
1

Efficient and Consistent Bundle Adjustment on
Lidar Point Clouds
Zheng Liu1, Xiyuan Liu1 and Fu Zhang1

Abstract—Bundle Adjustment (BA) refers to the problem of
simultaneous determination of sensor poses and scene geometry,
which is a fundamental problem in robot vision. This paper
presents an efficient and consistent bundle adjustment method
for lidar sensors. The method employs edge and plane features
to represent the scene geometry, and directly minimizes the
natural Euclidean distance from each raw point to the respective
geometry feature. A nice property of this formulation is that the
geometry features can be analytically solved, drastically reducing
the dimension of the numerical optimization. To represent and
solve the resultant optimization problem more efficiently, this
paper then proposes a novel concept point clusters, which encodes
all raw points associated to the same feature by a compact
set of parameters, the point cluster coordinates. We derive the
closed-form derivatives, up to the second order, of the BA
optimization based on the point cluster coordinates and show
their theoretical properties such as the null spaces and sparsity.
Based on these theoretical results, this paper develops an efficient
second-order BA solver. Besides estimating the lidar poses, the
solver also exploits the second order information to estimate
the pose uncertainty caused by measurement noises, leading to
consistent estimates of lidar poses. Moreover, thanks to the use
of point cluster, the developed solver fundamentally avoids the
enumeration of each raw point (which is very time-consuming
due to the large number) in all steps of the optimization: cost
evaluation, derivatives evaluation and uncertainty evaluation.

The proposed method is extensively evaluated at different
levels: consistency, accuracy, and computation efficiency in both
simulated and actual environments. Benchmark evaluation on
19 real-world open sequences covering various datasets (Hilti,
NTU-VIRAL and UrbanLoco), environments (campus, urban
streets, offices, laboratory, and construction sites), lidar types
(Ouster OS0-64, Ouster OS1-16, Velodyne HDL 32E), and motion
types (handheld, UAV-based, and ground vehicles-based) shows
that our method achieves consistently and significantly higher
performance than other state-of-the-art counterparts in terms
of localization accuracy, mapping quality, and computation
efficiency. In particular, our method achieves a mapping accuracy
at a level of the lidar measurement noise (i.e., a few centimeters)
while processing all sequences in less than half minute on a
standard desktop CPU. Finally, we show how our proposed
method effectively improves the accuracy and/or computation
efficiency of some important robotic techniques, including lidar-
inertial odometry, multi-lidar extrinsic calibration, and high-
accuracy global mapping. The implementation of our method
is open sourced to benefit the robotics community and beyond2.

I. INTRODUCTION

Light detection and ranging (lidar) has become an essential
sensing technology for robots to achieve a high level of auton-
omy [1, 2]. Enabled by the direct, dense, active and accurate

1Zheng Liu, Xiyuan Liu and Fu Zhang are with the Department of
Mechanical Engineering, The University of Hong Kong, Hong Kong.
{u3007335,xliuaa}@connect.hku.hk, fuzhang@hku.hk

2https://github.com/hku-mars/BALM

(DDAA) depth measurements, lidar sensors have the ability to
build a dense and accurate 3D map of the environment in real-
time and at a relatively low computation cost. These unique
advantages have made lidar sensors essential to a variety of
applications that require real-time, dense, and accurate 3D
mapping of the environment, such as autonomous driving
[3, 4], unmanned aerial vehicles navigation [5]–[7], and real-
time mobile mapping [8]–[10]. This trend becomes even more
evident with recent developments in lidar technologies which
have enabled the commercialization and mass production
of lightweight and high-performance solid-state lidars at a
significantly lower cost [11, 12].

The central task of many lidar-based techniques, such as
lidar-based odometry, simultaneous localization and mapping
(SLAM), and multi-lidar calibration, is to register multiple
point clouds, each measured by the lidar at different poses,
into a consistent global point cloud map. However, the pre-
dominant point cloud registration methods, such as iterative
closest point (ICP) [13] and its variants (e.g, generalized-ICP
[14]), normal distribution transformation (NDT) [15, 16], and
surfel registration [17], allow registration of two point clouds
only. Such a pairwise registration leads to an incremental
scan registration process for an odometry system (e.g., [17]–
[20]), which would rapidly accumulate drift, or a repeated
pairwise registration process for 3D mapping [21] or multi-
lidar calibration [22], which would bring dramatic computation
cost. All these necessitate an efficient concurrent multiple scan
registration technique.

Concurrent multiple lidar scan registration requires deter-
mining all lidar poses and the scene geometry simultaneously,
a process referred to as bundle adjustment (BA) in computer vi-
sion. Compared to visual BA, which has been well-established
in photogrammetry and played a fundamental role in various
vital applications, including visual odometry (VO) [23]–[25],
visual-inertial odometry (VIO) [26, 27], 3D visual reconstruc-
tion [28, 29] and multi-camera calibration [30, 31], lidar BA
has a similarly fundamental role but is much less mature due to
two major challenges. First, lidar has a long measuring range
but low resolution between scanning lines. The measured
point cloud are sparsely (sometimes even not repeatedly [12])
distributed in a large 3D space, making it difficult (almost
impossible) to scan the same point feature in the space
across different scans. This has fundamentally prevented the
use of straightforward visual bundle adjustment formulation,
which is largely based on point features benefiting from the
high-resolution images accurately capturing individual point
features. The second challenge lies in the large number of raw
points (from tens of thousands to million points) collected by

ar
X

iv
:2

20
9.

08
85

4v
1 

 [
cs

.R
O

] 
 1

9 
Se

p 
20

22

https://github.com/hku-mars/BALM


2

a practical lidar sensors. Processing all these points in the lidar
BA is extremely computation intensive.

In this work, we propose an efficient and consistent BA
framework specifically designed for lidar point clouds. The
framework follows our previous work BALM [32], which
formulates the lidar BA problem based on edge and plane
features that are abundant in lidar scans. The BA formulation
naturally minimizes the straightforward Euclidean distance of
each point in a scan to the corresponding edge or plane,
while the decision variables include the lidar poses and feature
(edge and plane) parameters. Furthermore, it is shown that
the geometry parameters (i.e., edge and plane) can be solved
analytically, leading to an optimization that depends on the
lidar poses only. Since the number of geometry features is
often large, elimination of these geometry features from the
optimization will drastically reduce the optimization dimen-
sion (hence time).

A novel design in our proposed BA framework is the
point cluster, which summarizes all points of a lidar scan
associated to one feature by a compact set of parameters,
point cluster coordinates. Based on the point cluster, we derive
the closed-form derivatives (up to second order) of the BA
optimization with respect to (w.r.t.) its decision variables (i.e.,
lidar poses). We prove that the formulated BA optimization
and the closed-form derivatives can both be represented fully
by the point cluster without enumerating the large number
of individual points in a lidar scan. The removal of de-
pendence on individual raw points drastically speeds up the
evaluation of the cost function and derivatives, which further
enables us to develop an efficient and consistent second-
order solver, BALM2.0, which is also released on Github to
benefit the community. Our experiment video is available on
https://youtu.be/MDrIAyhQ-9E.

We conduct extensive evaluations on the proposed BA
method. Simulation study shows that the BA method pro-
duces consistent lidar pose estimate. Exhaustive benchmark
comparison on 19 real-world open sequences shows that the
BA method produces consistently higher performance (pose
estimation accuracy, mapping accuracy, and computation effi-
ciency) than other counterparts. We finally integrate the BA
method in three vital lidar applications: lidar-inertial odometry,
multi-lidar calibration, and global mapping, and show how
their accuracy and/or computation efficiency are improved by
the proposed BA.

II. RELATED WORKS

A. Multi-view registration

The bundle adjustment problem is similar to the multi-view
registration problem that has been previously researched [33]–
[38]. These methods all adopt a two layer framework: the first
layer estimates the relative poses of a selected set of scan pairs
using the pairwise registration methods (e.g., ICP [13]); From
the relative poses, the second layer constructs and solves a
pose graph to obtain a maximum a posteriori estimate of all
lidar poses. Such a two-layer framework decouples the raw
point registration from the global pose estimation, so that each
raw point registration only involves a small amount of local

points contained in the two scans (instead of all scans sharing
overlaps) and the pose graph optimization only involves a
small amount of constraints arising from the relative poses
(instead of raw points). The net effect is a significant saving of
time, hence being largely used in online lidar SLAM systems
[39, 40]. However, the advantage in computation efficiency
comes with fundamental limitation in accuracy: the pairwise
scan registration only considers the overlap among two scan
at a time, while the overlap is really shared by all scans and
should be registered concurrently. Moreover, the pose graph
optimization only considers constraints from the relative poses,
while the mapping consistency indicated by the raw points
are completely ignored. Consequently, it is usually difficult to
produce (or even be aware of) a globally consistent map that
is necessary for high-accuracy localization and mapping tasks.

Some early works in computer vision and computer graphics
have proposed multi-view registration methods that directly
optimize the mapping consistency from multiple range images,
aiming for consistent surface modeling of 3D objects. [41]
is a direct extension of the ICP method, it minimizes the
Euclidean distance between a pre-known control point in one
scan to all matched control points in the rest scans. Within
this framework, [42] uses a quaternion representation in the
optimization, and [43] extends the distance between control
points to the distance between surfaces around the respective
control points. More recently, Zhu et al. [44] proposes a
two step registration method: the first step uses a K-means
clustering to cluster points from all scans, and the second step
estimates the scan poses by minimizing the Euclidean distance
between each point in a cluster to the centroid. Since these
methods rely on point features in the scan, they require densely
populated point cloud (e.g., by depth camera) for extracting
such salient point features. While this is not a problem
for small object reconstruction for which these methods are
designed, it is not the case for scene reconstruction where the
LiDAR measurements are very sparse (sometimes even non-
repetitive) as explained above.

B. Bundle or plane adjustment

In recent years, researchers in the robotics community have
shown increasing interests to address the bundle adjustment
problem on (lidar) point clouds more formally. Kaess [45]
exploits the plane features in the bundle adjustment and mini-
mizes the difference between the plane measured in a scan and
the plane predicted from the optimization variables: scan poses
and plane parameters. This formulation was later integrated
into a key-frame-based online SLAM system [46]. Since the
method minimizes the plane-to-plane distance, it requires to
segment each scan and estimate the contained local planes
in advance. Such plane segmentation and estimation usually
require dense point clouds measured by RGB-D cameras on
which the work were demonstrated.

A more formal bundle adjustment method on lidar point
cloud, termed as the plannar (bundle) adjustment, was later
proposed in [47] which minimizes the natural Euclidean
distance between each point in a scan to the plane predicted
from the scan poses and plane parameters (the optimization

https://youtu.be/MDrIAyhQ-9E


3

variables). Compared with plane-to-plane distance in [45],
the point-to-plane metric is faster, more accurate, and more
suitable for lidar sensors, where local plane segmentation
or estimation are less reliable due to sparse point clouds.
Moreover, the direct use of raw points in the point-to-plane
metric could also lead to a more consistent estimate of the
optimization variables by considering the measurement noises
in the raw points. Then, the formulated non-linear least square
problem is solved by a Levenberg-Marquardt (LM) algorithm.
To lower the computation load caused by the large number of
points measurements associated to the same plane feature, [47]
propose a reduction technique to eliminate the enumeration
of individual points in the evaluation of the residual and
Jacobian. Furthermore, due to the very similar structure to
the visual bundle adjustment, the proposed bundle adjustment
is also compatible with the Schur complement trick [48],
which eliminates the plane parameters in each iteration of the
LM algorithm. This plane adjustment method is largely used
in many online lidar SLAM systems developed subsequently
[49, 50] or before [51, 52].

On the other hand, Ferrer [53] exploits plane features similar
to [47] and minimizes any deviation of each raw point from the
plane equation. The resultant optimization cost then reduces
to the minimum eigenvalue of a covariance matrix and is
thus termed as the eigen-factor. The author further derived
the closed-form gradient of the cost function w.r.t. to both the
scan poses and plane parameters and employed a gradient-
based method to solve the optimization iteratively. Due to the
second order nature of the eigenvalue (as confirmed in [32], see
below), the gradient method converges very slowly (requiring
a few hundreds of iterations) [50, 53].

Our previous work BALM [32] takes another step towards
more efficient bundle adjustment. Similar to [47], BALM
minimizes the natural Euclidean distance between each point
in a scan to the plane (i.e., point-to-plane metric). Most
importantly, BALM proved that the point-to-plane distance is
essentially equivalent to the eigen-factor in [53], thus unifying
the two metrics in [47] and [53]. It was further proved that
all plane parameters can be analytically solved with closed-
form solutions in advance, hence the large number of plane
parameters can be completely removed from the resultant
optimization. Such feature elimination significantly lowered
the optimization dimension and poses a fundamental difference
from all the previous plannar adjustment methods [47, 49]–
[51, 53] and visual bundle adjustment methods [48]. The
feature elimination also removed the various issues in the plane
representation from the optimization, such as normal constraint
in the Hesse normal representation (n, d) [47, 49, 50, 53],
singularity issue in the closest-point (CP) representation nd
[51] and over-parameterization issue in the quaternion repre-
sentation [45]. A further advantage of BALM against previous
method [47, 51, 53] is that the whole framework is naturally
extendable to edge features besides plane features. To solve
the resultant optimization problem, BALM [32] subsequently
derived the second order derivatives of the cost function
and developed a LM-like second-order solver. The developed
BA method and solver are very efficient, achieving real-time
sliding window optimization when integrated to LOAM [18].

A major drawback of the BALM [32] is that the evaluation
of the second-order derivatives including Jacobian and Hessian
requires to enumerate each individual lidar point, leading to a
computational complexity of O(N2) where N is the number
of points [50]. Consequently, the method is hard to be used
in large-scale problems where the lidar points are huge in
number. This problem is partially addressed in [54], which
aggregates all points associated to the same plane feature in a
scan in the scan local frame. However, to ensure convergence,
[54] modifies the cost function by including an extra heuristic
penalty term, which is not a true representation of the map
consistency. Moreover, the cost function in [54] still involves
the plane feature similar to [47, 49]–[51, 53]. To lower the
computation load caused by optimizing the large number
of feature parameters, the method further fixes the feature
parameters in the optimisation, which could slow down the
optimisation speed.

Our BA formulation in this paper is based on BALM
[32], hence inheriting the fundamental feature elimination
advantage when compared to [47, 49]–[51, 53]. To address the
computational complexity of O(N2) in BALM, we propose a
novel point cluster concept, which fundamentally eliminates
the enumeration of each individual point in the evaluation of
the cost function, Jacobian and Hessian matrix. Consequently,
the computational complexity is irrelevant to both the feature
dimension (similar to BALM [32]) and the point number
(similar to [47, 49]). The point cluster in our method is similar
to the point aggregation used in [54], but the overall BA for-
mulation is fundamentally different: (1) it minimizes the true
map consistency (the point-to-plane distance) without trading
off with any other heuristic penalty; and (2) it performs exact
feature elimination with rigorous proof instead of empirical
fixation. Based on these nice theoretical results, we develop
an efficient second-order solver, termed as BALM2.0. Besides
solving the nominal lidar poses, the solver also estimates
the uncertainty of the estimated lidar pose by leveraging the
second-order derivative information, which is another new
contribution compared with existing works.

III. BUNDLE ADJUSTMENT FORMULATION AND
OPTIMIZATION

In this chapter, we derive our BA formulation and optimisa-
tion. First, following [32], we formulate the BA as minimizing
the the point-to-plane (or point-to-edge) distance (Sec. III-A)
and show that the feature parameters can be eliminated from
the formulated optimisation (Sec. III-B). Then, we introduce
the point cluster in Sec. III-C, based on which the first and
second order derivatives are derived in Sec. III-D. Based on
these theoretical results, we present our second-order solver in
Sec. III-E. Then the time complexity of the proposed BA is
analyzed in the Sec. III-F . Finally, in Sec. III-G, we show how
to estimate the uncertainty of the BA solution. Throughout this
paper, we use notations summarized in Table I or otherwise
specified in the context.

A. BA formulation
Shown in Fig. 1, assume there are Mf features, each

denoted by parameter πi (i = 1, ...,Mf ), observed by Mp



4

TABLE I
NOMENCLATURES

Notation Explanation

Rm×n The set of m× n real matrices.
Sm×m The set of m×m symmetric matrices.

� The encapsulated “boxplus” operations on manifold.
(·)f The value of (·) expressed in lidar local frame,
(·) The value of (·) expressed in global frame.
b·c The skew symmetric matrix of (·).

exp(·) Exponential of (·), which could be a matrix.
1i=j Indicator function which is equal to “1” if i = j,

otherwise equal to “0”.
Mf ,Mp The number of features and poses, respectively.
i, j, k The indexes of features, poses and points, respectively.

l The index of eigenvalue and eigenvector of a matrix.
p,q The indexes of (block) row and column in a matrix.
el The vector in R4 with all elements being zeros except

the l-th element being one (l ∈ {1, 2, 3, 4}).
SP SP =

[
I3×3 03×1

]
∈ R3×4.

Sv SP =
[
01×3 1

]
∈ R1×4.

Ekl Ekl = eke
T
l + ele

T
k ∈ S4×4, k, l ∈ {1, 2, 3, 4}.

𝛑𝑖

T2 T𝑗T1

𝛑1 𝛑2 𝛑3 𝛑𝑖+1

𝛑i T𝑗Plane/Edge Feature Pose

T𝑗+1 T𝑀𝑝

𝛑𝑀𝑓

Fig. 1. Factor graph representation of the bundle adjustment formulation.

lidar poses, each denoted by Tj = (Rj , tj) (j = 1, ...,Mp),
the bundle adjustment refers to simultaneously determining
all the lidar poses (denoted by T = (T1, · · · ,TMp

)) and
feature parameters (denoted by π = (π1, · · · ,πMf

)), such
that reconstructed map agrees with the lidar measurements to
the best extent. Denote c(πi,T) the map consistency due to
the i-th feature, a straightforward BA formulation is

min
T,π

( Mf∑

i=1

c(πi,T)
)
. (1)

In our BA formulation, we make use of plane and edge
features that are often abundant in lidar point cloud and min-
imize the natural Euclidean distance between each measured
raw lidar point and its corresponding plane or edge feature.
Specifically, assume a total number of Nij lidar points are
measured on the i-th feature at the j-th lidar pose, each
denoted by pfijk (k = 1, ..., Nij). Its predicted location in
the global frame is

pijk = Rjpfijk + tj . (2)

For a plane feature, it is parameterized by πi = (ni,qi)
with ni the plane normal vector and qi an arbitrary point on
the plane, both in the global frame (see Fig. 2 (a)). Then,
the Euclidean distance between a measured point pfijk to the
plane is ‖nTi (pijk − qi)‖2. Aggregating the distance for all

𝐪𝑖

||𝐧𝑖
𝑇(𝐩𝑖𝑗𝑘 − 𝐪𝑖)||

𝐧𝑖

(a) The 𝑖-th plane feature 𝛑𝑖 = (𝐧𝑖 , 𝐪𝑖)

𝐧𝑖

||(𝐈 − 𝐧𝑖𝐧𝑖
𝑇)(𝐩𝑖𝑗𝑘 − 𝐪𝑖)||

𝑘-th point 𝐩𝑖𝑗𝑘

𝑗-th scan 𝐓𝑗
𝑗-th scan 𝐓𝑗

𝑘-th point 𝐩𝑖𝑗𝑘

𝐪𝑖

(b) The 𝑖-th edge feature 𝛑𝑖 = (𝐧𝑖 , 𝐪𝑖)

Fig. 2. Plane and edge features used in the lidar BA. (a) The plane
formulation. qi is a point in the plane and ni is the plane normal. (b) The
line formulation. qi is a point on the edge and ni is the edge direction.

points observed in all poses leads to the total map consistency
corresponding to this plane feature:

c(πi,T) =
1

Ni

Mp∑

j=1

Nij∑

k=1

∥∥nTi (pijk − qi)
∥∥2
2

(3)

where Ni =
∑Mp

j=1Nij is the total number of lidar points
observed on the plane feature by all poses.

