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Abstract—Model Predictive Control (MPC) is a popular strat-
egy for controlling robots but is difficult for systems with
contact due to the complex nature of hybrid dynamics. To
implement MPC for systems with contact, dynamic models are
often simplified or contact sequences fixed in time in order
to plan trajectories efficiently. In this work, we propose the
Hybrid iterative Linear Quadratic Regulator (HiLQR), which
extends iLQR to a class of piecewisesmooth hybrid dynamical
systems with state jumps. This is accomplished by 1) allowing for
changing hybrid modes in the forward pass, 2) using the saltation
matrix to update the gradient information in the backwards pass,
and 3) using a reference extension to account for mode mismatch.
We demonstrate these changes on a variety of hybrid systems and
compare the different strategies for computing the gradients. We
further show how HiLQR can work in a MPC fashion (HiLQR
MPC) by 1) modifying how the cost function is computed when
contact modes do not align, 2) utilizing parallelizations when
simulating rigid body dynamics, and 3) using efficient analytical
derivative computations of the rigid body dynamics. The result is
a system that can modify the contact sequence of the reference
behavior and plan whole body motions cohesively – which is
crucial when dealing with large perturbations. HiLQR MPC
is tested on two systems: first, the hybrid cost modification is
validated on a simple actuated bouncing ball hybrid system. Then
HiLQR MPC is compared against methods that utilize centroidal
dynamic assumptions on a quadruped robot (Unitree A1). HiLQR
MPC outperforms the centroidal methods in both simulation and
hardware tests.

Index Terms—Legged Robots, Model Predictive Control, Hy-
brid Dynamics, Whole Body Motion Planning

I. INTRODUCTION

In order for robots to reliably move and interact within our
unstructured world, they need to be able to replan motions
to handle unexpected perturbations or changes in the envi-
ronment. However, replanning is difficult for robotic systems
that have changing contact with the world because of the
complexity of the discontinuous dynamics and combinatoric
issues that arise.

There are many methods for planning contact-rich behaviors
offline [1–4], but these methods generally suffer from poor
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time complexity and cannot be used directly in real-time
applications. Direct methods for contact implicit trajectory
optimization [1,2] simultaneously solve for the states, inputs,
and contact forces of an optimal trajectory while encoding
the contact conditions through complementarity constraints –
which are notoriously difficult and slow to solve. A relaxation
of contact implicit trajectory optimization is to fix the contact
sequence for each timestep [5–9].

To allow efficient updates of the contact sequence, [10]
speeds up contact implicit trajectory optimization through
strategic linearization about a target trajectory. However, the
basin of attraction is smaller because it is linearized about
a single nominal trajectory. If the robot needs to drastically
change the trajectory, the controller will not use a good model
given the linearization of the target trajectory.

Other relaxations have been made for the planning problem
to achieve real-time Model Predictive Control (MPC). Cen-
troidal methods [11–15] have had a lot of success in planning
gaits in real-time by making large simplifications on the robot
dynamics and also assuming a fixed contact sequence. Swing
legs are often controlled separately using Raibert heuristics
[16] or capture point methods [17] to regulate body velocity.
However, simplifications to the robot dynamics can lead to
the controller being less robust to perturbations which require
reasoning about the full dynamics, such as nonlinear changes
in lever arm for leg extension, varying inertia when the leg
changes shape, or not accounting for changes in contact.

Shooting methods which utilize Differential Dynamic Pro-
gramming (DDP) [18] or iterative Linear Quadratic Regulator
(iLQR) [19–23] are good candidates for model predictive con-
trol because they are fast, can utilize the full nonlinear dynam-
ics, and solutions are always dynamically feasible. Methods
that utilize the full nonlinear dynamics [24–26] generally come
at the cost of enforcing a fixed contact sequence. [27] utilizes
the full nonlinear dynamics for timesteps closer to the current
horizon and then uses simplified dynamics for timesteps later
in the future, but also uses a fixed contact sequence. These
methods rely on iterative linearization, but have not previously
considered the best way to linearize systems with changing
contact conditions.

In this work we propose the Hybrid iLQR (HiLQR) tra-
jectory optimization algorithm that extends iLQR to be a
full-order contact implicit trajectory optimization algorithm
(Sec. III). This is accomplished by:

1) Allowing for varying mode sequences on the forward
pass by using event detection to dictate when a transition
occurs and enforcing the appropriate dynamics in each
mode, Sec. III-B.

https://doi.org/10.1109/TRO.2023.3308773
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Figure 1: HiLQR MPC forward pass for tracking a backflip with an initial 0.5 m/s lateral perturbation on the body. 9 robot
models are used on the forward pass to solve the line search in parallel.

2) Applying the reset map on the forward pass and prop-
agating the value function through reset maps in the
backwards pass by using a saltation matrix, the lineariza-
tion of the sensitivity equation for this class of hybrid
systems, Sec. III-C.

3) Using reference extensions when there is a mode mis-
match to get a valid control input in each mode,
Sec. III-D.

Previous attempts to apply DDP/iLQR to hybrid systems,
e.g. [24], utilized a prespecified hybrid mode sequence and
used the Jacobian of the reset map to approximate the value
function through a hybrid transition. In contrast, here we
use the saltation matrix (Def. 2), [28–31], to propagate the
value function in the backwards pass. This change makes a
significant difference in solution quality and convergence, as
we show in Sec. V. Furthermore, the switching constraints
are enforced as part of the dynamics on the forward pass –
if the current timestep reaches a hybrid event, the solution
jumps to the next hybrid mode using the reset map. These
changes enable HiLQR to be run as a standalone algorithm
with improved solution quality and convergence properties.

This manuscript is evolved from [32], which presented the
initial HiLQR algorithm. In this extension, we show how
HiLQR can be used as an online Model Predictive Control
(MPC) controller (Sec. IV) and present new results demon-
strating the efficacy both in simulation and on a physical
robot (Sec. VI). This is accomplished by adapting the cost
function to include a hybrid cost update as shown in Sec.
IV-A, creating an optimization framework which utilizes fast
parallel simulations of full order legged robots as shown in
Sec. IV-B, and applying the saltation matrix to fast analytical
derivative calculations as shown in Sec. IV-C. Through these
changes, Hybrid iLQR MPC can greatly modify the contact
sequence when stabilizing large perturbations, e.g. as shown
in Fig. 1, because the optimizer is not constrained to the
reference trajectory’s gait sequence. We show that HiLQR
MPC can reject bigger disturbances than centroidal methods
when perturbed along a walking trajectory (Sec. VI-B). We
also show that HiLQR MPC working on a real robot in real-
time can reject disturbances more reliably than centroidal
methods (Sec. VI-C).

II. HYBRID SYSTEMS BACKGROUND

In this section, we define what a hybrid system is and the
first order linearization for hybrid events. Also, two different
hybrid simulation techniques are reviewed for rigid body
systems with unilateral constraints.

A. Hybrid Systems

This section closely follows the formulation of hybrid
systems from [33].

Definition 1: A hybrid dynamical system [34–36] is a tuple
H := (J , Γ,D,F ,G,R) where the parts are defined as:

1) J := {I, J, ...,K} ⊂ N is the finite set of discrete
modes.

2) Γ ⊂ J × J is the set of discrete transitions that form
a directed graph structure on J .

3) D is the collection of domains DI .
4) F is a collection of time-varying vector fields FI .
5) G is the collection of guards where G(I,J)(t) =

{(x, t) ∈ DI |g(I,J)(t, x) ≤ 0}.
6) R is called the reset that maps the state from DI to DJ

when the guard G(I,J) is met.
An example hybrid execution may consist of a starting point
x0 in DI flowing with dynamics FI and reaching the guard
condition g(I,J)(x, t) = 0, applying the reset map R(I,J)(x, t)
resetting into DJ and then flowing with the new dynamics FJ .

