
1

Layered Control for Cooperative Locomotion of
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Abstract—This paper presents a layered control approach for
real-time trajectory planning and control of robust coopera-
tive locomotion by two holonomically constrained quadrupedal
robots. A novel interconnected network of reduced-order models,
based on the single rigid body (SRB) dynamics, is developed
for trajectory planning purposes. At the higher level of the
control architecture, two different model predictive control
(MPC) algorithms are proposed to address the optimal control
problem of the interconnected SRB dynamics: centralized and
distributed MPCs. The distributed MPC assumes two local
quadratic programs that share their optimal solutions according
to a one-step communication delay and an agreement protocol.
At the lower level of the control scheme, distributed nonlinear
controllers are developed to impose the full-order dynamics to
track the prescribed reduced-order trajectories generated by
MPCs. The effectiveness of the control approach is verified with
extensive numerical simulations and experiments for the robust
and cooperative locomotion of two holonomically constrained A1
robots with different payloads on variable terrains and in the
presence of disturbances. It is shown that the distributed MPC
has a performance similar to that of the centralized MPC, while
the computation time is reduced significantly.

Index Terms—Legged Robots, Motion Control, Optimization
and Optimal Control, Multi-Contact Whole-Body Motion Plan-
ning and Control

I. INTRODUCTION

A. Motivation and Goal

HUMAN-centered communities, including factories, of-
fices, and homes, are typically developed for humans

who are bipedal walkers capable of stepping over gaps and
walking up/down stairs. This motivates the development of
collaborative legged robots that can cooperatively work with
each other to assist humans in different aspects of their life,
such as labor-intensive tasks, construction, manufacturing, and
assembly. One of the most challenging and essential prob-
lems in deploying collaborative legged robots is cooperative
locomotion in complex environments, wherein the collabora-
tion between robots is described by holonomic constraints.
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Fig. 1. Snapshot illustrating holonomically constrained quadrupedal robots
locomoting on gravel while carrying a payload of 4.53 (kg).

Cooperative locomotion with holonomic constraints arises in
different applications of legged robots, such as cooperative
transportation of payloads like social insects [1] (see Fig. 1),
human-robot locomotion via prosthetic legs and exoskeletons
[2]–[5], and human-robot locomotion via guide dog robots [6].

In recent years, important theoretical and technological
advances have allowed for the successful control of multi-robot
systems (MRSs) [7]–[9], including collaborative robotic arms
with or without mobility [10]–[15], aerial vehicles [16]–[27],
and ground vehicles [28]–[32]. In addition, distributed con-
trol algorithms, including distributed receding horizon control
approaches, have been developed to address the motion plan-
ning of MRSs, see, e.g., [33]–[36]. Some recent works also
address the control and planning of heterogeneous robot teams,
including legged robots [37]–[39] but without holonomic
constraints amongst the agents. However, the capabilities of
cooperative legged locomotion have not been fully explored.
In particular, collaborating legged robots can be described by
high dimensional nonlinear dynamical systems with hybrid
nature, and subject to underactuation and unilateral constraints,
as opposed to most of the MRSs where the state-of-the-art
algorithms have been deployed [40]. This complicates the
design of trajectory planning and control approaches, both in
centralized and distributed fashions, to guarantee each agent’s
robust stability while addressing the curse of dimensionality
and respecting the holonomic and unilateral constraints.

Reduced-order (i.e., template) models provide low-
dimensional realizations of full-order dynamical models of
legged robots [41]. They can be integrated with convex op-
timization techniques and model predictive control (MPC)
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Fig. 2. Overview of the proposed layered control approach with the centralized MPC algorithm at the high level and distributed nonlinear controllers at the
low level for cooperative locomotion.

approaches to enable gait planning for the existing legged
robots. Some popular reduced-order models include the linear
inverted pendulum (LIP) model [42], centroidal dynamics
[43], and single rigid body (SRB) dynamics [44]–[46]. These
template models have been used for real-time planning of dif-
ferent single-agent bipedal [47]–[50] and quadrupedal robots
[44]–[46], [51]–[56]. In this paper, we aim to answer three
fundamental questions. 1) How do we develop effective and
interconnected reduced-order models that describe the coop-
erative locomotion of dynamic legged robots with holonomic
constraints? 2) How do we develop computationally tractable
predictive control algorithms in centralized and distributed
manners for real-time planning of interconnected reduced-
order models? And 3) How do we map optimal reduced-order
trajectories to full-order and complex dynamical models of
cooperative locomotion?

To address the above questions, this paper aims to de-
velop mathematical foundations, experimentally implement,
and comprehensively study the cooperative locomotion of two
holonomically constrained dynamic legged robots. In particu-
lar, the overarching goal of this paper is to develop a layered
control algorithm for the real-time trajectory planning and
control of dynamic cooperative locomotion for two holonom-
ically constrained legged-robotic systems. The higher layer
of the proposed algorithm considers an innovative reduced-
order model composed of two interconnected SRB dynamics
subject to holonomic constraints for the planning problem.
The paper develops novel centralized and distributed MPC
algorithms for the planning purpose of interconnected SRB
dynamics (see Figs. 2 and 3). These MPC algorithms address
the real-time planning at the higher layer of the control
hierarchy subject to the interaction terms and feasibility of
the ground reaction forces (GRFs). The optimal reduced-order
trajectories and GRFs, generated by the high-level MPCs,
are then mapped to the full-order and complex dynamics via
distributed nonlinear controllers at the low level for the whole-
body motion control. The low-level nonlinear controllers are
developed based on quadratic programming (QP) and input-

output (I-O) linearization. The efficacy of the proposed layered
control approach is validated via extensive experiments for
robustly stable locomotion of two holonomically constrained
A1 quadrupedal robots that cooperatively transport unknown
payloads on different terrains and in the presence of dis-
turbances (see Fig. 1). Here, we remark that the “robust
stability” is defined in the context of maintaining balance
during locomotion subject to various unknown disturbances
and uneven terrains.

B. Related Work

In contrast to the existing collaborative MRSs introduced in
Section I-A, collaborative legged robots are dynamical systems
with high dimensionality, unilateral constraints, and hybrid
nature that add further complexity to synthesizing planning
and control algorithms. In addition, the interacting wrenches
(forces/torques) between the agents, arising from holonomic
constraints, must be carefully addressed to result in a robustly
stable planner for cooperative legged locomotion. As a result,
collaborative legged locomotion has not been studied to the
same degree as other robotic systems. This paper marks the
first experimental implementation in this context.

In the context of legged robots, the trajectory planning and
control approaches can be sectioned into two categories: the
ones using the full-order models and the others using the
reduced-order models. Hybrid systems theory plays an impor-
tant role in understanding and analyzing full-order dynamical
models of legged locomotion [57]–[65]. Advanced nonlinear
control algorithms such as hybrid reduction [66], controlled
symmetries [67], transverse linearization [68], and hybrid zero
dynamics (HZD) [69], [70] address the hybrid nature of full-
order locomotion models. The HZD approach regulates some
output functions, referred to as virtual constraints, with I-O
linearization techniques [71] to coordinate the robot’s links
within a stride. This method can systematically address un-
deractuation and its effectiveness has been validated for stable
locomotion of different bipedal [72]–[76] and quadrupedal
robots [77], [78] as well as powered prosthetic legs [4], [5].
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Fig. 3. Overview of the proposed layered control approach with the distributed MPC algorithms at the high level and distributed nonlinear controllers at the
low level for cooperative locomotion.

The full-order gait planning is typically formulated as a non-
linear programming (NLP) problem that can be addressed with
direct collocation techniques [75], [79]–[82]. Although the
direct-collocation-based approaches generate optimal trajecto-
ries for full-order models of legged robots effectively, they
cannot address real-time trajectory optimization of cooperative
legged robots in complex environments.

In contrast to full-order models of legged locomotion,
template models present simplified representations of legged
robots with or without assumptions that significantly reduce
the computational burden and complexity associated with
trajectory optimization. Various template models, including
LIP [42], SRB [44]–[46], and centroidal dynamics [43], have
been successfully integrated with the MPC framework for the
real-time planning of bipedal and quadrupedal robots [44]–
[54], [56]. The main challenge with using template models is
bridging the gap between reduced- and full-order models of
locomotion arising from abstraction (e.g., ignoring the legs’
dynamics in template models). In particular, one needs to
translate the optimal reduced-order trajectories to the full-
order joint positions and torques. Different hierarchical control
algorithms have been proposed in the literature to close this
gap, in which a whole-body motion controller is utilized
at the low level to map the optimal trajectories, generated
by the higher-level MPC, to the full-order dynamics. For
instance, [45], [46] used a Jacobian mapping, [1], [53] used
HZD-based controllers, [56] used robust MPC integrated with
reinforcement learning, [83] used data-driven template models,
and [55], [84] used joint space whole-body controllers.

Despite the success of the above methods on individual
robots, it is unknown what reduced-order models can represent
multi-agent-legged robots’ dynamic and cooperative trans-
portation effectively. In addition, it is unclear if the existing
MPC techniques can address the real-time trajectory plan-

ning for the reduced-order models of cooperative locomotion
with increased dimensionality. Moreover, it is unclear how
the centralized MPC algorithms for such complex models
can be decomposed into lower-dimensional distributed MPC
algorithms considering the interaction terms.

C. Objectives and Contributions

The objectives and key contributions of this paper are as
follows:

1) The paper presents an innovative network of two holo-
nomically constrained SRB dynamics as an effective
reduced-order model to capture the interaction wrenches
between agents while dynamically stabilizing the motion
during cooperative locomotion.

2) A layered control approach is proposed to robustly
stabilize the cooperative locomotion of holonomically
constrained quadrupedal robots. At the high level of the
control hierarchy, two different MPC algorithms, based
on QP, are proposed: centralized MPC and distributed
MPC (see Figs. 2 and 3). The centralized MPC al-
gorithm solves for the optimal state trajectory, GRFs,
and interaction wrenches for the interconnected SRB
dynamics. The distributed MPC algorithm assumes two
local QPs that share their optimal solutions with a one-
step communication delay. The distributed MPCs solve
for the local states, local GRFs, and estimated local
interaction wrenches according to an agreement protocol
in the cost function. At the low level of the layered
control architecture, distributed and nonlinear whole-
body controllers, based on QP and virtual constraints,
are utilized to impose the full-order dynamics to track
the prescribed optimal reduced-order trajectories and
GRFs, generated by the high-level MPCs.
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3) Extensive numerical simulations are presented to eval-
uate the performance of the cooperative locomotion of
two holonomically constrained A1 robots subject to var-
ious terrains and disturbances. A comparative analysis
of the closed-loop systems with centralized and dis-
tributed MPC algorithms with more than 1000 randomly
generated rough terrain profiles and external forces is
presented. It is shown that the proposed distributed
MPC algorithm has a performance similar to that of the
centralized one, while the solve time is reduced by 70%.

