
IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024 2181

A Geometric Framework for Stiffness Mappings of
Compliant Robotic Systems on the Special

Euclidean Group
Tengyu Hou , Ye Ding , Member, IEEE, and Xiangyang Zhu , Member, IEEE

Abstract—In this article, the stiffness mapping of compliant
robotic systems is generalized to the special Euclidean group SE(3).
A geometric framework is proposed to unify the existing stiffness
models. We analyze the symmetry and exactness relationship be-
tween joint and Cartesian stiffness matrices in this framework. To
verify the theoretical results, motions of different types of manipu-
lators, including serial and parallel ones, are tested in simulations.
Based on the conservative property of the stiffness matrix, an
impedance control strategy to achieve variable stiffness is proposed.
In addition, a feasible stiffness identification method is developed
using the skew-symmetric structure of the stiffness matrix.

Index Terms—Conservative stiffness matrix, impedance control,
passivity-based control, stiffness identification, stiffness mapping,
symmetry and exactness.

I. INTRODUCTION

ROBOT stiffness describes the amount of deflection that
occurs when the end-effector is subjected to an external

force. In applications such as robotic processing and gripping,
the design or control of appropriate stiffness parameters largely
determines the performance of the compliant robotic system
as the robot interacts with the environment. Therefore, robot
stiffness modeling has become a fundamental and critical issue.

In the early work, Dimentberg [1] used the screw theory
developed by Ball [2] to describe the moving rigid body in the
potential field, further giving the symmetric stiffness matrix in
the equilibrium state. With the help of the Lie algebra, Lon-
caric [3] studied the system of single rigid bodies connected by
a linear spring, giving the properties of the stiffness matrix.

The current mainstream stiffness modeling methods are
roughly divided into the finite element analysis (FEA)
method [4], [5], [6], [7], the matrix structural analysis (MSA)
method [8], [9], [10], [11], and the virtual joint modeling (VJM)
method [12], [13], [14], [15], [16]. Compared with the FEA and
MSA, as shown in Fig. 1, the VJM unifies the flexibility of the
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actuator, linkage, and other components into a flexible virtual
spring and maps the flexibility characterized by the virtual spring
to the end-effector of the robot system. The VJM represents a
more clear physical model and is much less computationally
intensive, so it has been widely used in stiffness modeling and
has been developed over the years. Salisbury [17] considered
the flexibility mainly originates from the actuator and treated
the links as rigid bodies, deriving the conventional stiffness
mapping KC = J−TKθJ

−1 for the serial manipulator to de-
scribe the stiffness transformation between Cartesian space and
joint space. Here, Kθ is the stiffness matrix corresponding to
the virtual spring, KC is the Cartesian stiffness matrix of the
robotic end-effector characterization, and J is the kinematic Ja-
cobian. Gosselin [18] further generalized Salisbury’s model and
showed that the stiffness mapping has a similar form on parallel
manipulators. Zhang et al. [19], [20] included the flexibility of
the actuators and connecting rods to model the stiffness of serial
and parallel manipulators. Pashkevich et al. [12] expressed the
flexibility of the linkage in terms of a six-dimensional spring
and considered the effect of the passive joint on the stiffness
of the serial and parallel manipulators. Chen and Kao [21]
took into account the loads applied to the end-effector of the
serial manipulator and derived conservative congruence trans-
formation (CCT) KC = J−T (Kθ −Kg)J

−1. Kg describes the
effect on the system stiffness due to external forces as well as
changes in the Jacobian. When the manipulator is not subjected
to the external load, the stiffness component Kg is zero, and
the stiffness mapping relationship degenerates to the case of
conventional stiffness transformation. In addition, Kao et al. [22]
pointed out that CCT is still valid for parallel manipulators.
Alici and Shirinzadeh [23] experimentally illustrated the cor-
rectness of CCT. A more general mapping of stiffness KC =
J−T (Kθ −Kg +KI)J

−1 was obtained by Quennouelle and
Gosselin [14], [24], [25] by including the external forces on the
mechanical system as well as geometric constraints. In this case,
KI is induced by geometric constraints and passive joints. Yi and
Freeman [26], [27] took external loads, gravity loads, and drive
redundancy into account to obtain the nonlinear stiffness model.
Subsequently, more and more factors were considered in the
stiffness modeling. Pashkevich et al. [13] performed nonlinear
stiffness modeling of manipulators subjected to external and
internal loads with passive joints and successfully predicted
nonlinear behavior such as buckling. Later, they considered more
types of external as well as internal loads to refine the nonlinear
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Fig. 1. Compliant robotic systems. The yellow virtual springs characterize the flexibility of the system in joint space, and the red virtual springs characterize the
flexibility of the system in Cartesian space as it interacts with the environment. (a) The serial manipulator with virtual springs. (b) The parallel manipulator with
virtual springs.

stiffness model [16]. It is worth mentioning that the actual
factors considered in the various stiffness modeling methods
mentioned above are different, and their corresponding stiffness
transformation relations are also slightly different. Meanwhile,
the VJM has been widely used to model the stiffness of specific
serial and parallel manipulators [28], [29], [30], [31], [32], [33],
[34].

The stiffness properties characterized by the mechanical sys-
tem have received lots of attention. Griffis and Duffy [35] studied
the planar and spatial spring system by modeling the stiffness
mapping at the point of deviation from the equilibrium and
showed that the stiffness matrix is asymmetric. The stiffness
matrix can be approximated as a symmetric matrix when the
system is near equilibrium. Ciblak and Lipkin [36] showed that
the stiffness matrix becomes asymmetric in the presence of
external forces and gave an analytical expression for the skew-
symmetric part of the stiffness matrix. The symmetry of the
stiffness matrix was explained in terms of energy interaction with
the environment in robotic grasping by Li and Kao [37]. Pigoski
et al. [38] gave the coordinate system that makes the stiffness
matrix a symmetric matrix. Howard et al. [39] reached a similar
conclusion by using differential geometry. However, they did not
reveal the relationship between geometry and stiffness mapping.
Although modeling of the stiffness matrix in nonequilibrium
states had been previously available [26], [40], [41], Chen and
Kao [21], Kao and Ngo [42], Chen [43] first systematically stud-
ied the properties of the stiffness matrix under the action of exter-
nal forces from the perspective of conservative properties. They
pointed out thatKC satisfies both exactness and symmetry under
the CCT in linear R3×3 spaces. However, they basically elab-
orate properties from a qualitative perspective. Žefran and Ku-
mar [44] used differential geometry to model the stiffness tensor
and showed that the connection determines the symmetry of the
stiffness tensor. The symmetric connection will result in a sym-
metric stiffness matrix. Other works analyzed the properties of
the stiffness matrix from different perspectives [45], [46], [47].

From the existing literature review, it is known that stiffness
modeling is often done from a mechanical point of view: when
the considered mechanical conditions change, the established
stiffness models change, which leads to difficulties in obtaining

a uniform stiffness model. Many researchers study the stiffness
matrices in flat space, which often has a complicated and tedious
derivation process and unclear geometric intuition. Although
there is some work on stiffness modeling using geometric tools,
no clear correspondence between the geometric structure and
the stiffness mapping has been established. Moreover, a system-
atic discussion on the property relationship between joint and
Cartesian stiffness matrices is lacking. Most of the studies focus
on symmetry, and there are few studies on exactness.

This article proposes a geometric framework for describing
the stiffness of compliant robotic systems. We give the geo-
metric description of the conservative stiffness matrix using the
differential form. Conditions of the conservative stiffness matrix
on the translational subgroup T (3) are derived by considering
symmetry and exactness. We further generalize the conclusion
to SE(3): a symmetric and exact joint stiffness matrix corre-
sponds to a conservative Cartesian stiffness matrix. Unlike the
commonly used mechanical perspective, the geometric struc-
tures behind the different stiffness mappings are revealed. Then,
we introduce some stiffness mappings with specific properties,
where CCT is the only transformation to generate conservative
Cartesian stiffness matrices on T (3). In addition, we derive the
exact congruence transformation (ECT), which produces exact
stiffness matrices on T (3). All the stiffness mapping models can
be unified in the differential geometry framework. Finally, the
above analysis of exactness and symmetry guides the impedance
controller’s design and the stiffness matrix’s identification.

The contributions of this article can be summarized as fol-
lows.
1) We use the stiffness tensor defined on the manifold to unify

the stiffness models from the above literature in a differential
geometry framework, as shown in Table III. In the geometric
framework, the properties of the stiffness matrix can be
clearly explored.

2) We quantitatively derive the correspondence of the prop-
erties of the joint stiffness matrix to the properties of the
Cartesian stiffness matrix on T (3). Further, we generalize
the conclusion to SE(3): a symmetric and exact joint stiffness
matrix corresponds to a conservative Cartesian stiffness
matrix under CCT, as shown in Fig. 3. This further shows
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that a Cartesian matrix can still be conservative when it is
not symmetricand exact on SE(3).

3) Using the conservative property of the stiffness matrix, we
design an impedance control strategy that allows generating
a variable stiffness while maintaining passivity. Meanwhile,
by analyzing the symmetry of the stiffness matrix, we pro-
pose a feasible stiffness identification strategy.