For an edge feature, it is parameterized by πi = (ni,qi)
with ni the edge direction vector and qi an arbitrary point on
the edge, both in the global frame (see Fig. 2 (b)). Then, the
Euclidean distance between a measured point pfijk to the edge
is
∥∥(I− nin

T
i )(pijk − qi)

∥∥
2
. Aggregating the distance for all

points observed in all poses leads to the total map consistency
corresponding to this edge feature:

c(πi,T) =
1

Ni

Mp∑

j=1

Nij∑

k=1

∥∥(I− nin
T
i )(pijk − qi)

∥∥2
2

(4)

where Ni =
∑Mp

j=1Nij is the total number of lidar points
observed on the edge feature by all poses.

B. Elimination of feature parameters

In this section, we show that in the BA optimization (1), the
feature parameter π can really be solved with a closed-form
solution. The key observation is that one cost item c(πi,T)
depends solely on one feature parameter, so that the feature
parameter can be optimized independently. Concretely,

min
T,π

( Mf∑

i=1

c(πi,T)
)

= min
T

(
min
π

( Mf∑

i=1

c(πi,T)
))

= min
T

( Mf∑

i=1

min
πi

c(πi,T)
)
. (5)

In case of a plane feature, we substitute (3) into c(πi,T):

min
πi

c(πi,T) = min
πi

( 1

Ni

Mp∑

j=1

Nij∑

k=1

∥∥nTi (pijk − qi)
∥∥2
2

)

= λ3(Ai), when n?i = u3(Ai),q
?
i = p̄i (6)

where λl(Ai) denotes the l-th largest eigenvalue of matrix Ai,
ul(Ai) denotes the corresponding eigenvector, the matrix Ai

and vector p̄i are defined as:



5

Ai ,
1

Ni

Mp∑

j=1

Nij∑

k=1

(pijk − p̄i), p̄i ,
1

Ni

Mp∑

j=1

Nij∑

k=1

pijk. (7)

The proof will be given in Supplementary II-A [55]. Note
that the optimal solution q?i in (6) is not unique, any deviation
from q?i along a direction perpendicular to n?i will equally
serve the optimal solution. However, these equivalent optimal
solution will not change the plane nor the optimal cost (hence
the results that follow next). Indeed, the point q?i could be an
arbitrary point on the plane as it is defined to be.

In case of an edge feature, we substitute (4) into c(πi,T):

min
πi

c(πi,T)=min
πi

( 1

Ni

Mp∑

j=1

Nij∑

k=1

∥∥(I− nin
T
i )(pijk − qi)

∥∥2
2

)

= λ2(Ai) + λ3(Ai); when n?i = u1(Ai),q
?
i = p̄i. (8)

Again, the optimal solution q?i in (8) is not unique, any
deviation from q?i along the direction n?i will equally serve the
optimal solution. However, these equivalent optimal solution
will not change the edge nor the optimal cost (hence the results
that follow next).

As can be seen from (6) and (8), the parameter πi for
each feature, either it is a plane or edge, can be analytically
solved and hence removed from the BA optimization process.
Consequently, the original BA optimization in (1) reduces to

min
T

( Mf∑

i=1

λl(Ai)
)

(9)

where l ∈ {2, 3} and we omitted the exact number of
eigenvalues in the cost function for brevity.

Note that the matrix Ai in (9) depends on the lidar pose
T since each involved point pijk depends on the pose (see
(7) and (2)). Hence the decision variables of the resultant
optimization in (9) involve the lidar pose T only, which
dramatically reduces the optimization dimension (hence com-
putation time).

C. Point cluster
With the feature parameters eliminated, another difficulty

remaining in the BA optimization (9) is that the evaluation
of matrix Ai (and its Jacobian or Hessian necessary for
developing a numerical solver) requires to enumerate every
point observed at each lidar pose. Such an enumeration is
extremely computationally expensive due to the large number
of points in a lidar scan. In this section, we show such point
enumeration can be avoided by a novel concept point cluster,
which is detailed as follows.

A point cluster is a finite point set denoted by set C =
{pk ∈ R3|k = 1, · · · , n}, the corresponding point cluster
coordinate, denoted as <(C), is defined as:

<(C) ,
n∑

k=1

[
pk
1

] [
pTk 1

]
=

[
P v
vT n

]
∈ S4×4

P =

n∑

k=1

pkp
T
k , v =

n∑

k=1

pk, (10)

x

y

z

x

y

z

𝐓 ∘ 𝓒

𝕽(𝓒) 𝐓𝕽(𝓒)𝐓𝑇

(a) Rigid transform

x

y

z

x

y

z

𝓒1⊕𝓒2

𝕽(𝓒1) + 𝕽(𝓒2)

𝕽(𝓒𝟏)

𝕽(𝓒𝟐)

(b) Cluster merging

Fig. 3. Two operations on point cluster (a) Rigid transform (b) Cluster
merging.

where S4×4 denotes the set of 4× 4 symmetric matrix.
A point cluster can be thought as a generalized point, for

which a rigid transform could be applied. Similarly, we can
define rigid transformation on a point cluster as follows.

Definition 1. (Rigid transform) Given a point cluster with
point collection C = {pk ∈ R3|k = 1, · · · , n} and a pose

T =

[
R t
0 1

]
∈ SE(3). The rigid transformation of the point

cluster C, denoted by T ◦ C, is defined as

T ◦ C , {Rpk + t ∈ R3|k = 1, · · · , n}. (11)

Besides rigid transformation, we also define cluster merging
operation, as follows.

Definition 2. (Cluster merging) Given two point clusters with
point collections C1 = {p1

k ∈ R3|k = 1, · · · , n1} and C2 =
{p2

k ∈ R3|k = 1, · · · , n2}, respectively. The merged cluster,
denoted by C1 ⊕ C2, is defined as

C1 ⊕ C2 , {plk ∈ R3|l = 1, 2; k = 1, · · · , ni}. (12)

Next we will show that the two operations defined above
can be fully represented by their point cluster coordinates.

Theorem 1. Given a point cluster C and a pose T =[
R t
0 1

]
∈ SE(3). The rigid transformation of the point

cluster satisfies

<(T ◦ C) = T<(C)TT (13)

Proof. See Supplementary II-B [55].

Theorem 2. Given two point clusters C1 and C2. The merged
cluster satisfies

<(C1 ⊕ C2) = <(C1) + <(C2) (14)

Proof. See Supplementary II-C [55].



6

𝑘-th point 𝐩𝑓𝑖𝑗𝑘

(a) The 𝑖-th plane feature 𝛑𝑖

𝑗-th scan 𝐓𝑗

𝐂𝑓𝑖𝑗

(b) The 𝑖-th edge feature 𝛑𝑖

𝑘-th point 𝐩𝒇𝑖𝒋𝒌

𝑗-th scan 𝐓𝑗

𝐂𝑓𝑖𝑗

Fig. 4. For the i-the feature (either plane or edge), all points observed at the
j-th pose are clustered as a point cluster and is represented by Cfij in its
local frame.

As can be seen, rigid transformation and cluster merging
operations on point clusters can be represented by usual matrix
multiplication and addition on the point cluster coordinates. A
visual illustration of the two operations and their coordinate
representations are shown in Fig. 3. These results are crucially
important: Theorem 1 indicates that the point cluster can be
constructed in one frame (e.g., local lidar frame) and trans-
formed to another (e.g., the global frame) without enumerating
each individual points; Theorem 2 indicates that two (and by
induction more) point clusters can be further merged to form a
new point cluster. A particular case of Theorem 2 is when the
second point cluster contains a single point, indicating that the
point cluster can be constructed incrementally as lidar points
arrives sequentially.

Remark: A point set and its coordinate is not a one-to-one
mapping. While it is obvious that the coordinate is uniquely
determined from the point set as shown in (10), the reverse
way does not hold: the point set cannot be recovered from
its coordinate uniquely. Since different point sets may lead to
the same coordinate, the raw points must be saved if a re-
clustering is needed.

Now, we apply the point cluster to the BA problem con-
cerned in this paper. To start with, we group all points on
the same feature as a point cluster. For example, the point
cluster for the i-th feature is Ci , {pijk|j = 1, · · · ,Mp, k =
1, · · · , Nij}. Denote Ci the coordinate of the point cluster,
following (10), we obtain

Ci = <(Ci) ,
Mp∑

j=1

Nij∑

k=1

[
pijk

1

] [
pTijk 1

]
=

[
Pi vi
vTi Ni

]

Pi =

Mp∑

j=1

Nij∑

k=1

pijkp
T
ijk, vi =

Mp∑

j=1

Nij∑

k=1

pijk (15)

A key result we show now is that this point cluster coor-
dinate Ci is completely sufficient to represent the matrix Ai

required in the BA optimization (9). According to (7), we have

Ai =
1

Ni

Mp∑

j=1

Nij∑

k=1

(pijk − p̄i)(pijk − p̄i)
T

=
1

Ni

Mp∑

j=1

Nij∑

k=1

(pijkp
T
ijk)− p̄ip̄

T
i

=
1

Ni
Pi −

1

N2
i

viv
T
i , A(Ci) (16)

where we denote Ai as a function of Ci since the Ai is
fully represented (and uniquely determined) by Ci. We slightly
abuse the notation here by denoting the function as A(·).

On the other hand, since the point set Ci is defined on
points in the global frame, the coordinate Ci is dependent on
the lidar pose, which remains to be optimized. To explicitly
parameterize the lidar pose, we note that

Ci , {pijk|j = 1, · · · ,Mp, k = 1, · · · , Nij} (17)

= ∪Mp

j=1{pijk|k = 1, · · · , Nij} (18)
Def.2
= ⊕Mp

j=1Cij , Cij , {pijk|k = 1, · · · , Nij} (19)
Def.1
= ⊕Mp

j=1

(
Tj ◦ Cfij

)
, Cfij , {pfijk |k = 1, · · · , Nij}

(20)

where pfijk is a point represented in the lidar local frame (see
(2)), Cij is the point set that is composed of all points on the
i-th feature (either plane or edge) observed at the j-th lidar
pose, and Cfij is the same point set as Cij , but represented in
the lidar local frame (see Fig. 4).

The relation between the point cluster Ci and Cfij shown
in (20) will lead to a relation between their coordinates Ci

and Cfij as below:

Ci
Thm.2

=

Mp∑

j=1

Cij
Thm.1

=

Mp∑

j=1

TjCfijT
T
j (21)

As a result, the BA optimization in (9) further reduces to

min
Tj∈SE(3),∀j



Mf∑

i=1

λl


A



Mp∑

j=1

TjCfijT
T
j








︸ ︷︷ ︸
c(T)

(22)

where the function A(·) is defined in (16). Note that the cost
function in (22) only requires the knowledge of point cluster
coordinate Cfij without enumerating each individual points.
The coordinate Cfij is computed as (following (10)):

Cfij =

[
Pfij vfij
vTfij Nij

]

Pfij =

Nij∑

k=1

pfijkpTfijk , vfij =

Nij∑

k=1

pfijk (23)

which can be constructed during the feature association stage
before the optimization. In particular, if the j-th pose observes
no point on the i-th feature, Cfij = 04×4, which will naturally
remove the dependence on the j-th pose for the i-th cost item
as shown in (22).

Theorem 3. Given a matrix function A(C) , 1
NP− 1

N2 vvT

with C =

[
P v
vT N

]
∈ S4×4, λl(A) denotes the l-th largest

eigenvalue of A, then λl(A(C)) is invariant to any rigid
transformation T0 ∈ SE(3). That is,

λl
(
A
(
T0CTT

0

))
= λl (A (C)) ,∀T0 ∈ SE(3). (24)

Proof. See Supplementary II-D [55].



7

Theorem 3 implies that left multiplying all poses Tj ,∀j,
by the same transform T0 does not change the optimization
at all. That is, the BA optimization is invariant to the change
of the global reference frame, which is the well-known gauge
freedom in a bundle adjustment problem.

D. First and Second Order Derivatives

As shown in the previous section, the BA optimization
problem in (22) is completely equivalent to the original
formulation (1), where each cost item standards for the squared
Euclidean distance from a point to a plane (or edge). This
squared distance is essentially a quadratic optimization, which
requires the knowledge of the second-order information of
the cost function for efficient solving. In this section, we
derive such first and second order derivatives. Without loss of
generality, we only discuss the i-th feature, which contributes
a cost item in the form of

ci(T) = λl


A



Mp∑

j=1

TjCfijT
T
j




 (25)

with Cfij ∈ R4×4 being a pre-computed matrix (see (23)).
To derive the derivative of the cost item (25) w.r.t. the

pose Tj , which is an element of the Special Euclidean
group SE(3), we parameterize its perturbation by a special
addition, called boxplus (�-operation). For the pose vector
T = (· · · ,Tj , · · · ), we define the the � operation as below

T� δT , (· · · ,Tj � δTj , · · · ), (26)

Tj � δTj , (exp (bδφjc)Rj , δtj + exp (bδφjc)tj), (27)

where δT , (· · · , δTj , · · · ) ∈ R6Mp with δTj ,
(δφj , δtj) ∈ R6,∀j, is the perturbation on the pose vector.

For a scalar function f(T) : SE(3) × · · · × SE(3) 7→
R, denote

(
∂f(T)
∂T

)
(T0) its first-order derivative and(

∂f2(T)
∂T2

)
(T0) its second-order derivative, both at a chosen

point of the input T0. The � operation enables us to pa-
rameterize the input of function f(·), T, by its perturbation
δT from a given point T0: T = T0 � δT. Since the map
between T and δT is bijective if ‖δφj‖ < π,∀j, the scalar
function f(T) in terms of T can be equivalently written as a
function f(T0 � δT) in terms of δT. As a consequence, the
derivatives of f(T) w.r.t. T at the point T0 can be defined
as the derivatives of f(T0 � δT) w.r.t. δT at zero, where the
latter is a normal derivative w.r.t. Euclidean vectors:(

∂f(T)

∂T

)
(T0) ,

(
∂f(T0 � δT)

δT

)
(0) (28)

(
∂2f(T)

∂T2

)
(T0) ,

(
∂

∂δT

(
∂f(T0 � δT)

∂δT

))
(0) (29)

∀T0 ∈ SE(3)× · · · × SE(3).

In the following discussion, we use T as the reference point
to replace T0 in the derivatives and omit it for the sake of
notation simplification.

Based on the derivatives defined in (28) and (29), we have
the following results for the first and second-order derivatives
of the cost item (25).

Theorem 4. Given

(1) Matrices Cj =

[
Pj vj
vTj Nj

]
∈ S4×4, j = 1, · · · ,Mp;

(2) Poses Tj ∈ SE(3), j = 1, · · · ,Mp;

(3) A matrix C =

[
P v
vT N

]
,
∑Mp

j=1 TjCjT
T
j ∈ S4×4 and

a matrix function A(C) , 1
NP− 1

N2 vvT ; and
(4) A function λl (A (C)), λl(A) denotes the l-th largest

eigenvalue of A with corresponding eigenvector ul,
the Jacobian and Hessian matrix of the function λl with
respect to the poses T are

J = gll ∈ R1×6Mp , (30)

H = Hll +

3∑

k=1,k 6=l

2

λl − λk
gTklgkl ∈ R6Mp×6Mp , (31)

where

gkl =
[
· · · gq

kl · · ·
]
∈ R1×6Mp (32)

gq
kl =

1

N
uTl SP(Tq−

1

N
CF)CqT

T
q UT

k

+
1

N
uTk SP(Tq−

1

N
CF)CqT

T
q UT

l , (33)

Hll =




...
· · · Hp,q

ll · · ·
...


 ∈ R6Mp×6Mp , (34)

Hp,q
ll =− 2

N2
UlTpDp,qT

T
q UT

l +1p=q

·
( 2

N
UlTqCqT

T
q UT

l +

[
Kq
ll 03×3

03×3 03×3

])
, (35)

Kq
ll =

1

N
bSPTqCq(Tq −

1

N
CF)TSTP ulcbulc

+
1

N
bulcbSPTqCq(Tq −

1

N
CF)TSTP ulc (36)

Ul =

[
−bulc 03×1
03×3 ul

]
F =

[
03×3 03×1
01×3 1

]
(37)

SP =
[
I3×3 03×1

]
Dp,q = CpFCq. (38)

Moreover, the Jacobian J and Hessian matrix H satisfy:

J · δT = 0, δTT ·H · δT = 0,

∀δT ∈W ,








w
...
w




∣∣∣∣∣∣∣
∀w ∈ R6




. (39)

and

Jp = 01×6, Hp,q = 06×6,

if p or q ∈ I , {j|1 ≤ j ≤Mp,Cj = 0}. (40)

Proof. See Supplementary II-E [55].

Remark 1: The results in (39) essentially implies that the
cost function (25) in the BA optimization does not change
along the direction where all the pose are perturbed by the
same quantity w, which agrees with gauge freedom stated in
Theorem 3.



8

Algorithm 1: LM optimization
Input: Initial poses T;

Point cluster in the local frame Cfij ;
1 µ = 0.01, ν = 2, j = 0;
2 repeat
3 j = j + 1;
4 J = 01×6Mp

,H = 06Mp×6Mp
;

5 foreach i ∈ {1, · · · ,Mf} do
6 Compute Ji and Hi from (30);
7 J = J + Ji; H = H + Hi

8 end
9 Solve (H + µI)∆T = −JT ;

10 T′ = T�∆T;
11 Compute current cost c = c(T) and the new cost

c′ = c(T′) from (22);
12 ρ = (c− c′)/( 1

2∆T · (µ∆T− JT ));
13 if ρ > 0 then
14 T = T′;
15 µ = µ ∗max ( 1

3 , 1− (2ρ− 1)3); ν = 2;
16 else
17 µ = µ ∗ ν; ν = 2 ∗ ν;
18 end
19 until ‖ ∆T ‖< ε or j ≥ jmax;

Output: Final optimized states T;

Remark 2: The results in (40) implies that the Jacobian and
Hessian matrices are zeros and hence their computation can be
saved if any of the related poses does not observe the current
feature. This sparse structure could save much computation
time if a feature is observed only by a sparse set of poses.