4) The effectiveness of the proposed layered control algo-
rithms (centralized and distributed) is verified with an
extensive set of experiments for the blind and cooper-
ative locomotion of two holonomically constrained A1
quadrupedal robots. The experiments include coopera-
tive locomotion with different and unknown payloads on
different terrains (covered with blocks, gravel, mulch,
and slippery surfaces) and in the presence of external
pushes and tethered pulling. Detailed robustness analysis
is presented to experimentally evaluate the performance
of the closed-loop system against the violations of
assumptions made for the synthesis of the controller.

Our motivation for developing both the centralized and
distributed MPCs is that the centralized MPC provides a
substantial foundation to synthesize the distributed MPC. In
particular, the distributed MPC is developed based on decom-
posing the centralized MPC subject to a one-step communi-
cation delay. Furthermore, the centralized MPC is used as a
benchmark to comprehensively assess the performance of the
distributed MPC, as the centralized MPC stabilizes cooperative
locomotion through a relatively straightforward controller syn-
thesis process. The distributed MPC presents an opportunity to
significantly reduce the planner’s computational burden arising
from the interconnected model’s complexity and hardware
limitations. As a general guideline for selecting a controller,
centralized MPC is often preferred due to its simplicity com-
pared to its distributed counterpart. However, it is less scalable
and supposes ideal (i.e., delay-free) communication between
agents. In contrast, distributed MPC can overcome common
communication and computational bottlenecks at the cost of
increasing the complexity of the formulation.

The current work is different from our previous work [40]
in that [40] did not consider real-time trajectory planning for
the cooperative locomotion of two agents. It only addressed
the stabilization of periodic trajectories generated offline for
the hybrid model of cooperative locomotion and provided
no experimental evaluation. The current work, however, de-
velops centralized and distributed MPC algorithms for real-
time trajectory planning while experimentally evaluating the
results on hardware. The work also differs from [1] in that
[1] formulated a centralized event-based MPC algorithm,
similar to [53], for cooperative and quasi-statistically stable
locomotion based on a network of interconnected LIP models
while evaluating the results only in numerical simulations.
The simple nature of the LIP model and event-based MPC
reduced the computational burden by running the MPC only
at the beginning of the continuous-time domains rather than

every time sample. However, using the LIP model prohibits us
from capturing the interaction torques due to the assumption
of a concentrated point mass at the center of mass (COM),
as we do not consider adding flywheels for simplicity. This
model also restricts the generation of dynamic cooperative
gaits because the center of pressure (COP) must always remain
within the support polygon, limiting the system’s full potential.
The current work, however, presents faster centralized and
distributed MPC algorithms for more complex networks of
cooperative and dynamically stable locomotion based on SRB
dynamics rather than LIP dynamics while numerically and
experimentally evaluating the results. Moreover, the cooper-
ative gaits of the current work are faster and more robust to
uncertainties arising from external disturbances and unknown
terrain profiles. Similarly, the present work is different from
[85], [86] in that they employ centralized approaches based on
the Zero Moment Point (ZMP) [87] criterion for generating
quasi-statistically stable gaits for humanoid robots, whereas
the current work develops both centralized and distributed
planning and control approaches for dynamically stable co-
operative gaits.

D. Organization

The paper is organized as follows. Section II develops
interconnected SRB models as a reduced-order model of
cooperative locomotion. Section III formulates centralized and
distributed MPC-based trajectory planning algorithms. Section
IV presents distributed nonlinear controllers for whole-body
motion control. Section V provides a detailed and extensive
set of numerical and experimental validations of the proposed
layer control algorithm. In Section VI, we discuss the results
and compare the performance of the centralized and distributed
MPC algorithms. Section VII finally presents some concluding
remarks and future research directions.

II. REDUCED-ORDER MODEL OF COOPERATIVE LEGGED
LOCOMOTION

This section aims to address the reduced-order models that
describe the cooperative locomotion of two holonomically
constrained quadrupedal robots. The section assumes a rigid
bar connected via ball joints to two points on the robots for
carrying objects (see Fig. 1). These two points will be referred
to as the interaction points. This assumption simplifies the
analysis and results in a holonomic constraint, stating that the
Euclidean distance between the interaction points is constant.
However, the analysis of this section can be extended to more
sophisticated connections, such as restricting the pitch or roll
angles of the bar/load. In Section VI-D, we will experimentally
show the robustness of the developed algorithms subject to
these additional constraints.

In our notation, the subscript i ∈ I := {1, 2} represents
the ith robot. We assume that {Bi} is the local frame rigidly
attached to the body of the agent i with its origin on the COM.
The orientation of the frame {Bi} with respect to the inertial
world frame {O} is denoted by Ri ∈ SO(3), where SO(3) :=
{R ∈ R3×3 |R⊤R = I, det(R) = 1} is the special orthogonal
group of order 3, and I represents the identity matrix. The
Cartesian coordinates of the COM of agent i with respect to
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Fig. 4. Illustration of the interconnected SRB models for the cooperative
locomotion of two quadrupedal robots.

{O} are also represented by rci := col(xci, yci, zci) ∈ R3,
where “col” denotes the column operator. Moreover, ωBi

i ∈ R3

represents the angular velocity of agent i expressed in the body
frame {Bi}. We assume that pi ∈ R3 for i ∈ I represents
Cartesian coordinates of the interaction points with respect to
the inertial frame {O}, that is,

pi = rci +Ri d
Bi
i , (1)

where dBi
i ∈ R3 is a constant vector denoting the coordinates

of the interaction points in the body frame {Bi}. For future
purposes, we define ηi := Ri d

Bi
i (see Fig. 4). We remark

that the holonomic constraint between two agents can be
described as a constraint on the Euclidean distance between
the interaction points as follows:

ψ (rc1, rc2, R1, R2) :=
1

2
∥p1 − p2∥2 = ψ0, (2)

in which ∥·∥ denotes the 2-norm, and ψ0 is a constant number,
determined based on the length of the bar.

According to the principle of virtual work, one can consider
(p1 − p2)λ ∈ R3 as the interaction force applied to agent 1
for some Lagrange multiplier λ ∈ R to be determined later
(see again Fig. 4). Consequently, the net external wrench (f net

i

and τ net
i ) applied to agent i ∈ I can be expressed as follows:[

f net
i

τ net
i

]
=

∑
ℓ∈Ci

[
I
r̂ℓi

]
uℓi +

[
I
η̂i

]
(pi − pj)λ, (3)

where j ̸= i ∈ I denotes the index of the other agent and
the hat map (̂·) : R3 → so(3) represents the skew-symmetric
operator with the property x̂ y = x×y for all x, y ∈ R3. In (3),
the superscript ℓ ∈ Ci denotes the index of the contacting legs
with the ground, Ci represents the set of contacting legs for the
agent i, and uℓi ∈ R3 denotes the GRF at the contacting leg
ℓ for the agent i. In addition, rℓi ∈ R3 represents the position
of each contacting leg with respect to the COM of agent i,
that is, rℓi = rℓfoot,i − rci, where rℓfoot,i is the position of the
contacting foot ℓ of the agent i with respect to {O}.

By taking the local state variables for the agent i ∈ I as

xi := col
(
rci, ṙci, vec(Ri), ω

Bi
i

)
∈ R18, (4)

the global state variables can be defined as

x := col (x1,x2) , (5)

where “vec” represents the vectorization operator. The global
control inputs can be defined as u := col(u1,u2), where ui

denotes the local control inputs (i.e., GRFs) for agent i, i.e.,

ui := col
{
uℓi | ℓ ∈ Ci

}
. (6)

By differentiating the holonomic constraint (2), one can get

ψ̇(x) = (p1 − p2)
⊤
(ṗ1 − ṗ2) = 0, (7)

and hence, the state manifold can be expressed as X := {x ∈
R36|Ri ∈ SO(3), i ∈ I, ψ(x) = ψ0, ψ̇(x) = 0}. Finally, the
interconnected SRB dynamics can be expressed as

ẋ = f(x,u, λ) :=



ṙc1
f net
1

m − g

vec(R1 ω̂
B1
1 )

I−1
(
R⊤

1 τ
net
1 − ω̂B1

1 I ωB1
1

)
ṙc2

f net
2

m − g

vec(R2 ω̂
B2
2 )

I−1
(
R⊤

2 τ
net
2 − ω̂B2

2 I ωB2
2

)


, (8)

where m and I ∈ R3×3 denote the total mass and the
fixed moment of inertia in the body frame for each agent,
respectively, and g represents the constant gravitational vector.
We remark that the kinematics relations in (8) are expressed as
Ṙi = Ri ω̂

Bi
i for i ∈ I. The rotational dynamics can be further

expressed as Euler’s equation I ω̇Bi
i + ω̂Bi

i I ωBi
i = R⊤

i τ
net
i .

The net external wrench (f net
i and τ net

i ) in (3) can be plugged
in (8) to reveal the Lagrange multiplier, λ, and local control
inputs, ui, in the interconnected SRB dynamics. We note that
in (8), f : X × U × R → TX is smooth with

U := FC × · · · × FC︸ ︷︷ ︸
mu−times

⊂ R3mu (9)

being the admissible set of control inputs, where mu denotes
the total number of contacting legs with the ground (e.g.,
mu = 4 for cooperative trot), FC := {col(fx, fy, fz) | fz >
0, |fx| ≤ µ√

2
fz, |fy| ≤ µ√

2
fz} represents the linearized

friction cone for some friction coefficient µ, and TX is the
tangent bundle of the state manifold X . We remark that the
admissible set of control inputs, U , is a condition to guarantee
the non-slippage at the ground contact point of each leg.