The rest of the article is organized as follows. Section II in-
troduces the background knowledge about differential geometry
and stiffness matrix. The relevant notations are summarized in
Table I. For more specialized and detailed content, readers can
refer to [48], [49], [50], [51]. Then, the conditions for conser-
vative stiffness matrix on T (3) are given in Section III, and the
relationship between the joint and Cartesian stiffness matrices
on T (3) will also be given in this section. In Section IV, the
geometry corresponding to CCT is presented and used to analyze
the properties of Cartesian stiffness matrices. Meanwhile, the
conclusion about the conservative stiffness matrix is extended
to SE(3). A class of stiffness mappings with special properties
is presented in Section V, and the correspondence between the
geometry and the stiffness mapping is revealed. In Section VI,
the validity of the previous theory results is illustrated using
serial and parallel manipulator simulations. The selection of
connection for practical situations and two specific applications
of the aforementioned theory are illustrated in Section VII.
Finally, Section VIII concludes this article.

II. BACKGROUND KNOWLEDGE

A. Introduction to SE(3)

A rigid body moving in space has six degrees of freedom. The
special orthogonal group SO(3) can represent the rotation, and
R3 can represent the translation. The 6-D Lie group formed by
the semidirect product of SO(3) with R3 becomes SE(3)

SE(3) =

{
A | A =

[
R d
0 1

]
,d ∈ R3,R ∈ SO(3)

}
. (1)

The identity element on SE(3) is the identity matrix I4×4. The
tangent space at I4×4 is called the Lie algebra se(3)

se(3) =

{[
Ω v
0 0

]
,Ω ∈ R3×3,v ∈ R3,ΩT = −Ω

}
. (2)

Any element of se(3) can be represented by a 6-D vector after
a set of basis is chosen as follows:

L1 =

⎡
⎢⎢⎣
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎤
⎥⎥⎦ , L4 =

⎡
⎢⎢⎣
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

L2 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , L5 =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

TABLE I
LIST OF NOTATIONS IN THE ARTICLE
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L3 =

⎡
⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , L6 =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ . (3)

The Lie algebra is a linear space equipped with a Lie bracket
[, ] : se(3)× se(3) → se(3), which is the product operation in
se(3)

[T1,T2] = T1T2 −T2T1 (4)

where T1,T2 ∈ se(3). Then the structure constants of the Lie
algebra Ck

ij are defined as

[Li,Lj ] = Ck
ijLk. (5)

Note that an index appears once in the superscript and once in
the subscript in a term implies a summation over that index. The
summation convention is used throughout this article.

The nonzero structure constants Ck
ij are as follows:

C3
12=C2

31=C1
23=C6

15=C4
26=C5

34=C6
42=C4

53=C5
61=1

C3
21=C2

13=C1
32=C6

51=C4
62=C5

43=C6
24=C4

35=C5
16=−1

(6)

B. Vector Fields

A smooth vector field on the manifold means the tangent
vector is attached smoothly at each point. The set of smooth
vector fields on SE(3) is denoted as X(SE(3)).

For any twist T ∈ se(3), the left invariant vector fields T̂

could be generated by assigning a vector T̂

∣∣∣∣
A

at every point

A ∈ SE(3)

T̂

∣∣∣∣
A

= AT. (7)

Using the set of basis Li(i = 1, 2, . . . , 6) given above, the
basis of left invariant vector fields L̂i(i = 1, 2, . . . , 6) are

L̂i

∣∣∣∣
A

= ALi (i = 1, 2, . . . , 6) . (8)

The Lie algebra isomorphism lead to[
L̂i, L̂j

]
= ̂[Li,Lj ] = Ck

ijL̂k. (9)

Similarly, the case for the basis of right invariant vector fields
are

L̃i

∣∣∣∣
A

= LiA (i = 1, 2, . . . , 6) (10)

[
L̃i, L̃j

]
= − ˜[Li,Lj ] = −Ck

ijL̃k. (11)

In robotics, we can choose joint variables ξi as local coor-
dinates, which generates Ei =

∂
∂ξi (i = 1, 2, . . . , n). It is called

the coordinate basis. When n is equal to or less than 6, the joint
coordinates can be considered as local coordinates of SE(3) or
its submanifold, respectively. The Lie bracket vanishes on the
coordinate basis

[Ei,Ej ] = 0. (12)

The Jacobian J represents the velocity relationship between
joint and Cartesian space. Here, γi

j denotes the ith row and jth
column of J, and αi

j denotes the ith row and jth column of
J−1 (or generalized inverse). When J is a body manipulator
Jacobian [52], the following relation holds:

Ei = γj
i L̂j (13a)

L̂i = αj
iEj . (13b)

C. Dual Vector Fields

A dual vector field is obtained after a dual vector is given at
each point on the manifold. The set of smooth dual vector fields
is denoted as X∗(SE(3)). The dual basis dξi is obtained in the
dual space after giving the basis ∂

∂ξi (i = 1, 2, . . . , n). Then, the
contraction between the dual and original space is〈

dξi,Ej

〉
= δij (14)

where

δij =

{
1 i = j
0 i �= j.

(15)

D. Other Types of Tensors

A differential k-form on SE(3) is an assignment of an anti-
symmetric covariant kth-order tensor to each point. The vector
space of smooth k-forms is denoted as Ωk(SE(3)).

The Riemann curvature tensor R can be considered as a
measure of how much manifolds deviate from the Euclidean
space. For any X,Y ∈ X(SE(3)), it can be seen as a mapping
R(X,Y ) : X(SE(3)) → X(SE(3)).

E. Differential Operator

∇Y X is the covariant derivative ofX along the directionY for
any X,Y ∈ X(SE(3)). After defining the covariant derivative, a
rule called parallel transport is defined to “connect” the tangent
vectors at different points on the manifold. This endows the
manifold with a connection [51]. If for any X,Y ∈ X(SE(3)), a
connection always satisfies

∇XY −∇Y X = [X,Y ] (16)

then the connection is called symmetric.
On SE(3) one can define

∇Ei
Ej =

EΓk
jiEk (17a)

∇L̂i
L̂j =

LΓk
jiL̂k (17b)

where EΓk
ji and LΓk

ji are, respectively, the Christoffel symbols

under basis {Ei} and {L̂i}. By generalizing Leibniz’s law, co-
variant derivative can be extended to the dual vector fields [48].
For any U, V ∈ X(SE(3)), F ∈ X∗(SE(3)), the following con-
dition holds:

〈∇UF, V 〉 = U (〈F, V 〉)− 〈F,∇UV 〉 . (18)
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Fig. 2. Conservative system is subjected to the external force f doing work
along a closed path ∂Σ. Σ is the surface with boundary ∂Σ.

For the differential forms, there exists exterior differentiation
d : Ωk(SE(3)) → Ωk+1(SE(3)), satisfying d ◦ d ≡ 0. For a k-
form ω, ω is exact if there exists a (k − 1)-form η such that
ω = dη, and closed when dω = 0.

The configuration of a conservative mechanical system deter-
mines the potential energy Φ. Then, we get the force one-form
dΦ. The torque of ith joint τi and the ith component of the
wrench Fi acting on the end-effector are expressed as

τi = 〈dΦ,Ei〉 =
∂Φ

∂ξi
(19a)

Fi =
〈
dΦ, L̂i

〉
= L̂i (Φ) . (19b)

F. Conservative Stiffness Matrix

In Fig. 2, a conservative system is subjected to a force, and
the system translates along a closed path ∂Σ. When the force
f corresponding to the Cartesian stiffness matrix K is a point
function and the work W done by this force is also a point
function, the stiffness matrix is said to be conservative

W =

∮
∂Σ

f · dx = 0 (20a)

f =

∮
∂Σ

K · dx = 0 (20b)

where x = [x, y, z]T .
Kao and Ngo [42] studied the case of translational motion.

They transformed the problem into the integration over the
surface Σ and pointed out that (20a) and (20b) require the
stiffness matrix to be symmetric and exact, respectively:
1) Symmetry: kij = kji(1 � i, j, k � 3).
2) Exactness: ∂kij

∂xk = ∂kik

∂xj (1 � i, j, k � 3).
where kij means the ith row and jth column of K ∈ R3×3.

G. Stiffness Modeling

Howard et al. [39], Žefran and Kumar [44], [53] used differ-
ential geometry to study the stiffness matrix. ∇Y dΦ describes
the change of force along the vector field Y . The contraction
between vector field X and ∇Y dΦ defines the stiffness tensor
K = ∇dΦ on manifold

K(X,Y ) = 〈∇Y dΦ, X〉 = (Y X −∇Y X) (Φ). (21)

Žefran and Kumar [44] showed that a symmetric connection
leads to a symmetric stiffness matrix. They stated that the stiff-
ness tensor is symmetric when one of the following conditions
is satisfied:

LΓk
ji − LΓk

ij = Ck
ij (22)

EΓk
ij =

EΓk
ji. (23)

III. CONSERVATIVE STIFFNESS MATRIX ON T (3)

From Section II-F, we know that when the mechanical system
undergoes translational motion, the simultaneous satisfaction
of symmetric and exact conditions guarantees a conservative
Cartesian stiffness matrix. The translational motion can be de-
scribed by the subgroup of SE(3), which is denoted by T (3).
Since symmetry has been studied by many scholars, this section
focuses on exactness on T (3).