Remark 3: The derivatives in Theorem 4 are obtained based
on the pose perturbation defined in (26), which multiplies the
perturbation δT on the left of the current pose (i.e., a perturba-
tion in the global frame). If other perturbation (denoted by δT̆)
is preferred (e.g., a perturbation in the local frame to integrate
with other measurements such as IMU pre-integration), where
δT = LδT̆ with L the Jacobian between the two perturbation
parameterization, its first and second order derivatives can be
computed as J̆ = J · L and H̆ = LT ·H · L, respectively. It
can be seen that J̆ and H̆ preserves a nullspace of L ·W with
W defined in (39).

E. Second Order Solver

The Jacobin and Hessian matrix from Theorem 4 are com-
puted for one cost item (25) that corresponds to one feature in
the space. Denote Ji,Hi the Jacobian and Hessian matrix for
the i-th feature (or cost item), to determine the incremental
update ∆T, we make use of the second order approximation
of the total cost function c(T) in (22):

c(T�∆T) ≈ c(T) + J∆T +
1

2
∆TTH∆T (41)

where J =
∑Mf

i=1 Ji,H =
∑Mf

i=1 Hi. For any d ∈ W , since
Jid = 0,dTHid = 0,∀i, we have Jd = 0 and dTHd =
0,∀i, which means that any additional update along d ∈W
does not change the approximation at all. One way to resolve

the gauge freedom is fixing the first pose at its initial value
throughout the optimization. That is, setting ∆T1 = 0 in (41).
Then, setting the differentiation of the cost approximation in
(41) w.r.t. ∆T (excluding ∆T1) to zero leads to the optimal
update ∆T?:

∆T? = − (H + µI)
−1

JT , (42)

where we used a Levenberg-Marquardt (LM) algorithm-like
method to re-weight the gradient and Newton’s direction
by the damping parameter µ. The complete algorithm is
summarized in Algorithm 1.

F. Time Complexity Analysis

In this section, we analyze the time complexity of the
proposed BA solver in Algorithm 1 and compare it with
other similar BA methods, including BALM [32] and Plane
Adjustment [47]. The computation time of Algorithm 1 mainly
consists of the evaluation of the Jacobian J and Hessian
matrix H on Line 6, and the solving of the linear equation
on Line 9. For the evaluation of the Jacobian J, according
to (41), it consists of Mf items, each item Ji requires to
evaluate Mp block elements, and each block gjll requires
a constant computation time according to (33). Therefore,
the time complexity for the evaluation of J is O (MfMp).
Similarly, for the Hessian matrix, according to (41), it consists
of Mf items, each item Hi requires to evaluate M2

p block
elements, and each block Hij requires a constant computation
time according to (35). Therefore, the time complexity for the
evaluation of H is O

(
MfM

2
p

)
. On Line 9, the linear equation

has a dimension of 6Mp, solving the lienar equation requires
an inversion of the Hessian matrix which contributes a time
complexity of O(M3

p ). As a result, the overall time complexity
of Algorithm 1 is O

(
MfMp +MfM

2
p +M3

p

)
.

Our previous work BALM [32] also eliminated the feature
parameters from the optimization, leading to an optimization
similar to (9) whose dimension of Jacobian and Hessian are
also 6Mp. To solve the cost function, BALM [32] adopted a
second order solver similar to Algorithm 1, where the linear
solver on Line 9 has the same time complexity O(M3

p ).
However, when deriving the Jacobian and Hessian matrix
of the cost function, the chain rule was used where the
Jacobian and Hessian is the multiplication of the cost w.r.t.
each point of a feature and the derivative of the point w.r.t.
scan poses (see Section III. C of [32]). As a consequence,
for each feature, the evaluation of Jacobian has complexity
of O(NMp) and the Hessian has O(N2M2

p ), where N is
the average number of points on each feature. Therefore,
the time complexity including the evaluation of all features’
Jacobian and Hessian matrices and the linear solver are
O(NMfMp +N2MfM

2
p +M3

p ).
The plane adjustment method in [47] is a direct mimic of

the visual bundle adjustment, which does not eliminate the
feature parameters but optimizes them along with the poses in
each iteration. The resultant linear equation at each iteration is
in the form of JTJδx = b, where J is the Jacobian of the cost
function w.r.t. both the pose and feature parameters. Due to a
reduced residual and Jacobian technique similar to our point



9

cluster method, the evaluation of J does not need to enumerate
each point of a feature, so the time complexity of computing
J for all Mf features is O(MfMp + Mf ) by noticing the

inherent sparsity. Let H = JTJ =

[
H11 H12

HT
12 H22

]
, δx =

[
δT
δπ

]
,b =

[
b1

b2

]
, where δT ∈ R6Mp is the pose component

and δπ ∈ R3Mf is feature component. The plane adjustment in
[47] further used a Schur complement technique similar to vi-
sual bundle adjustment, leading to the optimization of the pose
vector only:

(
H11 −H12H

−1
22 H21

)
δT = b1 −H12H

−1
22 b2.

Since H22 is block diagonal, its inverse has a time complexity
of O(Mf ). As a consequence, constructing this linear equa-
tion would require computing H12H

−1
22 H21 and H12H

−1
22 b2,

which have time complexity of O(M2
pMf ), and solving this

linear equation has a complexity of O(M3
p ). As a consequence,

the overall time complexity is O(Mf+MfMp+MfM
2
p+M3

p ).
In summary, BALM [32] has a complexity O(NMfMp +

N2MfM
2
p + M3

p ), which is linear to Mf , the number of
feature, quadratic to N , the number of point, and cubic to
Mp, the number of pose. The plane adjustment [47] has a
complexity O(Mf+MfMp+MfM

2
p+M3

p ), which is linear to
Mf , irrelevant to N , and cubic to Mp. Our proposed method
has a complexity of O

(
MfMp +MfM

2
p +M3

p

)
, which is

similar to [47] (i.e., linear to Mf , irrelevant to N , and cubic
to Mp) but has less operations.

G. Covariance Estimation

Assume the solver converges to an optimal pose estimate
T?, it is often useful to estimate the confidence level of the
estimated pose. Let Tgt be the ground-true pose and δT?

be the difference between the optimal estimate T? and the
ground-true Tgt, where Tgt = T? � δT?. The aim is to
estimate the covariance of the error δT?, denoted by ΣδT? .

Ultimately, the estimation error δT? is caused by the mea-
surement noise in each raw point. Denote pgt

fijk
the ground-true

location of the k-th point observed on the i-th feature at the j-
th lidar pose, with measurement noise δpfijk ∈ N (0,Σpfijk

),
the measured point location, denoted by pfijk , is

pfijk = pgt
fijk

+ δpfijk . (43)

Aggregating the ground-true raw points and the measured
ones lead to the ground-true point cluster, denoted by Cgt

fijk
,

and the measured point cluster, denoted by Cfijk , respectively
(see (23)):

Cgt
fij

=



∑Nij

k=1 pgt
fijk

(pgt
fijk

)T
∑Nij

k=1 pgt
fijk(∑Nij

k=1 pgt
fijk

)T
Nij


 (44)

≈ Cfij − δCfij , (45)

where

δCfij =

Nij∑

k=1

Bfijkδpfijk , see Supplementary II-F, (46)

which can be constructed in advance along with the point
cluster Cfij during the feature associations stage.

In the following discussion, to simplify the notation, we
denote Cgt

f = {Cgt
fij
}, Cf = {Cfij}, δCf = {δCfij} the

ground-truth, measurements, and noises of all point clusters
observed on any features at any lidar poses.

Although the ground-true pose Tgt and point cluster Cgt
f are

unknown, they are genuinely the optimal solution of (22) and
hence the Jacobian evaluated there should be zero, i.e.,

JT
(
Tgt,Cgt

f

)
= 0 (47)

where we wrote the Jacobian as an explicit function of the
pose and point clusters. Now, we approximate the left hand
side of (47) by its first order approximation:

JT (Tgt,Cgt
f ) = JT (T? � δT?,Cf + δCf ) = JT (T?,Cf )

+
∂JT (T? � δT,Cf )

∂δT
· δT? +

∂JT (T?,Cf )

∂Cf
· δCf .

(48)

Noticing that JT (T?�δT,Cf )
∂δT = H (T?,Cf ), we have

0 = JT
(
Tgt,Cgt

f

)
= JT (T?,Cf )

+ H · δT? +
∂JT (T?,Cf )

∂Cf
δCf , (49)

which implies

δT? = −H−1JT (T?,Cf )−H−1
∂JT (T?,Cf )

∂Cf
δCf (50)

Since T? is the the converged solution using the mea-
sured cluster Cf , they should lead to zero update, i.e.,
H−1JT (T?,Cf ) = 0. Therefore,

δT? = −H−1
∂JT (T?,Cf )

∂Cf
δCf ∼ N (0,ΣδT?) , (51)

ΣδT? = H−1
∂JT (T?,Cf )

∂Cf
ΣδCf

J (T?,Cf )

∂Cf
H−T . (52)

We defer the exact derivation and results of JT (T?,Cf )
∂Cf

·δCf ,
ΣδCf

and ΣδT? to Supplementary II-F [55]. Note that the
evaluation of ΣδT? only requires the covariance δCfij , which
has been constructed in advance according to (46), avoiding
the enumeration of each raw point during the optimization.

IV. IMPLEMENTATIONS

We implemented our proposed method in C++ and tested
it in Unbuntu 20.04 running on a desktop equipped with
Intel i7-10750H CPU and 16Gb RAM. Since the reduced
optimization problem (22) is not in a standard least square
problem, which existing solvers (e.g., Google Ceres [56]) ap-
plies to, we implemented the optimization algorithm with steps
and parameters described in Algorithm 1. When solving the
linear equation on Line 9 at each iteration, we use the LDLT
Cholesky decomposition decomposition method implemented
in Eigen library 3.3.7. The termination conditions on Line 19
are iteration number below 50 (i.e., jmax= 50), rotation update
below 10−6 rad, and translation update below 10−6 m.



10

Fig. 5. Simulation setup: A 16-channel lidar moves along a rectangular
trajectory in a cuboid semi-closed space. The white line is the trajectory and
the red lines are the laser points.

V. CONSISTENCY EVALUATION

This study aims to verify the consistency of the proposed
BA method. That is, whether the estimated covariance ΣδT?

from (52) agrees with the ground-true covariance of the
pose estimation error δT?. As the ground-true covariance is
unknown, we refer to a standard measure of consistency, the
normalized estimation error squared (NEES) [57, 58], which
is defined below:

η = (δT?)TΣ−1δT?δT
?,

where δT?
j is the estimation error of the pose defined accord-

ing to (27):

δT? , (· · · , δT?
j , · · · ) ∈ R6Mp ,

δT?
j =

[
Log

(
Rgt
j

(
R?
j

)T)
, tgtj −Rgt

j (R?
j )
T t?j

]T
,

where the superscript “gt” denotes the ground-true poses and
(R?

j , t?j ) denotes the estimated pose for the j-th scan. Assume
the pose estimate (R?

j , t?j ) is unbiased (i.e., E
(
δT?

j

)
= 0),

if the computed covariance ΣδT? is the ground-truth, we can
obtain the expectation

E(η)=E
(
(δT?)TΣ−1δT?δT

?
)

= trace
(
E
(
Σ−1δT?δT

?(δT?)T
))

= trace
(
Σ−1δT?E

(
δT?(δT?)T

))
= trace(I)=dim(δT?). (53)

That is, if the solver is consistent, the expectation of NEES
should be equal to the dimension of the optimization variable.
If the expectation of NEES is far higher than the dimension,
the estimator is over-confident (i.e., the computed covariance
is less than the ground-truth). Conversely, it is conservative.

In practice, the expectation of NEES is evaluated by Monte
Carlo method, where the NEES is computed for many runs
and then averaged to produce the empirical expectation.

η̄ =
1

N

N∑

i=1

η(i)

where η(i) is the NEES computed at the i-th Monte Carlo run.
To conduct the Monte Carlo evaluation, we simulate a 16-

channel lidar along a rectangular trajectory in a cuboid semi-
closed space shown in Fig. 5. The size of the space is 30

Fig. 6. The error (red) of rotation (deg) and position (m) with 3σ bounds
(blue) for one simulation run.

Fig. 7. (a) The normalized NEES averaged over 100 Monte Carlo runs at
different point noise levels. The NEES is normalized by the pose dimension
(i.e., 600) for better visualization. (b) The rotation (red) and translation (blue)
errors at different point noise levels. (c) The point cloud map with ground-true
poses at noise levels σp = 0.05m, 0.5m and 1m, respectively.

m × 20 m × 8 m and the length of trajectory is about 92
m. 100 scans are equally sampled on the trajectory and the
number of points in each scan is 28,800. To simulate realistic
measurements, each point is corrupted with an independent
isotropic Gaussian noise with multiple standard deviations
σp ∈ {0.05, 0.10, · · · , 1.00} m and for each value of the
standard deviation σp, we performed 100 Monte Carlo experi-
ments, leading to a total number of 2000 experiments. In each
run, we compute the optimal pose estimate from Algorithm
1 with the same parameters specified in Section IV and the
covariance matrix from (52). The initial trajectory required in
Algorithm 1 is obtained by perturbing the ground-true trajec-
tory with a Gaussian noise with standard deviation δφ = 2 deg



11

and δt = 0.1 m on each pose.To avoid unnecessary errors, we
use the ground-true plane association across different scans
and ignore the in-frame motion distortion in the simulation.

Fig. 6 shows orientation and position errors with the cor-
responding 3σ bounds in one Monte Carlo experiment with
σp = 0.05 m. As can be seen, the pose estimation errors are
very small and they all remain within the 3σ bounds very well,
which suggests that our new method is consistent.

Furthermore, we test the consistency of our BA method
under different levels of point noise, where the standard
deviation of a point noise ranges from σp = 0.05 m to 1
m. The results are shown in Fig. 7(a) for the NEES averaged
over 100 runs for each noise level and in Fig. 7(b) for the
average pose error. For better visualization, the average NEES
is normalized by the pose dimension (i.e., 600 for 100 poses
on the trajectory) in Fig. 7(a). As can be seen, the normalized
average NEES is very close to one, which suggests that
our method is consistent, when the point noise is up to 0.3
m. Beyond this noise level, the first order approximation in
(49) no longer holds, which undermines the accuracy of the
computed covariance. We should note that this noise level
rarely occurs in actual lidar sensors, which are well below
0.1 m. Moreover, from Fig. 7(b), we can see that our method
produces accurate pose estimation even when the point noise
are unrealistically large (up to 1 m, see Fig. 7(c) for the point
cloud map at this point noise level).

VI. BENCHMARK EVALUATION

In this section, we compare our method with other multi-
view registration methods for lidar point clouds. The experi-
ment will be divided into two parts: Section VI-A evaluates
all methods with known feature association on virtual point
clouds, and Section VI-B evaluates the overall BA pipeline
including both optimization solver and feature association on
various real-world open datasets.

To verify the effectiveness of our method, we compare it
with four state-of-the-art methods that focus on the lidar bun-
dle adjustment (or similar) problem: Eigen-Factor (EF) [53],
BALM [32], Plane Adjustment (PA) [49] and BAREG [54].
Among them, EF3, BALM4, BAREG5 are open sourced, so we
use the available implementation on Github. PA is not available
anywhere, so we re-implemented it in C++. To reduce the
time cost of PA, we used the reduced Jacobian and residual
technique in [47] (we derived it based on the cost function
in Equation (10) of [49]), which avoids the enumeration of
each individual point, and the Schur complement trick, which
reduces the linear equation dimension at each optimization
iteration. The re-implemented PA uses the same LM algorithm
pipeline as in Algorithm 1 to make a fair comparison.

For the optimization solvers, our method and the re-
implemented PA use the same parameters in Algorithm 1,
while EF, BALM and BAREG use their default parameters as
available on their open source implementation. All methods
use the same termination condition shown in Sec. IV (i.e.

3https://gitlab.com/gferrer/eigen-factors-iros2019
4https://github.com/hku-mars/BALM
5https://hyhuang1995.github.io/bareg/

maximal iteration number beow 50, rotation update below
10−6 rad, and translation update below 10−6 m), except for
EF, which we found it converges too slowly and hence set
the maximal iteration steps to 1000. In addition to the open
source version of BALM (denoted by BALM), which samples
only three points from each plane to lower the computation
load, we also evaluated another vision (denoted by BALM-
full) which keeps all the points on a plane and use the same
default parameters as its open sourced version. All solvers use
the same initial pose trajectories detailed later.

For the feature association, we use the same adaptive
voxelization proposed in our previous work BALM [32],
which registers all points in the world frame (using the initial
trajectory) and recursively cuts the space into smaller voxels
until the voxel contains a single feature that associates the
points from multiple scans. EF did not address the feature
association problem and PA did not open relevant association
codes, so we use the method of BALM [32] too. BAREG used
a adaptive voxelization method similar to BALM but has its
own implementation, which we retain. All feature associations
have the same set of parameters: the root voxel size L, the
maximum voxelization layer lmax, the minimum number of
points nmin for a feature test, and the feature test thresholds
γ. Exact values of these parameters are provided later.

Our proposed optimization method and the adaptive vox-
elization method in BALM [32] are applicable to both edge
and plane features. However, we notice that in real-world point
cloud data, edge features extracted based on local smoothness
(e.g., [18]) are very noisy because the laser pulse emitted by
lidars can barely hit an edge exactly due to the limited angular
resolution. The situation is even worsened when the edge is at
far or when the lidar has increased laser beam divergence,
which creates many bleeding points behind an edge and
degrades the edge points extraction [59]. As a consequence,
we found that in practice, adding the edge features does not
contribute much to the accuracy. Moreover, since the other
methods, including EF, PA, and BAREG are only designed
for plane features, for a fair comparison, we use only plane
features in the following experiments for all methods. In fact,
an edge is often created by an foreground object, which also
makes a good plane feature, so dropping the edge feature does
not reduce the number of constraints significantly.

A. Virtual point cloud

To verify the effectiveness of the optimization solvers and
their scalability to the number of pose Mp, number of feature
Mf , and number of points N per feature, we design a point-
cloud generator which generates Mf random planes and Mp

lidar scans at random poses. Each pose corresponds to one
group of point-cloud whose number of points on each plane
is N . Hence, there are totally NMf points at each scan. To
mimic the real lidar point noises, we also corrupt the points
sampled on each plane by a isotropic Gaussian noise with
standard deviation σp = 0.05m, the typical noise level for
existing lidar sensors. In the nominal settings, Mf = Mp =
N = 40. From the nominal settings, we enumerate each of the
three parameters at values {10, 20, 40, 80, 160} to investigate

https://gitlab.com/gferrer/eigen-factors-iros2019
https://github.com/hku-mars/BALM
https://hyhuang1995.github.io/bareg/


12

Fig. 8. Convergence of different methods in BA optimization. (a) Cost
convergence in one repeat experiment of the nominal settings Mf = 40,
Mp = 40 and N = 40 in one repeat experiment. (b) Iteration steps
experienced by each method in all repeat experiments (i.e., 10) of all scenes
(i.e., 13). The y-axis value represents how many experiments out of the total
(130) has experienced the iteration number indicated on the x-axis.

the performance of each solver at different scales. This makes
a total number of 13 scenes. In each scene, the experiment is
repeated for 10 times with separately sampled poses, planes,
and point noises, leading to a total 130 experiments. The initial
pose trajectories for all the optimization methods are obtained
by perturbing the ground-true poses by a Gaussian noise with
standard deviation δφ = 2 deg and δt = 0.1 m.