In order to make the manifold X invariant under the flow
of (8), one would need to choose the Lagrange multiplier λ to
satisfy the holonomic constraint. In particular, differentiating
(7) according to (1) and Ṙi = Ri ω̂

Bi
i results in

ψ̈(x,u, λ) = (p1 − p2)
⊤
(p̈1 − p̈2) + ∥ṗ1 − ṗ2∥2

= (p1 − p2)
⊤
{
r̈c1 − r̈c2

+R1

(
ω̂B1
1

)2

dB1
1 −R2

(
ω̂B2
2

)2

dB2
2

+R1
̂̇ωB1
1 dB1

1 −R2
̂̇ωB2
2 dB2

2

}
+ ∥ṗ1 − ṗ2∥2 = 0. (10)
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This latter equation, together with the equations of motion
(8) and (3), results in λ being a function of (x,u). How-
ever, replacing this nonlinear expression for λ in (8) can
make the original dynamics (8) more nonlinear and complex.
Furthermore, this can numerically complicate the Jacobian
linearization of ẋ = f(x,u, λ(x,u)) when formulating the
trajectory planning problem as a convex MPC in Section III.
Alternatively, we pursue a computationally effective approach
by considering ẋ = f(x,u, λ) subject to the equality con-
straint ψ̈(x,u, λ) = 0 within the optimal control problem
formulation. More specifically, the decision variables for the
MPC include the trajectories of (x,u, λ) over the control
horizon, and the MPC will satisfy the equality constraint. The
other advantage of this technique is that the interconnected
SRB dynamics can be integrated with the variational-based
approach of [45], [46] to linearize and then discretize the dy-
namics such that the rotation matrices Ri, i ∈ I approximately
evolve on SO(3).

To clarify this latter point, following [46], we introduce a
new set of local state variables for the agent i ∈ I with the
abuse of notation as

xi := col
(
rci, ṙci, ξi, ω

Bi
i

)
∈ R12. (11)

Here, ξi ∈ R3 is a vector used to approximate the rotation
matrix Ri around an operating point Ri,op using the Taylor
series expansion as follows:

Ri = Ri,op exp(ξ̂i) ≈ Ri,op

(
I+ ξ̂i

)
. (12)

For small changes in the rotation matrix at each time sample,
ξi remains small. Hence, (12) is a reasonable approximation.
The approach of [46] has linearized the SRB dynamics subject
to GRFs without interaction forces. Hence, one must extend
the technique by obtaining the Taylor series expansion for the
additional wrench terms in (3) arising from the interaction.
For this purpose, (12) can be applied to (8) to represent the
nonlinear and interconnected SRB dynamics utilizing the new
state variables found in (11). Then, we can derive the Jacobian
linearization of the smooth nonlinear dynamics (8) subject to
the new state variables in (11). These dynamics can then be
discretized using the forward Euler method, which results in
a discrete and linear system to predict the future states as
follows:

xk+t+1|t = Aop xk+t|t+Bop uk+t|t+Cop λk+t|t+dop, (13)

for all k = 0, 1, · · · , N − 1 and with the initial condition
xt|t = xt. Here, x ∈ R24 denotes the global state variables,
N represents the control horizon, and (xk+t|t,uk+t|t, λk+t|t)
denotes the tuple of the predicted global states, global inputs
(i.e., GRFs), and Lagrange multiplier at time k + t computed
at time t. Furthermore, Aop := ∂f/∂x(xt,ut−1, λt−1) ∈
R24×24, Bop := ∂f/∂u(xt,ut−1, λt−1) ∈ R24×3mu ,
Cop := ∂f/∂λ(xt,ut−1, λt−1) ∈ R24, and dop :=
f(xt,ut−1, λt−1) − Aop xt − Bop ut−1 − Cop λt−1 ∈ R24

are the Jacobian matrices and offset term evaluated around
the current operating point (xt,ut−1, λt−1) that can be either
computed via symbolic calculus or the approach of [46].

The approximation in (12) only ensures that the rotation
matrices approximately evolve on SO(3). To guarantee that
the state predictions in (13) belong to the tangent space of
the state manifold at the operating point (i.e., TopX ), we first
define the following equality constraint

Ψ(x,u, λ) :=

ψ(x)− ψ0

ψ̇(x)

ψ̈(x,u, λ)

 = 0. (14)

Then, analogous to the technique used for the linearization of
the interconnected dynamics, the equality constraint (14) can
be approximated around the operating point as follows:

Eop xk+t|t + Fop uk+t|t +Gop λk+t|t + hop = 0 (15)

to ensure that Ψ(xk+t|t,uk+t|t, λk+t|t) ≡ 0.
Here, Eop := ∂Ψ/∂x(xt,ut−1, λt−1) ∈ R3×24,
Fop := ∂Ψ/∂u(xt,ut−1, λt−1) ∈ R3×3mu ,
Gop := ∂Ψ/∂λ(xt,ut−1, λt−1) ∈ R3, and hop :=
Ψ(xt,ut−1, λt−1)−Eop xt −Fop ut−1 −Gop λt−1 ∈ R3 are
proper matrices and vectors.

Remark 1: As the nature of the holonomic constraints
between the agents becomes more complex, the procedure
for obtaining the corresponding prediction model and equality
constraints becomes computationally expensive. However, our
experimental results in Section VI-D will indicate that the
proposed layered control approach, developed based on the
assumption of holonomic constraints in (2), can robustly
stabilize cooperative locomotion subject to uncertainties in the
constraints (e.g., limiting the pitch angles of the ball joints).

III. MPC-BASED TRAJECTORY PLANNING

This section aims to formulate the trajectory planning prob-
lem for cooperative locomotion as centralized and distributed
MPC algorithms.

A. Centralized MPC

We will consider a locomotion pattern for the agents, de-
scribed by the directed cycle G(V, E), where V and E ⊂ V×V
represent the sets of vertices and edges, respectively. The
vertices denote the continuous-time domains of locomotion,
and the edges represent the discrete-time transitions between
the continuous-time domains.

Assumption 1: The higher-level MPC is aware of the current
stance legs at every time sample t, assuming that the stance leg
configuration does not change throughout the control horizon.

Remark 2: Assumption 1 is not restrictive and simplifies
the optimal control problem of (13) subject to (15) over
the control horizon. Otherwise, one would need to consider
the optimal control problem for a piecewise affine (PWA)
system [88, Chap. 16] subject to different switching times. In
particular, if the stance leg configuration changes within the
control horizon, the existing control inputs (i.e., GRFs) for the
prediction model (13) are no longer available, and new control
inputs need to be considered for the following continuous-time
domain. This makes the dynamics of the system switching
(PWA), and the optimal control problem becomes complex.
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We are now in a position to present the following centralized
MPC algorithm for the cooperative locomotion

min
(x(·),u(·),λ(·))

p
(
xt+N |t

)
+

N−1∑
k=0

L
(
xk+t|t,uk+t|t, λk+t|t

)
s.t. Prediction model (13)

Equality constraints (15)
uk+t|t ∈ U , k = 0, 1, · · · , N − 1, (16)

where the equality constraints for the MPC arise from a)
the prediction model (13) to address the interconnected SRB
dynamics with the initial condition of xt|t = xt, and b) the
holonomic constraints (15) (see Fig. 2). Here, the central-
ized MPC solves for the optimal trajectories of the global
states, global inputs, and the Lagrange multiplier encoded in
(x(·),u(·), λ(·)) to retain the sparsity structure of [89], where
x(·) := col{xk+t|t | k = 1, · · · , N}, u(·) := col{uk+t|t | k =
0, 1, · · · , N − 1}, and λ(·) := col{λk+t|t | k = 0, 1, · · · , N −
1}. The terminal and stage cost functions in (16) are then
taken as p(xt+N |t) := ∥xt+N |t − xdes

t+N |t∥
2
P for a positive

definite matrix P and L(xk+t|t,uk+t|t, λk+t|t) := ∥xk+t|t −
xdes
k+t|t∥

2
Q + ∥uk+t|t∥2Ru

+ ∥λk+t|t∥2Rλ
for some desired tra-

jectory xdes(·) and some positive definite matrices Q and Ru,
and a positive scalar Rλ. Finally, the inequality constraints of
(16) represent the feasibility of the GRFs for two agents.

Remark 3: The MPC in (16) addresses the trajectory
planning problem over the current continuous-time domain.
In particular, we do not include the following domain (i.e.
next continuous-time domain) for prediction purposes in light
of Assumption 1. We employ Raibert’s heuristic [90, Eq. (2.4),
pp. 46] to plan for the upcoming footholds of each agent. The
centralized MPC has (25+3mu)N decision variables. Finally,
the MPC problem (16) solves for the optimal trajectories of
the state variables x⋆(·), control inputs u⋆(·), and Lagrange
multiplier λ⋆(·). However, the high-level MPC only applies the
first element of the optimal state and control sequence, i.e.,
(x⋆

t+1|t,u
⋆
t|t), to the low-level controller for tracking while

discarding λ⋆t|t (see Fig. 2).
Remark 4: The centralized MPC algorithm of this paper

is different from [1]. In particular, according to the simple
nature of the LIP dynamics, [1] eliminates the Lagrange
multipliers and presents a simple interconnected network of
LIP dynamics. Furthermore, the centralized MPC algorithm of
[1] is solved in an event-based manner (i.e., at the beginning
of each gait). The Lagrange multipliers cannot be eliminated
from the interconnected SRB dynamics in the current work
due to the complexity of the reduced-order model. Hence,
the centralized MPC algorithm in (16) solves for the optimal
trajectory as well as the optimal Lagrange multipliers subject
to the holonomic constraints (15). In addition, the MPC
algorithm in (16) is solved at every time sample rather than the
event-based manner of [1] to address more dynamic motions.