A. Conservative Stiffness Matrix on T (3)

In this section, we give a geometric statement of the con-
servative stiffness matrix. The following differential forms are
constructed based on (20) [x, y, and z are the coordinates on
T (3)]:

ω0 = fxdx+ fydy + fzdz, ω1 = k11dx+ k12dy + k13dz

ω2 = k21dx+ k22dy + k23dz, ω3 = k31dx+ k32dy + k33dz.
(24)

When the force and work are point functions in space, it means
that the differential forms ωi(i = 0, 1, 2, 3) defined above are
exact. Then, the following lemma can be used to solve the above
problem.

Lemma 1 (The Poincaré lemma [50]): If B is an open ball in
Rn, any closed k-form defined on B is exact, for any integer k
with 1 � k � n.

Note that the above ωi are actually defined in R3. Based on
the Poincaré lemma, the closed form is equivalent to the exact
form. Therefore, we only need to look for conditions that ensure
ωi(i = 0, 1, 2, 3) are closed forms. It is easy to check that

dω0 = 0 ⇒ kij = kji

dω1 = dω2 = dω3 = 0 ⇒ ∂kij
∂xk

=
∂kik
∂xj

which are exactly the symmetric and exact conditions mentioned
before.

It is worth mentioning that the work done as a point function is
not guaranteed when the Cartesian stiffness matrix only satisfies
the symmetric condition. The satisfaction of the symmetric
condition alone does not guarantee that the force is a continuous
function in space, which leads to ambiguities in the definition of
the stiffness matrix. When the exact condition is further added,
both work and force are point functions. This statement will be
verified later by numerical simulations in Section VI.

B. Exact Stiffness Matrix on T (3)

In this section, the exact Cartesian stiffness matrix is analyzed
on T (3). For a conservative mechanical system, the ith row and
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jth column of the joint stiffness matrixKθ is generally expressed
as (here we consider only the most general case, for the case with
passive joints and flexible links, see Appendices E and F)

[Kθ]ij = EjEi (Φ) =
∂2Φ

∂ξj∂ξi
. (25)

In the basis {L̂i}, the components of the stiffness tensor can
be expressed as

KL
ij = K

(
L̂i, L̂j

)
=
(
L̂jL̂i −∇L̂j

L̂i

)
(Φ). (26)

Notice that KL
ij correspond to the components of the Cartesian

stiffness matrix, i.e., KL
ij = [KC ]ij .

The condition for the exactness of the Cartesian stiffness
matrix on T (3) is

L̂k

(
KL

ij

)
= L̂j

(
KL

ik

)
(i, j, k = 4, 5, 6) . (27)

Expand the left side of (27)

L̂k

(
KL

ij

)
= L̂k

((
L̂jL̂i − LΓm

ij L̂m

)
(Φ)
)

= L̂kL̂jL̂i(Φ)−L̂k

(
LΓm

ij

)
L̂m(Φ)−LΓm

ij L̂kL̂m(Φ)

=
∂3Φ

∂xk∂xj∂xi
− ∂LΓm

ij

∂xk

∂Φ

∂xm
− LΓm

ij

∂2Φ

∂xk∂xm
.

(28)

Note that exactness implies that (28) is symmetric with respect
to the indexes j and k (i, j, k = 4, 5, 6). For illustration, a
connection that satisfies the exactness condition is called an
exact connection.

The condition for the exactness (27) can also be written in
{Ei}. The derivation is more complicated, but we can obtain
some new conclusions

L̂k

(
KL

ij

)
= αp

kEp

(
αl
j

(
ElEm(Φ)− EΓn

mlEn(Φ)
)
αm
i

)
=

(
−αl

kα
p
jα

n
i
EΓm

np + αp
k

∂
(
αl
jα

m
i

)
∂ξp

)
∂2Φ

∂ξl∂ξm

+ αp
kα

l
jα

m
i

∂3Φ
∂ξp∂ξl∂ξm

−αp
k

∂(αl
j
EΓn

mlα
m
i )

∂ξp
∂Φ
∂ξn.

(29)

To see more clearly the relationship between joint and Carte-
sian stiffness matrix, the above equation is expressed as

L̂k

(
KL

ij

)
=

(
−αl

kα
p
jα

n
i
EΓm

np + αp
k

∂
(
αl
jα

m
i

)
∂ξp

)
[Kθ]ml

+ αp
kα

l
jα

m
i

∂[Kθ]ml

∂ξp
− αp

k

∂
(
αl
j
EΓn

mlα
m
i

)
∂ξp

τn

= [C1]
lm
kji [Kθ]ml + [C2]

plm
kji

∂[Kθ]ml

∂ξp
+ [C3]

n
kji τn

(30)

exactness implies that (30) is symmetric with respect to the
indexes j and k which means the following condition:

[C1]
lm
kji = [C1]

lm
jki (31a)

∂[Kθ]ml

∂ξp
=

∂[Kθ]mp

∂ξl
(31b)

[C3]
n
kji = [C3]

n
jki (31c)

where (31b) means the exactness of the joint stiffness matrix.
According to (30), the following corollaries for the stiffness

matrix on T (3) could be concluded.
Corollary 1: If the joint stiffness matrix is not exact, the

Cartesian stiffness matrix will not be exact either. The indexes
asymmetry of the [C2]

plm
kji

∂[Kθ]ml

∂ξp term will generally result in
overall asymmetry of (30).

Corollary 2: When the joint stiffness matrix is exact but
asymmetric, the resulting Cartesian stiffness matrix could still
be exact. In fact, the asymmetric and exact joint stiffness matrix
generates an asymmetric and exact Cartesian stiffness matrix
by CCT on T (3). The complete proof procedure is shown in
Appendix A.

Corollary 3: The exact condition (31a) can be relaxed when
the joint stiffness matrix is symmetric: [C1]

lm
kji + [C1]

ml
kji are

symmetric with respect to indexes j and k.

IV. PROPERTY OF CARTESIAN STIFFNESS MATRIX UNDER CCT

Salisbury [17] and Gosselin [18] proposed the conventional
stiffness mapping betweenKθ andKc. Then, Chen and Kao [21]
derived the CCT. In this section, the geometric implication of
CCT is explained, and further, the properties of the Cartesian
stiffness matrix under CCT on T (3) and SE(3) are given.

A. Connection Corresponding to CCT

In contrast to the conventional stiffness mapping, KC =
J−TKθJ

−1, the CCT stiffness mapping

KC = J−T (Kθ −Kg)J
−1 (32)

where the matrix Kg is written as
[(

∂JT

∂ξ1 F
) (

∂JT

∂ξ2 F
)

· · ·(
∂JT

∂ξn F
)]

, introduces term Kg describing the Jacobi variation

and external loads. F =
[
mT fT

]T
is the wrench applied

at the end-effector, where m is the moment. The component
representation of (32) is

[KC ]ij = αk
i [Kθ]klα

l
j − αk

i

∂γp
k

∂ξl
Fpα

l
j

= αk
i [Kθ]klα

l
j − αk

i

∂γp
k

∂ξl
αm
p Em (Φ)αl

j (33)

where Fp = L̂p(Φ) = αm
p Em(Φ).

Notice that

KL
ij =

〈
∇αl

jEl
dΦ, αk

i Ek

〉
= αk

i (ElEk −∇El
Ek) (Φ)α

l
j

= αk
i ElEk (Φ)α

l
j − αk

i
EΓm

klEm (Φ)αl
j . (34)

According to the work of Howard et al. [39] and the physical
meaning

[KC ]ij = KL
ij , [Kθ]kl = ElEk (Φ) .
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Comparing (33) and (34), the connection corresponding to
CCT is given

EΓm
kl =

∂γp
k

∂ξl
αm
p . (35)

By definition αm
p γp

k = δmk , one can get

EΓm
kl =

∂γp
k

∂ξl
αm
p = −∂αm

p

∂ξl
γp
k . (36)

Then, the Christoffel symbols under basis {L̂i} could be
calculated

∇L̂j
L̂i = ∇αl

jEl
αk
i Ek

= αl
jEl

(
αk
i

)
Ek + αl

jα
k
i ∇El

Ek

= αl
j

(
∂αk

i

∂ξl
γm
k + αk

i

∂γm
k

∂ξl

)
L̂m

= αl
j

∂δmi
∂ξl

L̂m

= 0. (37)

The result in (37) means that LΓm
ij ≡ 0 under the basis {L̂i}.

Then, the components of Cartesian stiffness matrix can be
written as

KL
ij = L̂jL̂i (Φ) . (38)

This is the same as the stiffness matrix defined in [35], [36],
[39], [46].

Proposition 1: The stiffness transformation (32) has the same
geometric connotation as the stiffness matrix defined in [35],
[36], [39], [46].

Proposition 2: The CCT corresponds to a flat connection
in basis {L̂i}, while the conventional stiffness transformation
corresponds to a flat connection in basis {Ei}.

Proof: When the connection is flat under basis {Ei}, i.e.,
∇El

Ek = 0:

KL
ij = αk

i (ElEk −∇El
Ek) (Φ)α

l
j

= αk
i

∂2Φ

∂ξl∂ξk
αl
j . (39)

The above equation is expressed in matrix form, which just
corresponds to the conventional stiffness transformation KC =
J−TKθJ

−1. �
Notice that in this section, we default [Kθ]ij = EjEi(Φ), so

in the next Sections IV-B and IV-C, we discuss the properties
of the Cartesian stiffness matrix on the assumption that Kθ is
symmetric and exact.

