric sheet is similar
to experiments previously carried out. The differences are that
the obstacle is more complex as a box with one open side
(represented by a polygon of three walls) and that the target
region is located inside the box. To accomplish the task, the
sheet should be first compressed from its initial configuration
and then expanded. Such a procedure is naturally encoded in
the planned feedback point path. In particular, the task can
be clearly described by only a feedback point s1 picked in
the top sheet part, whose spatial path is planned and tracked
in execution. Since s1 lies inside the fabric and the sheet
width is large compared to the box and clearance, tracking
σ1 still may cause a collision. Interleaved local end-effector
path planning and tracking will be triggered if the obstacle
cannot be bypassed in collision adjustment.

Ethernet cables belong to DLOs that demonstrate distinct
properties in contrast to DOs of larger sizes and volumes. DLO
manipulation can involve complex procedures like knotting,
which explicitly change the homotopy properties of both the
DLO itself and the paths of feedback points on it. Moreover,
execution of DLO manipulation tasks usually requires iterative
re-grasps, which greatly complicates the task. Thus, many
specially-designed methods have been developed for DLO
manipulation, e.g., [34], [70]-[72]. Our approach is applicable
to DLOs if the prespecified feedback point path homotopy
properties hold in the task and manipulation can be conducted
with fixed grasps. In the experiment, the feedback point is
selected near the cable head and the robot grasps the cable at
a distance behind. An Ethernet port is fixed at the box center
as the target region. Due to the slim cable size, collision is
avoided when following the planned path of the feedback point
if a suitable planning interior is used.

The second class of tasks involve constrained environmental
setups composed of multiple obstacles to evaluate path set

generation and tracking under general practical conditions. As
demonstrated in Fig. 23(e)-(h), three obstacles on the table
construct two narrow passages of different widths. DOs of
large areas are intended to be manipulated to reach the target
configuration preset on the other side of passages. A dual-
arm system is utilized to execute these tasks considering DOs’
larger sizes. Narrow passage passing tasks are common and
also studied in [8] where robot motion is planned based on
the simulated DO model. However, the robot motion plan only
takes into account feasibility. Selection among passages is not
considered. The feature consists of two feedback points s1, s2
placed inside DO but near the boundary to better represent
DO’s overall size. The pivot is chosen as s1 on the left. As
shown in Fig. 22(b), the planned pivot path goes through the
wider passage though this results in a longer path length. As
the passage width is smaller than ∥s0,1−s0,2∥2, direct forward
path transfer will lead to an infeasible path σt,2. Therefore, the
final feasible path set is generated following the procedure for
general constrained conditions. When passing the passage in
tracking, the collision constraint between obstacles and the DO
is relaxed to promote the execution progress. DOs of different
properties, e.g., towels and T-shirts of significantly larger sizes,
are tested in the experiments.

VII. CONCLUSION

In this article, we investigated DOM with constraints and
proposed the visual feedback vector path set planning and
tracking scheme. Particularly, DOM was extended to more
general and practical scenarios where constraints were present.
We first formulated constrained tasks in an optimization for-
malism versatile to involve common constraints and enabled
a dynamic constraint imposition mechanism. For task conduc-
tion, path set of the visual feedback vector was leveraged and
the central issue in its planning was simultaneous feasible path
generation for multiple feedback points in constrained envi-
ronments. To achieve this, passage-aware pivot path planning
was proposed and feasibility requirements for path sets were
analyzed as planning prerequisites. Then, efficient algorithms
for path set generation based on passage-aware pivot path
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planning, repositioning, and deformable path transfer were
designed for general constrained conditions. In manipulation
control, we proposed a holistic tracking control architecture for
both normal path set tracking and tracking with constraints,
in which the constraint regulation and local minimum res-
olution were embedded. Experiments of DOM in different
constrained setups showed that the proposed methods could
empower robots to perform DOM under constraints and had
superior performances over conventional pure control methods
in challenging situations.

The recent development of pixel-level tracking techniques in
computer vision will provide the proposed scheme with more
robust segmentation and tracking capacities [73]. However, the
path set tracking control for task execution is still low-level
and restricted, unable to plan higher-level of robot motions in
complex DOM tasks. In the future, we plan to connect the
current pipeline with automatic task-specific DO feature and
key point extraction modules in 2D and 3D vision. Moreover,
the presented methods have good generality in many other
robotics domains. For instance, methods in the planning part
can be readily extended to higher dimensional spaces with
necessary modifications. In fields such as mobile robotics and
aerial manipulation by swarms, the concepts and approaches
of path sets in this work are promising.