Definition 2: The saltation matrix [28–31]

Ξ := DxR+
(FJ −DxR · FI −DtR)Dxg

Dtg +Dxg · FI
(1)

is the first order approximation of the variational update
at hybrid transitions from mode I to J evaluated at time
t, pre-impact state x(t−), and control input u(t−), with
FI evaluated at FI(t

+, x(t−), u(t−)) and FJ evaluated at
FJ(t

+, x(t+), u(t−)), where x(t+) = R(I,J)(t
−, x(t−)), and

Dx is the Jacobian with respect to state and Dt is the derivative
with respect to time. It maps perturbations to first order from
pre-transition δx(t−) to post-transition δx(t+) in the following
way

δx(t+) = Ξδx(t−) + h.o.t. (2)

where h.o.t. represents higher order terms.
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B. Hybrid Simulators

There are 2 main hybrid simulation techniques for rigid
bodies with unilateral constraints – event-driven and timestep-
ping. HiLQR MPC uses a hybrid simulator and can use
either method. But different modifications need to be made
depending on which simulation type is used. It is important
to have a high level understanding of each of these simulation
types to understand that modifications discussed in this work.

Event-driven hybrid simulators [37–39] follow very closely
to the example shown in the definition of hybrid dynamical
systems Def. 1. Event-driven simulations are convenient be-
cause the dynamics have a well defined structure and contacts
are persistently maintained. However, event-driven simulations
have problems with behaviors like Zeno [35], where an infinite
number of hybrid transitions are made in a finite amount of
time, as they must stop integration and apply a reset map for
each individual event.

Time-stepping [39–41] schemes circumvent issues like Zeno
by integrating impulses over small timesteps at a time and are
numerically efficient, especially for systems with large num-
bers of constraints. These methods allow contact constraints to
be added or removed at any time step, but only once per time
step. Furthermore, no distinction is made between continuous
contact forces and discontinuous impulses. However, they are
limited to first-order (Euler) integration of the dynamics.

Time-stepping methods are commonly employed for simu-
lations involving hard contacts since they avoid the Zeno prob-
lem and simplify the process of verifying all potential contact
modes. On the other hand, event-driven hybrid simulators are
capable of modeling a broader range of hybrid systems and
are not limited to computing the progression of constrained
systems.

III. HYBRID ILQR

This section covers an abridged derivation of iLQR [19]
following [20], proposes the changes to make iLQR work on
hybrid systems, and discusses several important key features
of the new algorithm.

A. Smooth iLQR background

Consider a nonlinear dynamical system with states x ∈ Rn,
inputs u ∈ Rm, and dynamics ẋ = F (x(t), u(t)). Define a dis-
cretization of the continuous dynamics over a timestep ∆ such
that at time tk the discrete dynamics are xk+1 = f∆(xk, uk),
where tk+1 = tk + ∆, xk = x(tk), and uk = u(tk).
Let U := {u0, u1, ..., uN−1} be the input sequence, JN the
terminal cost, and J the runtime cost, where J and JN are
both differentiable functions into R.

The optimal control problem over N timesteps is

min
U

JN (xN ) +

N−1∑
i=0

J(xi, ui) (3)

where x0 = x(0) (4)
xi+1 = f∆(xi, ui) ∀i ∈ {0, ..., N − 1} (5)

To solve this problem, DDP/iLQR uses Bellman recursion
to find the optimal input sequence U , we which briefly review

here. Let Uk := {uk, uk+1, ..., uN−1} be the sequence of
inputs including and after timestep k. Define the cost-to-go
Jk as the cost incurred including and after timestep k

Jk(xk, Uk) := JN (xN ) +

N−1∑
i=k

J(xi, ui) (6)

with {xk+1, ..., xN} the sequence of states starting at xk based
on Uk and (5). The value function V (x, k) (Bellman equation),
evaluated at state and time (xk, k) is the optimal cost to go
Jk(xk, Uk), which can be rewritten as a recursive function of
variables from the current timestep using the dynamics (5),

V (xk, k) :=min
uk

J(xk, uk) + V (f∆(xk, uk), k + 1) (7)

Since there is no input at the last timestep, the boundary
condition of the value is the terminal cost, VN (xN , N) :=
JN (xN ). Next, define Qk to be the argument optimized in
(7). Optimizing the Bellman equation directly is incredibly
difficult. DDP/iLQR uses a second order local approximation
of Q where perturbations about the state and input (xk, uk)
are taken at time k. The resulting function is defined to be

Qk(δx, δu, k) :=J(xk + δx, uk + δu)− J(xk, uk) (8)
+ V (f∆(xk + δx, uk + δu), k + 1)

− V (f∆(xk, uk), k + 1)

where the value function expansion is for timestep k + 1 and
when expanded to second order

Q(δx, δu, k) ≈ 1

2

 1
δx
δu

T  0 QT
x QT

u

Qx Qxx QT
ux

Qu Qux Quu

 1
δx
δu

 (9)

the expansion coefficients are

Qx = Jx + fT
x Vx (10)

Qu = Ju + fT
u Vx (11)

Qxx = Jxx + fT
x Vxxfx + Vxfxx (12)

Qux = Jux + fT
u Vxxfx + Vxfuu (13)

Quu = Juu + fT
u Vxxfu + Vxfux (14)

where subscripted variables represent derivatives of the func-
tion with respect to the variable (e.g. Jx = DxJ) and the
discretized dynamics are abreviated as fk = f∆(xk, uk). Note
that the second derivative terms (where adjacency indicates
tensor contraction) with respect to the dynamics (fxx,k, fuu,k,
and fux,k) in (12)–(14) are used in DDP but ignored in iLQR.

With this value function expansion, the optimal control
input, δu∗, can be found by setting the derivative of Q(δx, δu)
with respect to δu to zero and solving for δu,

δu∗ =argmin
δu

Q(δx, δu) = −Q−1
uu (Qu +Quxδx) (15)

This optimal control input can be split into a feedforward term
uff = −Q−1

uuQu and a feedback term K = −Q−1
uuQuxδx.

Therefore, the optimal input for the local approximation at
timestep k is the sum of the original input and the optimal
control input, u∗

k = uk + δu∗.
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Once the optimal controller is defined, the expansion coef-
ficients of V for timestep k can be updated by plugging in the
optimal controller into (9)

Vx = Qx −QuQ
−1
uuQux (16)

Vxx = Qxx −QT
uxQ

−1
uuQux (17)

Now that the expansion terms for the value function at
timestep k can be expressed as sole a function of k + 1 the
optimal control input can be calculated recursively and stored
(uff,k,Kk). This process is called the backwards pass.

Once the backwards pass is completed, a forward pass is
run by simulating the dynamics given the new gain schedule
(uff,k,Kk) and the previous iterations sequence of states and
inputs.

x̂0 = x0 (18)
ûk = Kk(x̂k − xk) + αuff,k (19)

x̂k+1 = f∆(x̂k, ûk) (20)

where the new trajectory is denoted with hats (x̂, û) and α
is used as a backtracking line-search parameters 0 < α ≤ 1
[20, Eqn. 12]. The backwards and forwards passes are run
until convergence. Following [20], convergence is when the
magnitude of the total expected reduction δJ is small

δJ(α) = α

N−1∑
i=0

uT
ff,iQu,i +

α

2

N−1∑
k=0

uT
ff,iQuu,iuff,i (21)

Convergence issues may occur when Quu is not positive-
definite or when the second order approximations are inac-
curate. Regularization is often added to address these issues
and here we use the standard regularization from [42] where a
scaled diagonal term is added to the local control cost Hessian.