B. Property on T (3)

On T (3), note that all of the structure constants vanish

Ck
45=Ck

46=Ck
56=Ck

54=Ck
64=Ck

65=0. (k=1, 2, . . ., 6) .
(40)

This implies that the symmetric condition for Cartesian stiff-
ness matrix on T (3) would be satisfied

LΓk
ji − LΓk

ij = 0 = Ck
ij . (41)

When LΓm
ij ≡ 0, the exactness equation becomes as follows:

L̂k

(
KL

ij

)
=

∂3Φ

∂xk∂xj∂xi
− ∂LΓm

ij

∂xk

∂Φ

∂xm
− LΓm

ij

∂2Φ

∂xk∂xm

=
∂3Φ

∂xk∂xj∂xi
. (42)

The derivatives of Φ with respect to the coordinate basis
∂

∂xi (i = 4, 5, 6) are exchangeable. So, L̂k(K
L
ij) is symmetric

with respect to indexes j and k which means that the Cartesian
stiffness matrix is exact on T (3).

In summary, the stiffness matrix under CCT is conservative
on T (3).

Combining the above discussion with Corollary 2, we obtain
the following corollary.

Corollary 4: The exact and symmetric joint stiffness matrix
Kθ corresponds to the conservative Cartesian stiffness matrix
KC under CCT on T (3).

C. The Property on SE(3)

Now coming to the more general case, consider the 6-D rigid
body motion. Since the structure constants do not vanish, the
symmetric condition is no longer satisfied

LΓk
ji − LΓk

ij = 0 �= Ck
ij . (43)

It is easy to calculate the skew-symmetric matrix Kskew

[Kskew]ij =
[KC ]ij − [KC ]ji

2

=
1

2

(
L̂jL̂i − L̂iL̂j

)
(Φ) = −1

2

[
L̂i, L̂j

]
(Φ)

= −1

2
̂[Li,Lj ] (Φ) = −1

2
Ck

ijL̂k (Φ)

= −1

2
Ck

ijFk (44)

where Fk is the kth component of the wrench in body frame.
The above equation can be expressed as the following matrix
expression:

Kskew =
1

2

[
[m] [f ]
[f ] 0

]
(45)

where

[m] =

⎡
⎣ 0 −F3 F2

F3 0 −F1

−F2 F1 0

⎤
⎦ ,

[f ] =

⎡
⎣ 0 −F6 F5

F6 0 −F4

−F5 F4 0

⎤
⎦ . (46)

Notice that the Jacobian matrix is the spatial manipulator
Jacobian and the twist is the spatial velocity [52] when using
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Fig. 3. Schematic diagram of the conservative Cartesian stiffness matrix KC on T (3) and SE(3). An exact and symmetric Kθ always generates a conservative
KC under CCT. This also illustrates that a Cartesian stiffness matrix KC can still be conservative when it is not symmetric and exact on SE(3).

the right invariant vector fields. In this case, Kskew could be
written as

[Kskew]ij = − 1

2

[
L̃i, L̃j

]
(Φ)

=
1

2
˜[Li,Lj ] (Φ) =

1

2
Ck

ijL̃k (Φ)

=
1

2
Ck

ijF̄k (47)

where F̄k is the kth component of the wrench in spatial frame.
The same results are presented in [36], [43], [46], but here we
obtained this conclusion with a more concise and geometric
perspective.

It is easy to check thatαp
k

∂αl
j

∂ξp is generally not symmetric about
the indicators j and k on SE(3), i.e.,

αp
k

∂αl
j

∂ξp
�= αp

j

∂αl
k

∂ξp
. (48)

Combining (95), we obtain that the exact condition on SE(3)
does not hold

L̂k

(
KL

ij

) �= L̂j

(
KL

ik

)
. (i, j, k = 1, 2, . . ., 6) (49)

Although the Cartesian stiffness matrix KC under CCT on
SE(3) is neither symmetric nor exact, it still has the following
mechanical properties.

Proposition 3: For an arbitrary Kθ, the work done by joint
torque is constantly equal to the work done by the end external
wrench under CCT. See Appendix B for details.

Proposition 4: The exact and symmetric joint stiffness matrix
Kθ corresponds to the conservative Cartesian stiffness matrix
KC under CCT on SE(3). See Appendix C for details.

Comparing Corollary 4 and Proposition 4, we find that a sym-
metric and exactKθ always corresponds to the conservativeKC ,
either onT (3) or SE(3), as shown in Fig. 3. This is consistent with
the physical intuition i.e., a conservative Kθ corresponds to a
conservativeKC . This has important implications for the design
of control law for actual robotic systems (see Section VII-B).

V. OTHER CONNECTIONS AND STIFFNESS MAPPING

In this section, the connections that satisfy the symmetric or
exact conditions on T (3) are solved. We then give a one-to-
one correspondence between the connection and the stiffness
mapping on the manifold.

In Sections V-A, V-B, and V-C, [Kθ]ij = EjEi(Φ), so in
these sections we default Kθ is symmetric and exact.

A. Symmetric Connection on T (3)

As mentioned before, all of the symmetric connections have
to be constrained by the equation EΓk

ij =
EΓk

ji.
From (34) the relationship between joint and Cartesian stiff-

ness matrix is obtained

[KC ]ij = αk
i [Kθ]klα

l
j − αk

i
EΓm

klEm (Φ)αl
j . (50)

When substituting the symmetric connections into (50) and
organizing the component expressions into matrices, the follow-
ing stiffness mapping equation is obtained:

KC = J−T (Kθ + S)J−1 (51)

where S is a symmetric matrix, i.e., S = ST .

B. Exact Connection on T (3)

A connection satisfies the exact condition on T (3) means the
equation below is symmetric with respect to the indexes j and k

L̂k

(
KL

ij

)
=

∂3Φ

∂xk∂xj∂xi
− ∂LΓm

ij

∂xk

∂Φ

∂xm
− LΓm

ij

∂2Φ

∂xk∂xm
.

(52)

Since the potential energy functionΦ is chosen arbitrarily, the
index symmetry implies that the following equation holds:

∂LΓm
ij

∂xk
=

∂LΓm
ik

∂xj
(53a)

LΓm
ij

∂2Φ

∂xk∂xm
= LΓm

ik

∂2Φ

∂xj∂xm
. (53b)

In order for (53b) to hold, the following equations must be
satisfied:

LΓ4
i4 = LΓ5

i5 = LΓ6
i6 (i = 4, 5, 6) (54a)

LΓk
ij = 0 (j �= k, 4 � i, j, k � 6) . (54b)

When m = k �= j and considering (54), (53a) becomes

∂LΓm
ij

∂xk
= 0 =

∂LΓk
ik

∂xj
=

∂LΓj
ij

∂xj
. (55)

This means LΓj
ij is constant on T (3).
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TABLE II
STIFFNESS MAPPING ON T (3)1

Then, the solution of (53) is as follows:

LΓ4
i4 = LΓ5

i5 = LΓ6
i6 = constant (i = 4, 5, 6) (56a)

LΓk
ij = 0 (j �= k, 4 � i, j, k � 6) . (56b)

Similarly, combining (50) and (56), the corresponding stiff-
ness mapping relationship is obtained

KC = J−T
(
Kθ −Kg − JT cτT

)
J−1 (57)

which could be called the exact congruence transformation
(ECT).

When the principle of virtual work holds, (57) can be ex-
pressed as follows:

KC = J−T (Kθ −Kg)J
−1 − cFT (58)

where c = [c1 c2 c3]
T , ci = constant.

Although ECT is derived from T (3), it still has the following
properties on SE(3).

Proposition 5: On SE(3), the exact and symmetric joint stiff-
ness matrix Kθ generates the Cartesian stiffness matrix KC

such that the wrench F is a point function under ECT, i.e.,
F =

∮
∂Σ dF = 0. See Appendix D for details.

C. Conservative Connection on T (3)

For illustration, the connection satisfying symmetric and exact
conditions is said to be conservative. Combining the symmetric
condition (22) and the exact condition (56) leads to the following
solution:

LΓk
ij = 0 (4 � i, j, k � 6) (59)

which is exactly the connection corresponding to CCT. This
means that the connection corresponding to CCT is the only
conservative connection on T (3).

At this point, the stiffness mapping is exactly the CCT (32).

D. Stiffness Mapping on Manifold

The connection determines the stiffness mapping. Conven-
tional stiffness mapping is firstly considered. In this case:
EΓm

ij ≡ 0, and the Riemann curvature tensor has vanished com-
ponents under coordinate basis {Ei}: R(Ei,Ej)Ek = 0, which
means a “flat” joint space in the sense of the Riemann curvature
tensor.

Fig. 4. Illustration of the two-link manipulator. The end-effector moves along
the closed path ∂Σ and at each moment the elastic force of the system is in
equilibrium with the external force f .

When it comes to CCT case, LΓm
ij ≡ 0, and the Rie-

mann curvature tensor has vanished components under {L̂i}:
R(L̂i, L̂j)L̂k = 0, which means a “flat” end-operation space in
the sense of the Riemann curvature tensor.

Remark 1: Different connections lead to different stiffness
mappings. See Tables II and III for details.