APPENDIX A
TARGET DETERMINATION FOR VISUAL FEEDBACK

VECTOR

If Sd is not entirely specified by yd, it needs to be
determined to provide a definite target for path set planning
and tracking. To construct the Sd evaluation function J (·)
in (12), it first considers the obstacle avoidance of the DO
approximated by Sd’s distance to the obstacle. Then, it fur-
ther includes the manipulation cost quantified by the spatial
distribution difference between S and Sd. So J (·) is defined
as

J (S0, S) = (1− λ)D(S0, S)− λd(S, E).

d(S, E) is a generic distance between S and obstacle E to
approximate d(O, E). D(S0, S) gauges the manipulation cost.
λ ∈ [0, 1] adjusts their weights.

For clarity, feedback points in S are also called complete if
their target positions are given in yd and incomplete otherwise,
designated by Sc and Sic, respectively, i.e., S = [ST

c , S
T
ic]

T.
d(S, E) is computed as the average of incomplete points’
distances to the obstacle to measure obstacle avoidance

d(S, E) = 1

card(Sic)

∑
si∈Sic

d(si, E).

D(S0, S) is a deformation-energy-like function reflecting
the manipulation cost through the structural difference between
S and S0. Analogously to soft robot shape modeling [57],
the central idea is that if S and S0 share similar relative
distributions of points, S can be achieved more easily from S0.
To quantify this structural difference, a reference distribution
for Sd is first generated. The pivot sp refers to the point in
Sc most influential in the task under some given criterion. For

Fig. 24. In feature-based deformation description, the desired feedback vector
Sd can be undetermined for a specified desired feature yd. For the point-angle
feature above, there are infinitely many S with yd = F(S) such as the shown
different configurations of (1) and (2). The aim is to find the Sd optimizing
some constructed criteria in J (·).

Algorithm 5: Target Determination for Visual Feed-
back Vector.

1 sd,p ← arg maxsi∈Sd|c ∥
∂y
∂si
∥2F ;

2 v← sd,p − s0,p;
3 RSc ← ExtractRotation(S0|c, Sd|c);
4 foreach si ∈ S0|ic do
5 sref,i ← RSc

si + v;
6 Sref |ic ← Sref |ic ∪ {sref,i};
7 Sd,ref ← [ST

d|c, S
T
ref |ic]

T;
8 Sd ← solve (12);
9 return Sd;

instance, si most influential on the feature y can be picked by
the Frobenius norm of the feature Jacobian, i.e.,

sd,p = arg max
si∈Sd|c

∥ ∂y
∂si
∥2F

where Sd|c is the known target of Sc and sd,p is the desired po-
sition of sp. Other criteria, such as the point with the maximum
displacement, may also be employed. The translational vector
v = sd,p− s0,p is then utilized to define the position variation
for incomplete points. The reference target of an incomplete
point is then given by

sref,i = RScs0,i + v.

RSc
is the rotation matrix induced by complete components

Sc, which can be extracted by considering the transformation
between S0|c and Sd|c using registration techniques [67]-[69].
If there is only one complete point, RSc = I.

In the final step, the reference distribution of Sd is given by
Sd,ref = [ST

d|c, S
T
ref |ic]

T. D(S0, S) is assigned as the average
of incomplete points’ distances between S and Sd,ref

D(S0, S) =
1

card(Sic)

∑
si∈Sic

∥si − sref,i∥2.

It is worth mentioning that Sd,ref may be an infeasible
configuration for S, but it is acceptable since Sd,ref only acts
as a reference. Algorithm 5 outlines the proposed procedure
of Sd determination and an example is shown in Fig. 24.

APPENDIX B



18

Fig. 25. σ′
x0

is the path marked by green arrows. ψ2(x) is composed of the
five segments with red arrows. ψ′

j,i(x, τ1) and ψ′
j,i(x, τ2) are depicted by

the dashed black lines from s0,j and sd,j to path σi.