B. Hybrid system modifications to the forward pass

The first change that is required for iLQR to work on hybrid
dynamical systems is that the forward pass must accurately
generate the hybrid system execution. The dynamics are
integrated for the currently active mode Ij for the duration
of the hybrid time period j, i.e. ∀t ∈ [tj , t̄j ], until a guard
condition is met,

g(Ij ,Ij+1)(t̄j , x(t̄j), u(t̄j)) = 0 (22)

To capture these hybrid dynamics in the discrete forward
pass, the discretized dynamics are computed using numerical
integration with event detection, so that if no event occurs the
dynamic update, (5), is,

f∆j (x̂k, ûk) :=

∫ tk+1

tk

fIj (x(t), ûk)dt+ x̂k (23)

If during the integration the hybrid guard condition is met,
(22), the integration halts, the transition state is stored, the
reset map is applied, and then the integration is continued
with the dynamics of the new mode, Ij+1. Suppose that the

guard condition is met once (which is ensured for small times
by transversality) at time t̄j , such that tk ≤ t̄j ≤ tk+1, then

f ′
∆(x̂k, ûk) =

∫ tk+1

tj+1

fIj+1(x(t), ûk)dt+ (24)

R(Ij ,Ij+1)

(
t̄j ,

∫ t̄j

tk

fIj (x(t), ûk)dt+ x̂k

)
Note that this process can be repeated for as finitely many
times as there are hybrid changes during a single timestep,
but there cannot be infinitely many changes during a single
timestep (no Zeno).

Finally, in addition to updating the dynamics the cost
function, (6), can be augmented with additional cost terms,
JNj

, associated with each hybrid transition between the M
hybrid modes, as shown in [43],

J0 = JN (xN ) +

N−1∑
i=0

J(xi, ui) +

M−1∑
j=1

JNj
(xNj

) (25)

Such an addition may be desirable if e.g., one wanted to
penalize the occurrences of a transition event in the hopes
of having a minimal number of hybrid events.

C. Hybrid system modifications to the backwards pass

The backwards pass must be updated to reflect the discrete
jumps that were added through the hybrid transitions. Away
from hybrid transitions, the dynamics are smooth and behave
the same way as in the smooth iLQR backwards pass, so
our modification to the backwards pass occurs at timesteps
where a hybrid transition is made. By substituting (24) into
(7), and adding the transition cost from (25), the resulting
Bellman equation for the timesteps during hybrid transition j
over timestep k is

V (xk, k) =min
Uk

J(xk, uk)+JNj
(xNj

)+V (f ′
∆(xk, uk), k+1)

(26)

We elect to approximate the hybrid transition timestep to
have the hybrid event occur at the end of the timestep in
order to maintain smooth control inputs for each hybrid epoch.
For the backwards pass to work on the Bellman equation
during transition timesteps, we need to find the linearization
of f ′

∆(xk, uk). This linearization step is straight forward when
using the saltation matrix to map perturbations pre and post
hybrid transition (2).

The linearization can be broken up into 2 different steps,
where each step the linearization is known.

δx(t̄j) ≈ fx,∆j
δx(tk) + fu,∆j

δu(tk) (27)
δx(tj+1) ≈ Ξδx(t̄j) (28)

where f∗,∆j
= D∗f∆j

(x, u) and the saltation matrix is
abbreviated as Ξ = Ξ(Ij ,Ij+1)(t̄j , x(t̄j), u(tk))

These linearization steps can be combined and directly
substituted in the coefficient expansion equations (10)–(14)
in place of the fk terms. For the transition cost, JNj , an
expansion is taken about δx(t̄j) which can be mapped back
to (δx(tk), δu(tk)) and added to the expansion coefficients.
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When combining all the expansion terms, the hybrid iLQR
coefficients in (9) are,

Qx,k = Jx + fT
x,∆j

Jx,Nj
+ fT

x,∆j
ΞTVx (29)

Qu,k = Ju + fT
u,∆j

Jx,Nj
+ fT

u,∆j
ΞTVx (30)

Qxx,k = Jxx + fT
x,∆j

Jxx,Nj
fx,∆j

+ fT
x,∆j

ΞTVxxΞfx,∆j

(31)

Qux,k = Jux + fT
u,∆j

Jxx,Nj
fx,∆j

+ fT
u,∆j

ΞTVxxΞfx,∆j

(32)

Quu,k = Juu + fT
u,∆j

Jxx,Nj
fu,∆j

+ fT
u,∆j

ΞTVxxΞfu,∆j

(33)

After this update to the coefficient expansion, the backwards
pass continues normally. If the second order variational ex-
pression for the saltation matrix is calculated, then these
exact changes can be used for a hybrid DDP version of
this backwards pass. However, the computation of the second
order variation expression may not be easy for systems with
large state space. Note that a simplification we make for
the expansion is that we assume that the hybrid transition
occurs at the end of the timestep to ensure piecewise smooth
control inputs. This simplification will no longer be a good
approximation as time step periods become longer.

D. Hybrid extensions for mode mismatches

Since the forward pass can alter the contact sequence, the
new trajectory is not confined to the previous trajectory’s
mode sequence or timing. This feature is intended because
the algorithm can now remove, add, or shift mode transitions
if cost is reduced. However, this introduces an issue when the
reference mode is not the same as the current mode.

In [29, Eq. 7], the authors consider the problem of mode
mismatch for an optimal hybrid trajectory, both of the refer-
ence and of the feedback gains – the reference is extended by
integration, and the gains are held constant. We employ their
strategy, as well as apply this same rule for the feedforward
input and the feedforward gains – applying the input intended
for a different mode can cause destructive results, or be not
well-defined. If the number of hybrid transitions exceeds that
of the reference, we elected to hold the terminal state and
gains constant, though other choices could be made instead.

E. Algorithm

With each hybrid modification to iLQR listed in Sections
III-B, III-C, and III-D our new algorithm can be summa-
rized as follows: 1) Given some initial state, input sequence,
quadratic loss function, number of timesteps, and timestep
duration a rollout is simulated (either through event driven or
time stepping methods) to get the initial reference trajectory
and mode sequence. 2) A hybrid backwards pass (using the
regularization from [42]) computes the optimal control inputs
for the reference trajectory. 3) Hybrid reference extensions
are computed on the start and end states for each hybrid
reference segment. 4) The forward pass simulates the current
mode’s dynamics until a hybrid guard condition is met or it
is the end of the simulation time; if the guard is reached,

the corresponding reset map is applied and the simulation
is continued. This forward pass is repeated with a different
learning rate until the line search conditions are met [20].
5) Then the backwards pass, hybrid extensions, and forward
passes are repeated until convergence.

IV. HILQR MPC IMPLEMENTATION

In this section, the tracking problem is defined, and we show
how to adapt Hybrid iLQR to be a MPC controller.

A. Hybrid Cost Update

HiLQR for trajectory optimization’s goal is to reach a
specific state whereas HiLQR MPC is now trying to reach
every point a long a trajectory at specific points in time. The
goal now becomes minimizing the difference in state and input
with respect to a reference state and input

Ĵ(xi, ui) = (xi − x̂i)
TQi(xi − x̂i) + (ui − ûi)

TRi(xi − ûi)
(34)

where Qi is the quadratic penalty matrix on state, and Ri is
the quadratic penalty matrix on input, and (x̂, û) denotes the
reference. The optimization problem is now

min
U

ĴN (xN ) +

N−1∑
i=0

Ĵ(xi, ui) (35)

where x0 = x(0) (36)
xi+1 = f∆(xi, ui) ∀i ∈ {0, ..., N − 1} (37)

However, because Hybrid iLQR is contact implicit (the
hybrid mode sequence can differ from the target’s mode
sequence), the runtime cost (34) can be ill defined when
the candidate trajectory’s mode does not match the target’s.
For example, if there is an early or late contact in a rigid
body system with unilateral constraints, the velocities will be
heavily penalized for having a mismatched timing. This issue
is further propagated to the backward pass, where the gradient
information relies on these differences and can ultimately
lead to the algorithm not converging. To mitigate these mode
mismatch issues, we propose 2 different solutions for event-
driven and timestepping simulations.