VI. NUMERICAL SIMULATION OF STIFFNESS MAPPING

In this section, numerical simulations are conducted to inves-
tigate the properties of the Cartesian stiffness matrix for different
stiffness mappings and joint stiffness matrices. To illustrate the
generality of the conclusions, simulations were performed for
different types of manipulators. The joint-based control strategy
will be used, i.e., Kc is obtained by stiffness mapping based on
the given Kθ.

A. Case 1: Two-Link Manipulator

The first case is the two-link manipulator in Fig. 4. The end-
effector moves along a closed path under the action of f . The
external force f is considered to be in balance with the elastic
force of the system. During this process, the joint torque, as well
as the external force, continuously changes and produces work
along the path ∂Σ.

In this simulation, the length of links are l1 = 0.29 m, l2 =
0.23 m. The joint torque is τ 0 = [10 20]T N · m at the initial
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TABLE III
STIFFNESS TENSOR K = ∇dΦ ON SE(3)1

moment, and the initial external force can be calculated accord-
ing to the principle of virtual work f0 = (JT )−1τ 0. To express
physical quantities in spatial frame, the spatial manipulator Jaco-
bian is used. The initial joint angle is ξ0 = [1.21 −1.09]T rad.
The motion path is a circle, and the circle r(t) can be expressed
as follows (Unit: m):

r(t) =

[
0.25
0.30

]
+ 0.08

[
cosα(t)
sinα(t)

]
, α(t) ∈ [0, 2π]. (60)

For demonstration, the conventional stiffness mapping,
KC = J−TKθJ

−1, is denoted as conventional transformation
(CT). KC = J−T (Kθ −Kg)J

−1 is denoted as CCT. KC =
J−T (Kθ −Kg − JT cτT )J−1 is denoted as ECT.

In the simulation, various Kθ with different properties are
considered: symmetric and exact (constant) matrix K1, asym-
metric and exact (constant) matrix K2, symmetric and exact
(nonconstant) matrix K3, symmetric and nonexact (noncon-
stant) matrixK4. They are expressed separately as follows (Unit:
N · m/rad):

K1 = diag(10, 20) (61)

K2 =

[
10 0
10 20

]
(62)

K3 = diag
(
10 sin ξ1, 20 cos ξ2

)
(63)

K4 = diag
(
10 sin ξ2, 20 cos ξ1

)
. (64)

There are also different parameter selections for c when it
comes to ECT. When c = 0, the stiffness mapping degenerates
to the CCT. Ascdeviates from the zero value, a more asymmetric
Cartesian stiffness matrix is generated in general. The selected
parameters in this simulation are as follows:

c1 =
[
5 10

]T
(65)

c2 =
[
10 20

]T
(66)

c3 =
[
15 30

]T
. (67)

The direction of c1 to c3 is kept constant and the magnitude
gradually becomes larger to explore the relationship between
symmetry and work done by external forces.

Using the values of the Cartesian and joint stiffness matrix
in each configuration, the calculation of forces and work is per-
formed in joint space as well as in Cartesian space, respectively,
by combining numerical integration methods. The trapezoidal
integral is selected here for numerical simulation

f(t) = f (t− 1) +KCdx (68a)

W (t) = W (t− 1) + f(t)T dx+
1

2
dxTKCdx (68b)

τ (t) = τ (t− 1) +Kθdξ (68c)

W (t) = W (t− 1) + τ (t)T dξ +
1

2
dξTKθdξ. (68d)

The simulation of the two-link manipulator is shown in Fig. 5.
In Fig. 5(a) and (b), the parameter angle α(t) changes from 0 to
2π (7200 simulation steps), which means that the end-effector
performs a closure path. The degree is used as the angle unit in
the figures for clarity. The Cartesian stiffness matrix obtained
under different stiffness mappings is further integrated to obtain
the external loads. For illustration, only the component of the
external force fx in the X direction is shown in Fig. 5(a). All
other force components exhibit similar patterns.

Some observations about Fig. 5 are as follows:
1) In Fig. 5(b), the symmetric K1 produces a symmetric but

nonexact Cartesian stiffness matrix through CT, and the net
work done by the external force on the closed path is not zero.
In contrast, K1 produces a symmetric and exact Cartesian
stiffness matrix through CCT, in which case the net work
done by the external force is zero. It means that the symmetry
of the Cartesian stiffness matrix is not a sufficient condition
for the net work along the closed path to be zero, and when
the exactness condition is further added, the net work done
on the closed path is zero. The simulation result is consistent
with the statement in Section III-A.

2) K2 combined with CCT or K1 combined with ECT both
produce exact but asymmetric Cartesian stiffness matrices.
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Fig. 5. Simulation of two-link manipulator case for the joint-based control strategy: The specific parameter descriptions are given in Section VI-A. The left and
right diagrams show the trend of external force and work done when the end-effector executes the complete closed path respectively. (a) Force curves for different
stiffness mappings and different parameters. (b) Work curves for different stiffness mappings and different parameters. The blue dashed line indicates the work
done in joint space, and the other lines indicate the work done in Cartesian space.

In Fig. 5(a), the forces are point functions in all these cases.
This illustrates that when the Cartesian stiffness matrix
is exact and asymmetric, it still generates forces as point
functions.

3) In Fig. 5(b), when K1 is combined with ECT, the larger the
selected c in terms of magnitude, the more asymmetric the
Cartesian stiffness matrix will be, and the more the net work
done after a closed path will deviate from the zero value.

4) Note that ECT does not always produce the exact Cartesian
stiffness matrix. In Fig. 5(a), when K1 is combined with
ECT, the resulting force is a point function. In contrast, when
the asymmetric K2 is combined with ECT, the generated
force is no longer a point function.

5) As stated in the previous conclusion, in general, a nonexact
joint stiffness matrix will produce a nonexact Cartesian
stiffness matrix (see Corollary 1). In Fig. 5(a), when K3 is
combined with CCT, the resulting force is a point function.
In contrast, when K4 is combined with CCT, the resulting
force is no longer a point function.

6) In Fig. 5(b), since the selected joint stiffness matrices are
all K1, the work done in joint space for different stiffness
mappings is all the same, which is shown as the blue dashed
line. Only in the CCT case, the work done in joint space is
equal to the work done in Cartesian space. The simulation
result is consistent with Proposition 3.

B. Case 2: Stewart–Gough Platform

To illustrate the generality of the conclusions, we take the
Stewart–Gough Platform as an example. As shown in Fig. 6,
ΔOPQ is a fixed base, and Δrst is a floating platform moving
in space. The six serial chains connecting the base to the moving
platform are modeled as six translational springs. At every
moment, the system can be considered to be in mechanical
equilibrium under the action of external loads.

Fig. 6. Illustration of the Stewart-Gough Platform. The system elastic force is
in equilibrium with the wrench acting on the moving platform Δrst.

In the simulation, the length of each spring is denoted as
ξi(i = 1, 2, . . . , 6). The initial spring force of each spring is
10 N. Then the initial external forces and moments are calculated
by the principle of virtual work. At the initial moment, the spatial
coordinates of each point are as follows (Unit: m):

O =
[
0 0 0

]T
, P =

[
7 0 0

]T
Q =

[
3.5 6 0

]T
, r =

[
10 4 12

]T
s =

[
14 8 16

]T
, t =

[
14.5 1.1 16.5

]T
. (69)

Two types of motions for the moving platform are considered:
1) purely translational motion and 2) spatial motion.

1) Motion on T (3): When the motion is simply translational,
the motion of the rigid body is then represented by a smooth
curve on T (3). In this case, after specifying the motion of any
point on the moving platform, then the motion of the rigid body
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is determined. In this simulation, the motion of the point s (Unit:
m) is specified as follows:⎧⎪⎪⎨
⎪⎪⎩
s(t) = s0 + 3

⎡
⎣1 0 0

0
√
2
2 −

√
2
2

0
√
2
2

√
2
2

⎤
⎦
⎡
⎣cosα(t)− 1

sinα(t)
0

⎤
⎦

α(t) ∈ [0, 2π].

(70)

2) Motion on SE(3): When the platform’s motion contains
translation and rotation, the motion of the rigid body is repre-
sented by the smooth curve on SE(3). In addition to specifying
the spatial coordinates of one point on the rigid body, it is also
necessary to give the orientation of the moving platform at each
moment⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s(t) = s0 + 3

⎡
⎣1 0 0

0
√
2
2 −

√
2
2

0
√
2
2

√
2
2

⎤
⎦
⎡
⎣cosα(t)− 1

sinα(t)
0

⎤
⎦

R(t) = exp
(

π
6 sin α(t)

2 [ω(t)]
)
R(0)

ω(t) =
[
cos π

4 cos α(t)
2 sin π

4 cos α(t)
2 sin α(t)

2

]T
α(t) ∈ [0, 2π]

(71)

where R(t) is the rotation matrix of the moving platform with
respect to the base coordinate system, exp(·) is the matrix
exponential function, and [ω(t)] is the skew-symmetric matrix
representation of the vector ω(t).