1) Convergence: First we investigate the convergence per-
formance of these methods. Fig. 8(a) shows the cost conver-
gence for all methods in one repeat experiment of the nominal
settings (i.e., Mf = Mp = N = 40). Since different method
uses different cost function, to compare them in one figure,
the cost value of each method is normalized by its initial cost
and then it is re-based such that the converged cost value of
all methods are aligned at the same value. As can be seen, EF
converes rather slowly and requires the most number of itera-
tions. This is because EF uses a cost function similar to ours
in (9), which is essentially a quadratic optimization, but uses
only the gradient information for optimization. Indeed, slow
convergence of the gradient descent method on a quadratic cost
function is a very typical phenomenon [60]. PA and BAREG
converge fast at the beginning but slowly when approaching
the final convergence value. This is because PA optimizes both
the plane parameters and scan poses, leading to a very large
number of optimization variables that significantly slow down
the speed at convergence. For BAREG, the empirical fixation
of plane parameters also causes the optimization to slow down.
In contrast, BALM, BALM-full and our method eliminates
the plane parameters exactly and the resultant optimization
problem is only in dimension of the pose number. Further
leveraging the exact Hessian information in their optimization
update, BALM, BALM-full and our method converge in four
iterations, which represent the fastest convergence.

Fig. 8(b) shows the iteration experienced by each BA
optimization method, where for each data point, the y-axis
value represents how many experiments out of the total
(13×3 = 130) experienced a certain iteration number indicated
by the x-axis value. As can be seen, the overall trend agrees

Fig. 9. Benchmark results on virtual point-cloud.

with the results in Fig. 8 (b) very well: our proposed method
and BALM-full require only four or five iterations in all
experiments, while BAREG and PA require up to 20 and
50 iterations, respectively. EF requires even more iterations
beyond 50. The only exception is BALM, which experienced
more iterations than BAREG in the worst case, the reason is
that BALM samples only three points from each plane feature,
which may reduce the robustness and increase the iteration
steps in some cases.

2) Accuracy: Fig. 9(a)-(f) shows the statistic values of the
pose estimation accuracy in terms of RMSE. In each subplot,
we fix two parameters of Mf ,Mp and N at the nominal values
and change the third parameter to investigate the change of
pose accuracy. Since the error of EF is much larger than the
others, we used a broken y-axis to better display all the RMSE.
As can be seen, the accuracy overall increases with the points
per plane N (in (b) and (e)) or number of plane features Mf

(in (c) and (f)), both increases the number of pose constraints.
No such monotonic accuracy improvement is found in (a) and
(d) as the pose number increases because increasing the pose
number itself does not gives more pose constraints. Relatively
speaking, our proposed method and BALM-full achieves the
same highest accuracy, since they essentially optimizes the
same cost using the same exact Hessian information. The next
best methods are BAREG and PA. While optimizing the same
point to plane distance with our method (and BALM-full), PA
has significantly more optimization variables, which cause a
much slower convergence where the solution is still slightly
premature at the preset iteration number (i.e., 50). The next
accurate method is BALM, which samples only three instead



13

of all points (as in our method, BALM-full, BAREG and
PA) and hence has higher RMSE. Finally, EF has the highest
RMSE due to the very slow convergence, the solution is much
premature even at the preset iteration number (i.e., 1000).

3) Computation time: Finally, we show the computation
time of different solvers at different feature number Mf ,
pose number Mp, and point number N . The results are
shown in Fig. 9(g)-(i), respectively. As can be seen, the
time consumption of all methods increases with the number
of poses Mp (see (g)) and plane features Mf (see (i)),
which is reasonable since more poses or planes leads to a
higher optimization dimension or more number of cost items,
respectively. In contrast, as the point number N increases, the
method BALM-full increases rapidly since its time complexity
involves O(N2) while the rest methods (including ours) do not
increase notably since they do not need to evaluate every raw
point. Relatively speaking, our method achieves the lowest
computation time in all cases due to the small number of
iteration numbers and low time-complexity per iteration. The
next efficient method is BAREG, which has very low time-
complexity per iteration due to the empirical feature parameter
fixation but significantly more iteration numbers due to the
same reason. Compared with our method, PA has the same
time complexity per iteration as discussed in Section III-F,
but requires more iterations to converge. Hence its time cost
is a little higher than ours and BAREG. BALM requires more
iterations than our method and each iteration, it requires to
enumerate the sampled three points. Collectively, it leads to a
computation time higher than our method and also BAREG
and PA. The slow convergence problem is more severe in
EF, leading to an even higher computation time. Finally, the
most time-consuming method is BALM-full, which, although
has very small iteration numbers, takes significantly high
time to compute the Hessian matrix in each iteration due to
enumeration of each raw point.

B. Real-world datasets
In this experiment, we conduct benchmark comparison on

three real-world datasets. The first dataset is “Hilti” [61] which
is a handheld SLAM dataset including indoor and outdoor
environments. We use the lidar data collected by Ouster OS0-
64 in the dataset. The ground-true lidar pose trajectory is
captured by a total station or motion capture ssytem. The
second dataset “VIRAL” [62] is collected on an unmanned
aerial vehicle (UAV) equipped with two 16-channel OS1
lidars. One lidar is horizontal and the other is vertical. We will
use the horizontal one in this experiment. It used a Leica Nova
MS60 MultiStation to track a crystal prism on the UAV to
provide ground-true positions. The last dataset “UrbanLoco”
[63] is collected by a car driving on an urban streets. The lidar
is Velodyne HDL 32E and the ground truth is given by the
Novatel SPAN-CPT, a navigation system incorporating Real
Time Kinematic (RTK) and precisional IMU measurements.

Two preprocessing are performed for all sequences: motion
compensation and scan downsample. To compensate the points
distortion caused by continuous lidar movements within a
scan, we run a tightly-coupled lidar-inertial odometry, FAST-
LIO2 [19], which estimates the IMU bias (and other state

Fig. 10. Point cloud map of the UzhArea2 sequence in “Hilti”. (a) registered
by ground-true pose trajectory. (b) registered by ground-true position with
rotation optimized by our BA method. (c) registered by poses fully optimized
by our BA method. (d), (e) and (f) points on one side wall in (a), (b) and (c),
respectively.

variables) and compensates the point motion distortion in real-
time. We kept all points in a scan whose distortion has been
compensated by FAST-LIO2 and discard the odometry output.
The processed data are then downsampled from the original 10
Hz in all sequences to 2 Hz. This is because the BA methods
need to process all scans at once, a 10Hz scan rate causes
prohibitively high computation load for all BA methods. The
downsampling is also similar to the keyframe selection in
common SLAM frameworks.

We compare our method with EF, BALM, PA, and BAREG.
Noticing that the computation time of BALM-full is pro-
hibitively high due to the extremely large number of lidar
points, we hence remove it from the benchmark comparison.
For the rest methods, their solver parameters are kept the
same for all sequences with values detailed before. For feature
association, the parameters are lmax = 3, nmin = 20, γ = 1

25 .
For the parameter L, it is set to 1 m for “Hilti” and “VIRAL”
and 2 m for “UrbanLoco”.

In addition to the multi-view registration methods, we also
compare with classic pairwise registration methods, includ-
ing ICP, GICP, and NDT offered in PCL library. We run
the pairwise registration methods in an incremental manner,
where each new scan is registered and merged to the map
incrementally. To constrain the computation time, in each new
scan registration, only the last 20 scans are kept in the map.
The pose estimation from the ICP is then used as the initial
trajectory for the feature association and optimization of the
BA methods, including EF, BALM, PA, BAREG, and ours.

1) Accuracy: Table II shows the ATE results. As can be
seen, our method consistently achieves the best results in all
19 sequences. The next accurate method is PA and BAREG,
followed by BALM and EF. This trend is in great agreement
with the results on virtual point-cloud shown in Section
VI-A-2 with explanations detailed therein. In particular, our
method achieves an accuracy within a few centimeters in all



14

TABLE II
ABSOLUTE TRAJECTORY ERROR (RMSE,METERS) FOR DIFFERENT METHODS.

Datasets Sequence ICP GICP NDT EF BALM PA BAREG Ours

Hilti

Basement1 0.058 0.063 0.076 0.047 0.042 0.039 0.040 0.035
Basement4 0.084 0.089 0.098 0.071 0.058 0.054 0.057 0.044
Campus2 0.105 0.109 0.124 0.080 0.066 0.062 0.064 0.053
Construction2 0.108 0.104 0.113 0.086 0.068 0.064 0.063 0.055
LabSurvey2 0.066 0.069 0.072 0.054 0.025 0.021 0.023 0.018
UzhArea2 0.182 0.191 0.211 0.161 0.131 0.125 0.127 0.117

VIRAL

eee01 0.159 0.163 0.172 0.122 0.073 0.057 0.061 0.038
eee02 0.153 0.154 0.163 0.111 0.062 0.059 0.068 0.037
eee03 0.171 0.175 0.180 0.127 0.082 0.078 0.072 0.052
nya01 0.139 0.136 0.163 0.107 0.084 0.058 0.062 0.038
nya02 0.160 0.159 0.124 0.114 0.067 0.059 0.061 0.047
nya03 0.142 0.143 0.146 0.093 0.077 0.064 0.075 0.041
sbs01 0.133 0.142 0.147 0.083 0.069 0.065 0.072 0.039
sbs02 0.127 0.127 0.121 0.094 0.062 0.068 0.059 0.038
sbs03 0.146 0.149 0.150 0.108 0.072 0.063 0.068 0.043

UrbanLoco

0117 1.382 1.364 1.372 0.728 0.625 0.577 0.596 0.495
0317 1.384 1.299 1.289 0.914 0.691 0.689 0.715 0.648
0426-1 1.436 1.457 1.566 1.014 0.875 0.765 0.733 0.689
0426-2 1.676 1.693 1.543 1.113 0.924 0.894 0.917 0.822

Average 0.411 0.410 0.412 0.275 0.218 0.203 0.207 0.176

TABLE III
OCCUPIED CELLS OF POINT-CLOUD MAP FOR DIFFERENT METHODS.

Datasets Sequence ICP GICP NDT EF BALM PA BAREG Our
(inc.) (inc.) (inc.) (inc.) (inc.) (inc.) (inc.) (base)

Hilti

Basement1 +20300 +20954 +21354 +16692 +6285 +4230 +5864 391962
Basement4 +7826 +7283 +8178 +6683 +4762 +2628 +3752 558823
Campus2 +14459 +15511 +21146 +8028 +2863 +2217 +2862 1319482
Construction2 +6235 +9371 +10032 +6397 +1789 +1032 +986 979614
LabSurvey2 +1680 +3141 +6331 +5043 +1375 +1176 +1228 139682
UzhArea2 +9490 +9623 +10832 +6371 +2688 +1945 +2785 628951

VIRAL

eee01 +43185 +43439 +44578 +22731 +2564 +1028 +1321 1166482
eee02 +10339 +14573 +15848 +6985 +5938 +4204 +5635 892368
eee03 +8584 +9419 +7418 +5720 +2016 +1940 +1060 594921
nya01 +53004 +56370 +48669 +26087 +7368 +4670 +4246 571365
nya02 +38056 +37718 +38435 +24752 +4710 +3567 +3902 572960
nya03 +14282 +13896 +16325 +10688 +5922 +2346 +2614 562583
sbs01 +10069 +12196 +16597 +9635 +4224 +2348 +3691 794228
sbs02 +16573 +16446 +21046 +10577 +9278 +7935 +5238 808235
sbs03 +12257 +11154 +8974 +4682 +877 +682 +763 867174

UrbanLoco

0117 +46718 +47572 +50969 +16327 +7237 +3685 +5412 1743775
0317 +37635 +33676 +41367 +20072 +13102 +6983 +8521 1709823
0426-1 +9165 +10242 +13695 +9539 +2331 +1764 +1026 1632662
0426-2 +31870 +30461 +29568 +13827 +3428 +2236 +4451 2176302

Average +21617 +21002 +22703 +12146 +4671 +2979 +3439 953215

sequences of “Hilti” and “VIRAL”, with only one exception
(i.e., UzhArea2), which will be analyzed later. The centimeter
level accuracy achieved by our method is at the same level of
lidar point noises. Moreover, using only lidar measurements,
our method achieved an average accuracy of 4.2 cm on all
VIRAL dataset sequences, which outperforms the accuracy
4.7 cm reported in VIRAL-SLAM [62] that fuses all data
from stereo camera, IMU, lidar, and UWB. The accuracy on
“UrbanLoco” is lower (analyzed later) than other datasets, but
still outperforms the other BA methods. Finally, we can notice
that the BA methods (i.e., EF, BALM, PA, BAREG and ours)
generally outperforms the pairwise registration methods (i.e.,
ICP, GICP and NDT) due to the full consideration of multi-

view constraints.

Now we investigate the performance degradation on “Ur-
banLoco” and the sequence UzhArea2 in “Hilti” more closely.
For the “UrbanLoco” dataset, we found that the RTK ground-
truth had some false sudden jumps, which contributes the large
ATEs. This sudden jump may be caused by tall buildings in the
crowded urban area which lowers the quality of the ground-
truth. For the sequence UzhArea2, we register the point cloud
with the ground-true pose trajectory and compare it with the
point cloud registered with our BA method in Fig. 10. As can
be seen, with the ground-true pose, points on the side wall are
very blurry and points on the wall form a plane with standard
deviation up to 15.3 cm (Fig. 10(d)); with the ground-true



15

translation but with rotations optimized by our BA method,
the points on the side wall are much more ordered and form
an apparent plane of standard deviation 6.8 cm (Fig. 10(e));
with poses fully optimized by our method, the points are even
more consistent and the standard deviation is 1.7 cm (Fig.
10(f)). From these results, we suspect that the ground-truth
may be affected by some unknown errors (e.g., marker position
change during the data collection). Indeed, we found similar
problem on this sequence also occurred in other works [64].
Moreover, the standard deviation of 1.7cm achieved by our
method is exactly the ranging accuracy of the lidar sensor,
which confirms that our method achieves a mapping accuracy
at the noise level of raw points as if the sensor motion had
not occurred.

2) Mapping quality: A significant advantage of the BA
method is the direct optimization of the map accuracy. To
evaluate the map quality without a ground-true map, we adopt
a method proposed by Anton et al. [65]. The method cuts the
space into small cells and then counts the number of cells that
lidar points occupy. The less the occupied cells, the higher
the map quality. This indicator is intuitive: if points from
different scans are registered accurately, they should agree with
each other to the best extent, hence occupying the minimum
possible number of cells. Based on this method, Table III
presents the number of occupied cell with size 0.1 m. To better
show the difference among different methods, the number of
occupied cells are subtracted by our method for each sequence.
We show the number of occupied cells by our method and the
difference value of other methods. As can be seen, our method
consistently achieved the best performance in all sequences
and the next best is PA and BAREG. This trend also agrees
with the ATE results very well.

3) Computation time: Finally, we compare the computation
time. Since the pairwise registration methods, including ICP,
GICP, and NDT, perform repetitive incremental registration
at each scan reception, its computation time is very different
from the BA methods that perform batch optimization on all
scans at once. Therefore, we only compare the computation
time of BA methods. Table IV shows the total computation
time of optimization. As can be seen, our method consumes
the least computation time, about one sixth of the BAREG,
one eighth of PA, one tenth of BALM, and one seventieth of
EF. The overall trend agree with the results on vitual point
cloud in Section VI-A-3 with explanations detailed therein.

VII. APPLICATIONS

Bundle adjustment is the central technique of many lidar-
based applications. In this section, we show how our bundle
adjustment method can effectively improve the accuracy or
computation efficiency of three vital applications: lidar-inertial
odometry, multi-lidar calibration, and global mapping.

A. Lidar-inertial odometry with sliding window optimization

A local bundle adjustment in a sliding window of keyframes
has been widely used in visual odometry and proved to be
very effective in lowering the odometry drift [26, 27, 66, 67].
Similar idea could apply to the lidar-inertial odometry based

TABLE IV
OPTIMIZATION TIME COST FOR DIFFERENT METHODS

Sequence EF BALM PA BAREG Our

Hilti
Basement1 1196.29 150.97 101.93 89.01 14.60
Basement4 1335.38 171.22 130.09 123.71 17.60
Campus2 1682.41 331.87 274.36 182.50 27.75
Construction2 2987.39 392.71 309.20 230.33 37.24
LabSurvey2 228.47 38.56 32.47 25.30 4.95
UzhArea2 139.47 18.67 13.51 12.13 3.60

VIRAL
eee01 2419.48 269.81 217.85 179.67 25.62
eee02 1472.02 180.29 137.20 107.29 17.74
eee03 460.28 73.54 56.34 43.32 6.93
nya01 2642.51 388.54 344.50 259.87 41.98
nya02 3286.82 481.57 392.57 275.92 48.86
nya03 3860.17 507.03 469.02 285.93 47.51
sbs01 2310.04 296.99 246.44 182.54 29.33
sbs02 2321.43 290.75 240.55 193.18 33.30
sbs03 2193.25 384.63 352.39 242.30 39.22

Urbanloco
0117 631.52 80.41 57.49 50.57 7.09
0317 703.25 88.20 78.75 52.83 9.25
0426-1 149.97 37.75 21.87 17.04 5.30
0426-2 842.18 137.04 104.15 80.43 8.62

Average 1634.88 227.39 188.41 138.62 22.42

Fig. 11. Overview of the LIO system with BA and IMU preintegration

on our BA method. To demonstrate the effectiveness, we
design a lidar-inertial odometry system as shown in Fig. 11.
The system is divided into two parts: the EKF-based front-
end, which provides initial yet timely pose estimation (EKF
odometry), and the BA-based back-end, which refines the pose
estimation in a sliding window (Local mapping). The EKF
design is similar to FAST-LIO2 [19] which compensates the
motion distortion in the incoming lidar scans and performs
EKF propagation and update on the state manifold. The sliding
window optimization performs a local BA among the most
recent 20 scans considering constraints of IMU preintegration
[58] and constraints from plane features co-visible among all
scans in the window (Section III). After the convergence of the
local BA, points in the local window are built into a k-d tree to
register the next incoming scan. Furthermore, the oldest scan
is removed from window and its contained points are merged
into the global point cloud map.