B. Distributed MPC

This section aims to develop a network of distributed MPCs
with a smaller number of decision variables that plan for
the cooperative locomotion of two holonomically constrained

quadrupedal robots. For this purpose, the state matrices and
vectors in (13) can be partitioned as follows:

Aop =

[
Aop,11 Aop,12
Aop,21 Aop,22

]
, Bop =

[
Bop,11 Bop,12
Bop,21 Bop,22

]
,

Cop =

[
Cop,1
Cop,2

]
, dop =

[
dop,1
dop,2

]
,

(17)

with Aop,ii,Aop,ij ∈ R12×12, Bop,ii,Bop,ij ∈ R12× 3
2mu ,

Cop,i ∈ R12, and dop,i ∈ R12 for all i ̸= j ∈ I, where the
off-diagonal portions of the matrices represent the interaction
terms between agents, and the rest are assigned to the local
dynamics. More specifically, from (13) and (17), the local
predictions of the agent i ∈ I can be expressed as:

xi,k+t+1|t = Aop,ii xi,k+t|t +Bop,ii ui,k+t|t

+Cop,i λk+t|t + dop,i +∆i

(
xj,k+t|t,uj,k+t|t

)
,

(18)

where j ̸= i ∈ I, and (xi,k+t|t,ui,k+t|t) denotes the tuple of
local states and inputs for agent i at time k + t computed at
time t. In addition,

∆i

(
xj,k+t|t,uj,k+t|t

)
:= Aop,ij xj,k+t|t +Bop,ij uj,k+t|t,

(19)
represents the interaction term on agent i influenced by agent
j. Similarly, the equality constraints (15) can be partitioned as
follows:

Eop,i xi,k+t|t + Fop,i ui,k+t|t +Gopλk+t|t + hop

+Ωi

(
xj,k+t|t,uj,k+t|t

)
= 0, (20)

in which Eop,i ∈ R3×12 and Fop,i ∈ R3×mu
2 are the

corresponding columns of (Eop,Fop), and

Ωi

(
xj,k+t|t,uj,k+t|t

)
:= Eop,j xj,k+t|t +Gop,j uj,k+t|t

for j ̸= i. Motivated by the inherent limitation of the
distributed QP problems, one would need to estimate the
interaction terms ∆i and Ωi, i ∈ I to solve for local QPs.
For this purpose, we make the following assumption.

Assumption 2 (One-Step Communication Protocol): At ev-
ery time sample t, each local MPC has access to the optimal
solution of the other local MPC at time t−1. More specifically,
the local MPCs share their previous optimal solutions over the
network.

We remark that Assumption 2 is not restrictive. Numerical
simulations and experimental validations in Section V with
various unknown disturbances and multiple uneven terrains
show that the proposed trajectory planners can address robust
cooperative locomotion with this assumption while solving
the MPC every 5 (ms). From Assumption 2, we can estimate
the interaction terms ∆i and Ωi in (18) and (20) using the
previous optimal solutions, that is,

∆i

(
xj,k+t|t,uj,k+t|t

)
≈ ∆i

(
x⋆
j,k+t|t−1,u

⋆
j,k+t|t−1

)
Ωi

(
xj,k+t|t,uj,k+t|t

)
≈ Ωi

(
x⋆
j,k+t|t−1,u

⋆
j,k+t|t−1

)
, (21)

in which x⋆
j,k+t|t−1 and u⋆

j,k+t|t−1 denote the optimal solution
from the local QP j for time k+ t computed at time t− 1 for
k = 0, 1, · · · , N − 1. We remark that as the QP j does not
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plan for uN−1+t|t−1, we let u⋆
N−1+t|t−1 = 0. The assumption

in (21) estimates the interaction terms in the local dynamics
and equality constraints based on the optimal values from the
local QP j at the previous time sample. With this assumption,
the local MPC i needs to optimally solve for its own local
state trajectory xi(·), local control trajectory ui(·), and the
Lagrange multiplier trajectory λ(·). However, as the Lagrange
multiplier λ is common between the decision variables of two
local MPCs, they need to reach a consensus over time for the
optimal λ value.

To address the consensus problem, we develop an agreement
protocol as follows. The cost function of the centralized MPC
(16) can be written as the sum of individual terms, i.e.,

J1 (x1(·),u1(·)) + J2 (x2(·),u2(·)) + Jλ (λ(·)) . (22)

We assume that each local QP estimates its own trajectory of
the Lagrange multiplier, denoted by λi(·). We then propose
the following distributed MPC for agent i ∈ I

min
(xi(·),ui(·),λi(·))

Ji (xi(·),ui(·)) + Jλ (λi(·))

+ w

N−1∑
k=0

∥λi,k+t|t − aii λ
⋆
i,k+t|t−1 − aij λ

⋆
j,k+t|t−1∥

2

+ β⋆⊤
j,t−1 Kj,i

[
xi(·)
ui(·)

]
+ β⋆⊤

j,t−1 Kj,λ λi(·)

s.t. Local prediction model (18) with (21)
Local equality constraints (20) with (21)
ui,k+t|t ∈ U i, k = 0, 1, · · · , N − 1, (23)

where w is a positive weighting factor added to introduce a
new term in the local cost function to address the agreement
protocol. In particular, the agreement term penalizes the dif-
ference between the local predicted values of λi,k+t|t and the
average of the previously computed optimal values λ⋆i,k+t|t−1

and λ⋆j,k+t|t−1 by the local MPCs i and j at time t− 1. Here,
aii and aij are the weighting factors for averaging with the
property aii, aij ∈ [0, 1] and aii + aij = 1, where i ̸= j ∈ I.
The last two terms in the cost functions will be described
shortly. The distributed MPC (23) has two sets of equality
constraints arising from a) the local dynamics (18), and b) the
holonomic constraint (20) with the assumption (21).

The proposed local MPC for the agent i does not con-
sider the local dynamics of the other agent (i.e., agent j).
Instead, motivated by our previous work [91], it uses the
Karush–Kuhn–Tucker (KKT) Lagrange multipliers that corre-
spond to the equality constraint arising from the local dynam-
ics of the agent j in the QP j at time t− 1. This set of KKT
Lagrange multipliers is denoted by β⋆

j,t−1. In addition, Kj,i

and Kj,λ represent the sensitivity (i.e., gradient) of the local
dynamics j with respect to the local variables (xi(·),ui(·))
and λ(·), respectively. In particular, Kj,i can be computed in
a straightforward manner by taking the gradient of the local
interaction terms ∆j with respect to (xi,k+t|t,ui,k+t|t) over
the entire control horizon and stacking the results together,
that is,

Kj,i :=
∂ col{∆j(xi,k+t|t,ui,k+t|t) | k = 0, 1, · · · , N − 1}

∂(xi(·),ui(·))
.

An analogous approach can be used to compute the sensitivity
matrix Kj,λ. We then add the last two linear terms to the
cost function of the local MPC (23). Our previous work [91,
Theorem 1] has shown that the inclusion of the KKT La-
grange multipliers β⋆

j,t−1 together with the sensitivity matrices
(Kj,i,Kj,λ) in the cost function can result in a set of local
KKT conditions that have a similar structure to that of the
KKT equations for the centralized problem. Finally, U i in (23)
represents the local feasibility set for the GRFs (i.e., inputs).

Remark 5: We remark that local MPCs in the proposed
structure (23) share their optimal local state trajectory x⋆

i (·),
local control trajectory u⋆

i (·), local estimates of the Lagrange
multiplier trajectory λ⋆i (·), and the KKT Lagrange multipliers
corresponding to the local dynamics in the QP structure β⋆

i

with the other agent and according to the one-step commu-
nication delay protocol (see Fig. 3). Finally, the number of
decision variables for each local MPC becomes (13+ 3

2 mu)N .

IV. DISTRIBUTED NONLINEAR CONTROLLERS FOR
FULL-ORDER MODELS

The objective of this section is to present the low-level and
distributed nonlinear controllers for the whole-body motion
control of each agent. The full-order and floating-base model
of the agent i can be described by the Euler-Lagrange equa-
tions and principle of virtual work as follows:

D(qi) q̈i +H(qi, q̇i) = Υ τi +
∑
ℓ∈Ci

J⊤
ℓ (qi) f

ℓ
i

+ J⊤
int(qi) (pi − pj)λ, (24)

where qi ∈ Q ⊂ Rnq represents the generalized coordinates
of the robot i, Q and nq denote the configuration space
and the number of degrees of freedom (DOFs), respectively,
τi ∈ T ⊂ Rnτ represents the joint-level torques at the
actuated joints, T is a closed and convex set of admissible
torques, and Ci represents the set of contacting legs with the
environment. In addition, f ℓi denotes the GRF at the contacting
leg ℓ ∈ Ci of the full-order model for the agent i. We remark
that the GRF at the contacting leg ℓ ∈ Ci of the reduced-
order model for the agent i was denoted by uℓi in Section
II. This is due to the possible gap between the reduced- and
full-order models arising from abstraction (i.e., ignoring legs’
dynamics). Moreover, D(qi) ∈ Rnq×nq denotes the positive
definite mass-inertia matrix, H(qi, q̇i) ∈ Rnq represents the
Coriolis, centrifugal, and gravitational terms, Υ ∈ Rnq×nτ

is the input distribution matrix, Jℓ(qi) denotes the contact
Jacobian matrix at the leg ℓ, Jint(qi) represents the Jacobian of
the interaction point pi, and (pi−pj)λ denotes the interaction
force between the two agents as described in the reduced-order
model of Section II. The local and full-order state variables
for the agent i is defined as zi := col(qi, q̇i) ∈ Q× Rnq . For
future purposes, the vector of GRFs for the agent i is shown
by fi := col{f ℓi | ℓ ∈ Ci}.

For the whole-body motion control of each agent, we utilize
a QP-based nonlinear controller that maps the desired optimal
trajectories and GRFs, generated by the high-level MPC, to the
full-order model. For this purpose, we consider the following
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time-varying and holonomic output functions, referred to as
virtual constraints [77], to be regulated:

yi(t, zi) := ya(qi)− ydes(t), (25)

where ya(qi) represents a set of controlled variables and
ydes(t) denotes their desired evolution in terms of a time-
based phasing variable. In this paper, the controlled variables
include the Cartesian coordinates of the robot’s COM, the
absolute orientation of the robot’s body (i.e., Euler angles), and
Cartesian coordinates of the swing feet. The desired evolution
of the COM position and Euler angles are generated by the
MPC. In addition, the desired evolution of the swing feet’s
coordinates is taken as a Bézier polynomial connecting the
current footholds to the upcoming ones, computed based on
Raibert’s heuristic [90, Eq. (2.4), pp. 46].

We next implement the I-O linearization technique [71] to
differentiate the local outputs (25) twice along the full-order
dynamics (24) while ignoring the interaction forces between
the agents. This results in the following output dynamics

ÿi = Φτ (zi) τi +Φf (zi) fi + ϕ(zi) = −KP yi −KD ẏi + δi,
(26)

where Φτ (zi), Φf (zi), and ϕ(zi) are proper matrices and
vectors computed based on I-O linearization and Lie deriva-
tives similar to [1, Appendix A]. Moreover, KP and KD

are positive definite matrices, and δi is a slack variable to
be used later for the feasibility of the QP-based nonlinear
controller. Unlike the high-level trajectory planner of Section
III that takes into account the interaction terms, the low-
level nonlinear controller ignores the interaction forces. In
particular, our numerical results in Section V suggest that
considering holonomic constraints for trajectory planning is
crucial for stabilizing cooperative locomotion. However, the
optimal trajectories, generated by the high-level MPC, can be
robustly mapped to the full-order model without considering
the interaction terms at the low level. This reduces the com-
plexity of the distributed and full-order model controllers.