Similar to the previous case, joint stiffness matricesKθ (Unit:
N/m) with different properties and c of different magnitudes are
selected for simulation analysis

c1 =
[
0.5 0.5 0.5 0.5 0.5 0.5

]T
(72)

c2 =
[
1 1 1 1 1 1

]T
(73)

c3 =
[
1.5 1.5 1.5 1.5 1.5 1.5

]T
(74)

K1 = diag(1, 2, 3, 4, 5, 6) (75)

K2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 2
0 2 1 0 10 0
2 0 3 0 0 0
0 0 0 4 2 0
2 0 3 0 5 0
0 0 0 3 2 6

⎤
⎥⎥⎥⎥⎥⎥⎦

(76)

K3 =

diag
(
5 sin ξ1, 10 cos ξ2, 3 cos ξ3, 2 sin ξ4, 2.5 sin ξ5, 3 sin ξ6

)
(77)

K4 =

diag
(
5 sin ξ3, 10 cos ξ1, 3 cos ξ2, 2 sin ξ6, 2.5 sin ξ4, 3 sin ξ5

)
.

(78)

Similar to the case of the two-link manipulator, the Cartesian
and joint stiffness matrices were used to calculate the forces and
work of the system during motion. In this case, the calculation of
force and work in joint space is the same as in (68c) and (68d).
Since the 6-D motion consists of translation and rotation, we
use the Jacobian matrix to convert the computation of force and

work in Cartesian space to integration over joint variables

f(t) = f (t− 1) +KCJdξ (79a)

W (t) = W (t− 1) + f(t)TJdξ +
1

2
(Jdξ)T KC (Jdξ) .

(79b)

Fig. 7 shows the simulation of the Stewart–Gough Platform.
α(t) changes from 0 to 2π (7200 simulation steps), and after a
closed path, the moving platform returns to the initial state. For
the case on T (3), the force component fx in the X direction is
shown. The moment componentmz in the Z direction is selected
for 6-D motion. Other components of the force or moment
change in a similar pattern.

In this case, the size of the stiffness matrix is 6 by 6. In addition
to the translational submatrix Ktt describing the relationship
between force and translational displacement, there are other
submatrices relating to the rotation and moment

K6×6 =

[
Krr Krt

Ktr Ktt

]
. (80)

Here, Ktt is arranged in the lower right corner, which is related
to the way the Jacobian matrix is defined. It should be noted that
comparing T (3) and SE(3), the stiffness matrix changes not only
in the dimensionality, but also the big difference is that the units
of the matrix elements become inhomogeneous on SE(3). The
difference between T (3) and SE(3) makes the stiffness matrix
on different manifolds exhibit different properties.

When the moving platform undergoes translational motion,
the forces and the work done by the external forces are only
related to Ktt. At this point, the system is similar to the two-link
system. When the motion of the moving platform is expanded
to SE(3), the external load and the work done are related to each
component of the 6 × 6 stiffness matrix.

Some observations are as follows:
1) In Fig. 7(a) and (b), the moving platform performs trans-

lational motion, and only the properties of Ktt need to be
considered. It is easy to check that the conclusions are the
same as in Section VI-A.

2) When the joint stiffness matrix is exact, the resulting force
is a point function regardless of whether the joint stiffness
matrix is symmetric or not under CCT. The (CCT,K1),
(CCT,K2), and (CCT,K3) cases in Fig. 7(c) confirm this
statement. Here, (CCT,Kθ) denotes the combination of
CCT and Kθ.

3) Comparing the (CCT,K1) and (CCT,K2) cases in
Fig. 7(d), we can see that when the joint stiffness matrix is
asymmetric, the work done by the system under CCT along
the closed path is no longer zero.

4) Comparing the (CCT,K3) and (CCT,K4) cases in
Fig. 7(d), we see that when the joint stiffness matrix is
symmetric but nonexact, the work done by the system under
CCT along the closed path is not zero.

5) As stated in Proposition 3, for an arbitrary joint stiffness
matrix, CCT guarantees the equivalence of work done in
joint space and Cartesian space. This is confirmed by the
yellow and black dashed lines in Fig. 7(d).
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Fig. 7. Simulation of Stewart–Gough Platform for the joint-based control strategy: The parameter descriptions are given in Section VI-B. The figures show the
external force and the work done on the closed path for (a) and (b) motion on T (3) and (c) and (d) motion on SE(3). (a) Force curves for motion on T (3). (b) Work
curves for motion on T (3). The blue dashed line indicates the work done in joint space and the other lines indicate the work done in Cartesian space. (c) Force
curves for motion on SE(3). (d) Work curves for motion on SE(3). The dashed line indicates the work done in joint space, and the other lines indicate the work
done in Cartesian space.

6) In Fig. 8, the external loads applied during the motion of the
rigid body are obtained using two different ways: 1) solving
for the external loads using the numerical integration for-
mula and 2) using the skew-symmetric components of the
stiffness matrix to estimate the external loads. As can be
seen from the figure, the force curves obtained from the two
ways overlap exactly, verifying the correctness of (44) and
(47).

With the above simulations, we verify the correctness and
generality of the aforementioned corollaries and proposition.

VII. APPLICATION

A. Selection of the Connection

Tables II and III illustrate the corresponding stiffness mapping
relationships for different connections and mechanical assump-
tions. In this section, we discuss the physical meaning and
application of these formulas in practice.

For general industrial applications, the robot links are often
considered rigid relative to the joints. Therefore, CT and CCT

Fig. 8. Simulation of Stewart–Gough Platform for the joint-based control
strategy: symmetric K1 combined with CCT. The solid line indicates the value
of the force or moment obtained by numerical integration, and the dashed line
indicates the value of the force or moment obtained based on the stiffness matrix
components according to (44) and (47).
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models are the most widely used stiffness models. The physical
implications of these different stiffness models can be summa-
rized as follows:
1) CT: It is a simplified stiffness model suitable for practical

applications. The effects of external forces as well as changes
in Jacobian matrix are not considered in the model.

2) CCT: It is the precise stiffness model. The model degen-
erates to CT when the robotic system is not subjected to
external forces or has a configuration-independent Jacobian
(Cartesian gantry robot).

3) ECT: The model exists mathematically and is derived from
the exactness of the stiffness matrix on T (3). It does not
correspond directly to the actual physical system.

4) Other stiffness models: These models consider mechanical
conditions such as linkage flexibility and passive joints. As
more factors are considered, the more complex the model
becomes.

Depending on the characteristics of the different models, they
can be applied to different specific tasks:
1) CT: Although CT is a simplified model, it is the most widely

used in practice. The model is often used in evaluating the
stiffness characteristics of the mechanism [54], compensat-
ing for static errors [55], optimizing the robot pose [56],
and identifying robot stiffness parameters [57]. For general
industrial applications, the model is concise and effective.

2) CCT: The model is suitable for applications where accuracy
is required. In some literature, the model has been used
to predict cutting forces as well as to avoid mode-coupled
chattering in robotic machining [58], [59].

3) Other stiffness models: These models are used in appli-
cations such as stiffness parameter identification and error
compensation for robots with special structures [60]. How-
ever, due to the complexity of these models, they are not
widely used.

B. Application 1: Passivity-Based Control

We consider the robot rigid body dynamics under the gener-
alized variables q (robot joint angles or Cartesian positions)

M(q)q̈+C(q, q̇)q̇+ g(q) = τ c + τ e. (81)

In interactive control scenarios, such as human–robot collab-
oration and robot polishing, designing a suitable control law
to produce passive systems is an important issue. The goal is
to preserve the passivity (τ e, q̇) by designing a controller τ c.
The most common controller in practical applications can be
expressed in the following form:

τ c = g(q)−D(q)q̇+ f(q) (82)

where g(q) is the gravity cancellation term, D is a positive
semidefinite matrix, and f(q) is the elastic force designed by
the controller. Then, there is the following assertion about
passivity [61], [62].

Lemma 2 (Kronander, Billard, [61]): Let f(q) be a conser-
vative force, i.e., there exists a scalar function Vf such that
f(q) = −∇Vf (q). Then, the system (81) under control given
by (82) is passive with respect to the input output pair τ e, q̇
with the storage function W (q, q̇) = 1

2 q̇
TM(q)q̇+ Vf (q).

Using the results in Section IV, we can easily design a con-
trol strategy that allows reproducing a variable stiffness while
preserving the passivity.

Proposition 6: The system (81) is passive under joint control
law τ c(ξ) given by

τ c(ξ) = g(ξ)−D(ξ)ξ̇ +

∫ ξ

ξ0

Kctrl(ξ)dξ (83)

where Kctrl is symmetric and exact, i.e.,

[Kctrl]ij = [Kctrl]ji,
∂[Kctrl]ki

∂ξj
=

∂[Kctrl]kj
∂ξi

. (84)

Proof: When using the control law in (83), system (81) char-
acterizes the joint stiffness with the value Kctrl. According to
Proposition 4, the Cartesian stiffness matrix is conservative.

At this situation, the elastic force of the joint

f(ξ) =

∫ ξ

ξ0

Kctrl(ξ)dξ (85)

and the elastic force exhibited on the end-effector are all con-
servative. According to Lemma 2, the system is passive. �

One of the simplest control laws can be set as

Kctrl

= diag
(
f1
(
ξ1
)
, f2
(
ξ2
)
, f3
(
ξ3
)
, f4
(
ξ4
)
, f5
(
ξ5
)
, f6
(
ξ6
))

(86)

where fi(•) is a function of ξi.
Based on symmetry and exactness, we can design more

complex joint control laws (e.g., joint stiffness matrix is non-
diagonal) while preserving the passivity.

C. Application 2: Stiffness Identification

A cable-driven spherical joint module (CSJM) [63] is com-
posed of a mobile platform, a base, a passive spherical joint, and
cables. A six-axis force/torque sensor is fixed to the top of the
mobile platform to measure external loads. At the same time,
the pose of the moving platform is measured by a laser tracker.