We compare our proposed system with one state-of-art lidar-
inertial odometry, FAST-LIO2 [19], which performs incremen-



16

TABLE V
ATE AND TIME COST PER SCAN OF FAST-LIO2 AND LIO WITH BA

ATE (m) Time (ms)
FAST-LIO2 Local-BA FAST-LIO2 Local-BA

(Odom/BA Opt.)

utbm8 23.7 20.4 22.05 31.73/92.11
utbm9 45.9 39.1 25.44 33.42/95.43
utbm10 16.8 13.1 22.48 30.46/97.81
uclk4 1.31 1.15 20.14 19.53/69.89
nclt4 8.50 9.23 15.72 21.77/59.83
nclt5 6.65 6.25 16.60 26.13/61.23
nclt6 20.57 20.34 15.84 25.14/63.19
nclt7 6.58 5.69 16.87 23.18/62.53
nclt8 30.08 26.24 14.25 24.80/69.29
nclt9 5.56 5.07 13.65 22.98/67.36
nclt10 16.29 14.10 21.79 23.41/64.45

Average 16.54 14.61 18.62 25.68/73.01

tal pairwise scan registration via GICP. The comparison is
conducted on “utbm” , “uclk”, and “nclt” dataset that evaluated
by FAST-LIO2, so the results of FAST-LIO2 are directly read
from the original paper [68]. As can be seen in Table V, ben-
efiting from the abundant multi-view constraints in the local
sliding window, our system consistently outperforms FAST-
LIO2 in terms of accuracy with considerable margins except
the sequence “nclt4”. The improvements in odometry accuracy
confirm the effectiveness of the local BA optimization. The
improvement in accuracy comes with increased computation
costs as shown in the last two columns of Table V, where
for FAST-LIO2, we record the time of each scan-to-map
registration and for our LIO system, the time consumption is
divided into two parts: one is the front-end scan-to-local map
registration and the back-end local BA optimization. As can be
seen, our system has a little more time consumption in front-
end than FAST-LIO2 because of the building of a k-d tree,
which takes a constant time overhead, while FAST-LIO2 uses
a more efficient incremental k-d tree structure. In addition, our
system requires an average of 73 ms in the back-end local BA
optimization, which ensures a 10 Hz running frequency for
both the front-end and back-end. Since the back-end runs in
parallel in a separate thread, the overall odometry latency of
our system is only 7 ms more than that of FAST-LIO2.

B. Multiple-lidar Calibration

With the ability of concurrent optimization of multiple lidar
poses, our BA method can be applied to multi-lidar extrinsic
calibration. We consider the problem in [69], which aims to
calibrate the extrinsic of multiple solid-state lidars shown in
Fig. 12. Due to the very small FoV, these lidars have very
small or even no FoV overlap. To create co-visible features,
the vehicle is rotated for one cycle, during which a set of point
cloud scans are collected by all lidars. Due to the rotation,
it further introduces unknown lidar poses, in addition to the
extrinsic, to estimate.

To formulate the simultaneous localization and extrinsic
calibration problem, we choose a reference lidar as the base
and calibrate the extrinsic of the rest lidars relative to it.
Denote G

RTj , j = 1, · · · ,Mp, the pose of the reference lidar

(a) (b)

Fig. 12. The customized multi-sensor vehicle platform in [69]. The MID-
100 lidar consists of three lidars: L0, L1 and L2, with FoV overlap between
adjacent lidars 8.4◦. The AVIA lidar is denoted as L3. (a) The FoV coverage
of each lidar sensor. (b) Each lidar sensor’s orientation denoted in the right-
handed coordinate system.

at j-th scan in a rotation, R
Lk

T the extrinsic of the k-th lidar
relative to the base lidar. Then, following (25), the cost item
corresponding to the i-th plane feature is

ci(
G
RTj ,

R
Lk

T) = λ3


A



Mp∑

j=1

G
RTj ·Cr

fij ·
G

R
TT
j

+
∑

k 6=r

G
RTj · RLk

T ·Ck
fij ·

(
G
RTj · RLk

T
)T





(54)

where Cr
fij
,Ck

fij
are the point cluster of the reference lidar

and the k-th lidar, respectively, observed on the i-th feature
at the j-th scan. Following Theorem 4, the first and second
order derivatives of (54) can be obtained by chain rules, whose
details are omitted here due to limited space.

We demonstrate the advantage of the proposed BA ap-
proach in multi-lidar calibration with the latest state-of-the-
art calibration methods based on ICP [22] and BALM [69].
The ICP-based method [22] optimizes the extrinsic parameter
R
Lk

T and base lidar pose G
RTj by repeatedly registering the

point cloud by each lidar at each scan to the rest lidar points
until convergence, whereas in both BALM-based method [69]
and our method, the extrinsic parameter R

Lk
T and base lidar

pose G
RTj are optimized concurrently. In [22] the feature

correspondence searching is conducted by a k-d tree data
structure, while in [69] and our method, this is resolved by
adaptive voxelization proposed in BALM [32]. To restrain the
computation time, the point number in each voxel of [69] have
been down-sampled to four, whereas in our method, all feature
points are used.

We test these methods on two lidar setups in the system
shown in Fig. 12: lidars with small field-of-view (FoV) overlap
(MID-100 self calibration) and lidars without FoV overlap
(AVIA and MID-100 calibration). Since the extrinsic between
the internal lidars of MID-100 (i.e., L1

L0
T, L1

L2
T) is known

fromt he manufacturer’s in-factory calibration, it is thus served
as the ground truth in both setups. Moreover, in the MID-
100 self calibration setup, the middle L1 is chosen as the
reference lidar to calibrate the extrinsic of adjacent lidars, i.e.,
L1

L0
T, L1

L2
T. This lidar setup is tested with data collected in

both [22] and [69] under two scenes which contributes to



17

MID-100
Self Calibration
Translation (m)

MID-100
Self Calibration

Rotation (degree)

AVIA
and MID-100

Translation (m)

AVIA
and MID-100

Rotation (degree)

10 3

10 2

10 1

100
Ex

tri
ns

ic 
Er

ro
r

ICP-Based
BA-Based
Proposed

Fig. 13. Extrinsic calibration results of the ICP-based [22], BALM-based [69]
and our proposed method in two experiment setups (with small or without
FoV overlap).

TABLE VI
AVERAGE TIME (SECOND) PER ITERATION FOR MULTI-LIDAR

CALIBRATION

Pose Extrinsic Joint
Method Optimization Optimization Optimization

ICP-Based [22] 5.16 6.10 14.98
BALM-Based [69] 0.23 0.58 3.09
Proposed 0.19 0.20 0.80

eight calibration results. In the MID-100 and AVIA calibration
setup, the L3 is selected as the reference lidar to calibrate the
extrinsic of each internal lidar of MID-100, i.e., L3

L0
T, L3

L1
T

and L3

L2
T. We then calculate the relative pose L1

L0
T, L1

L2
T from

the calibrated results and compare them with the ground truth.
This lidar setup is tested with data collected under two scenes
in [69] since no AVIA lidar was used in [22], which contributes
another four calibration results.

The total twelve independent calibration results are illus-
trated in Fig. 13 and Fig. 14. It is seen the our proposed method
outperforms the ICP-based method [22] especially in transla-
tion. This is due to the concurrent optimization of all poses and
extrinsic at the same time, which leads to full convergences
within a few iterations. In contrast, the repetitive pairwise ICP
registration leads to very slow convergence. The optimization
did not fully converge after the maximum iteration number
(max iter=40), a phenomenon detailed in [69]. Furthermore,
since all raw points on a feature are utilized in our method, the
accuracy of our proposed work is also slightly improved when
compared with the BALM-based method [69], which sample
a few points on a feature to restrain the computation time.
The averaged time consumption in each step of these methods
have been summarized in Table VI. It is seen our proposed
work and [69] has significantly shortened the calibration time
in each step compared with the ICP-based method. This is
due to the use of adaptive voxelization which saves a great
amount of time in k-d tree build and nearest neighbor search
used in [22]. Compared with [69], our proposed BA has further
increased the computation speed due to the use of point cluster
technique avoiding the enumerating of individual points in the
BALM-based method [69].

C. Global BA on Large-Scale Dataset

In this section, we show that our proposed BA method could
also be used to globally refine the quality of a large-scale
lidar point cloud. It is becoming popular to use pose graph

Fig. 14. The point cloud of MID-100 lidar in Scene-1 reconstructed before
(A) and after (B) extrinsic optimization. The base lidar (L1) point cloud is
colored in white and the two lidars to be calibrated (L0, L2) are colored in
orange and green, respectively.

TABLE VII
ATE (METERS) FOR KITTI DATASETS

Method Seq. 05 Seq. 06 Seq. 07

MULLS [70] 0.97 0.31 0.44
Proposed 0.65 0.27 0.33

optimization (PGO) as the back-end to enhance the overall
lidar odometry precision in SLAM system [70]. The optimal
poses are obtained by minimizing the summed error between
the relative transformation of these poses and that estimated
in the front-end odometry. One drawback of the PGO is that it
cannot reinforce the map quality directly. A divergence in point
cloud mapping would occur if the estimation of the relative
poses near the loop is ill. We show that the mapping quality
(and odometry accuracy) could be further improved with our
BA method even after PGO is performed.

We choose to validate on three sequences from the KITTI
dataset [71]. The initial lidar odometry is provided by the state-
of-the-art SLAM algorithm MULLS [70] with loop closure
function enabled. We directly feed this odometry to our
BA algorithm and concurrently optimize the entire poses.
The optimization results (RMSE of the odometry error) are
summarized in Table VII. It is seen that even with loop closure
function, some divergence still exist in the area near the loop of
the point cloud due to ill estimations. With our proposed global
BA refinement, the accuracy in odometry is further improved
and the divergence in point cloud is eliminated (see closeup
in Fig. 15).

VIII. DISCUSSION

Here we discuss the efficiency, accuracy, and extendability
of the proposed bundle adjustment method.



18

(a) Sequence 05 (b) Sequence 06 (c) Sequence 07

Fig. 15. Comparison of odometry accuracy on KITTI dataset [71]. The left image (A) of each subplot depicts the point cloud reconstructed by MULLS [70]
which is used as our initial value. The right image (B) of each subplot is the point cloud optimized by our proposed global BA method. The white dashed
rectangle emphasized the difference (zoomed view is recommended).

A. Efficiency

Our method achieved lower computation time than other
state-of-the-art counterparts. The efficiency of our method are
attributed to three inter-related and rigorously-proved tech-
niques that make fully use of the problem nature and lidar
point cloud property. The first technique is the solving of
feature parameters in a closed-form before the BA optimiza-
tion. It allows the feature parameters to be removed from the
optimization, which fundamentally reduces the optimization
dimension to the dimension of the pose only, a phenomenon
that did not exist before in visual bundle adjustment prob-
lem. The second technique is a second-order solver which
fits the quadratic cost function naturally and leads to fast
convergence in the iterative optimization. This is enabled
by the analytical derivation of the closed-form Jacobian and
Hessian matrices of the cost function. The third technique is
the point cluster, which enables the aggregation of all raw
points without enumerating each individual point in neither
of the cost evaluation, derivatives evaluation, or uncertainty
evaluation. Collectively, these three techniques lead to an
BA optimization with much lower dimension and a time
complexity of O(MfMp + MfM

2
p + M3

p ) in each iteration,
which achieves the lowest time consumption when compared
with other second order methods (e.g., BALM [32] and plane
adjustment [47]).

B. Accuracy

Benefiting from the point cluster technique, our proposed
method is able to exploit the information of all raw point
measurements, achieving high pose estimation accuracy (a
few centimeters) at the level of lidar measurement noise.
Optimization from the raw lidar points also enables the
developed method to estimate the uncertainty level of the
estimated pose, which may be useful when this information is
further fused with measurements from other sensors (e.g., IMU
sensors). Moreover, by minimizing the Euclidean distance

from each raw point to the corresponding feature, our method
can reinforce the map consistency in a more direct manner
than conventional pose graph optimization. While at a higher
computation cost (due to the more complete consideration of
features co-visible in multiple scans), it considerably improves
the mapping accuracy which is important for mapping appli-
cations. Due to this reason, our method is particularly useful
for accuracy refinements from a baseline pose trajectory that
can be obtained by an odometry or a pose graph optimization
module. The second order optimization provides very fast
convergence when the solution is near to the optimal value,
preventing premature solutions.

C. Extendability

As a basic technique for multiple scan registration, our
proposed method can be easily be integrated with other
formality of data, such as images and IMU measurements, by
incorporating visual bundle adjustment factors and IMU pre-
integration factors [58] in the optimization. Moreover, besides
the frame-based pose trajectory, which attaches each frame
an independent pose to estimate, our method can also work
with other forms of pose trajectories, such as continuous-
time trajectories based on Splines [9, 72] or Gaussian Process
models [73, 74], which have the capability to compensate
the in-frame motion distortion. According to the chain rules,
the derivatives of the BA cost with respect to the trajectory
parameters will consist of two parts: the first is the derivative
of the BA cost with respect to the pose of each point cluster
as derived in this paper, and the second part is the derivatives
of the pose with respect to the trajectory parameters, which
depends on the specific trajectories being used.

IX. CONCLUSION

This paper proposed a novel bundle adjustment method
for lidar point cloud. The central of the proposed method



19

is a point cluster technique, which aggregates all raw points
into a compact set of parameters without enumerating each
individual point. The paper showed how the bundle adjustment
problem can be represented by the point cluster and also
derived the analytical form of the Jacobian and Hessian
matrices based on the point cluster. Based on these derivations,
the paper developed a second-order solver, which estimates
both the pose and the pose uncertainty. The developed BA
method is open sourced to benefit the community.

Besides the technical developments, this paper also made
some theoretical contributions, including the formalization of
the point cluster and its operations, revealing of the invariance
property of the formulated BA optimization, the proof of
null space and sparsity of the derived Jacobian and Hessan
matrices, and the time complexity analysis of the proposed
BA method and its comparison with others. These theoretical
results serve the foundation of our developed BA techniques.

The proposed methods and implementations were exten-
sively verified in both simulation and real-world experiments,
in terms of consistency, efficiency, accuracy, and robustness.
In all evaluations, the proposed method achieved consistently
higher accuracy while consuming significantly lower compu-
tation time. This paper further demonstrated three applications
of the BA techniques, including lidar-inertial odometry, multi-
lidar calibration, and high-accuracy mapping. In all applica-
tions, the adoption of BA method could effectively improve
the accuracy or the efficiency.

In the future, we would like to incorporate the BA method
more tightly to the above applications and beyond. This would
require more thorough considerations of many practical issues,
such as point cloud motion compensation, removal of dynamic
objects, tightly-fusion with other formality of sensor data (e.g.,
IMU, camera) and module (e.g., loop closure).

REFERENCES

[1] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann et al., “Stanley: The robot
that won the darpa grand challenge,” Journal of field Robotics, vol. 23,
no. 9, pp. 661–692, 2006.

[2] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer et al., “Autonomous driving
in urban environments: Boss and the urban challenge,” Journal of field
Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[3] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z.
Kolter, D. Langer, O. Pink, V. Pratt et al., “Towards fully autonomous
driving: Systems and algorithms,” in 2011 IEEE intelligent vehicles
symposium (IV). IEEE, 2011, pp. 163–168.

[4] Y. Li and J. Ibanez-Guzman, “Lidar for autonomous driving: The
principles, challenges, and trends for automotive lidar and perception
systems,” IEEE Signal Processing Magazine, vol. 37, no. 4, pp. 50–61,
2020.

[5] F. Gao, W. Wu, W. Gao, and S. Shen, “Flying on point clouds:
Online trajectory generation and autonomous navigation for quadrotors
in cluttered environments,” Journal of Field Robotics, vol. 36, no. 4, pp.
710–733, 2019.

[6] F. Kong, W. Xu, Y. Cai, and F. Zhang, “Avoiding dynamic small
obstacles with onboard sensing and computation on aerial robots,” IEEE
Robotics and Automation Letters, vol. 6, no. 4, pp. 7869–7876, 2021.

[7] Y. Ren, F. Zhu, W. Liu, Z. Wang, Y. Lin, F. Gao, and F. Zhang,
“Bubble planner: Planning high-speed smooth quadrotor trajectories
using receding corridors,” arXiv preprint arXiv:2202.12177, 2022.

[8] B. Schwarz, “Mapping the world in 3d,” Nature Photonics, vol. 4, no. 7,
pp. 429–430, 2010.

[9] M. Bosse, R. Zlot, and P. Flick, “Zebedee: Design of a spring-mounted 3-
d range sensor with application to mobile mapping,” IEEE Transactions
on Robotics, vol. 28, no. 5, pp. 1104–1119, 2012.

[10] M. Helmberger, K. Morin, B. Berner, N. Kumar, G. Cioffi, and
D. Scaramuzza, “The hilti slam challenge dataset,” IEEE Robotics and
Automation Letters, 2022.

[11] D. Wang, C. Watkins, and H. Xie, “Mems mirrors for lidar: a review,”
Micromachines, vol. 11, no. 5, p. 456, 2020.

[12] Z. Liu, F. Zhang, and X. Hong, “Low-cost retina-like robotic lidars
based on incommensurable scanning,” IEEE/ASME Transactions on
Mechatronics, vol. 27, no. 1, pp. 58–68, 2021.

[13] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,”
in Sensor fusion IV: control paradigms and data structures, vol. 1611.
Spie, 1992, pp. 586–606.

[14] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp.” in Robotics:
science and systems, vol. 2, no. 4. Seattle, WA, 2009, p. 435.

[15] P. Biber and W. Straßer, “The normal distributions transform: A new
approach to laser scan matching,” in Proceedings 2003 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS 2003)(Cat.
No. 03CH37453), vol. 3. IEEE, 2003, pp. 2743–2748.

[16] M. Magnusson, “The three-dimensional normal-distributions transform:
an efficient representation for registration, surface analysis, and loop
detection,” Ph.D. dissertation, Örebro universitet, 2009.

[17] J. Behley and C. Stachniss, “Efficient surfel-based slam using 3d laser
range data in urban environments.” in Robotics: Science and Systems,
vol. 2018, 2018, p. 59.

[18] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time.” in Robotics: Science and Systems, vol. 2, no. 9. Berkeley, CA,
2014, pp. 1–9.

[19] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2: Fast direct lidar-
inertial odometry,” IEEE Transactions on Robotics, pp. 1–21, 2022.

[20] M. Yokozuka, K. Koide, S. Oishi, and A. Banno, “Litamin2: Ultra
light lidar-based slam using geometric approximation applied with kl-
divergence,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2021, pp. 11 619–11 625.

[21] H. Surmann, A. Nüchter, and J. Hertzberg, “An autonomous mobile
robot with a 3d laser range finder for 3d exploration and digitalization
of indoor environments,” Robotics and Autonomous Systems, vol. 45,
no. 3-4, pp. 181–198, 2003.

[22] X. Liu and F. Zhang, “Extrinsic calibration of multiple lidars of small
fov in targetless environments,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 2036–2043, 2021.

[23] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” in 2007 6th IEEE and ACM international symposium on
mixed and augmented reality. IEEE, 2007, pp. 225–234.

[24] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a versatile
and accurate monocular slam system,” IEEE transactions on robotics,
vol. 31, no. 5, pp. 1147–1163, 2015.

[25] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE transactions
on robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[26] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular
visual-inertial state estimator,” IEEE Transactions on Robotics, vol. 34,
no. 4, pp. 1004–1020, 2018.

[27] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and J. D.
Tardós, “Orb-slam3: An accurate open-source library for visual, visual–
inertial, and multimap slam,” IEEE Transactions on Robotics, vol. 37,
no. 6, pp. 1874–1890, 2021.

[28] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm, “Pixel-
wise view selection for unstructured multi-view stereo,” in European
Conference on Computer Vision (ECCV), 2016.