By stacking together the Cartesian coordinates of the stance
feet and then differentiating them twice, one can get an
additional constraint to express zero acceleration for the stance
feet. In particular, we have

r̈foot,i = Θτ (zi) τi +Θf (zi) fi + θ(zi) = 0, (27)

where rfoot,i := col{rℓfoot,i | ℓ ∈ Ci} is a vector containing
the Cartesian coordinates of the stance feet for the agent i.
Moreover, Θτ (zi), Θf (zi), and θ(zi) are proper matrices and
vectors computed based on I-O linearization. We then employ
the following real-time and strictly convex QP [77] to solve
for feasible (τi, fi, δi) at 1kHz to meet the output dynamics
(26) and the contact equation (27)

min
(τi,fi,δi)

γ1
2
∥τi∥2 +

γ2
2
∥fi − fdes,i∥2 +

γ3
2
∥δi∥2

s.t. Φτ (zi) τi +Φf (zi) fi + ϕ(zi) = −KP yi −KD ẏi + δi

Θτ (zi) τi +Θf (zi) fi + θ(zi) = 0

τi ∈ T , f ℓi ∈ FC, ∀ℓ ∈ Ci, (28)

where γ1, γ2, and γ3 are positive weighting factors, and fdes,i
represents the desired evolution of the GRFs generated by the

high-level MPC. Here we note that the equality constraints,
specifically (26) and (27), serve to constrain the formulated
QP along the full-order dynamics (24). More specifically, (26)
is derived by employing the I-O linearization technique [71]
for the virtual constraints (25) and the full-order dynamics
(24). Analogous to the derivation of (26), (27) is derived from
the non-slippage constraint on each stance foot. Given that the
full-order dynamics are embedded within (28) as constraints,
the optimal solution adheres to the full-order dynamics. As
mentioned in Remark 3, fdes,i is identical to the first element
of the optimal GRFs, u⋆

t|t, computed by (16) or (23). The
cost function of (28) tries to minimize the effect of the slack
variable δi in the output dynamics (26) via a high weighting
factor γ3 while 1) imposing the actual GRFs of the full-order
model fi to follow the prescribed force profile fdes,i with
the weighting factor γ2, and 2) having the minimum-power
torques with the weighting factor γ1.

Remark 6: We remark that the joint-level torque controller
(28) is indeed a nonlinear whole-body control law in terms
of the state variables zi. In particular, the QP-based virtual
constraint controller applies the I-O linearization technique to
guarantee position tracking while also addressing the friction
cone conditions, holonomic constraints, and force tracking.
We employ virtual constraint controllers as our previous work
has shown that these QP-based nonlinear controllers result
in continuously differentiable feedback laws that robustly
stabilize gaits for closed-loop systems [77, Theorems 1 and 2].
Furthermore, virtual constraint controllers can systematically
address potential underactuation in legged locomotion [58].

V. NUMERICAL AND EXPERIMENTAL VALIDATIONS

This section aims to validate the proposed layered control
architecture via extensive numerical simulations and exper-
iments. We study both the reduced- and full-order models
of cooperative locomotion in numerical simulations to show
the robust stability of the collaborative gaits. We further
experimentally investigate the robustness of the trajectories
with a team of two holonomically constrained A1 robots, as
shown in Fig. 1.

A. Closed-Loop System

1) Robot hardware and gait: The hardware platform con-
sidered here, the A1 robot, is a torque-controlled quadrupedal
robot platform with 18 DOFs and 12 actuators. More specifi-
cally, 12 DOFs of the system represent the actuated DOFs of
the legs’ joints. Each leg consists of a 2-DOF hip joint (roll
and pitch) and a 1-DOF knee joint (knee pitch). The remaining
6 DOFs describe the unactuated position and orientation of
the body with respect to the inertial world frame. The robot
is approximately 12.45 (kg) and stands up to about 0.3 (m)
off the ground. This work considers a standing height of 0.26
(m) for all experiments. Here, the position of the interaction
points with respect to COMs in the body frames {Bi} is
taken as dBi

i = col(0, 0, 0.15) (m) for all i ∈ I (see (1)).
Different mechanisms are designed to holonomically constrain
the motion of two robots with ball joints and an adjustable
bar length between the agents (see Fig. 5). Furthermore, the
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Fig. 5. Illustration of the mechanisms designed to be mounted on the torso
of each robot to holonimcally constrain the motion of agents. The mechanism
in (a) can implement the holonomic constraint in (2) with free ball joints.
The mechanisms in (b), (c), and (d) implement the constraint (2) while also
restricting the roll, yaw, and pitch motions, respectively. The mechanism
implemented on top of the robots is illustrated in (e).

mechanisms can limit the ball joints to add further constraints
on their Euler angles. For numerical and experimental studies
in Sections V-B and V-C, the nominal length of the bar
is 1 (m) (see Fig. 1). In the following sections, we study
a cooperative trot gait with a swing time of 0.2 (s) and
at different speeds up to 0.5 (m/s) and subject to external
disturbances, uncertainties in holonomic constraints, unknown
payloads up to 55% uncertainty in one robot’s mass, and
on different terrains (e.g., slippery surfaces, wooden blocks,
gravel, mulch, and grass).

2) Computation, control loop, and network: We use
RaiSim [92] to simulate both the interconnected reduced-
and full-order models numerically. The proposed high-level
centralized and distributed MPC algorithms for trajectory
planning and the low-level distributed nonlinear controllers
for whole-body motion control are solved using qpSWIFT
[93] at 200 Hz and 1 kHz, respectively. A joystick is used
to command the desired velocity trajectories to the high-level
trajectory planner. The joystick includes two 2-DOFs gimbals,
six auxiliary switches, and two knobs for the controlling
purpose (see Fig. 6). The gimbals are used to generate the
desired speed, and the switches are employed to choose if
both agents are being controlled simultaneously or if each
agent is being controlled individually with different desired
speeds. We usually command the same desired speed on both
agents. For the purpose of changing the relative positions of
the agents, the switches help to change the command mode
to send different desired speeds for each agent. Moreover, we
remark that the joystick commands the desired trajectories for

Fig. 6. Numerical and experimental validation system setup. Here, the
joystick commands the desired velocity trajectories to the trajectory planner
of each agent. Both agents are controlled by one joystick. Joystick sends
out the desired trajectories on both numerical simulations and experimental
validations. The network switch is used to build the connection between the
computer and two agents without IP address collision. UDP communication
protocol through Ethernet cables is used in experimental validations.

both the numerical simulations and experimental validations.
The joystick connects with the computer through a 2.4 GHz
wireless channel as described in Fig. 6.

The proposed layered controller, including the MPC-based
trajectory planners and distributed nonlinear controllers, is
solved on an off-board laptop computer with an i7-10750H
CPU running at 2.60 GHz and 16 GB RAM. All computations
in the layered controller are performed on the same laptop
computer due to the hardware limitation of the embedded
onboard computer on each agent. For the experiment, we use
a network switch in the connection between the robotic team
and the computer. The connection diagram is illustrated in Fig.
6. The switch supports 1000 Mbps gigabit Ethernet with five
ports. The robot IP addresses are redefined to avoid IP collision
during communication. Here, we also define the IP routing
table and proper IP address on the computer to communicate
with both agents without data packet confusion. Internally, a
UDP protocol through Ethernet cables is used to communicate
between the computer and the robots.

3) Tuning controllers: The control horizon for both the
centralized and distributed MPC is taken as N = 5 discrete-
time samples, where the time discretization at the high level
is 5 (ms). More specifically, the total control horizon length
adopted in numerical and experimental validations is 25 (ms).
The centralized and distributed MPC algorithms in (16) and
(23) have 245 and 125 decision variables, respectively. The
control horizon can be larger until the computational cost is no
longer within the hardware limitations. Here we note that the
adopted control horizon and the number of decision variables
are among the tuned parameters that allow stable cooperative
locomotion subject to various disturbances and uneven terrains
by the proposed MPC. In addition, it has been observed that
N = 5 is the minimum control horizon to stabilize the MPC.
The stage cost gain of the centralized MPC is tuned as Q =
diag{Qrc1 Qrc2 Qṙc1 Qṙc2 Qξ1 Qξ2 Qω1 Qω2} ∈ R24×24,
where Qrci = 105 × diag{3 300 30}, Qṙci = 104 I3×3,
Qξi = 108 I3×3, and Qωi = 5 × 103 I3×3, i ∈ I. The
terminal cost gain of the centralized MPC is also tuned as
P = 10−1Q ∈ R24×24. The input gains of the centralized
MPC are chosen as Ru = 10−2 I24×24 and Rλ = 104. In
a similar manner, the stage cost gain and terminal cost gain
of the distributed MPC on the i-th agent are tuned as Qi =
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Fig. 7. Snapshots demonstrating the performance of the proposed control
approach in numerical simulations. The left figure shows the snapshot of the
simulation with the interconnected reduced-order model (torso dynamics) and
subject to a 5 (kg) payload (40% uncertainty in one robot’s mass) between
the agents. The right figure shows the snapshot of the simulation with the full-
order model and subject to a 5 (kg) payload between agents and unknown
time-varying external disturbances applied to the robots. Arrows at the leg
ends describe the GRFs, and the ones on the torso represent the external
disturbance forces. The payload is illustrated with a box.

diag{Qrci Qṙci Qξi Qωi} ∈ R12×12 and Pi = 10−1Qi ∈
R12×12. The input gains of the distributed MPC are finally
chosen as Ru = 10−2 I12×12 and Rλ = 104. Additionally,
we choose the weighting factor for the agreement protocol in
(23) as w = 10, and the averaging factors in (23) are chosen
as aii = aij = 0.5 for all i ̸= j ∈ I. The friction coefficient
for both the centralized and distributed MPC algorithms is
assumed to be µ = 0.6. However, the experiments on slippery
surfaces assume a lower friction coefficient of µ = 0.3. For
the low-level and distributed nonlinear controllers in (28), the
weighting factors for the joint-level torques, force tracking
error, and slack variables are chosen as γ1 = 102, γ2 = 104,
and γ3 = 106, respectively. We finally remark that the low-
level controller uses the same friction coefficient values as the
high-level MPC.