The parallel mechanism is driven by six cables. Due to the con-
straint of the spherical joints, the moving platform exhibits three
degrees of freedom of rotation. For such a redundant mechanism,
the stiffness of the six cables cannot be identified by simply
measuring the torque applied to the moving platform and the
posture change it produces. So, we identify the stiffness matrix
KC ∈ R3×3 as a whole for a certain pose. The experimental
data used in the article are from [63]. The posture R0 (moving
platform with respect to the base) to be identified and the initial
loadm0 are shown in Table IV. Here, we use the precise stiffness
model CCT for stiffness identification.

The results identified directly using least squares may be
affected by environmental noise, resulting in the structure of
the identified stiffness matrix often being inconsistent with the
theoretical structure. So, we split the stiffness matrix into an
skew-symmetric matrix Kskew and a symmetric positive definite
matrix Kpd using the conclusions in Section IV-C

KC = Kpd +Kskew = Kpd +
1

2
[m] (87)



HOU et al.: GEOMETRIC FRAMEWORK FOR STIFFNESS MAPPINGS OF COMPLIANT ROBOTIC SYSTEMS 2195

TABLE IV
STIFFNESS IDENTIFICATION RESULT

where Kskew = 1
2 [m] is obtained according to (45) in the case

of SO(3).
In the experiment, we apply multiple sets of torques near the

initial posture R0, while recording the corresponding changes
in the posture of the moving platform[

Δm1 · · · Δmn

]
= KC

[
Δω1 · · · Δωn

]
=

(
Kpd +

1

2
[m0]

)[
Δω1 · · · Δωn

]
(88)

where Δm is the increment of torque, and Δω is the amount
of change in posture under the axis-angle representation. The
above physical quantities are expressed in body frame.

Equation (88) can be converted into the following form:

A = KpdB (89)

where

A =
[
Δm1 · · · Δmn

]− 1

2
[m0]

[
Δω1 · · · Δωn

]
(90)

B =
[
Δω1 · · · Δωn

]
. (91)

Thus, the original identification problem can be transformed
into an optimization problem defined on a positive definite
manifold as follows:

min
Kpd>0

tr
(
(A−KpdB) (A−KpdB)T

)
. (92)

In the experiment, 40 sets of data are used for identification,
and (92) is solved by using the MATLAB toolbox Manopt [64].
After we get the optimal Kpd

∗ for model (92), the identified
stiffness matrix KC

∗ can be expressed as

KC
∗ = Kpd

∗ +
1

2
[m0] . (93)

Table IV shows the identified KC
∗, which is consistent with the

theoretical model.
By combining KC

∗ with the measured Δm, we can predict
the posture of the moving platform Rest . Further comparing
Rest with Rreal measured by the laser tracker, we can assess the
error Eθ in posture prediction

[θerr] = logR−1
realRest, Eθ = ‖θerr ‖ . (94)

We use 5 sets of data to test the pose estimation accuracy, as
shown in Table V. It can be seen that the posture is estimated with
high accuracy. Therefore, the KC

∗ identified by the above steps
conforms to the physical model and can be used for practical
applications.

TABLE V
STIFFNESS VERIFICATION RESULT

VIII. CONCLUSION

In this article, the geometric framework for describing the
stiffness of a conservative mechanical system is given. All cur-
rent stiffness models can be unified in this geometric framework.
After considering the geometric structure, the properties of the
Cartesian stiffness matrix on SE(3) and the submanifold are easy
to determine. We show that the nonzero Lie algebra structure
constants cause the Cartesian stiffness matrix to be asymmetric
under external forces. ECT, which generates an exact Cartesian
stiffness matrix on T (3), is obtained. CCT is shown to be the
only stiffness mapping that generates a conservative Cartesian
stiffness matrix on T (3). Further, the conclusion of the conser-
vative stiffness matrix is generalized to SE(3): a symmetric and
exact joint stiffness matrix generates a conservative Cartesian
stiffness matrix under CCT. Numerical simulations of different
types of manipulators verify the correctness of the theory.

Through the above study of the conservativeness of the stiff-
ness matrix, we design a variable stiffness impedance controller
that guarantees passivity. Meanwhile, we propose a stiffness
identification method for redundant cable-driven parallel robots
using the structure of the skew-symmetric part of the stiffness
matrix: experimental results show that the scheme has high
accuracy while ensuring that the identification results conform
to the physical model.

The theories and methods presented in this article can be
applied in different fields. The following are the potential ap-
plications and directions for subsequent research. 1) Applying
the passive control law proposed in this article combined with
existing advanced control methods in physical human–robot
interaction tasks. 2) Using the conclusions of this article on con-
servative stiffness to design suitable dynamic systems. 3) Further
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exploring stiffness modeling in the geometric framework, e.g.,
principal axes decomposition of stiffness matrices.

APPENDIX

A. Proof of Corollary 2

Proof: We show that an exact and asymmetric joint stiffness
matrix still generates an exact Cartesian stiffness matrix by CCT
on T (3).

In Section IV-A, the connection corresponding to CCT is
obtained. Substituting (36) into (30), (30) is expressed as

L̂k

(
KL

ij

)
=

(
αl
kα

p
j

∂αm
i

∂ξp
+αp

kα
l
j

∂αm
i

∂ξp
+αp

k

∂αl
j

∂ξp
αm
i

)
[Kθ]ml

+ αp
kα

l
jα

m
i

∂[Kθ]ml

∂ξp

+

(
αp
k

∂αl
j

∂ξp
∂αn

i

∂ξl
+ αp

kα
l
j

∂2αn
i

∂ξp∂ξl

)
τn

=[C1]
lm
kji [Kθ]ml+[C2]

plm
kji

∂[Kθ]ml

∂ξp
+[C3]

n
kji τn.

(95)

To prove that the Cartesian stiffness matrix is exact is to prove
that (95) is symmetric with respect to the indexes j and k.

The symmetry of [C2]
plm
kji

∂[Kθ]ml

∂ξp is ensured by the exactness
of the joint stiffness matrix.

Parameterizing the coordinates on T (3) as xi(i = 4, 5, 6),
then

αp
k =

∂ξp

∂xk
. (96)

Thus, [C1]
lm
kji and [C3]

n
kji can be expressed as

[C1]
lm
kji =

(
αl
kα

p
j

∂αm
i

∂ξp
+ αp

kα
l
j

∂αm
i

∂ξp

)
+

∂2ξl

∂xk∂xj
αm
i (97)

[C3]
n
kji =

∂2ξl

∂xk∂xj

∂αn
i

∂ξl
+ αp

kα
l
j

∂2αn
i

∂ξp∂ξl
. (98)

Since the Lie bracket between the vector fields vanishes on
T (3), i.e.,

[
∂

∂ξi ,
∂

∂ξj

]
= 0,

[
∂

∂xi ,
∂

∂xj

]
= 0, the partial deriva-

tives can be exchanged: ∂2(·)
∂xi∂xj = ∂2(·)

∂xj∂xi , ∂2(·)
∂ξi∂ξj = ∂2(·)

∂ξj∂ξi . It
is easy to check that (97) and (98) is symmetric with respect to
the indexes j and k.

By the above analysis, all parts of (95) are symmetric about
the indexes j and k. Therefore, (95) is symmetric. �

B. Proof of Proposition 3

Proof: The following content proves that the work done in
the joint space is equal to the work done by the external wrench
under CCT.

The CCT formula can be rewritten as

JTKCJdξ = Kθdξ −Kgdξ. (99)

Notice that Kgdξ can be rewritten as

Kgdξ =
[(

∂JT

∂ξ1 F
) (

∂JT

∂ξ2 F
)

· · ·
(

∂JT

∂ξn F
)]

dξ

=

(
∂JT

∂ξi
F
)
dξi =

(
∂JT

∂ξi
dξi
)
F = dJTF . (100)

Then (99) can be expressed as

0 = JTKCJdξ −Kθdξ +Kgdξ

= JT dF − dτ + dJTF
= d
(
JTF − τ

)
. (101)

In real physical systems as well as in simulation calculations, the
initial conditions satisfy the principle of virtual work J0

TF0 =
τ 0, which meansJTF ≡ τ . The principle of virtual work means
that the work done by the joint torque is equal to the work done
by the external force. �

C. Proof of Proposition 4

Proof: Next, we prove that the exact and symmetric Kθ

corresponds to the conservative KC under CCT on SE(3).
1) The differential element of the wrench dF under CCT can

be represented as

dF = KCJdξ = J−T (Kθ −Kg) dξ. (102)

The component representation of (102) is

dFq = αk
q

(
[Kθ]kj −

∂γp
k

∂ξj
αm
p τm

)
dξj

= ω = ωjdξ
j (103)

where ω can be considered as the 1-form. Then

∂ωj

∂ξi
=

∂αm
q

∂ξi
[Kθ]mj − αk

q

∂γp
k

∂ξj
αm
p [Kθ]mi

+ αk
q

∂[Kθ]kj
∂ξi

−
∂
(
αk
qα

m
p

∂γp
k

∂ξj

)
∂ξi

τm. (104)

Notice that

∂γp
k

∂ξj
αm
p = − ∂αm

p

∂ξj
γp
k (105)