For event-driven hybrid simulators, the same hybrid ex-
tensions used in reference tracking on the forward pass in
Hybrid iLQR can be used when comparing error during mode
mismatches. Suppose a hybrid transition occurs at time t. The
reference state at pre-transition x̂(t−) is extended beyond the
hybrid guard by flowing the pre-transition dynamics forwards
while holding the pre-transition input constant. The post-
transition reference state x̂(t+) is extended backward by
flowing the dynamics backward in time while again holding
the input constant. With these hybrid extensions, when there
is a mode mismatch induced by a transition timing error, the
reference is switched to the extension with the same hybrid
mode. Note that when tracking error trends to zero, then the
time duration of mode mismatch also trends to zero. Because
of this, the local minimum will not change with references
when error goes to zero, and the references will not ultimately
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Figure 2: Linesearch for the first HiLQR MPC forward pass
iteration after applying a 1.5m

s lateral perturbation while
walking as shown in Fig 13. If computed sequentially, the
linesearch would terminate after 12 steps.

change the optimal solution when there is zero error, it only
helps to find the optimal solution when error is non zero.

In timestepping simulations, the effect of the hybrid tran-
sition is applied over several timesteps rather than instanta-
neously as in event-driven hybrid simulations. For example,
when a contact is made, the penetrating velocities do not
immediately go to zero and actually take several timesteps to
go to zero. During these timesteps, the hybrid mode is not well
defined. Because of this, the hybrid extension method does
not work due to the timesteps that are “in between” hybrid
modes. Instead, we propose to use a different approach for
legged robots, where the constraint forces λj are used to scale
the penalty on input from Rmin to Rmax

wj =
λj∑
z λz

(38)

Rj = Rmax − wj(Rmax −Rmin) (39)

where the subscripts j and z corresponds to the leg index. The
constraint forces are recorded from the output of Isaac gym
simulations and they represent the ground reaction force from
each leg of the robot. This modification penalizes changes in
input less when a leg applies more ground reaction force and
penalizes changes in input more when the leg applies less
force to the ground. This is intuitive because when a leg is
not supporting much weight, we want that leg to have lower
gains because it has less control authority on the robot body.

B. Rollout and Forward Pass

Depending on the hybrid system, HiLQR MPC uses either
an event-driven or timestepping simulation for its rollouts
and forward passes. In this work, we demonstrate the cost
mismatch update for an event-driven simulation on a bouncing
ball. However, when multiple contacts are involved, as in the
case for a quadruped robot, simulating an event-driven system

is significantly more difficult than using an out-of-the-box
timestepping rigid body dynamics simulator. Many rigid body
contact simulators utilize timestepping simulation methods. In
this work, we use “Isaac Gym” (a high performance GPU-
based physics simulation) [44], because the simulator has a
unique feature where it can simulate multiple robots at once
at a fraction of the runtime of simulating them serially. We
utilize parallel computations to parallelize the linesearch in
the forward pass. An example linesearch is shown in Fig. 2,
which shows the cost for different learning rates. Note that the
cost is discontinuous with respect to the learning rate because
the line search explores different contact sequences. In order
for cost to be reduced in this case, the linesearch needs to take
12 steps if done sequentially. Due to the efficiency of parallel
computations on the forward passes, parallelizing is on average
twice as fast as computing the linesearch sequentially when
comparing the computation times for the solutions in Fig. 13.
Another approach for “parallel line search” [45] is a method
which speeds up optimizations by computing jobs serially, but
terminates jobs which take longer to compute. This method
is completely different from our parallel line search method
which computes all jobs as once.

Several key implementation features consist of precomput-
ing the gain schedule for the reference trajectory, reusing
the valid portions of previous solutions, and always seeding
the reference trajectory as one of the parallel solves in the
linesearch.

Lastly, quaternion differences [46] are used instead of Euler
angles when computing the orientation cost and linear feed-
back. This change allows for better convergence properties, as
well as allowing for tracking more dynamic behaviors like the
backflip in Fig. 1 due to properly accounting for the group
structure. See [46] for more details on quaternion differences
and how they improve solving optimization problems when
used in place of Euler angles.

C. Backward Pass

The main challenge for the backward pass is how to
compute the derivatives of the dynamics. For simple hybrid
systems like the bouncing ball, the derivatives of the dy-
namics and saltation matrix are trivial to find and compute.
However, computing the derivatives for the full order rigid
body dynamics with unilateral constraints is not trivial –
if done naively, the computations are incredibly slow. This
is the same for the saltation matrix because it relies on
computing the derivative of the impact map. In this work,
we utilize a rigid body dynamics library called Pinocchio [47]
(which computes these derivatives in an optimized fashion)
for all full order contact rigid body dynamics derivatives.
This work adds onto using Pinocchio’s analytical derivative
computation capabilities by efficiently computing the Saltation
matrix which provide analytical. Again, the saltation matrix is
applied when an MPC horizon adds a new contact.

For the backward pass, HiLQR MPC assumes the trajectory
is produced by an event-driven simulation. If the timesteps are
small enough, then approximating a timestepping simulation as
an event-driven simulation on the backward pass is reasonable.
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Figure 3: Hierarchy of controllers where HiLQR MPC is
replanning trajectories as fast as possible while Hybrid LQR
is tracking the most recent trajectory that was sent by HiLQR
MPC.

Another approximation HiLQR MPC makes is that when
simultaneous contacts are made during a timestep [48] (i.e., 2
feet making contact at the same time), the contact sequencing
is assumed to always follow the same contact order and to
have happened at the end of the timestep. The chosen order
is in increasing order of the indexing of the limbs. This
approximation effectively chooses a single contact sequence
for the resulting Bouligand derivative [49] instead of using the
entire tree of possible contact sequences. However, choosing
an arbitrary contact sequence during a simultaneous impact
event is a good approximation for our class of system –
see [50] for more details. These approximations are validated
through experimentation, where HiLQR MPC is still able
to converge with these approximations in the presence of
perturbations.

D. General Robot Implementation

For all robot experiments using HiLQR MPC, a 50 timestep
MPC horizon is used with timesteps of 0.01 seconds. When
running HiLQR MPC in simulation, the algorithm is able to
pause the simulation in order to compute a new trajectory.
Once a trajectory is generated, the first input of the planned
trajectory is used as the control input for that timestep.
Allowing HiLQR MPC to pause the simulation ensures that we
can analyze how well the controller can perform independent
of the computation time available. We also run the controller
in real-time, because on hardware the dynamics cannot be
paused. Note that because perturbations can lead to varying
solve times, it is important that the algorithm ran on the robot
in real-time have cutoffs on computation time.

To run HiLQR MPC in real-time for the physical robot im-
plementation, several changes are made and hyper parameters
are tuned to speed up the algorithm at the cost of performance.
The first change is to run a hierarchy of controllers, as shown
in Fig. 3, where a fast low level Hybrid LQR controller is run
asynchronously from the trajectory generator (HiLQR MPC).
HiLQR MPC runs separately as fast as possible and always
using the latest robot state. When solving for a new trajectory,
sub-optimal trajectories are sent out at each forward pass
iteration in order to send the low level controller the most
recent trajectory modifications. If the current solve exceeds the
maximum allotted time 0.25s (half of the MPC horizon), the
current solve is terminated and a new solve is started for the

most recent robot state information. Several hyper-parameters
are modified to reduce computation time, from reducing the
number of robots running in parallel in the rollouts and
forward passes to relaxing the optimality condition. Lastly,
joint PD terms from the gain matrix are sent directly to the
motor controller, which runs at 10KHz rather than computing
the feedback at the Hybrid LQR level. Note that the linearized
model is used for tracking, but is constantly updated because
the system is inherently nonlinear.