[29] P. Moulon, P. Monasse, R. Perrot, and R. Marlet, “Openmvg: Open
multiple view geometry,” in International Workshop on Reproducible
Research in Pattern Recognition. Springer, 2016, pp. 60–74.

[30] B. Li, L. Heng, K. Koser, and M. Pollefeys, “A multiple-camera system
calibration toolbox using a feature descriptor-based calibration pattern,”
in 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2013, pp. 1301–1307.

[31] A. Zaharescu, R. Horaud, R. Ronfard, and L. Lefort, “Multiple camera
calibration using robust perspective factorization,” in Third International
Symposium on 3D Data Processing, Visualization, and Transmission
(3DPVT’06). IEEE, 2006, pp. 504–511.

[32] Z. Liu and F. Zhang, “Balm: Bundle adjustment for lidar mapping,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3184–3191,
2021.



20

[33] R. Bergevin, M. Soucy, H. Gagnon, and D. Laurendeau, “Towards a
general multi-view registration technique,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 18, no. 5, pp. 540–547, 1996.

[34] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Autonomous robots, vol. 4, no. 4, pp. 333–349,
1997.

[35] K. Pulli, “Multiview registration for large data sets,” in Second in-
ternational conference on 3-d digital imaging and modeling (cat. no.
pr00062). IEEE, 1999, pp. 160–168.

[36] D. F. Huber and M. Hebert, “Fully automatic registration of multiple 3d
data sets,” Image and Vision Computing, vol. 21, no. 7, pp. 637–650,
2003.

[37] D. Borrmann, J. Elseberg, K. Lingemann, A. Nüchter, and J. Hertzberg,
“Globally consistent 3d mapping with scan matching,” Robotics and
Autonomous Systems, vol. 56, no. 2, pp. 130–142, 2008.

[38] V. M. Govindu and A. Pooja, “On averaging multiview relations for
3d scan registration,” IEEE Transactions on Image Processing, vol. 23,
no. 3, pp. 1289–1302, 2013.

[39] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, “Lio-sam:
Tightly-coupled lidar inertial odometry via smoothing and mapping,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2020, pp. 5135–5142.

[40] K. Koide, M. Yokozuka, S. Oishi, and A. Banno, “Globally consistent 3d
lidar mapping with gpu-accelerated gicp matching cost factors,” IEEE
Robotics and Automation Letters, vol. 6, no. 4, pp. 8591–8598, 2021.

[41] G. Blais and M. D. Levine, “Registering multiview range data to
create 3d computer objects,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 17, no. 8, pp. 820–824, 1995.

[42] R. Benjemaa and F. Schmitt, “A solution for the registration of multiple
3d point sets using unit quaternions,” in European conference on
computer vision. Springer, 1998, pp. 34–50.

[43] P. J. Neugebauer, “Reconstruction of real-world objects via simultaneous
registration and robust combination of multiple range images,” Interna-
tional journal of shape modeling, vol. 3, no. 01n02, pp. 71–90, 1997.

[44] J. Zhu, Z. Jiang, G. D. Evangelidis, C. Zhang, S. Pang, and Z. Li,
“Efficient registration of multi-view point sets by k-means clustering,”
Information Sciences, vol. 488, pp. 205–218, 2019.

[45] M. Kaess, “Simultaneous localization and mapping with infinite planes,”
in 2015 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2015, pp. 4605–4611.

[46] M. Hsiao, E. Westman, G. Zhang, and M. Kaess, “Keyframe-based dense
planar slam,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). Ieee, 2017, pp. 5110–5117.

[47] L. Zhou, D. Koppel, H. Ju, F. Steinbruecker, and M. Kaess, “An effi-
cient planar bundle adjustment algorithm,” in 2020 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 2020,
pp. 136–145.

[48] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon,
“Bundle adjustment—a modern synthesis,” in International workshop
on vision algorithms. Springer, 1999, pp. 298–372.

[49] L. Zhou, S. Wang, and M. Kaess, “π-lsam: Lidar smoothing and map-
ping with planes,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2021, pp. 5751–5757.

[50] L. Zhou, D. Koppel, and M. Kaess, “Lidar slam with plane adjustment
for indoor environment,” IEEE Robotics and Automation Letters, vol. 6,
no. 4, pp. 7073–7080, 2021.

[51] P. Geneva, K. Eckenhoff, Y. Yang, and G. Huang, “Lips: Lidar-inertial 3d
plane slam,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 123–130.

[52] A. J. Trevor, J. G. Rogers, and H. I. Christensen, “Planar surface slam
with 3d and 2d sensors,” in 2012 IEEE International Conference on
Robotics and Automation. IEEE, 2012, pp. 3041–3048.

[53] G. Ferrer, “Eigen-factors: Plane estimation for multi-frame and time-
continuous point cloud alignment,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2019,
pp. 1278–1284.

[54] H. Huang, Y. Sun, J. Wu, J. Jiao, X. Hu, L. Zheng, L. Wang, and
M. Liu, “On bundle adjustment for multiview point cloud registration,”
IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 8269–8276,
2021.

[55] L. Zheng, L. Xiyuan, and Z. Fu, “Efficient and consistent bundle
adjustment on lidar point clouds supplementary,” https://github.com/hku-
mars/BALM/blob/master/Supplementary/supplementary.pdf, 2022.

[56] S. Agarwal, K. Mierle, and T. C. S. Team, “Ceres Solver,”
https://github.com/ceres-solver/ceres-solver, 3 2022.

[57] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with applica-
tions to tracking and navigation: theory algorithms and software. John
Wiley & Sons, 2004.

[58] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold
preintegration for real-time visual–inertial odometry,” IEEE Transactions
on Robotics, vol. 33, no. 1, pp. 1–21, 2016.

[59] C. Yuan, X. Liu, X. Hong, and F. Zhang, “Pixel-level extrinsic self cal-
ibration of high resolution lidar and camera in targetless environments,”
IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7517–7524,
2021.

[60] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[61] M. Helmberger, K. Morin, N. Kumar, D. Wang, Y. Yue, G. Cioffi,
and D. Scaramuzza, “The hilti slam challenge dataset,” arXiv preprint
arXiv:2109.11316, 2021.

[62] T.-M. Nguyen, S. Yuan, M. Cao, Y. Lyu, T. H. Nguyen, and L. Xie,
“Ntu viral: A visual-inertial-ranging-lidar dataset, from an aerial ve-
hicle viewpoint,” The International Journal of Robotics Research, p.
02783649211052312, 2021.

[63] W. Wen, Y. Zhou, G. Zhang, S. Fahandezh-Saadi, X. Bai, W. Zhan,
M. Tomizuka, and L.-T. Hsu, “Urbanloco: A full sensor suite dataset for
mapping and localization in urban scenes,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp.
2310–2316.

[64] M. Camurri, L. Zhang, D. Wisth, and M. Fallon, “Hilti slam challenge
submission: Vilens and slam,” hilti-challenge, 2021.

[65] A. Filatov, A. Filatov, K. Krinkin, B. Chen, and D. Molodan, “2d
slam quality evaluation methods,” in 2017 21st Conference of Open
Innovations Association (FRUCT). IEEE, 2017, pp. 120–126.

[66] A. I. Mourikis, S. I. Roumeliotis et al., “A multi-state constraint kalman
filter for vision-aided inertial navigation.” in ICRA, vol. 2, 2007, p. 6.

[67] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual–inertial odometry using nonlinear optimiza-
tion,” The International Journal of Robotics Research, vol. 34, no. 3,
pp. 314–334, 2015.

[68] W. Xu and F. Zhang, “Fast-lio: A fast, robust lidar-inertial odometry
package by tightly-coupled iterated kalman filter,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 3317–3324, 2021.

[69] X. Liu, C. Yuan, and F. Zhang, “Targetless extrinsic calibration of
multiple small fov lidars and cameras using adaptive voxelization,” IEEE
Transactions on Instrumentation and Measurement, vol. 71, pp. 1–12,
2022.

[70] Y. Pan, P. Xiao, Y. He, Z. Shao, and Z. Li, “Mulls: Versatile lidar
slam via multi-metric linear least square,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), 2021, pp. 11 633–
11 640.

[71] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[72] D. Droeschel and S. Behnke, “Efficient continuous-time slam for 3d
lidar-based online mapping,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 5000–5007.

[73] C. H. Tong, P. Furgale, and T. D. Barfoot, “Gaussian process gauss–
newton for non-parametric simultaneous localization and mapping,” The
International Journal of Robotics Research, vol. 32, no. 5, pp. 507–525,
2013.

[74] C. Le Gentil, T. Vidal-Calleja, and S. Huang, “In2laama: Inertial
lidar localization autocalibration and mapping,” IEEE Transactions on
Robotics, vol. 37, no. 1, pp. 275–290, 2020.



1

Efficient and Consistent Bundle Adjustment on
Lidar Point Clouds (Supplementary)

Zheng Liu, Xiyuan Liu and Fu Zhang

Please note that equation numbers and section numbers from
the main manuscript are labelled in this letter in red.

I. LEMMAS

Lemma 1. For a scalar x ∈ R and a matrix A ∈ S3×3 which
depends on x, we have the two following conclusions.

∂λl(x)

∂x
= ul(x)

T ∂A(x)

∂x
ul(x) (1)

∂ul(x)

∂x
=

3∑

k=1,k ̸=l

1

λl − λk
uk(x)uk(x)

T ∂A(x)

∂x
ul(x) (2)

where λl (l = 1, 2, 3) denotes the l-th largest eigenvalue and
ul is the corresponding eigenvector.

Proof. Since the matrix A(x) is symmetric, its singular value
decomposition is,

A(x) = U(x)Λ(x)U(x)T (3)

where Λ(x) = diag (λ1(x), λ2(x), λ3(x)) consists of all
the eigenvalues and U(x) =

[
u1(x) u2(x) u3(x)

]
is an

orthonormal matrix consisting of the eigenvectors. Therefore,

Λ(x) = U(x)TA(x)U(x) (4)

Both sides take the derivative of x,

∂Λ(x)

∂x
= U(x)T

∂A(x)

∂x
U(x) +U(x)TA(x)

∂U(x)

∂x

+

(
∂U(x)

∂x

)T

A(x)U(x) (5)

Since U(x)TA(x) = Λ(x)U(x)T and A(x)U(x) =
U(x)Λ(x), the equation is

∂Λ(x)

∂x
= U(x)T

∂A(x)

∂x
U(x) +Λ(x)U(x)T

∂U(x)

∂x︸ ︷︷ ︸
D(x)

+

(
∂U(x)

∂x

)T

U(x)

︸ ︷︷ ︸
DT (x)

Λ(x) (6)

Denote D(x) ≜ U(x)T ∂U(x)
∂x . Since U(x)U(x)T = I,

differentiating both sides with respect to x leads to,

U(x)T
∂U(x)

∂x
+

(
∂U(x)

∂x

)T

U(x) = 0

⇒ D(x) +DT (x) = 0

It is seen that D(x) is a skew symmetric matrix whose
diagonal elements are zeros. Moreover, since Λ(x) is diagonal,

the last two items of the right side of (6) sum to zero on
diagonal positions. Only considering the diagonal elements in
(6) leads to

∂λl(x)

∂x
= ul(x)

T ∂A(x)

∂x
ul(x), l ∈ {1, 2, 3} (7)

which yields the first conclusion. Now we aims to prove the
second one. In (6), ∂Λ(x)

∂x is diagonal matrix and thus for the
off-diagonal, k-th row, l-th column, element (k ̸= l),

0 = uk(x)
T ∂A(x)

∂x
ul(x) + λkD

k,l
x −Dk,l

x λl (8)

where Dk,l
x is the k-th row, l-th column element in the skew

symmetric D(x) and satisfy Dk,l
x = −Dl,k

x . From (8), we can
solve Dk,l

x

Dk,l
x =





1

λl − λk
uk(x)

T ∂A(x)

∂x
ul(x), k ̸= l

0 , k = l

(9)

Since D(x) ≜ U(x)T ∂U(x)
∂x , we have ∂U(x)

∂x = U(x)D(x).
Taking the l-th column on both sides leads to

∂ul(x)

∂x
= U(x)D:,l

x , (10)

where D:,l
x ∈ R3 represents the l-th column of D(x). Finally,

substituting U(x) = [u1(x) u2(x) u3(x)] and (9) into
(10), we obtain

∂ul(x)

∂x
=

3∑

k=1,k ̸=l

1

λl − λk
uk(x)uk(x)

T ∂A(x)

∂x
ul(x), (11)

which yields the second conclusion.

Lemma 2. Given

(1) Matrices Cj =

[
Pj vj

vT
j Nj

]
∈ S4×4, j = 1, · · · ,Mp;

(2) Poses Tj ∈ SE(3), j = 1, · · · ,Mp;

(3) A matrix C =

[
P v
vT N

]
≜

∑Mp

j=1 TjCjT
T
j ∈ S4×4 and

a matrix function A(C) ≜ 1
NP− 1

N2vv
T ;

(4) Two constant eigenvectors uk,ul ∈ R3,

then the first and second order derivatives of uT
kA(T)ul w.r.t.

T are:



2

gkl ≜
∂uT

kA(δT)ul

∂δT
=

[
· · · gq

kl · · ·
]
∈ R1×6Mp , (12)

Hkl ≜
∂2uT

kA(δT)ul

∂(δT)2
=




...
· · · Hp,q

kl · · ·
...


 ∈ R6Mp×6Mp ,

(13)

where gq
kl ∈ R1×6, Hp,q

kl ∈ R6×6,∀p,q ∈ {1, · · · ,Mp}, are

gq
kl =

1

N
uT
l SP(Tq −

1

N
CF)CqT

T
q U

T
k

+
1

N
uT
k SP(Tq −

1

N
CF)CqT

T
q U

T
l (14)

Hp,q
kl = − 2

N2
UkTpDp,qT

T
q U

T
l +1p=q

( 2

N
UkTqCqT

T
q U

T
l

+

[
Kq

kl 03×3

03×3 03×3

])
(15)

Kq
kl =

1

N
⌊SPTqCq(Tq −

1

N
CF)TST

P uk⌋⌊ul⌋

+
1

N
⌊uk⌋⌊SPTqCq(Tq −

1

N
CF)TST

P ul⌋ (16)

where

Ul =

[
−⌊ul⌋ 03×1

03×3 ul

]
F =

[
03×3 03×1

01×3 1

]
(17)

SP =
[
I3×3 03×1

]
Dp,q = CpFCq, (18)

and

gq
kl = 01×6, Hp,q

kl = 06×6,∀k, l,
if p or q ∈ I ≜ {j|1 ≤ j ≤ Mp,Cj = 0}. (19)

Proof. Partition the matrix C as

C =

[
P v
vT N

]
=

Mp∑

j=1

TjCjT
T
j , (20)

then

P=SPCST
P =

Mp∑

j=1

(
RjPjR

T
j +Rjvjt

T
j

+tjv
T
j R

T
j +Njtjt

T
j

)
, (21)

v = SPCST
v =

Mp∑

j=1

(Rjvj +Njtj), N =

Mp∑

j=1

Nj , (22)

SP =
[
I3×3 03×1

]
∈ R3×4, (23)

Sv =
[
01×3 1

]
∈ R1×4. (24)

Therefore,

A




Mp∑

j=1

TjCjT
T
j


 =

1

N
P− 1

N2
vvT (25)

=
1

N
SP

(
C− 1

N
CST

v SvC
T

)
ST

P (26)

=
1

N
SP




Mp∑

q=1

TqCqT
T
q

− 1

N

Mp∑

p=1

Mp∑

q=1

TpCpT
T
p S

T
v SvTqCqT

T
q


ST

P . (27)

Since TT
p S

T
v SvTq =

[
03×3 03×1

01×3 1

]
, we obtain

A=
1

N
SP




Mp∑

q=1

TqCqT
T
q − 1

N

Mp∑

p=1

Mp∑

q=1

TpDp,qT
T
q


ST

P , (28)

Dp,q = CpFCq, F =

[
03×3 03×1

01×3 1

]
(29)

where we omitted the input argument of A for the sake of
notation simplicity. Since N =

∑Mp

j=1 Nj is a constant number
that is irrelevant to the pose T, perturbing the input of A,
which is the pose vector T, by δT yields

uT
kA(δT)ul=

1

N
uT
k SP




Mp∑

q=1

(Tq ⊞ δTq)Cq (Tq ⊞ δTq)
T

− 1

N

Mp∑

p=1

Mp∑

q=1

(Tp ⊞ δTp)Dp,q (Tq ⊞ δTq)
T


ST

P ul. (30)

Based on the definition of ⊞ on SE(3) in (27), we define,

wql(δTq) ≜ (Tq ⊞ δTq)
TST

P ul

=

[
RT

q expT (⌊δϕq⌋)ul

tTq expT (⌊δϕq⌋)ul + uT
l δtq.