αk
q

∂γp
k

∂ξj
αm
p = − ∂αm

p

∂ξj
γp
kα

k
q = −∂αm

q

∂ξj
(106)

then (104) can be simplified as

∂ωj

∂ξi
=

(
∂αm

q

∂ξi
[Kθ]mj +

∂αm
q

∂ξj
[Kθ]mi

)

+
∂αm

q

∂ξi∂ξj
τm + αk

q

∂[Kθ]kj
∂ξi

. (107)

The terms
(

∂αm
q

∂ξi [Kθ]mj +
∂αm

q

∂ξj [Kθ]mi

)
and

∂αm
q

∂ξi∂ξj τm are

symmetric with respect to indicators i and j.
When Kθ is exact

∂ωi

∂ξj
=

∂ωj

∂ξi
. (108)
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This means ω is a closed form

dω =
∂ωj

∂ξi
dξi ∧ dξj = 0. (109)

According to the Poincaré lemma, ω is an exact form, then∮
∂Σ

ω = 0 =

∮
∂Σ

dFq =Fq (110)

∮
∂Σ

dF =F = 0. (111)

2) According to Proposition 3, the work done in the joint space
Wτ is equal to the work done by the external wrench WF
under CCT. So, we study the work done by the joint torque

dW = τidξ
i = σ. (112)

When Kθ is symmetric, σ is a closed form

dσ =
∂τi
∂ξj

dξj ∧ dξi = [Kθ]ijdξ
j ∧ dξi = 0. (113)

Similarly, we derive∮
∂Σ

σ = 0 =

∮
∂Σ

dW =W. (114)

3) In summary, we have the following conclusions:{
∂[Kθ ]ki

∂ξj =
∂[Kθ ]kj

∂ξi ,

[Kθ]ij = [Kθ]ji.
⇒
{
F =

∮
∂Σ dF = 0,

W =
∮
∂Σ dW = 0.

(115)

�

D. Proof of Proposition 5

Proof: The following content proves that the exact and sym-
metric joint stiffness matrixKθ generates the Cartesian stiffness
matrixKC such that the wrenchF is a point function under ECT
on SE(3).

The differential element of the wrench dF under ECT can be
represented as

dF = KCJdξ = J−T (Kθ −Kg) dξ − cτT dξ. (116)

The component representation of (116) is

dFq = αk
q

(
[Kθ]kj −

∂γp
k

∂ξj
αm
p τm

)
dξj − cqτjdξ

j

= ω = ωjdξ
j . (117)

Similar to (107), we get

∂ωj

∂ξi
=

(
∂αm

q

∂ξi
[Kθ]mj +

∂αm
q

∂ξj
[Kθ]mi

)

+
∂αm

q

∂ξi∂ξj
τm + αk

q

∂[Kθ]kj
∂ξi

− cq[Kθ]ji. (118)

When Kθ is exact and symmetric

∂ωi

∂ξj
=

∂ωj

∂ξi
. (119)

According to (109)–(111), we get∮
∂Σ

dF =F = 0. (120)

�

E. Stiffness Modeling for Passive Joints

Here, we follow the assumptions in [25]: consider the elas-
ticity of the active joints ξ and passive joints λ. The Jacobian
matrix between the active and passive joints is defined as

∂λ

∂ξ
= G, [G]ij = βi

j (121)

and the elastic potential energy of the system can be expressed
as

Φ =

∫ ξ

ξ0

τT
ξ dξ +

∫ λ

λ0

τT
λ Gdξ +Φ0. (122)

Then

Ei (Φ) =
∂Φ

∂ξi
= τ ξi + βk

i τ λk (123)

EjEi (Φ) =
∂τ ξi

∂ξj
+

∂βk
i

∂ξj
τ λk + βk

i

∂τ λk

∂ξj
. (124)

Here, we select the connection LΓm
ij ≡ 0. Combining (123),

(124), and (34), we get

KL
ij = αk

i

[
∂τ ξk

∂ξl
+

∂βp
k

∂ξl
τ λp + βp

k

∂τ λp

∂ξl
− ∂γp

k

∂ξl
Fp

]
αl
j .

(125)

Notice that

τ ξk

∂ξl
= [Kθ]kl,

∂τ λp

∂ξl
=

∂τ λp

∂λq

∂λq

∂ξl
= [Kλ]pqβ

q
l . (126)

Then

KL
ij = αk

i

[
[Kθ]kl +

∂βp
k

∂ξl
τ λp + βp

k [Kλ]pqβ
q
l − ∂γp

k

∂ξl
Fp

]
αl
j .

(127)

Then (127) can be expressed in matrix form (see [25]):

KC = J−T

(
Kθ +

∂GT

∂ξ
τ λ +GTKλG− ∂JT

∂ξ
F
)
J−1

= J−T (Kθ +KI −Kg)J
−1. (128)

F. Stiffness Modeling for Flexible Links

Here, we follow the assumptions and notations in [12], [13],
and [16]: the actuator and linkages are seen as the flexible active
joints θ, and the kinematic pairs are seen as the passive joints
q without flexibility. The location of the end-effector T and the
variation dt it produces can be expressed as

T = T
(
θ1, θ2, . . . , θn; q1, q2, . . . , qs

)
(129)

dt = Jθdθ + Jqdq. (130)
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Fig. 9. Schematic of the vector fields on SE(3). T(t) is a smooth curve on
SE(3), which represents continuous rigid body motion. Ṫ(t0) is the velocity of
motion at t0, which can be expressed as a linear combination of vectors in the
tangent space at T(t0).

Then we have

dT =
∂T

∂θi
dθi +

∂T

∂qj
dqj = dθiΘi + dqjQj

= dtkL̂k =
(
γθ

k
i dθ

i + γq
k
j dq

j
)
L̂k (131)

where Θi and Qj can be seen as the vector fields on SE(3), as
shown in Fig. 9. From (131), we know that for any dθi and dqj

the following equation holds:

dθi
(
Θi − γθ

k
i L̂k

)
+ dqj

(
Qj − γq

k
j L̂k

)
= 0 (132)

thus, Θi = γθ
k
i L̂k, Qj = γq

k
j L̂k.

1) Case 1: When considering the elasticity of the active joint,
the potential energy of the system is expressed as

Φ =

∫ θ

θ0

τT dθ +Φ0. (133)

Then, we have

〈dΦ,Θi〉 = τi =
〈
dΦ, γθ

k
i L̂k

〉
= γθ

k
iFk (134)

〈
dΦ,Qj

〉
= 0 =

〈
dΦ, γq

k
j L̂k

〉
= γq

k
jFk. (135)

The above equations can be converted into the form of matrix{
τ = Jθ

TF
0 = Jq

TF .
(136)

Differentiate both sides of (136){
dτ = dJθ

TF + Jθ
T dF

0 = dJq
TF + Jq

T dF .
(137)

Notice that

dJθ
TF =

(
∂Jθ

T

∂θi
F
)
dθi +

(
∂Jθ

T

∂qj
F
)
dqj

= HF
θθdθ +HF

θqdq (138)

dJq
TF =

(
∂Jq

T

∂θi
F
)
dθi +

(
∂Jq

T

∂qj
F
)
dqj

= HF
qθdθ +HF

qqdq. (139)

Then, (137) can be expressed as{
dτ = HF

θθdθ +HF
θqdq+ Jθ

T dF
0 = HF

qθdθ +HF
qqdq+ Jq

T dF .
(140)

Combining (140) with (130), we obtain⎡
⎣ 0 Jq Jθ

Jq
T HF

qq HF
qθ

Jθ
T HF

θq HF
θθ −Kθ

⎤
⎦
⎡
⎣dFdq
dθ

⎤
⎦ =

⎡
⎣dt0
0

⎤
⎦ . (141)

Finally, we get the expression of KC (see [13]):⎡
⎣KC ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

⎤
⎦ =

⎡
⎣ 0 Jq Jθ

Jq
T HF

qq HF
qθ

Jθ
T HF

θq HF
θθ −Kθ

⎤
⎦
−1

. (142)

It can be checked that the process of (136)–(137) implies the
connection LΓm

ij ≡ 0.
2) Case 2: When considering the elasticity of the active joint,

the potential energy is the same as (133). Combining (130)
with (136), we get

dt = JθKθ
−1Jθ

TF + Jqdq. (143)

Combining (136) with (143), we get[
JθKθ

−1Jθ
T Jq

Jq
T 0

] [F
dq

]
=

[
dt
0

]
. (144)

So KC (see [12]) is as follows:[
KC ∗
∗ ∗

]
=

[
JθKθ

−1Jθ
T Jq

Jq
T 0

]−1

. (145)

It can be checked that (143) implies the connection EΓm
ij

≡ 0.
3) Case 3: Now comes the more complex case: consider the

effect of gravity on stiffness. Suppose there are e nodes in
the system that need to consider gravityGl(l = 1, 2, . . . , e).
Then, the potential energy function of the system is de-
scribed as

Φ =

∫ θ

θ0

τT dθ −
∫

Gl
T dtl +Φ0. (146)

The rest of the derivation steps are the same as in Case 1.
We obtain an equation similar to (142) (see [16]):⎡
⎣KC ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

⎤
⎦ =

⎡
⎣ 0 Jq Jθ

Jq
T Hqq Hqθ

Jθ
T Hθq Hθθ −Kθ

⎤
⎦
−1

. (147)
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