The computation time of the centralized and distributed
MPC algorithms under nominal conditions (during the steady-
state gait on the flat ground) is approximately 1.38 (ms) and
0.41 (ms), respectively. This shows that the solve time with the
proposed distributed MPC is reduced by 70% under nominal
conditions. We note that the observed difference is similar
across the demonstrated scenarios, given that all computations
yielded feasible solutions. Furthermore, the computation time
of the low-level nonlinear controllers is about 0.12 (ms).

B. Numerical Validation

1) Simulation with the reduced-order model: We model
the interconnected SRB dynamics in the RaiSim environ-
ment for numerical validation and apply the optimal GRFs
generated from the proposed centralized (16) and distributed
MPC (23) algorithms. In particular, the optimal GRFs are
applied on each SRB model with the position offset from
each body center. Here, the position offset represents the
foothold position. In Fig. 7(a), the arrows represent the optimal
GRFs, and the origins of the arrows are the offset positions
where the optimal GRFs are applied to each SRB model.
In addition, for comparison purposes, we apply the GRFs
generated from the nominal MPC that considers a standard
SRB model without the holonomic constraints to this inter-
connected model. More specifically, the formulation of the
nominal MPC can be achieved by removing the reference to
the Lagrange multiplier, λ, in (16) and without (15). Due to the
elimination of the portion representing the interaction forces
and holonomic constraints, the optimal GRFs generated from
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Fig. 8. Plots of the desired and actual velocities of the closed-loop intercon-
nected reduced-order model for two agents in the numerical simulation. Here,
the optimal GRFs are generated by the (a) nominal MPCs, (b) centralized
MPC (16), and (c) distributed MPCs (23) and are applied to the reduced-
order models. An unknown payload of 5 (kg) between agents is applied to
the reduced-order models in (b) and (c) to show tracking performance subject
to unknown disturbances.
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Fig. 9. (a) Plots of the desired and actual velocities of the closed-loop inter-
connected reduced-order model when the desired velocities are not identical.
(b) Plots of the actual COM positions of two agents. The commanded velocity
on the first and second agents is taken as 0.15 (m/s) and 0 (m/s), respectively.
Here, the optimal GRFs are generated by the distributed MPCs (23).

the nominal MPC have no consideration of the interconnection
between agents. The evolution of the desired and actual COM
velocities using the nominal MPC is depicted in Fig. 8(a).
In the simulation with the nominal MPC, we only apply the
holonomic constraint to the robots and without any payloads
and monitor the behavior of the system. The plot shows
that the nominal MPC cannot stabilize the interconnected
reduced-order system. On the other hand, the interconnected
SRB model performs robustly stable cooperative locomotion
when integrated with the GRFs generated from the proposed
centralized and distributed MPCs, as shown in Figs. 8 (b) and
(c), respectively. In these simulations, an unknown payload of
5 (kg) (40% uncertainty in one robot’s mass) is considered
between the agents (i.e., in the middle of the bar), and the
joystick provides the desired trajectories. Animations of all
simulations can be found online [94].

If the commanded desired velocities to the agents are not
equal, the constraint (7) may be violated for the desired
trajectory profiles. In this case, the distributed MPCs may
compute optimal trajectories close to the commanded ones that
meet the holonomic constraints (2), (7), and (10). To illustrate
this, we command the desired forward speeds of 0.15 (m/s) and
0 (m/s) to the first and second agents, respectively. Figure 9(a)
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Fig. 10. Comparison between the desired velocities and optimal velocities,
generated with the high-level centralized and distributed MPCs, for the closed-
loop interconnected full-order model in RaiSim. The figure depicts the optimal
trajectories generated by (a) the centralized MPC (16) and (b) the distributed
MPC (23) for agent 1. Here, we consider a trot gait over rough terrain with
an unknown payload of 5 (kg) between the agents and subject to unknown,
time-varying, and external disturbance forces applied to the robots.

Fig. 11. Snapshots demonstrating the performance of the proposed layered
control algorithm for a series of cooperative locomotion experiments. Indoor
experiments: (a) rough terrain with the agents traversing arbitrarily displaced
wooden blocks, (b) asymmetrical terrain with one agent being on a compliant
surface and elevated by 10 (cm), (c) slippery surface covered by a cooking
spray, and (d) tethered pulling. The robots are loaded with a payload of 4.53
(kg) (36% uncertainty in one robot’s mass) in (a), (c), and (d). The friction
coefficient is taken as µ = 0.3 in (c) and µ = 0.6 in (a), (b), and (d). Here,
(a) and (b) show the snapshots where the centralized MPC is applied, while
(c) and (d) show the snapshots where the distributed MPC is employed.

depicts the closed-loop velocity trajectories of two agents that
meet the holonomic constraint (7). The closed-loop position
trajectories of the two agents are also shown in Fig. 9(b),
where the coordination of agents is changed compared to Fig.
8, and one agent follows the other. In addition, we remark that
the distributed MPCs for the simulation of Fig. 9 do not show
any infeasibility.

2) Simulation with the full-order model: We next numeri-
cally study the performance of the closed-loop system with the
interconnected full-order dynamical model in RaiSim. Here,
the proposed layered control approach is employed, including
the centralized and distributed MPC algorithms for trajectory
planning and nonlinear controllers for whole-body motion
control. The desired time-varying trajectories are generated
using the joystick. The high-level MPC then generates optimal
GRFs and reduced-order trajectories. The distributed low-level
controller computes the corresponding joint-level torques to
impose the full-order model to track the optimal trajectories.
An overview of the numerical simulation environment for
the full-order model is illustrated in Fig. 7(b). The desired
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Fig. 12. Comparison between the desired and optimal velocities of the robots
for the nominal trot experiment on flat ground. Optimal velocities are provided
from the high-level centralized MPC. Time-varying desired trajectories are
provided by the joystick to coordinate the robots’ motions. The centralized
MPC’s outputs track the desired trajectories.
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Fig. 13. Plots of the optimal GRFs generated from the centralized MPC
during the nominal trot experiment on flat ground. The figure depicts the z
components of the optimal GRFs for the left front leg of each agent.

trajectories provided by the joystick, together with the optimal
trajectories computed by the centralized and distributed MPC,
are depicted in Figs. 10(a) and 10(b). Due to the similarity
of the plots for agents, Fig. 10 only includes the trajectories
for agent 1. Here, we consider the trot gait over a randomly
generated rough terrain with a maximum height of 5 (cm)
(19% uncertainty in the robot’s nominal height). The gait is
also subject to an unknown payload of 5 (kg) and an unknown
sinusoidal external disturbance force with a magnitude of 20
(N) and the period of 1.0 (s), 0.7 (s), and 0.4 (s) along the
x-, y-, and z-directions, respectively. The simulation results
show that the closed-loop system robustly tracks the desired
trajectories.

C. Experimental Validation and Robustness Analysis

This section experimentally validates the proposed layered
control approach with the high-level centralized and dis-
tributed MPC algorithms and the low-level distributed non-
linear controllers.

1) Indoor experiments with the centralized MPC: In the
indoor experiments, we employ the proposed layered control
algorithm on two A1 robots subject to holonomic constraints,
where ball joints are applied at the interaction points (see
Fig. 11). We first investigate the nominal and cooperative
trot gait with the centralized MPC algorithm on flat ground
and without disturbances. The desired and optimal COM
trajectories, generated by the high-level MPC, together with
the generated optimal GRFs, are illustrated in Fig. 12 and Fig.
13, respectively. The plots show that the team of two A1 robots
performs stable cooperative locomotion while the trajectory
planner effectively tracks the time-varying desired trajectories.
Furthermore, the optimal GRFs generated by the centralized
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Fig. 14. Plots of the desired and optimal velocities for cooperative locomotion
experiments on (a) rough terrain, (b) a slippery surface, and (c) subject to
external disturbances with the centralized MPC. The plots show that the
centralized MPC’s outputs can robustly track the desired trajectories in the
presence of uncertainties and disturbances.
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Fig. 15. Plots of the optimal GRFs, generated by the centralized MPC,
for cooperative locomotion experiments on (a) rough terrain, (b) a slippery
surface, and (c) subject to external disturbances. The figure depicts the optimal
GRFs for the left front leg of agent 1 along the z-direction.

MPC are feasible, with the vertical component value being
close to 60 (N), which is approximately the force required by
each stance leg to support the total mass of each robot during
trotting.

We further investigate the robustness of the proposed lay-
ered control approach by studying the tracking performance of
the closed-loop system with different experiments, including
locomotion on rough terrain (see Fig. 11(a)), locomotion on a
slippery surface (see Fig. 11(c)), and locomotion subject to un-
known external disturbances (see Fig. 11(d)), as shown in Figs.
14(a), 14(b), and 14(c), respectively. In these experiments,
the rough terrain is made of randomly displaced wooden
blocks with a maximum height of 5 (cm) (19% of the robot’s
height). Moreover, the slippery surface is a whiteboard covered
with cooking spray. The unknown external disturbances are
further applied by a human user, including pushes and tethered
pulls on both agents. The robots cooperatively transport an
unknown payload of 4.53 (kg) (36% uncertainty in one robot’s
mass) in all these experiments. The optimal GRFs computed
by the MPC on rough terrain, on the slippery surface, and
subject to external disturbances are depicted in Figs. 15(a),
15(b), and 15(c), respectively. We remark that despite the
uncertainties, the GRFs are in the feasible range, and the
MPC’s outputs robustly track the desired and time-varying
trajectories. Furthermore, the phase portraits of the body’s
roll and pitch motions (i.e., unactuated DOFs) during these
cooperative trot gaits are shown in Figs. 16(a) and 16(b).
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Fig. 16. Phase portraits for (a) the body roll and (b) the body pitch of agent
1 with the centralized MPC and (c) the body roll and (d) the body pitch of
agent 1 with the distributed MPCs during different experiments. The plots
show the robustness of the cooperative locomotion over rough terrain covered
with randomly dispersed wooden blocks, the slippery surface, and subject to
unknown external disturbances.

Fig. 17. Plots of the desired and optimal velocities for cooperative locomotion
experiments on (a) rough terrain, (b) a slippery surface, and (c) subject to
external disturbances with the distributed MPC. The plots show that the
distributed MPC’s outputs can robustly track the desired trajectories in the
presence of uncertainties and disturbances.

Figure 16 indicates that the evolution of the robots’ states
is bounded during the cooperative gaits in the presence of
various unknown terrains and disturbances, which in turn
implies robust stability of the gait. Videos of all experiments
are available online [94].