V. EXPERIMENTS FOR HILQR TRAJECTORY
OPTIMIZATION

In this section, we define a set of hybrid systems – ranging
from a simple 1D bouncing ball to a perching quadcopter
with constrained dynamics and friction – and a series of
experiments which evaluates how our hybrid iLQR algorithm
performs in a variety of different settings. Overall, the Jacobian
of the reset map method DxR-iLQR has trouble converging
and has worse cost compared to our proposed algorithm Ξ-
iLQR which uses the saltation matrix.

For all of the examples, we assume that there is no desired
reference trajectory to track and that there is no hybrid
transition cost JNj

– this means the runtime cost is only a
function of input. In each experiment, a comparison against
using the Jacobian of the reset map instead of the saltation
matrix is made by evaluating the expected cost reduction for
the entire trajectory and the final cost. The Jacobian of the
reset variant is labeled as DxR-iLQR and the main variant
which uses the saltation matrix Ξ-iLQR.

For all examples, m = 1 is the mass of a rigid body, g = 9.8
is the acceleration due to gravity, the number of timesteps
simulated is N = 1000, and the timestep duration is ∆ =
0.001s unless specified.

The dynamics considered here fall into the category of
Euler Lagrange dynamics subjected to unilateral holonomic
constraints. We use the dynamics, impact law, and comple-
mentarity conditions as derived in [33]. These examples use
event-driven simulation implemented using MATLAB ODE 45
[51] with event detection.

These systems have configuration variables q where the state
of the system is the configurations and their time derivatives
x = [qT , q̇T ]T . When the system is in contact with a con-
strained surface a(q) = 0, a constraint force λ is applied to
not allow penetration in the direction of the constraint. The
accelerations q̈ and constraint forces λ are found by solving
the constraint and accelerations simultaneously,

M(q)q̈ + C(q, q̇)q̇ +N(q, q̇) +A(q)Tλ = Υ(q, u) (40)

A(q)q̈ + Ȧ(q)q̇ = 0 (41)

where M(q) is the manipulator inertia matrix, C(q, q̇) are the
Coriolis and centrifugal forces, N(q, q̇) are nonlinear forces
including gravity and damping, A(q) = Dqa(q) is the velocity
constraint, and Υ(u) is the input mapping function.

Suppose the constrained surface aJ(q) is the J th possible
hybrid mode, and the current mode is the unconstrained mode.
aJ(q) acts as the guard surface for impacts g(1,J) = aJ(q).



8

When the system hits the impact guard, the velocity is reset
using a plastic or elastic impact law [33].

Releasing a constrained mode (liftoff) occurs when a con-
straint force becomes attractive rather than repulsive; thus we
define hybrid guard g(t, x, u) := λ and the reset map at these
events are identity transforms because no additional constraints
are being added.

A. Bouncing ball elastic impact

1) Experimental Setup: We begin with a 1D bouncing ball
under elastic impact [36], where the state x = [z, ż]T is the
vertical position z and velocity ż. The input u is a force applied
directly to the ball. The two hybrid modes, 1 and 2, are defined
when the ball has negative velocity ż < 0 and when the ball
has non-negative velocity ż ≥ 0, respectively. The dynamics
on each mode are ballistic dynamics plus the input

F1(x, u) = F2(x, u) :=

[
ż,

u−mg

m

]T
(42)

Hybrid mode 1 transitions to 2 when the ball hits the ground,
g(1,2)(x) := z, and mode 2 transitions to 1 at apex g(2,1)(x) :=
ż. When mode 1 transitions to 2, an elastic impact is applied,
R(1,2)(x) = [z,−eż]T where e is the coefficient of restitution.
The reset map from 2 to 1 is identity.

The Jacobian of the reset map and saltation matrix are,

DxR(1,2) =

[
1 0
0 −e

]
, Ξ(1,2) =

[
−e 0

(u−mg)(e+1)
mż −e

]
(43)

When transitioning from 2 to 1, both Jacobian of the reset
map and saltation matrix are identity.

The problem data is to have the ball fall from an initial
height with no velocity, x0 = [4, 0]T , and end up at a final
height xdes with no velocity with penalties R = 5× 10−7/∆,
QN = 100I2×2 and the problems were seeded with a constant
input force to obtain different number of bounces. A suite
of bouncing conditions are considered and are summarized in
Table I. In the case where 0 bounces are optimal xdes = [3, 0]T

while where 1 or 3 bounces are optimal xdes = [1, 0]T . For
3 bounces the timestep is set to ∆ = 0.004. To evaluate the
effectiveness of the hybrid extensions, Sec. III-D, an additional
comparison using our hybrid iLQR algorithm where we do
not apply any hybrid extensions is made. For all cases, a
convergence cutoff for this problem is set to be if |δJ | ≤ 0.05.

2) Results: The outcomes of the experiment comparing
DxR-iLQR to Ξ-iLQR are shown in Table I. An example run
is shown in Fig. 4. DxR-iLQR did not converge (|δJ | > 0.05)
on any example if a hybrid transition was maintained, while
Ξ-iLQR converged on every example. The only cases where
DxR-iLQR converged were when the algorithm removed all
of the bounces – which becomes equivalent to smooth iLQR.
Ξ-iLQR has lower cost compared to DxR-iLQR for every
example except for when the problem is seeded with no
bounces (they obtain the same smooth solution) and when no
bounces was the optimal solution but the problem was seeded
with a single bounce – which is an antagonistic seed for the
problem. In this case, Ξ-iLQR did converge to a different

Table I: Bouncing ball with elastic impacts. Trials vary in
optimal number of bounces, number of seeded bounces, which
method was used, total cost, and convergence |δJ | < 0.05

Optimal # Seed # Method Actual # Cost Converged
0 0 Ξ 0 53.1 Yes
0 0 DxR 0 53.1 Yes
0 1 Ξ 1 114 Yes
0 1 DxR 0 53.1 Yes
0 1 Direct 1 114 Yes
1 0 Ξ 0 97.3 Yes
1 0 DxR 0 97.3 Yes
1 1 Ξ 1 42.5 Yes
1 1 DxR 0 97.3 Yes
1 3 Ξ 1 42.5 Yes
1 3 DxR 1 125 No
3 1 Ξ 1 105 Yes
3 1 DxR 0 114 Yes
3 3 Ξ 3 0.536 Yes
3 3 DxR 3 19.6 No
3 3 No Ext. 3 53.3 No

Figure 4: Bouncing ball with elastic impact where 1 bounce is
optimal and 3 bounces are seeded. The target end position is
shown in (magenta plus). Both gradient update methods were
able to pull away the unnecessary bounces, but the method
using DxR did not converge or get to the target state.

local minima1, which is not surprising as it is not a global
optimization.

The value of the hybrid extension was tested on the three
bounce optimal three bounce seeded case. Without the hybrid
extension, the optimizer did not converge and did significantly
worse than DxR-iLQR. This highlights the importance of the
hybrid trajectory extensions: even though the backwards pass
is correct, having mode mismatches will lead to unfavorable
convergence and trajectory quality.

Overall, Ξ-iLQR produced locally optimal solutions for
each variation and was able to remove unnecessary bounces in
some cases, though it never added any. This result is expected
because there is no gradient information on the backwards
pass being provided to give knowledge about adding additional
bounces. Furthermore, as discussed above, there may not be
an appropriate controller available when a novel hybrid mode
is encountered.