]
(31)

When δϕq is small, which is indeed the case for the purpose
of derivative computation, we have

exp(⌊δϕq⌋) ≈ I+ ⌊δϕq⌋+
1

2
⌊δϕq⌋2 (32)

Substituting (32) into wql(δTq), we obtain

wql(δTq) ≈
[

RT
q (I− ⌊δϕq⌋+ 1

2⌊δϕq⌋2)ul

tTq (I− ⌊δϕq⌋+ 1
2⌊δϕq⌋2)ul + uT

l δtq

]

≈
[
RT

q ul

tTq ul

]

︸ ︷︷ ︸
w̄ql

+

[
RT

q ⌊ul⌋ 03×3

tTq ⌊ul⌋ uT
l

]

︸ ︷︷ ︸
Jwql∈R4×6

[
δϕq
δtq

]

︸ ︷︷ ︸
δTq

+

[
1
2R

T
q ⌊δϕq⌋2ul

1
2t

T
q ⌊δϕq⌋2ul

]

︸ ︷︷ ︸
δΦql

(33)

where w̄ql, δΦql and Jwql can be simplified

w̄ql = (SPTq)
Tul δΦql =

1

2
(SPTq)

T ⌊δϕq⌋2ul

Jwql = TT
q U

T
l Ul =

[
−⌊ul⌋ 03×1

03×3 ul

]
(34)



3

Substituting (33) into (30) and keeping terms up to the
second order lead to

uT
kA(δT)ul =

1

N

Mp∑

q=1

wT
qk(δTq)Cqwql(δTq)

− 1

N2

Mp∑

p=1

Mp∑

q=1

wT
pk(δTp)Dp,qwql(δTq) (35)

=
1

N

Mp∑

q=1

(
(w̄T

qkCqJwql + w̄T
qlCqJwqk)δTq + w̄T

qkCqw̄ql

+ δTT
q J

T
wqk

CqJwqlδTq + w̄T
qkCqδΦql + δΦT

qkCqw̄ql︸ ︷︷ ︸
1
2 δT

T
q Qq

klδTq

)

− 1

N2

Mp∑

p=1

Mp∑

q=1

(
δTT

p J
T
wpk

Dp,qJwqlδTq + w̄T
pkDp,qJwqlδTq

+ δTT
p J

T
wpk

Dp,qw̄ql + w̄T
pkDp,qw̄ql

+ w̄T
pkDp,qδΦql︸ ︷︷ ︸

1
2 δT

T
q Np,q

klδTq

+ δΦT
pkDp,qw̄ql︸ ︷︷ ︸

1
2 δT

T
p Mp,q

klδTp

)
. (36)

To compute Qq
kl in 1

2δT
T
q Q

q
klδTq, note that aT ⌊δϕ⌋2b =

δϕT ⌊a⌋⌊b⌋δϕ,∀a,b, δϕ ∈ R3, we have

w̄T
qkCqδΦql =

1

2
uT
k SPTqCqT

T
q S

T
P ⌊δϕq⌋2ul

=
1

2
δϕT

q ⌊SPTqCqT
T
q S

T
P uk⌋⌊ul⌋δϕq. (37)

Similarly,

δΦT
qkCqw̄ql =

1

2
δϕT

q ⌊uk⌋⌊SPTqCqT
T
q S

T
P ul⌋δϕq. (38)

Summing (37) and (38) and extending the δϕ into δT:

Qq
kl =[
⌊SPTqCqT

T
q S

T
P uk⌋⌊ul⌋+⌊uk⌋⌊SPTqCqT

T
q S

T
P ul⌋ 0

0 0

]
(39)

For 1
2δT

T
q N

p,q
kl δTq and 1

2δT
T
p M

p,q
kl δTp,

w̄T
pkDp,qδΦql =

1

2
uT
k SPTpDp,qT

T
q S

T
P ⌊δϕq⌋2ul

=
1

2
δϕT

q ⌊SPTqDq,pT
T
p S

T
P uk⌋⌊ul⌋δϕq (40)

δΦT
pkDp,qw̄ql =

1

2
uT
k ⌊δϕp⌋2SPTpDp,qT

T
q S

T
P ul

=
1

2
δϕT

p ⌊uk⌋⌊SPTpDp,qT
T
q S

T
P ul⌋δϕp (41)

where Dq,p = DT
p,q. Thus, extending the δϕ into δT, we obtain

Np,q
kl =

[
⌊SPTqDq,pT

T
p S

T
P uk⌋⌊ul⌋ 03×3

03×3 03×3

]
(42)

Mp,q
kl =

[
⌊uk⌋⌊SPTpDp,qT

T
q S

T
P ul⌋ 03×3

03×3 03×3

]
(43)

It can be seen that (36) is quadratic w.r.t. δT, so we cast it
into the following standard form

uT
kA(δT)ul =

1

2
δTT ·Hkl · δT+ gkl · δT+ rkl, (44)

where gkl is

gkl =
[
· · · gq

kl · · ·
]
∈ R1×6Mp (45)

gq
kl =

1

N
(w̄T

qkCqJwql + w̄T
qlCqJwqk)

− 1

N2

Mp∑

p=1

(w̄T
pkDp,qJwql + w̄T

plDp,qJwqk) (46)

=
1

N
(uT

k SPTqCqT
T
q U

T
l + uT

l SPTqCqT
T
q U

T
k )

− 1

N2

Mp∑

p=1

(uT
k SPTpCp,qT

T
q U

T
l +uT

l SPTpDp,qT
T
q U

T
k )

=
1

N
uT
l SP(TqCq −

1

N

Mp∑

p=1

TpDp,q)T
T
q U

T
k

+
1

N
uT
k SP(TqCq −

1

N

Mp∑

p=1

TpDp,q)T
T
q U

T
l (47)

where Dp,q = CpFCq and F =

[
03×1 03×1

01×3 1

]
.

Since v =
∑Mp

j=1(Rjvj +Njtj),

Mp∑

p=1

TpCpF =

Mp∑

p=1

[
Rp tp
0 1

] [
Pp vp
vT

p Np

] [
03×1 03×1

01×3 1

]

=

Mp∑

p=1

[
03×1 Rpvp +Nptp
01×3 Np

]
=

[
0 v
0 Np

]
= CF. (48)

The common part in (47) is

TqCq −
1

N

Mp∑

p=1

TpDp,q = TqCq −
1

N

Mp∑

p=1

TpCpF

︸ ︷︷ ︸
CF

Cq

= (Tq −
1

N
CF)Cq. (49)

Therefore,

gq
kl =

1

N
uT
l SP(Tq −

1

N
CF)CqT

T
q U

T
k

+
1

N
uT
k SP(Tq −

1

N
CF)CqT

T
q U

T
l . (50)

Additionally, it is seen that if Cq = 04×4, gq
kl = 01×6,∀k, l.

For Hkl in (44), partition it as

Hkl =




...
· · · Hp,q

kl · · ·
...


 ∈ R6Mp×6Mp (51)

Hp,q
kl = − 2

N2
JT
wpk

Dp,qJwql + 1p=q

( 2

N
JT
wqk

CqJwql

+
1

N
Qq

kl −
1

N2

Mp∑

ν=1

(Nν,q
kl +Mq,ν

kl )
)

(52)



4

where

JT
wpk

Dp,qJwql = UkTpDp,qT
T
q U

T
l (53)

JT
wqk

CqJwql = UkTqCqT
T
q U

T
l (54)

Mp∑

ν=1

(Nν,q
kl +Mq,ν

kl ) =

Mp∑

ν=1[
⌊SPTqDq,νT

T
ν S

T
P uk⌋⌊ul⌋+⌊uk⌋⌊SPTqDq,νT

T
ν S

T
P ul⌋ 0

0 0

]

(55)

By using similar method in (48), we have
Mp∑

ν=1

Dq,νT
T
ν =

Mp∑

ν=1

CqFCνT
T
ν = CqFC (56)

The value of Qq
kl is in (39). Thus, the matrix Hp,q

kl is

Hp,q
kl = − 2

N2
UkTpDp,qT

T
q U

T
l +1p=q

( 2

N
UkTqCqT

T
q U

T
l

+

[
Kq

kl 03×3

03×3 03×3

])
(57)

Kq
kl =

1

N
Qq

kl −
1

N2

Mp∑

ν=1

(Nν,q
kl +Mq,ν

kl )

=
1

N
⌊SPTqCq(Tq −

1

N
CF)TST

P uk⌋⌊ul⌋

+
1

N
⌊uk⌋⌊SPTqCq(Tq −

1

N
CF)TST

P ul⌋, (58)

which yields the solution. Additionally, it can be seen that if
Cq = 04×4 or Cp = 04×4, we have Dp,q = CpFCq = 04×4,
Kq

kl = 03×3 and then Hp,q
kl = 06×6,∀k, l.

II. PROOF OF THEOREMS

A. Proof of formula (6) and (8)
Proof. The variable to be optimized is πi = (ni,qi) and the
cost function is

ci = min
πi=(ni,qi)

( 1

Ni

Mp∑

j=1

Nij∑

k=1

∥∥hT
i (pijk − qi)

∥∥2
2

)
(59)

where hi = ni for plane feature and hi = (I − nin
T
i ) for

edge feature. The dimensions of hi may be different for these
two features but it has no influence on following derivation.

ci =min
ni

min
qi

( 1

Ni

Mp∑

j=1

Nij∑

k=1

∥∥hT
i (pijk − qi)

∥∥2
2

)
(60)

=min
ni


min

qi

( 1

Ni

Mp∑

j=1

Nij∑

k=1

(pijk − qi)
Thih

T
i (pijk − qi)

)

 .

As can be seen, the inner optimization on qi is a standard
quadratic optimization problem. So, the optimum q⋆

i can be
solved by setting the derivative to zero:

2

Mp∑

j=1

Nij∑

k=1

hih
T
i (pijk − qi) = 0 =⇒

2hih
T
i




Mp∑

j=1

Nij∑

k=1

pijk −Niqi


 = 0 (61)

where Ni =
∑Mp

j=1

∑Nij

k=1 1 =
∑Mp

j=1 Nij . This equation does
not lead to a unique solution of qi, one particular optimum
solution is q⋆

i = 1
Ni

∑Mp

j=1

∑Nij

k=1 pijk = p̄i as is defined in
(7).

Now, substituting the optimum solution q⋆
i = p̄i into (60)

leads to:

ci =min
ni

( 1

Ni

Mp∑

j=1

Nij∑

k=1

∥∥hT
i (pijk − p̄i)

∥∥2
2

)
(62)

To solve for the optimal parameter ni in the above optimiza-
tion problem, we discuss the case of plane and edge features
separately, as follows.

1) Plane feature: hi = ni.

ci = min
∥ni∥2=1

( 1

Ni

Mp∑

j=1

Nij∑

k=1

∥∥nT
i (pijk − p̄i)

∥∥2
2

)

= min
∥ni∥2=1

( 1

Ni

Mp∑

j=1

Nij∑

k=1

(
nT
i (pijk − p̄i)(pijk − p̄i)

Tni

))

=min
ni

nT
i Aini, (63)

where Ai is defined in (7) and is a symmetric matrix.
Performing Singular Value Decomposition (SVD) of Ai

Ai = UiΛiU
T
i (64)

where

Ui = [u1 u2 u3] Λi = diag(λ1 λ2 λ3) (65)

with λ1 ≥ λ2 ≥ λ3 and UT
i Ui = I.

Denote m = Uini =
[
m1 m2 m3

]T
, ∥m∥2 =√

nT
i U

T
i Uini = 1, then (63) reduces to

ci = min
∥ni∥2=1

(nT
i UiΛiU

T
i ni) = min

∥m∥2=1
(mTΛim)

= min
∥m∥2=1

(λ1m
2
1 + λ2m

2
2 + λ3m

2
3)

≥ min
∥m∥2=1

(λ3m
2
1 + λ3m

2
2 + λ3m

2
3) = λ3, (66)

where the minimum value λ3 is reached when m3 = 1, i.e.,
m⋆ =

[
0 0 1

]T
and n⋆

i = Uim
⋆ = u3.

Therefore, the optimal cost is λ3(Ai) and the optimum
solution is n⋆ = u3(Ai) and q⋆ = p̄i.



5

2) Edge feature: hi = I− nin
T
i , then hih

T
i = hi and

ci =min
ni

( 1

Ni

Mp∑

j=1

Nij∑

k=1

∥∥(I− nin
T
i )(pijk − p̄i)

∥∥2
2

)

=min
ni

( 1

Ni

Mp∑

j=1

Nij∑

k=1

(pijk − p̄i)
T (I− nin

T
i )(pijk − p̄i)

)

=min
ni


 1

Ni

Mp∑

j=1

Nij∑

k=1

(pijk − p̄i)
T (pijk − p̄i)

−nT
i


 1

Ni

Mp∑

j=1

Nij∑

k=1

(pijk − p̄i)
T (pijk − p̄i)


ni




=min
ni

(trace(Ai)− nT
i Aini)

=λ1 + λ2 + λ3 − max
ni

nT
i Aini

︸ ︷︷ ︸
=λ1, when ,n⋆

i =u1

=λ2 + λ3. (67)

Therefore, the optimal cost is λ2(Ai) + λ3(Ai) and the
optimum solution is n⋆ = u1(Ai) and q⋆ = p̄i.

B. Proof of Theorem 1
For the point collections C = {pk ∈ R3|k = 1, · · · , n}, its

point cluster is

ℜ(C) =
n∑

k=1

[
pk

1

] [
pT
k 1

]
(68)

The rigid transformation of C by pose T =

[
R t

03×1 1

]
is

T ◦ C = {Rpk + t ∈ R3|k = 1, · · · , n} (69)

whose point cluster is

ℜ(T ◦ C) =
n∑

k=1

[
Rpk + t

1

] [
(Rpk + t)T 1

]

=

n∑

k=1

T

[
pk

1

] [
pT
k 1

]
TT = Tℜ(C)TT (70)

which yields the solution. □

C. Proof of Theorem 2
For two point collections C1 = {p1

k ∈ R3|k = 1, · · · , n1}
and C2 = {p2

k ∈ R3|k = 1, · · · , n2}, their point clusters are

ℜ(Ci) =

nl∑

k=1

[
pl
k

1

] [
(pl

k)
T 1

]
l = 1, 2 (71)

The merge of C1 and C2 is

C1 ⊕ C2 = {pl
k ∈ R3|l = 1, 2; k = 1, · · · , nl} (72)

whose point cluster is

ℜ(C1 ⊕ C2) =

n1∑

k=1

[
p1
k

1

] [
(p1

k)
T 1

]
+

n2∑

k=1

[
p2
k

1

] [
(p2

k)
T 1

]

= ℜ(C1) +ℜ(C2) (73)

which yields the solution. □

D. Proof of Theorem 3

Let T0 =

[
R0 t0
0 1

]
and C̄ = T0CTT

0 =

[
P̄ v̄
v̄T N

]
, then

P̄ = R0P0R
T
0 +R0v0t

T
0 +t0v

T
0 R

T
0 +Nt0t

T
0 , (74)

v̄ = R0v0 +Nt0, (75)

A
(
T0CTT

0

)
=

1

N
P̄− 1

N2
v̄v̄T = R0A(C)RT

0 . (76)

Since A
(
T0CTT

0

)
and A(C) are similar by transformation

R0, they have the same eigenvalue. □

E. Proof of Theorem 4

Denote λl the l-th largest eigenvalue of A and ul the corre-
sponding vector, i.e., λlul = Aul. Since A is symmetric, ul is
an orthonormal vector. Multiplying both sides of λlul = Aul

by uT
l leads to

λl = uT
l Aul. (77)

Note that in the above equation, λl,ul and Al all depend on
the pose T. To avoid any confusion, we write them as explicit
functions of T:

λl(T) = uT
l (T)A(T)ul(T). (78)

Parameterizing the pose T by δT leads to

λl(δT) = uT
l (δT)A(δT)ul(δT). (79)

From the first conclusion in Lemma 1, we know that for a
vector x =

[
x1 · · · xm

]
∈ Rm that the matrix A depends

on, we have

∂λl(x)

∂xi
=

∂
(
uT
l (x)A(x)ul(x)

)

∂xi
= uT

l (x)
∂A(x)

∂xi
ul(x),

∀i = 1, · · · ,m, xi ∈ R (80)

To avoid the use of a tensor when applying this derivative
to the complete parameter vector x, we fix the vector ul(x)
at its current value and lump it with the matrix A(x) within
the derivative, i.e.,

uT
l (x)

∂A(x)

∂xi
ul(x) =

∂uT
l A(x)ul

∂xi
(81)

where on the right hand side, ul is fixed (so we remove
its argument x) and the derivative is only applied on the
component A(x) (so we keep its argument x).

Now, the input parameter is the poses parameterized by δT,
setting x to δT) in (81) leads to

∂λl(δT)

∂δT
=

∂uT
l A(δT)ul

∂δT
. (82)

Recalling the results from Lemma 2 with k = l, we obtain:

uT
l A(δT)ul =

1

2
δTT ·Hll · δT+ gll · δT+ rll. (83)

Therefore, the first order derivative of λl(T) w.r.t. T is

J ≜ ∂λl(δT)

∂δT
=

∂uT
l A(δT)ul

∂δT
= gll. (84)



6

Now, we derive the second order derivative. From (80), we
have,

∂λl(x)

∂xi
= uT

l (x)
∂A(x)

∂xi
ul(x),∀xi ∈ R, (85)

Differentiating it w.r.t. the second parameter xj ∈ R leads to

∂2λl(x)

∂xj∂xi
=

∂

∂xj

(
uT
l (x)

∂A(x)

∂xi
ul(x)

)

=

(
∂ul(x)

∂xj

)T (
∂A(x)ul

∂xi

)
+

∂

∂xj

(
∂uT

l A(x)ul

∂xi

)

+

(
∂A(x)ul

∂xi

)T (
∂ul(x)

∂xj

)
(86)

Applying the above results to each elements xi, xj leads to

∂2λl(x)

∂x2
=

(
∂ul(x)

∂x

)T (
∂A(x)ul

∂x

)
(87)

+
∂

∂x

(
∂uT

l A(x)ul

∂x

)
+

(
∂A(x)ul

∂x

)T (
∂ul(x)

∂x

)
.

To compute ∂ul(x)
∂x , we apply the second conclusion in

Lemma 1 to all components of x and use the notation trick
similar to (81):

∂ul(x)

∂x
=

3∑

k=1,k ̸=l

1

λl − λk
uku

T
k

∂A(x)ul

∂x
(88)

Now, the input parameter is the pose vector parameterized
by δT, substituting x = δT into (87) leads to

∂2λl(δT)

∂δT2
=

(
∂ul(δT)

∂δT

)T (
∂A(δT)ul

∂δT

)

︸ ︷︷ ︸
Hl

+
∂2uT

l A(δT)ul

∂δT2︸ ︷︷ ︸
Hll

+

(
∂A(δT)ul

∂δT

)T (
∂ul(δT)

∂δT

)

︸ ︷︷ ︸
HT

l

, (89)

where term Hll is from (83). To obtain the term Hl, we
substitute x = δT into (88):

∂ul(δT)

∂δT
=

3∑

k=1,k ̸=l

1

λl − λk
uku

T
k

∂A(δT)ul

∂δT
(90)

=
3∑

k=1,k ̸=l

1

λl − λk
uk

∂uT
kA(δT)ul

∂δT
, (91)

=

3∑

k=1,k ̸=l

1

λl − λk
ukgkl. (92)

Then,

Hl =

(
∂A(δT)ul

∂δT

)T (
∂ul(δT)

∂δT

)
(93)

=

(
∂A(δT)ul

∂δT

)T 3∑

k=1,k ̸=l

1

λl − λk
ukgkl (94)

=
3∑

k=1,k ̸=l

(
∂uT

kA(δT)ul

∂δT

)T
1

λl − λk
gkl (95)

=
3∑

k=1,k ̸=l

1

λl − λk
gT
klgkl. (96)

Therefore, the second order derivative of λl(T) w.r.t. T is

H ≜ ∂2λl(δT)

∂δT2
= Hl +Hll +HT

l

= Hll +

3∑

k=1,k ̸=l

2

λl − λk
gT
klgkl. (97)

Next, we show that

JδT = 0, δTTHδT = 0, δT=



w
...
w


 ,∀w ∈ R6 (98)

From (84), we can obtain

JδT = gllδT =

Mp∑

q=1

gq
llw (99)

where, from (14), we know

gq
ll =

2

N
uT
l SP(Tq −

1

N
CF)CqT

T
q U

T
l (100)

Ul =

[
−⌊ul⌋ 03×1

03×3 ul

]
F =

[
03×3 03×1

01×3 1

]
(101)

SP =
[
I3×3 03×1

]
C =

Mp∑

j=1

TjCjT
T
j (102)

Thus,
Mp∑

q=1

gq
llw =

2

N

Mp∑

q=1

uT
l SP(Tq −

1

N
CF)CqT

T
q U

T
l w

=
2

N
uT
l SP




Mp∑

q=1

(TqCqT
T
q − 1

N
CFCqT

T
q )


UT

l w.

Since
∑Mp

q=1 TqCqT
T
q = C and

∑Mp

q=1 FCqT
T
q = FC from

equation (48), we have
Mp∑

q=1

gq
llw =

2

N
uT
l SP(C− 1

N
CFC)UT

l w.