SYMMETRY OF PATH HOMOTOPIC-LIKE RELATION

Upon symmetry of the path homotopic-like relation, homo-
topy properties and path transfer operations between any two
point paths become unordered. Assume path σ′

j,i and σi are
path homotopic, denoted by σ′

j,i ≃p σi. σj and σi are thus
path homotopic-like by our definition. To prove symmetry
of the path homotopic-like relation (i.e., σi and σj are also
path homotopic-like), we need to show σ′

i,j ≃p σj . Suppose
ψ′
j,i(x, τ) is a homotopy from σi to σ′

j,i and

ψ′
j,i(0, τ) = σi(τ)

ψ′
j,i(1, τ) = σ′

j,i(τ).

Assume that on path σ′
j,i, σ

′
j,i(τ1) = s0,j and σ′

j,i(τ2) =
sd,j for two path parameters τ1 < τ2 given by path length
parametrization. Then ψ′

j,i(x, τ1) and ψ′
j,i(x, τ2) for x ∈ [0, 1]

can represent the paths from σi(τ1) to s0,j and σi(τ2) to sd,j
determined by the homotopy ψ′

j,i(x, τ), respectively. For a
fixed x0 ∈ [0, 1], we define the intermediate positions of s0,j
and sd,j as

s′0,j = ψ′
j,i(x0, τ1)

s′d,j = ψ′
j,i(x0, τ2)

(see Fig. 25). Consider the concatenated path

σ′
x0

= ψ′
j,i(1 ∼ x0, τ1) ∗ ψ′

j,i(x0, τ1 ∼ τ2) ∗ ψ′
j,i(x0 ∼ 1, τ2)

where ∼ represents the traversal of the closed interval from
left to right. Intuitively, σ′

x0
starts at s0,j , passes through s′0,j

and s′d,j in order, and terminates at the final point sd,j as
shown by the path marked by green arrows in Fig. 25.

Next, we will show that σ′
x0
≃p σj and σ′

x0
≃p σ

′
i,j . The

former one is easy to validate since one homotopy ψ1 from
σ′
x0

to σj can be constructed as

ψ1(x) = ψ′
j,i(1 ∼ x0 + x(1− x0), τ1)

∗ψ′
j,i(x0+x(1−x0), τ1 ∼ τ2)∗ψ′

j,i(x0+x(1−x0) ∼ 1, τ2).

When only the first argument is provided in the homotopy
like ψ1(x), it refers to the intermediate path ψ1(x, 0 ∼ 1) for
notational simplicity. ψ1 is continuous for ψ′

j,i is continuous.
Recall that σ′

i,j := σj,i|0 ∗ σi ∗ σi,j|d. To demonstrate the
path homotopic relation between σ′

x0
and σ′

i,j , we explicitly

construct the homotopy ψ2(x) composed of the following five
sequential segments ψi

2(x), i = 1, 2, 3, 4, 5:

ψ1
2(x) = ψ′

j,i(1 ∼ x0, τ1 ∼ (1− x)τ1)
ψ2
2(x) = ψ′

j,i(x0 ∼ (1− x)x0, (1− x)τ1 ∼ τ1)
ψ3
2(x) = ψ′

j,i((1− x)x0, τ1 ∼ τ2)
ψ4
2(x) = ψ′

j,i((1− x)x0 ∼ x0, τ2 ∼ τ2 + x(1− τ2))
ψ5
2(x) = ψ′

j,i(x0 ∼ 1, τ2 + x(1− τ2) ∼ τ2).

Namely, ψ2(x) = ψ1
2(x) ∗ ψ2

2(x) ∗ ..., ψ5
2(x) and ψ2(0) =

σx0
, ψ2(1) = σ′

i,j . When both arguments in the homotopy
ψ2(x, τ) are ranges, x and τ vary linearly to cover their respec-
tive ranges. Each segment ψi

2 is continuous since ψ′
j,i(x, τ)

is continuous w.r.t. both x and τ , and so is the resulting
concatenated path by the gluing lemma. As for the feasibility,
both ψ1 and ψ2 are guaranteed to be feasible because their
domains are subsets of the domain of ψ′

j,i.
Given σ′

x0
≃p σj and σ′

x0
≃p σ′

i,j , we have σ′
i,j ≃p σj

using that ≃p is an equivalence relation, and according to the
definition, σi and σj are path homotopic-like.
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