B. Ball dropping on a spring-damper

1) Experimental Setup: Hard contacts are sometimes re-
laxed using springs and dampers, so we consider the 1D

1This solution was confirmed as a local minima under a single bounce
by comparing it against a trajectory produced using direct collocation [7]
constrained to a single bounce, as shown in Table. I.
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Figure 5: Bouncing ball on a spring-damper ground where
both gradient update methods found similar trajectories but
using the Jacobian of the reset map DxR lead to not being
able to fully converge as evident by the residual spikes near
hybrid transitions.

bouncing ball case, but instead of having a discontinuous event
at impact, the impact event is extended by assuming the ground
is a spring damper (i.e., a force law fsd(z, ż) := kz+dż) when
being penetrated and a spring when releasing. The system
now has an identity reset, but since the saltation matrix is
not identity, the hybrid transition still produces a jump in the
linearization.

The hybrid modes are defined as: the aerial phase 1, the
spring-damper phase 2 and the spring phase 3. The spring and
dampening coefficients are chosen to be k = 100 and d = 5.
The guards are when the ball hits the ground g(1,2) = z, when
the ball no longer has any penetrating velocity g(2,3) = ż, and
when the ball is released from the ground g(3,1) = z. For all
of these transitions, the reset map is an identity transformation
and the states do not change.

The example is setup to have the ball fall an initial height
with an initial downwards velocity x0 = [3,−2], end up at
a height with no velocity xdes = [1, 0], with penalties R =
0.0001, QN = 100I2×2 and no input for the seed.

2) Results: For this experiment, Ξ-iLQR and DxR-iLQR
came up with similar solutions where the cost of Ξ-iLQR
J = 13.21 is slightly lower than DxR-iLQR J = 13.29.
This difference is highlighted in Fig. 5 where DxR-iLQR was
not able to smooth out the spikes near mode changes. This
is also reflected in DxR-iLQR having a higher expected cost
reduction as well δJ = 0.001 where Ξ-iLQR is a magnitude
lower δJ = 0.00017. This difference in convergence can most
likely be attributed to DxR providing gradient information that
does not adjust the input pre-impact accordingly to allow for
adjustments on the spikes post-impact without destructively
changing the resulting end state.

C. Ball drop on a curved surface with plastic impacts
1) Experimental Setup: To test our algorithm with a nonlin-

ear constraint surface, we designed a system where an actuated
ball in 2D space is dropped inside a hollow tube and is tasked
to end in a goal location on the tube surface.

The configuration states of the system are the horizontal
and vertical positions q = [y, z]T . This system consists of two

Figure 6: Ball drop on a curved surface with plastic impacts
where both gradient methods produced trajectories that got
to the end goal, but using DxR did not converge and had a
significantly higher cost.

different hybrid modes: the unconstrained mode 1 and in the
constrained mode 2. The constrained surface is defined to be
a circle with radius 2, a(q) = 4 − y2 − z2. The dynamics
of the system, (40), are ballistic dynamics with direct inputs
on configurations, M(q) = mI2×2, N(q, q̇) = [0,−mg]T ,
C(q, q̇) = 02×2, and Υ = [uy, uz]

T . The impact guard from
(1,2) is defined by the circle’s constrained surface and the
liftoff guard from (2,1) is the constraint force λ.

The example is setup to have the ball fall from an initial
height with velocity pointing down and to the right x0 = [1, 0],
end up at a specific location on circle with no velocity xdes =
[−

√
3,−1, 0, 0], with penalties R = 0.0001, QN = 100I4×4

and no input for the initial seed except for a vertical force 2mg
applied for a small duration to cause the ball to momentarily
leave the constraint.

2) Results: The trajectory produced by Ξ-iLQR has a cost
of J = 10.7 and DxR-iLQR a cost of J = 50.5. The generated
position trajectories along with the initial seeded trajectory are
shown in Fig. 6 where both methods ended up at the goal state
but DxR-iLQR converged significantly less than Ξ-iLQR.

In this example, we purposely seeded a sub-optimal trajec-
tory which releases the contact for a small duration and returns
back to the constraint to evaluate if the algorithms would
modify the contact sequence. Ξ-iLQR ended up removing this
erroneous contact change and whereas DxR-iLQR ended up
not going back to the constraint surface and ended in the
unconstrained mode. We speculate that because DxR has the
wrong gradient information about contacts, it ended up staying
in the unconstrained mode for a longer duration and ultimately
could not converge.

D. Perching quadcopter

1) Experimental Setup: We introduce a quadcopter perch-
ing example inspired by [52], where we consider a planar
quadcopter which can make contact with sliding friction on a
surface. When both edges of the quadcopter are touching the
constraint, we assume some latching mechanism engages and
fully constrains the quadcopter in place with no way to release.
This problem explores planning with an underactuated system,
friction, constraint surfaces, nonlinear dynamics, nonlinear
guards, and nonlinear resets.

The configurations of the system are the vertical, horizontal,
and angular position q = [y, z, θ]T and the inputs are the left
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and right thrusters, u1 and u2. The dynamics are defined by
(40) with the following

M(q) :=

m 0 0
0 m 0
0 0 I

 , C(q, q̇) :=

0 0 0
0 0 0
0 0 0

 , (44)

N(q, q̇) :=

 0
−mg
0

 , Υ :=

− sin(θ)(u1 + u2)
cos(θ)(u1 + u2)
1
2 (u2w − u1w)

 (45)

where w = 0.25 is the width and I = 1 is the inertia of the
quadcopter.

To add more complex geometry, the constrained surface is a
circle centered about the origin with radius 5. Since the edges
of the quadcopter make contact with the surface, the left and
right edges of the quadcopter are located at,

[yL, zL]
T = [y − 1

2
w cos θ, z − 1

2
w sin θ]T (46)

[yR, zR]
T = [y +

1

2
w cos θ, z +

1

2
w sin θ]T (47)

The constraints are then a1 = 25 − y2L − z2L and a2 = 25 −
y2R − z2R. Frictional force λt is defined to be tangential to the
constraint with magnitude proportional to the constraint force
λn, λt = µλn, where µ is the coefficient of friction.

The example is setup to have the quadcopter start some
distance away from the constraint with a horizontal velocity,
x0 = [2, 2.5,−π/8, 4, 0, 0]T , end up oriented with the con-
straint with no velocity xdes = [5 cos(−π/12), 5 cos(−π/12),
−7/12π, 0, 0, 0]T , timesteps ∆ = 0.002, with penalties R =
0.012×2, and QN = [1000I3×3, 03×3; 03×3, 0.1I3×3]. The po-
sition portion is weighted more heavily than velocity because
the goal is to get close enough to the desired location to
perch. For the seed, a combined thrust of equal to 1.5mg was
applied constantly and if both edges made contact with the
constraint, the thrust force was dropped to 0.1mg. This initial
input resulted in a trajectory which makes contact with the
right edge and then shortly after makes double contact with
the constraint as shown in Fig. 7.

2) Results: In this example, the final position trajectories
are shown in Fig. 7 where Ξ-iLQR converged δJ = 0.170
with a cost of J = 4.76 whereas DxR-iLQR did not converge
δJ = 3× 105 and produced an erratic solution with very high
cost of J = 2.66× 103.
Ξ-iLQR seemed to make the natural extension of the seed

and followed the constraint until the target position was
achieved, but removed the double constrained mode at the end.
We postulate that the fully constrained mode was removed in
order to better fine tune the final position because position
error is weighted significantly more than velocity. However,
the true optimal solution should include the fully constrained
mode to eliminate any velocity for free.