2) Indoor experiments with the distributed MPC: In this
part, we evaluate the performance of the closed-loop system
with the proposed distributed MPC algorithm in similar indoor
experiments (see Fig. 11). The evolution of the optimal trajec-
tories generated from the distributed MPC and time-varying
desired trajectories during the cooperative transportation of
the same payload over rough terrain, the slippery surface,
and subject to unknown disturbances is illustrated in Figs.
17(a), 17(b), and 17(c), respectively. The optimal GRFs are
also shown in Fig. 18. The phase portraits of the body’s
roll and pitch motions during the cooperative gait with the
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Fig. 18. Plots of the optimal GRFs, generated by the distributed MPC,
for cooperative locomotion experiments on (a) rough terrain, (b) a slippery
surface, and (c) subject to external disturbances. The figure depicts the optimal
GRFs for the left front leg of agent 1 along the z-direction.

Fig. 19. Snapshots demonstrate the proposed layered controller’s performance
for a series of cooperative locomotion experiments. Outdoor experiments: (a)
cooperative locomotion on gravel, (b) transitioning from concrete surface to
grass, (c) cooperative locomotion on mulch, and (d) cooperative locomotion
on grass. The robots cooperatively transport a payload of 4.53 (kg) (36%
uncertainty) in (b) and (c) and 6.80 (kg) (55% uncertainty) in (a) and (d).
Here, (a) and (c) show the snapshots where the distributed MPC is adopted,
while (b) and (d) show the snapshots where the centralized MPC is employed.

distributed MPC algorithm and subject to these uncertainties
are depicted in Figs. 16(c) and 16(d). We observe that the
optimal GRFs, generated by the MPC, remain feasible, and
the MPC’s outputs robustly track the desired trajectories in
the presence of unknown terrains and external disturbances.

3) Outdoor experiments with centralized and distributed
MPCs: We next investigate the performance and robustness
of the closed-loop system with the centralized and distributed
MPC algorithms in different outdoor experiments, as shown
in Fig. 19. These experiments include cooperative locomotion
on gravel, concrete, mulch, and grass subject to unknown pay-
loads. In these studies, we investigate two different payloads: a
payload of 4.53 (kg) (36% uncertainty) in Figs. 19(b) and 19(c)
and a payload of 6.80 (kg) (55% uncertainty) in Figs. 19(a)
and 19(d). The evolution of the virtual constraints (25) for
trotting over the gravel and transitioning from concrete to grass
with the centralized MPC and trotting over mulch and grass
with the distributed MPC is shown in Fig. 20. As the virtual
constraint plots stay close to zero, we can conclude that the
full-order system effectively tracks the optimal reduced-order
trajectories generated by the high-level MPCs. We observe that
the proposed layered control approach with both centralized
and distributed MPCs can robustly stabilize cooperative gaits
in the presence of payloads on unknown outdoor terrains.

Fig. 20. Plots of the virtual constraints of agent 1 during cooperative loco-
motion with unknown payloads and on various outdoor terrains, including (a)
locomotion on gravel, (b) transitioning from concrete to grass, (c) locomotion
on mulch, and (d) locomotion on grass. The payload is 4.53 (kg) in (b) and
(c) and 6.80 (kg) in (a) and (d). Here, (a) and (c) depict the evolution of
virtual constraints with the distributed MPC at the high level. In addition, (b)
and (d) illustrate the evolution of the virtual constraints with the centralized
MPC at the high level. Here, we plot the components of virtual constraints
in (25) that correspond to the COM position along the x and y axes (m)
(i.e., COM position tracking) and the body’s roll and pitch angles (rad) (i.e.,
angle tracking). The plots show that the full-order system tracks the prescribed
optimal and reduced-order trajectories generated by the MPCs.

VI. DISCUSSION AND COMPARISON

Numerical simulations and experimental validations in Sec-
tion V show the effectiveness of the proposed centralized and
distributed MPC algorithms for cooperative locomotion. This
section aims to analyze and compare the performance of the
proposed MPCs while discussing their limitations.

A. Comparison of the Centralized and Distributed MPCs

The robustness of the cooperative locomotion with the
proposed centralized and distributed MPC algorithms in the
presence of various uncertainties and disturbances is studied
numerically and experimentally in Section V. To compare
the performance and robustness of the proposed trajectory
planners, we apply the nominal, centralized, and distributed
MPCs over 1500 randomly generated rough terrains in the
simulation environment of RaiSim, as shown in Fig. 21(a).
Here, the randomly generated landscapes’ maximum height is
12 (cm) (46% uncertainty in the robot’s height). Furthermore,
the total length of the terrain is assumed to be 10 (m). In
these simulations, we evaluate the cooperative locomotion as
a success if the agents reach 10 (m) without losing stability.
We assess the locomotion as a failure if at least one of the
agents’ bodies touches the ground before reaching 10 (m).
The success rate versus the length of the terrain is depicted in
Fig. 21(b). The overall success rate of the nominal, centralized,
and distributed MPCs is 0%, 54.2%, and 53.8%, respectively.

Similarly, we compare the performance and robustness of
the nominal, centralized, and distributed MPCs subject to 1200
randomly generated external forces and payloads, as shown in
Fig. 21(c). The external force is taken as sinusoidal with a
maximum amplitude of 80 (N) (65% of one robot’s weight)
and a maximum period of 4 (s) on the x-, y-, and z-directions.



15

Fig. 21. Illustration of the comparison results between the nominal, centralized, and distributed MPCs. (a) The snapshot shows the RaiSim simulation
environment with one of the randomly generated rough terrains. The maximum height of the generated terrains is 12 (cm) (46% uncertainty in robots’ height).
(b) The plot describes the success rate of the proposed trajectory planners over 1500 randomly generated rough terrains in simulations. The overall success
rate of the nominal, centralized, and distributed MPCs over randomly generated rough terrain is 0%, 54.2%, and 53.8%, respectively. (c) The snapshot shows
the RaiSim simulation environment with one of the randomly generated external forces and a randomly generated payload. The arrows illustrate the applied
external forces on each agent. The maximum external force is 80 (N) (65% of one robot’s weight) on the x-, y-, and z-directions. The evolution of the forces
in each direction is sinusoidal, with a maximum random period of 4 (s). External forces are applied from 1 (s) to 60 (s). The maximum payload mass is 5
(kg). (d) The plot describes the success rate of the trajectory planners with 1200 randomly applied external forces and payloads in numerical simulations. The
overall success rate of the nominal, centralized, and distributed MPCs subject to external forces and payloads is 0%, 55.6%, and 53.9%, respectively.

The maximum mass of the payload is also assumed to be 5
(kg). We evaluate the cooperative locomotion as a success if
the agents sustain the stability until 60 seconds. We assess the
locomotion as a failure if at least one of the agents’ bodies
touches the ground before 60 (s). The success rate versus
time is depicted in Fig. 21(d). The overall success rate of
the nominal, centralized, and distributed MPCs is 0%, 55.6%,
and 53.9%, respectively.

Our experimental studies in Figs. 12-18 and Fig. 20 suggest
that the proposed centralized and distributed trajectory plan-
ners show similar robustness in indoor and outdoor experi-
ments. Slightly better robustness has been observed in numer-
ical simulations of Fig. 21 when employing the centralized
MPC at the high level. Still, the success rate between the
centralized and distributed MPCs does not significantly differ.
These comparisons suggest that the proposed centralized and
distributed MPCs can robustly stabilize dynamic cooperative
locomotion. We observe that the distributed MPC has less
computation time in numerical and experimental studies. How-
ever, it is essential to note that the computation time of cen-
tralized MPC may potentially be reduced with more efficient
implementation methods. In addition, the primary advantage
of the distributed MPC approach lies in its inherent reliability.
Specifically, instead of relying on centralized decision-making,
the distributed MPC approach enables each agent to act
independently, informed by knowledge of the other agent’s
optimal trajectory derived from the previous solution. The
centralized MPC has a straightforward synthesis procedure and
assumes that all states from two agents are readily available for
decision-making. In case of communication issues or limited
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Fig. 22. Plots of the locally estimated Lagrange multipliers λ1,t|t and λ2,t|t
by two agents using the distributed MPC algorithm. The local values reach
an agreement and stay close to each other.

computation resources, the distributed MPC can be beneficial
as it assumes a one-step communication delay and reduces the
computational burden of the planners. However, it has a more
complex formulation.

B. Evolution of the Lagrange Multiplier in Distributed MPC

Section VI-A demonstrated a similar success rate for the
centralized and distributed MPC algorithms with the randomly
generated terrains and disturbances. To further study this simi-
lar robust stability behavior, Fig. 22 illustrates the evolution of
the Lagrange multiplier, λ, computed for each agent with the
distributed MPCs. In formulating the distributed MPC, each
agent locally computes the Lagrange multiplier according to
the one-step communication delay and the agreement protocol.
Therefore, λ on each distributed MPC evolves differently.
We introduced the consensus protocol in the cost function
of (23) to mitigate the divergence of the local estimates and
to impose the agreement. The magnified portion of the plot
in Fig. 22 shows that the initial λ values on each agent
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Fig. 23. Plots of the locally computed Lagrange multipliers λ1,t|t and λ2,t|t
using the distributed MPC algorithm subject to a constant estimation bias of
(a) 48 (N/m) and (b) 58 (N/m). The bias in estimating the Lagrange multipliers
is injected at time 1(s) and continues till the end of simulations. The estimated
Lagrange multipliers from local MPCs robustly come to an agreement during
the steady state in (a), whereas the agreement does not happen in (b).

Fig. 24. Plots of the estimated height of agents’ front right legs. Initial
locomotion has complete synchrony before encountering the rough terrain
described in the gray area in the plot. After engaging the rough terrain,
asynchrony happens between agents. However, the layered control approach
robustly stabilizes the cooperative gait.

are different while converging after a short amount of time
according to the consensus protocol. The plot also shows
that each agent’s λ values are not precisely the same during
cooperative locomotion. However, we can observe that both λ
values stay close.