Recalling A = 1
NP− 1

N2vv
T ,

C− 1

N
CFC

=

[
P v
vT N

]
− 1

N

[
P v
vT N

] [
03×3 03×1

01×3 1

] [
P v
vT N

]

=

[
P v
vT N

]
−
[

1
N vvT v
vT N

]
=

[
NA 03×1

01×3 0

]
(103)



7

Thus,
Mp∑

q=1

gq
llw =

2

N
uT
l SP

[
NA 03×1

01×3 0

]
UT

l w (104)

= 2
[
uT
l A 03×1

] [−⌊ul⌋ 03×1

03×3 ul

]T
w (105)

= 2
[
uT
l A⌊ul⌋ 03×1

]
w (106)

Since Aul = λlul,

uT
l A⌊ul⌋ = λlu

T
l ⌊ul⌋ = 01×3. (107)

Therefore,

JδT =

Mp∑

q=1

gq
llw = 0 (108)

For the proof of δTTHδT = 0, from (97)

δTTHδT = δTT (Hll +

3∑

k=1,k ̸=l

2

λl − λk
gT
klgkl)δT

= wT

Mp∑

p=1

Mp∑

q=1


Hp,q

ll +
3∑

k=1,k ̸=l

2

λl − λk
(gp

kl)
Tgq

kl


w

(109)

where

Hp,q
ll = − 2

N2
UlTpDp,qT

T
q U

T
l +1p=q

( 2

N
UlTqCqT

T
q U

T
l

+

[
Kq

ll 03×3

03×3 03×3

])
(110)

Kq
ll =

1

N
⌊SPTqCq(Tq −

1

N
CF)TST

P ul⌋⌊ul⌋

+
1

N
⌊ul⌋⌊SPTqCq(Tq −

1

N
CF)TST

P ul⌋, (111)

gq
kl =

1

N
uT
l SP(Tq −

1

N
CF)CqT

T
q U

T
k

+
1

N
uT
k SP(Tq −

1

N
CF)CqT

T
q U

T
l (112)

We will divide (109) into two parts to discuss. For the first
part,

Mp∑

p=1

Mp∑

q=1

Hp,q
ll = − 2

N2

Mp∑

p=1

Mp∑

q=1

UlTpDp,qT
T
q U

T
l

+
2

N

Mp∑

q=1

UlTqCqT
T
q U

T
l +

[∑Mp

q=1 K
q
ll 03×3

03×3 03×3

]
(113)

Since
∑Mp

q=1 TqCqT
T
q = C,

∑Mp

q=1 FCqT
T
q = FC and∑Mp

q=1 TqCqF = CF from (48), we have

Mp∑

p=1

Mp∑

q=1

TpDp,qT
T
q =

Mp∑

p=1

Mp∑

q=1

TpCpFCqT
T
q

=

Mp∑

p=1

TpCp

Mp∑

q=1

FCqT
T
q =

Mp∑

p=1

TpCpFC = CFC, (114)

and

Mp∑

q=1

Kq
ll =

1

N

Mp∑

q=1

⌊SPTqCq(Tq −
1

N
CF)TST

P ul⌋⌊ul⌋

+
1

N

Mp∑

q=1

⌊ul⌋⌊SPTqCq(Tq −
1

N
CF)TST

P ul⌋

=
1

N
⌊SP(C− 1

N
CFC)ST

P ul⌋⌊ul⌋

+
1

N
⌊ul⌋⌊SP(C− 1

N
CFC)ST

P ul⌋. (115)

Then, from (103) and Aul = λlul,

Mp∑

q=1

Kq
ll = ⌊Aul⌋⌊ul⌋+ ⌊ul⌋⌊Aul⌋ = 2λl⌊ul⌋2. (116)

Now, substituting the results in (114) and (116) into (113):

Mp∑

p=1

Mp∑

q=1

Hp,q
ll =− 2

N2
UlCFCUT

l +
2

N
UlCUT

l

+

[
2λl⌊ul⌋2 0

0 0

]
=2Ul

[
A 0
0 0

]
UT

l +

[
2λl⌊ul⌋2 0

0 0

]

= 2

[
λl⌊ul⌋2 − ⌊ul⌋A⌊ul⌋ 0

0 0

]
. (117)

For the second part in (109),

Mp∑

p=1

Mp∑

q=1




3∑

k=1,k ̸=l

2

λl − λk
(gp

kl)
Tgq

kl




=
3∑

k=1,k ̸=l

2

λl − λk




Mp∑

p=1

gp
kl




T 


Mp∑

q=1

gq
kl


 (118)

where
Mp∑

q=1

gq
kl =

1

N
uT
l SP

Mp∑

q=1

(TqCqT
T
q − 1

N
CFCqT

T
q )U

T
k

+
1

N
uT
k SP

Mp∑

q=1

(TqCqT
T
q − 1

N
CFCqT

T
q )U

T
l

=
1

N
uT
l SP(C− 1

N
CFC)UT

k

+
1

N
uT
k SP(C− 1

N
CFC)UT

l

= uT
l

[
A 03×1

]
UT

k + uT
k

[
A 03×1

]
UT

l

=
[
uT
l A⌊uk⌋ 03×1

]
+

[
uT
kA⌊ul⌋ 03×1

]

=
[
λlu

T
l ⌊uk⌋+ λku

T
k ⌊ul⌋ 03×1

]
(119)

Therefore,

3∑

k=1,k ̸=l

2

λl − λk




Mp∑

p=1

gp
kl




T 


Mp∑

q=1

gq
kl




=

3∑

k=1,k ̸=l

2

λl − λk

[
rkl 03×1

01×3 0

]
(120)



8

where due to ⌊uk⌋ul = −⌊ul⌋uk and uT
k ⌊ul⌋ = −uT

l ⌊uk⌋

rkl =
(
λlu

T
l ⌊uk⌋+ λku

T
k ⌊ul⌋)

)T (
λlu

T
l ⌊uk⌋+ λku

T
k ⌊ul⌋)

)

=− λ2
l ⌊uk⌋ulu

T
l ⌊uk⌋ − λlλk⌊uk⌋ulu

T
k ⌊ul⌋

− λ2
k⌊ul⌋uku

T
k ⌊ul⌋ − λlλk⌊ul⌋uku

T
l ⌊uk⌋

=− (λl − λk)
2⌊ul⌋uku

T
k ⌊ul⌋. (121)

Thus,

3∑

k=1,k ̸=l

2

λl − λk




Mp∑

p=1

gp
kl




T 


Mp∑

q=1

gq
kl




= 2

3∑

k=1,k ̸=l

[
(λk − λl)⌊ul⌋uku

T
k ⌊ul⌋ 0

0 0

]
(122)

Now from (117) and (122), the equation (109) is turned into

δTTHδT = wT

[
2Ll 03×1

01×3 0

]
w, (123)

where

Ll=λl⌊ul⌋2−⌊ul⌋A⌊ul⌋+
3∑

k=1,k ̸=l

(λk−λl)⌊ul⌋uku
T
k ⌊ul⌋

=λl⌊ul⌋2−⌊ul⌋A⌊ul⌋

+ ⌊ul⌋
3∑

k=1,k ̸=l

λkuku
T
k ⌊ul⌋−λl⌊ul⌋

3∑

k=1,k ̸=l

uku
T
k ⌊ul⌋. (124)

Since uk (k = 1, 2, 3) is the eigenvector (with eigenvalue
λk) of matrix A, which is symmetric, we have the following
two conditions from the singular value decomposition of A:

A =
3∑

k=1

λkuku
T
k , I =

3∑

k=1

uku
T
k , (125)

which imply

3∑

k=1,k ̸=l

λkuku
T
k = A− λlulu

T
l ,

3∑

k=1,k ̸=l

uku
T
k = I− ulu

T
l .

(126)

Substituting the above results into Ll in (124):

Ll = λl⌊ul⌋2 − ⌊ul⌋A⌊ul⌋
+ ⌊ul⌋(A− λlulu

T
l )⌊ul⌋ − λl⌊ul⌋(I− ulu

T
l )⌊ul⌋

= λl⌊ul⌋2−⌊ul⌋A⌊ul⌋+⌊ul⌋A⌊ul⌋−λl⌊ul⌋2 = 0. (127)

As a result,

δTTHδT = wT

[
2Ll 03×1

01×3 0

]
w = 0. (128)

Finally, for the results in (40), if p or q ∈ I ≜ {j|1 ≤
j ≤ Mp,Cj = 0}, we have gp

kl = 01×6 (or gq
kl = 01×6) and

Hp,q
kl = 06×6,∀k, l, from (19). As a result, Jp = gp

kl = 0 and
Hp,q = Hp,q

ll +
∑3

k=1,k ̸=l
2

λl−λk
(gp

kl)
Tgq

kl = 0. □

F. Derivation of pose covariance

The quantity δCfij can be obtained by substituting (43) into
the definition of Cgt

fij
in (44) and retaining only the first order

items:

δCfij =

[
δPfij δvfij

δvT
fij

0

]
, where (129)

δPfij =

Nij∑

k=1

(pfijkδp
T
fijk

+ δpfijkp
T
fijk

), (130)

δvfij =

Nij∑

k=1

δpfijk . (131)

To derive ∂JT (T⋆,Cf )
∂Cf

δCf with involving any tensor, we
parameterize the matrix Cfij by a column vector cfij , which
consists of the independent elements in Cfij :

cfij =vec(Cfij ) ≜
[
eT1 Cfije1 eT1 Cfije2 eT1 Cfije3

eT2 Cfije2 eT2 Cfije3 eT3 Cfije3

eT1 Cfije4 eT2 Cfije4 eT3 Cfije4
]T ∈ R9 (132)

where vec(·) : S4×4 7→ R9 maps a symmetric matrix to its
column vector representation, el ∈ R4 (l ∈ {1, 2, 3, 4}) is
a vector with all zero elements except for the l-th element
being one. Note that the constant N in the 4-th row, 4-th
column of Cfij is not contained in cfij since it is a constant
number independent of the noise. Correspondingly, noises in
Cfij becomes the noise of cfij as below:

δcfij =
[
eT1 δCfije1 eT1 δCfije2 eT1 δCfije3

eT2 δCfije2 eT2 δCfije3 eT3 δCfije3

eT1 δCfije4 eT2 δCfije4 eT3 δCfije4
]T

(133)

=

Nij∑

k=1




2pT
fijk

SPE11S
T
P δpfijk

pT
fijk

SPE12S
T
P δpfijk

pT
fijk

SPE13S
T
P δpfijk

2pT
fijk

SPE22S
T
P δpfijk

pT
fijk

SPE23S
T
P δpfijk

2pT
fijk

SPE33S
T
P δpfijk

δpfijk




=

Nij∑

k=1

Bfijkδpfijk , (134)

where SP = [I3×3, 03×1], Ekl = eke
T
l + ele

T
k ∈ S4×4, k, l ∈

{1, 2, 3, 4}, and

Bfijk =




2pT
fijk

SPE11S
T
P

pT
fijk

SPE12S
T
P

pT
fijk

SPE13S
T
P

2pT
fijk

SPE22S
T
P

pT
fijk

SPE23S
T
P

2pT
fijk

SPE33S
T
P

I3×3




∈ R9×3. (135)

With the column representation of each Cfijk contained in

Cf , ∂JT (T⋆,Cf )
∂Cf

δCf can now be computed as

∂JT (T⋆,Cf )

∂Cf
δCf =

Mf∑

i=1

Mp∑

j=1

∂JT
(
T⋆,Cfij

)

∂cfij
δcfij . (136)



9

To derive the quantity
∂JT (T⋆,Cfij )

∂cfij
, we give two lemmas

which are useful for subsequent deduction.

Lemma 3. For w ∈ R4,C ∈ S4×4 and its vector form c =
vec(C), we have

∂Cw

∂c
= g1(w) ∈ R4×9,

where

g1(w) =
[
E11w E12w E13w E22w E23w

E33w E14w E24w E34w
]
,

where el ∈ R4 (l ∈ {1, 2, 3, 4}) is a vector with all
zero elements except for the l-th element being one, Ekl ∈
S4×4, k, l ∈ {1, 2, 3, 4}.

Ekl =

{
eke

T
l + ele

T
k (k ̸= l)

ele
T
l (k = l)

(137)

Proof. For the k-th row, l-th column element of C, denoted
by Ck,l, we have

∂Cw

∂Ck,l
= Eklw ∈ R4.

Hence,

∂Cw

∂c
=

[
∂Cw
∂C1,1

∂Cw
∂C1,2

∂Cw
∂C1,3

∂Cw
∂C2,2

∂Cw
∂C2,3

∂Cw
∂C3,3

∂Cw
∂C1,4

∂Cw
∂C2,4

∂Cw
∂C3,4

]

=
[
E11w E12w E13w E22w E23w

E33w E14w E24w E34w
]
.

Lemma 4. For ul ∈ R3 and

w =

[
w1:3

w4

]
∈ R4, Ul =

[
−⌊ul⌋ 03×1

03×3 ul

]
∈ R6×4

where w1:3 represents the first three elements in w, we have

∂Ulw

∂ul
= g2(w) =

[
⌊w1:3⌋
w4I3×3

]
∈ R6×3.

Proof.

Ulw =

[
−⌊ul⌋ 0

0 ul

] [
w1:3

w4

]
=

[
⌊w1:3⌋ul

w4ul

]
=

[
⌊w1:3⌋
w4I3×3

]
ul

Thus,

∂Ulw

∂ul
=

[
⌊w1:3⌋
w4I3×3

]
= g2(w)

With these two lemmas, next we will continue to derive
∂JT (T⋆,Cfij )

∂cfij
. Theorem 4 gives the Jacobian for one cost item,

to distinguish the different cost item, we add a subscript ν to
(30) to denotes the ν-th item and replace Cj with the actual

point cluster notation Cfνj
corresponding to the ν-th item,

leading to:

Jν =
[
· · · Jp

ν · · ·
]
∈ R1×6Mp (138)

Jp
ν =

2

N
uT
νlSP

(
Tp −

1

N
CνF

)
CfνpT

T
p U

T
νl ∈ R1×6.

The total Jacobian is hence

J =

Mf∑

ν=1

Jν =
[
· · · Jp · · ·

]
∈ R1×6Mp , (139)

Jp =

Mf∑

ν=1

Jp
ν ∈ R1×6,

=

Mf∑

ν=1

(
2

N
uT
νlSP

(
Tp −

1

N
CνF

)
CfνpT

T
p U

T
νl

)
. (140)

Next, we calculate the partial derivative ∂(Jp)T

∂cfij
. Note that

in the summation of (140), only the i-th summation term (i.e.,
ν = i) is related to cfij , hence,

∂ (Jp)
T

∂cfij
=

∂

∂cfij

(
2

Ni
UilTpCfip(T

T
p − 1

Ni
FCi)S

T
P uil

)
.

(141)

Since Ci =
∑Mp

ν=1 TνCfiνT
T
ν , uil is the eigenvector asso-

ciated to the l-th largest eigenvalue of matrix A(Ci), and

Uil =

[
−⌊uil⌋ 03×1

03×3 uil

]
, the derivative with respect to cfij on

the right hand side of (141) consists of four terms from Uil,
Cfip (only when p = j), Ci, and uil, respectively. Combining
with Lemma 3 and Lemma 4, we have

Lp
ij ≜

∂ (Jp)
T

∂cfij
∈ R6×9 (142)

=
2

Ni

(
g2(TpCfip(T

T
p − 1

Ni
FCi)S

T
P uil)

+UilTpCfip(T
T
p − 1

N
FCi)S

T
P

) ∂uil

∂cfij

− 2

N2
i

UilTpCfipFTjg1(T
T
j S

T
P uil)

+
2

Ni
1p=j

(
UilTpg1

(
(TT

p − 1

Ni
FCi)S

T
P uil

))
(143)

Only the term ∂uil

∂cfij
is unknown in this formula. To compute it,

we apply the second conclusion in Lemma 1 to all components
of cfij and use the notation trick similar to (81):

∂uil

∂cfij
=

3∑

k=1,k ̸=l

1

λil − λik
uiku

T
ik

∂A(Ci)uil

∂cfij
(144)

From Lemma 2,

uT
ikA(Ci)uil =

1

Ni
uT
ikSP




Mp∑

µ=1

TµCfiµT
T
µ − 1

Ni

Mp∑

µ=1

Mp∑

ν=1

TµCfiµFCfiνT
T
ν


ST

P uil



10

Denote

Gij
kl ≜

∂uT
ikA(Cfi)uil

∂cfij
=

1

Ni
uT
ikSPTjg1(T

T
j S

T
P uil)

− 1

N2
i

uT
ikSP

Mp∑

µ=1

TµCfiµFg1(T
T
j S

T
P uil)

− 1

N2
i

uT
ikSPTjg1

( Mp∑

ν=1

FCfiνT
T
ν S

T
P uil

)
∈ R1×9

=
1

Ni
uT
ikSP

(
Tjg1(T

T
j S

T
P uil)−

1

Ni
CiFg1(T

T
j S

T
P uil)

− 1

Ni
Tjg1(FCiS

T
P uil)

)
(145)

Substitute it into Lp
ij :

Lp
ij =

2

Ni

(
g2(TpCfip(T

T
p − 1

Ni
FCi)S

T
P uil)+

UilTpCfip(T
T
p − 1

N
FCi)S

T
P

)



3∑

k=1,k ̸=l

uikG
ij
kl

λil − λik




− 2

N2
i

UilTpCfipFTjg1(T
T
j S

T
P uil)

+
2

Ni
1p=j

(
UilTpg1

(
(TT

p − 1

Ni
FCi)S

T
P uil

))
, (146)

Lij =
∂JT

(
T⋆,Cfij

)

∂cfij
=




...
Lp
ij
...


 ∈ R6Mp×9, (147)

and

δT⋆ = −H−1




Mf∑

i=1

Mp∑

j=1

Lijδcfij


 ∈ R6Mp , (148)

ΣδT⋆ = H−1




Mf∑

i=1

Mp∑

j=1

LijΣcfij
LT
ij


H−1, (149)

where

Σcfij
=

Nij∑

k=1

BfijkΣpfijk
BT

fijk
, (150)

which can be computed beforehand without enumerating each
raw point in the run time.


	I Introduction
	II Related Works
	II-A Multi-view registration
	II-B Bundle or plane adjustment

	III Bundle Adjustment Formulation and Optimization
	III-A BA formulation
	III-B Elimination of feature parameters
	III-C Point cluster
	III-D First and Second Order Derivatives
	III-E Second Order Solver
	III-F Time Complexity Analysis
	III-G Covariance Estimation

	IV Implementations
	V Consistency Evaluation
	VI Benchmark Evaluation
	VI-A Virtual point cloud
	VI-A1 Convergence
	VI-A2 Accuracy
	VI-A3 Computation time

	VI-B Real-world datasets
	VI-B1 Accuracy
	VI-B2 Mapping quality
	VI-B3 Computation time


	VII Applications
	VII-A Lidar-inertial odometry with sliding window optimization
	VII-B Multiple-lidar Calibration
	VII-C Global BA on Large-Scale Dataset

	VIII Discussion
	VIII-A Efficiency
	VIII-B Accuracy
	VIII-C Extendability

	IX Conclusion
	References