VI. EXPERIMENTS FOR HILQR MPC

In this section, the experiments and results for HiLQR used
as an MPC are presented. Overall, we find that utilizing the
cost mismatch updates is crucial for obtaining good solutions,

Figure 7: Demonstrating an example solution using the pro-
posed hybrid iLQR algorithm (labeled with Ξ, the saltation
matrix, Def. 2) where the goal is to control a quadcopter
to a target final position (shown with a magenta plus) and
can make contact with a curved wall with friction. Using a
different approximation for the gradient (Jacobian of the reset
map, DxR, [24]) leads to poor convergence and significantly
higher cost. Note that in the force plots, the optimal input is
not smooth because of the hybrid transition.

and HiLQR MPC can withstand large perturbations by modi-
fying the contact sequence in an optimal manner. Experimental
results are also shown in the video attachment.

To validate the event-driven mode mismatch cost update,
we first compare using the proposed update with not using
any hybrid cost updates on a simple actuated bouncing ball
hybrid system. Then, to show how this approach can scale up
to a real system, simulated and physical robot experiments are
carried out on a quadrupedal robot (Unitree A1) to compare
HiLQR MPC with methods that use centroidal simplifications
and Raibert heuristics for swing leg control: “Convex MPC”
[11] and “Instant QP” [13–15]. Convex MPC returns ground
reaction forces for the feet that are in contact with the ground
and are subjected to friction constraints for a set horizon
length. The dynamic model is a linearized floating base model
and the optimization is formulated as a quadratic program.
Instant QP solves the same problem, but for a single timestep.
Because only one timestep is solved, Instant QP can update
the solver with the actual contact condition of the feet and can
provide more stability with respect to contact mismatches, but
lacks the robustness that is gained from looking ahead.
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A. Bouncing Ball

1) Experimental Setup: In this experiment, the same 1D
bouncing ball hybrid system from Sec. V-A is used. To
validate that updating the cost on mode mismatches improves
convergence for HiLQR MPC, we first generate a reference
trajectory using Hybrid iLQR to create an optimal single
bounce trajectory. HiLQR MPC is used to stabilize an initial
large perturbation and is run with and without the hybrid
cost update for event-driven simulations. For both cases,
HiLQR MPC is applied at every timestep. At each timestep,
convergence is recorded where convergence is determined by
the expected reduction (21). For this test, the convergence cut-
off is set to be δJ < 1e−4. It is expected that, by utilizing
the mode extensions, convergence will improve because the
algorithm will not spend unnecessary computation and effort
in flipping the velocity of the ball if there is a mismatch in
impact timing, rather it will wait for when the impact applies
the flip.

2) Results: The task for the bouncing ball experiment is
to track a predefined trajectory using HiLQR MPC for a
fully actuated bouncing ball. The target trajectory is 1 second
long, where the ball starts at 4 meters above the ground with
no velocity and ends at 2.5 meters above the ground with
no velocity. We compare using the event-driven hybrid cost
update (Sec. IV-A) to not using this update, and the results of
this experiment are shown in Fig. 8.

As expected, both methods converge and track well before
the impact event is within the horizon of the HiLQR MPC.
The approaches differ once the hybrid event is within the
horizon, as can be seen by the high control effort and unnatural
kink in state space that is produced when not using the
cost update. Furthermore, of the 1001 time steps, 8 did not
converge when the cost update was not used. Although the
number of unconverged timesteps is small, the quality of the
trajectory suffered greatly, as shown in Fig. 8, top row. This
is because without updating the cost to account for hybrid
mode mismatches, the gradient information biases the solution
towards flipping the velocity before impact.

Using the cost update for hybrid mode mismatches, HiLQR
MPC can correctly utilize the impact to reduce tracking error,
as shown in Fig. 8, bottom row. The cost update allows HiLQR
MPC to create plans that are closer to the target trajectory by
shifting contact times rather than making large modifications
to the input to match the contact schedule, which results in
significantly better convergence. In addition to having better
tracking performance, when using trajectory optimization for
MPC, it is desirable to always converge and to not make drastic
changes from the planned trajectory unless necessary.

B. Simulated Robot Controller Comparison

1) Experimental Setup: To demonstrate the robustness of
cohesively planning whole body motions and allowing contact
schedules to change, we compare HiLQR MPC to Convex
MPC and Instant QP by applying perturbations to A1 while
implementing a walking gait in simulation. To make the
comparison fair, the walking gait that HiLQR MPC is tracking
is the same one generated from Convex MPC in the absence

Table II: Lateral perturbation success rates for a medium
perturbation 1.0m/s, a large perturbation 1.5m/s, and the
average max deviation for the large perturbation over 8 trials.

Controller 1.0m/s Succ. [%] 1.5m/s Succ. [%] Avg. Dev. [m]
HiLQR MPC 100% 88% 0.512m
Convex MPC 88% 50% 1.032m
Instant QP 50% 25% 3.729m

of perturbations. Similar gait parameters are chosen for Instant
QP to produce a similar gait. All controllers are run at each
timestep and use the first control input of the new trajectory
as the control input for that timestep.

The walking gait starts from a standing pose and then
attempts to reach a desired forward velocity of 0.2m

s . Lateral
velocity perturbations are applied to the robot’s body at two
different magnitudes and eight different times along the gait
cycle: four when each foot is in swing when getting up to
speed and the other four when the gait is in steady state. The
number of times the robot falls and the maximum perturbed
lateral position are recorded for each push.

It is expected that HiLQR MPC should be able to recover
from a wider variety of perturbations and have less deviation
when the perturbations are large when compared against the
centroidal methods because it can utilize the nonlinear contact
dynamics of the swing and stance legs cohesively.

2) Results: The robustness of HiLQR MPC is compared
with Convex MPC and Instant QP for a walking trajectory
at eight different perturbations in simulation. The results
are summarized in Table II, farthest perturbed position is
visualized for each experiment in Figs. 9 and 10, change in
contact sequence in Figs. 11 and 12, and the resuling behavior
shown in Fig 13.

As expected, deviations from the smaller perturbation lead
to similar results and high success for all controllers. This
is most likely because the perturbations do not require the
controller to heavily modify the trajectory while stabilizing
less stable robot states, such as in the case of the larger per-
turbations. In the medium and large perturbation experiments,
HiLQR MPC had a higher success rate of 100% and 88%
compared to the centroidal methods – Convex MPC 88% and
50% and Instant QP 50% and 25%. Failure for the controllers
tended to occur when a right leg was in swing (both front right
and back). This failure mode is most likely due to the lateral
perturbation being applied in the left direction causing the
stabilizing maneuvers to be more complicated and less stable.
Because HiLQR MPC is able to plan the body and swing legs
more cohesively, it can handle these complex maneuvers better
than the centroidal methods, where the stance and swing legs
are planned separately. This difference is mostly highlighted
when the perturbations are larger. Since Instant QP performed
worse than Convex MPC, further comparisons are made only
between HiLQR MPC and Convex MPC.

In the large perturbation experiments, HiLQR MPC deviated
half as much as Convex MPC when comparing max lateral
deviations in body position, as shown in Table II. An example
trial (large perturbation during the first step) is shown in Fig.
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Figure 8: Comparing HiLQR MPC not using the event-driven hybrid cost update (top row) and using the event-driven hybrid
cost update (bottom row) where the state space trajectory tracking is shown in (left column) and input usage in time series is
shown in (right column). HiLQR solutions are shown in (blue dashed) and the target trajectory is shown in (black solid). The
end of trajectories are denoted with (circle). When not using the event-driven hybrid cost update the trajectory tracking suffered,
as evident by the high input effort and sharp deviations in trajectory that attempt to track the post-impact velocity before the
impact occurs. Several solutions did not converge as shown in with (green highlight). Whereas, using the event-driven hybrid
cost update led to altogether better convergence and tracking.