To study the robustness of the distributed MPC and consen-
sus protocol, we assume that there is a constant bias in the one-
step communication delay for sharing the optimal estimated
values of λ between local MPCs. In particular, we suppose
that the optimal estimated values computed by the local MPC
of agent j = 1 (i.e., λ⋆j,k+t|t−1) are used subject to an additive
bias amount of 48 (N/m) in the cost function of (23) associated
with the local MPC of agent i = 2. More specifically, we
replace λ⋆j,k+t|t−1 by λ⋆j,k+t|t−1 + 48 in the consensus term
of the cost function for the local MPC (23) of the agent 2.
Furthermore, this bias is assumed to be one-directional in
that a similar bias is not considered for the cost function
of the local MPC 1. This can help us to study the stability
margin in the consensus protocol and estimation. Figure 23(a)
depicts the evolution of the local optimal Lagrange values (i.e.,
λ1,t|t and λ2,t|t) computed by the distributed MPCs versus the
time. Here, the bias value of 48 (N/m) is injected at time
1(s). Before this time, the local Lagrange multipliers have
almost the same values (i.e., agreement), and after the injection
of the bias, there is a transient response. Finally, the local
Lagrange multipliers reach the steady-state phase and come to
an agreement again (after 13(s)). In this simulation, the robots
have stable locomotion. However, their relative positions with
respect to each other change over time during the transient
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Fig. 25. Phase portraits for (a) the body roll and (b) the body pitch of agent 1
with the centralized MPC and (c) the body roll and (d) the body pitch of agent
1 with the distributed MPC during different experiments. The plots show the
robustness of the cooperative locomotion over rough terrain with fixed DOFs
in holonomic constraints on the roll, pitch, and yaw directions.

phase, whereas this relative position becomes constant during
the steady-state phase. This agreement behavior happens for all
bias values less than 48 (N/m). This simulation also confirms
the robustness of the distributed controller over an inaccurate
estimation of the Lagrange multipliers. Finally, Fig. 23(b)
illustrates the evolution of the Lagrange multipliers for a
higher value of the bias taken as 58 (N/m). Here, a steady-
state phase occurs, but there is no agreement in the local
estimations of λ. Furthermore, the relative positions of the
agents in this latter simulation change in a periodic manner
during the steady-state mode (after 13(s)).

C. Synchronization and Asynchronization

We aim to study the robustness of the layered control
approach against possible phase differences between agents
that can easily occur on rough terrain, where the discrete-time
transitions (i.e., impacts) happen earlier or later than antici-
pated times on normal gaits. To further investigate this point,
we study the estimated height of the agents’ front right legs
over rough terrain in Fig. 24. Both agents are synchronized
at the beginning of the locomotion. After encountering the
rough terrain, the asynchrony is observed in Fig. 24. However,
the proposed centralized and distributed MPCs show robust
cooperative gaits over unknown rough terrains, as shown in
Figs. 11(a), 16, 19, and Fig. 20. Moreover, the robustness
subject to more than 1000 randomly generated rough terrains
is also validated in Fig. 21.

D. Robustness Against Unknown Holonomic Constraints

The holonomic constraint of Section II assumes a distance
constraint between the interaction points of agents. In partic-
ular, we take no additional rotational constraints at the inter-
action points. This assumption simplifies the interconnected
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SRB model and, thereby, the centralized and distributed MPC
algorithms. However, more sophisticated connections could
exist, such as limited DOFs on both ends of the holonomic
constraint. Here, we study the robustness of the proposed
MPCs subject to uncertainties arising from rotational restric-
tions at the interaction points. These constraints can arise from
cooperative loco-manipulation in various applications. Figure
25 depicts the body roll and pitch evolution during coopera-
tive locomotion over rough terrain with different holonomic
constraints at the interaction points, including restrictions
on ball joints’ pitch-yaw, yaw-roll, roll-pitch, and roll-pitch-
yaw. These restrictions are implemented with the different
mechanisms designed in Fig 5. The robust stability of the
cooperative locomotion with the proposed centralized MPC is
shown in the phase portraits of the body roll and body pitch
in Figs. 25(a) and 25(b). The robust stability of the proposed
distributed MPC is also illustrated in Figs. 25(c) and 25(d).
We observe that the cooperative locomotion over rough terrain
with different and unknown holonomic constraints has robust
stability similar to the one illustrated in Fig. 16. However, the
phase portraits in Fig. 25 show that the unknown additional
interactions from the limited DOFs on both ends of the
holonomic constraint can induce aggressive angular positions
and velocity changes.

E. Limitations and Future Study

1) Feasibility of the MPC: There is a possibility of in-
feasibility when solving the centralized and distributed MPCs
since we did not consider adding the slack variables to guar-
antee feasibility. However, MPCs have not shown infeasibility
during numerical simulations and experimental evaluations
of Section V. We also remark that the proposed trajectory
planners do not show infeasibility in the numerical simulations
described in Fig. 9, where the desired velocities are not
consistent with the holonomic constraints. More specifically,
the proposed trajectory planners generate the optimal GRFs
that induce new feasible velocity trajectories that meet the
holonomic constraints. Even though the validations in this
paper show the feasibility of the MPCs in various scenarios,
adding slack variables to the equality constraints of MPCs can
relax the conditions arising from the dynamics and holonomic
constraints. This can further improve the numerical stability
of the trajectory planners.

2) Optimal control with switching: The proposed MPC
approaches for cooperative locomotion were shown to be very
robust to various unknown terrains and subject to unknown
disturbances. However, the gait presented here does not exhibit
extremely dynamic or highly agile maneuvers. One of the
reasons for this is the relatively small planning horizon (25
(ms)). While the distributed approach provides an interesting
avenue to explore longer horizons in future work due to
the considerable decrease in computation time, long horizons
suffer when only considering the current domain. For this
reason, future work should not only explore increased planning
lengths but should also consider a PWA optimal control
formulation [88, Chap. 16] such that the change in stance leg
configurations can be considered directly by the planner.

3) Sophisticated constraints between agents: We assumed
the holonomic constraint (2) with a ball joint on agents to
simplify the development of the interconnected reduced-order
model and the synthesis of centralized and distributed MPCs.
We further studied the robustness of the proposed layered con-
trol approach subject to the unknown restrictions on the ball
joints in Section VI-D. However, based on the necessity, the
holonomic constraints in (2), (7), and (10) can be generalized
to include additional constraints. This will increase the number
of Lagrange multipliers, and a modified model, based on (3),
can be used to describe the evolution of the system subject
to additional constraints. One application can be sophisticated
cooperative loco-manipulation for quadrupedal robots.

4) Extension to multi-agents: Our previous work [1] pre-
sented quasi-statically stable cooperative gaits for M ≥ 2
agents. In particular, a closed-form expression for the inter-
connected LIP models was developed to address the real-time
trajectory planning based on a centralized MPC algorithm. The
interconnected LIP model cannot address interaction torques
between the agents. Furthermore, the gait is not dynamic. The
current paper presents an interconnected reduced-order model,
based on the SRB dynamics, that addresses interaction torques
between the agents while allowing dynamic cooperative gaits.
However, a closed-form expression for the Jacobian matrices
in (13) and (15) may not be easily computed for M ≥ 3
interconnected SRB dynamics with sophisticated holonomic
constraints. Our future work will investigate the extension of
the approach for dynamic cooperative locomotion of M ≥ 3
agents with complex holonomic constraints. One possible
way is to develop robust distributed MPC algorithms inte-
grated with reinforcement learning and data-driven techniques
[56], [83] to bridge the gap between interconnected reduced-
order models and full-order models. Considering the team of
constrained two (multiple) legged robots as one unique and
complex structure is another possible way for future studies.
This will enable us to develop planning and control algorithms
for the sophisticated gaits of the whole structure. We will also
study the computational burden of these algorithms.

5) Coordination between agents: In numerical simulations,
each agent’s global coordinates can be easily used without
sensor limitations or unexpected noises. However, experimen-
tal evaluations estimate the agents’ global coordinates via
kinematic estimators. The estimation errors may result in
unexpected coordination changes. This paper addresses this
issue by the human operator who coordinates the agents with
the corresponding speed commands from the joystick. For
example, the user commands a higher or lower desired speed
to the lagging or leading agent, respectively. Our future work
will investigate the design of algorithms that robustly estimate
the global coordinates of the agents with noisy measurements.

VII. CONCLUSION

This paper presented a layered control algorithm for real-
time trajectory planning and robust control for cooperative
locomotion of two holonomically constrained quadrupedal
robots. An innovative reduced-order model of cooperative
locomotion is developed and studied based on interconnected
SRB dynamics. At the high level of the layered control
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algorithm, the real-time trajectory planning problem is for-
mulated as an optimal control problem of the interconnected
reduced-order model with two different schemes: centralized
and distributed MPCs. The centralized MPC plans for the
global reduced-order states, global GRFs, and the interaction
wrenches between agents. The distributed MPC assumes the
one-step communication delay and an agreement protocol to
solve for the local reduced-order states, local GRFs, and the
local estimated wrenches. At the low level of the control
scheme, distributed nonlinear controllers, based on QP and vir-
tual constraints, are developed to impose the full-order model
of each agent to track the optimal reduced-order trajectories
and GRFs prescribed by the high-level MPCs.

The effectiveness of the proposed layered control approach
was verified with extensive numerical simulations and experi-
ments for the blind and robust cooperative locomotion of two
holonomically constrained A1 robots with different payloads
on different terrains and subject to external disturbances. A
detailed study was presented to compare the performance of
the proposed centralized and distributed MPCs over more than
1000 randomly generated landscapes and external pushes. It
was shown that the distributed MPC has a robust stability
performance similar to that of the centralized MPC, while
the computation time is reduced significantly. The results also
show that both the centralized and distributed MPCs integrated
with the interconnected SRB dynamics can drastically improve
the robust stability of cooperative locomotion compared to the
individual nominal MPCs. The experimental results suggest
that the proposed control algorithm can result in robustly
stable cooperative locomotion on different terrains subject
to unknown payloads and external disturbances at different
speeds. The robustness of the control approach was also stud-
ied against uncertainties in holonomic constraints and assump-
tions. The centralized MPC has a simpler synthesis procedure.
However, it assumes ideal communication conditions between
the agents, such as the availability of all state variables.
Distributed MPC is developed based on a decomposition of
the centralized MPC subject to a one-step communication
delay and an agreement protocol and is beneficial in case of
hardware limitations, such as limited computational resources.

For future work, we will investigate the extension of the
approach for more sophisticated constraints between agents.
We will also study the extension to multi-agents while sys-
tematically developing robust optimal control algorithms to
address switching in hybrid models. As an alternative research
direction, we will explore how to take benefit from cooperation
and interaction forces for traversing highly tilted floors that
cannot be achieved with single-agent robots.
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