13, where HiLQR MPC used less steps to stabilize the per-
turbation, which ultimately led to the body deviating less than
half of the deviation from Convex MPC. The contact sequence
for the reference and the initial solution after applying the
perturbation are shown in Figures 11 and 12. Note that HiLQR
MPC is solving for new trajectories that modify the contact
sequence in order to better stabilize the behavior rather than
adhering to the original plan’s contact sequence. This is crucial
because HiLQR MPC can add or remove contacts to help catch
itself, as well as optimize the new contact locations.

Overall, HiLQR MPC performed similarly to or better than
Convex MPC when stabilizing perturbations along a walking
trajectory. When the perturbations are large, HiLQR MPC
outperforms Convex MPC because it is able to replan a new
contact sequence to stabilize about and it can fully utilize the
nonlinear dynamics for the more aggressive maneuvers.

C. Physical Robot Controller Comparison

1) Experimental Setup: The bulk of the analysis for com-
paring the controllers is done in simulation because the
perturbations can be consistently applied in both cases with
a variety of different perturbations. To reliably apply the
same perturbation on hardware, we opt for a consistent motor

command block for a short period of time while the robot
is walking. Once the motor commands are unblocked, the
controller must react to the robot falling over, catch itself,
and then continue walking.

In this experiment, we compare HiLQR MPC against Instant
QP. Instant QP utilizes similar assumptions to Convex MPC
(floating base convex optimization), but differs in being able
to update the contact mode on every timestep while Convex
MPC follows the contact sequence of the planned gait. To have
a more fair comparison we utilize Instant QP to remove the
clear absence of handling a new contact mode that is bound
to happen with this experiment. Both Hybrid iLQR MPC and
Instant QP are able to handle the perturbation in simulation but
come up with different solutions. HiLQR MPC tends to replan
a stand trajectory after it realizes that it is falling to catch
itself, while Instant QP tries to continue the walking gait and
recirculates the legs in order to catch itself. The perturbation
is applied shortly after walking has started, and the torque
commands are blocked for 0.15 seconds. The experiment is
run 5 times for each controller and failure is determined by if
the robot’s body hits the floor and if the controller is able to
continue walking after the perturbation. For state estimation,
we use the Kalman filter from [53]. Because HiLQR MPC
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Figure 9: Medium perturbation (1.0 m/s lateral perturbation).
Plots the nominal trajectory and worst case error in lateral
position for both controllers. Grey circle indicates that the
robot fell.

Figure 10: Large perturbation (1.5 m/s lateral perturbation).
Plots the nominal trajectory and worst case error in lateral
position for both controllers. Grey circle indicates that the
robot fell.

creates a new plan to track in order to handle the perturbation,
it is expected to outperform Instant QP which is trying its best
to continue walking.

2) Results: The results of the motor-blocking physical robot
experiment are shown in Fig. 14 and Table III. Over five
trials, HiLQR MPC was able to stabilize successfully after
the motor block was released every time, while Instant QP
was completely unstable 60% of the time and 40% of the
time was able to stand up and walk after the body hit the
ground. Two unintended additional perturbations occurred in
this experiment – there is a consistent 10 millisecond input
delay on A1 and another perturbation caused by the state

Figure 11: Hildebrand diagram for the nominal walking gait
where black means the foot is in contact.

Figure 12: Hildebrand diagram for a single solve of HiLQR
MPC rejecting the large perturbation at 60 ms as shown in the
top of Fig. 13 where black means the foot is in contact. See
that HiLQR MPC is removing and adding back contacts when
advantageous to help stabilize the behavior.

estimator. The estimator relies on the kinematic information
from the legs that are in contact to get a better estimate of
the robot body. However, when the motor commands were
blocked, all the contact forces went close to zero, which
resulted in a degraded estimate of the robot body until the
legs made sufficient contact with the ground again.

HiLQR MPC was able to replan a stand trajectory in order to
catch itself rather than sticking to the original plan of walking
as Instant QP. In the times that Instant QP successfully rejected
the perturbation, the robot body actually hits the ground and
the legs that are planned to be in stance apply enough standing
force to get back up while the back right leg recirculates in
order to counteract the backward velocity induced by getting
back up. Since this relies on the body hitting the ground
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Figure 13: Applying 1.5 m/s lateral perturbation during the first step of the walking gait. (Top row) shows HiLQR MPC
recovering from the perturbation in one step and accruing a lateral deviation of 0.3 meters while (bottom row) shows Convex
MPC taking several steps to handle the perturbation and is perturbed 0.7 meters away from the nominal.

Table III: Motor blocking perturbation results over 5 trials.

Controller Success Hit Ground Uncontrolled
HiLQR MPC 100% 0% 0%
Instant QP 0% 40% 60%

correctly and the back leg perfectly stabilizing the motion,
it is a lot less reliable but is able to catch itself occasionally.

Similarly to the simulated experiments, HiLQR MPC out-
performs the centroidal method (Instant QP) because HiLQR
MPC does not have to adhere to a rigid gait schedule and
can fluidly replan a new contact sequence to help stabilize the
perturbation. Although Instant QP utilizes the current contact
information to inform which legs are in contact, the controller
is trying its best to follow the scheduled gait sequence. In
this case, modifying the gait sequence from a walk to a stand
is much more reliable. HiLQR MPC is able to track the
walking gait when appropriate but modify it to a stand if
needed to catch the robot and seamlessly return to walking
once the perturbation has been stabilized. Having the ability
to automatically modify the gait schedule to generate these
stabilizing behaviors is important for a controller because the
initial plan might not always be the best in the presence of
disturbances.

VII. DISCUSSION

Allowing for varying contact sequences while planning
for the full nonlinear dynamics of a robotic system is very
difficult, but leads to more robust control. In this work, we
present Hybrid iLQR and show how it can work as a MPC
controller, which can vary the contact sequence of the target
trajectory as well as plan with the nonlinear dynamics. This is
made possible by fixing gradient issues that occur when there

are hybrid mode mismatches, using fast analytical derivatives
of the contact dynamics, and parallelizing the line search in
the forward pass.

In simulation, HiLQR MPC outperforms the state of the
art centroidal motion planning technique (Convex MPC) for
stabilizing perturbations 88% success rate vs 50% for large
perturbations and 100% vs 88% for medium perturbations.
This is because HiLQR MPC is able to fully utilize the legs
of the robot to help catch itself and can create more efficient
and elegant solutions, needing fewer steps to recover.

HiLQR MPC is also able to run in real-time with some
modifications to the hyperparameters and utilizing a hierar-
chical control structure where trajectories are sent to a lower
level Hybrid LQR controller to track the hybrid trajectories
planned by HiLQR MPC. We are able to show for a motor
blocking perturbation that HiLQR MPC is able to withstand
this better than Instant QP, where HiLQR MPC succeeded for
all trials and Instant QP could only stabilize 40% of the time
(and even then only after the robot body hit the ground). The
high success rate for HiLQR MPC is due to planning a reliable
catching behavior, while Instant QP is continuously attempting
to walk as best it can.

The code is currently implemented in Python while using
several C++ libraries that utilize Python wrappers. Improve-
ments in the real-time application will be seen by further
optimizing the code and implementing it in C++. Overall,
HiLQR MPC is a very modular MPC controller which can be
run for any hybrid dynamical system of type Def. 1. Besides
the hybrid dynamical systems definition, there are no restric-
tive simplifications that are made, which makes the controller
generalizable to many different behaviors. Future work will
add additional constraints through Augmented Lagrangian [54]
for obstacle avoidance and actuator constraints.
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Figure 14: Turning off motor commands for 150 ms during the first step. HiLQR MPC (top row) creates a catching behavior
and then goes back into the scheduled walk. Instant QP sometimes tries to step to regulate velocity which destabilizes the
robot (middle row). Other times, Instant QP hits the ground (bottom row), which stabilizes the body velocities and the robot
is able to shoot its legs out in order to get back into the walk.
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