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Abstract—We derive a family of efficient constrained dynamics
algorithms by formulating an equivalent linear quadratic regu-
lator (LQR) problem using Gauss’ principle of least constraint
and solving it using dynamic programming. Our approach builds
upon the pioneering (but largely unknown) O(n + m2d + m3)
solver by Popov and Vereshchagin (PV), where n, m and d are
the number of joints, number of constraints and the kinematic
tree depth respectively. We provide an expository derivation for
the original PV solver and extend it to floating-base kinematic
trees with constraints allowed on any link. We make new
connections between the LQR’s dual Hessian and the inverse
operational space inertia matrix (OSIM), permitting efficient
OSIM computation, which we further accelerate using matrix
inversion lemma. By generalizing the elimination ordering and
accounting for MUJOCO-type soft constraints, we derive two
original O(n + m) complexity solvers. Our numerical results
indicate that significant simulation speed-up can be achieved
for high dimensional robots like quadrupeds and humanoids
using our algorithms as they scale better than the widely used
O(nd2 + m2d + d2m) LTL algorithm of Featherstone. The
derivation through the LQR-constrained dynamics connection
can make our algorithm accessible to a wider audience and enable
cross-fertilization of software and research results between the
fields.

I. INTRODUCTION

Rigid body mechanics is a long-studied field with fun-
damental contributions already made in the 18th and 19th
centuries. Since the 1970s, robotics research has focussed
on developing computationally efficient dynamics algorithms
[1]. Initial motivation for this research was to enable real-
time dynamic simulation and computed torque control on the
slow computers of the 1970s. Despite significant processor
clock-time improvements since then, computing dynamics
efficiently remains a relevant problem because it can posi-
tively impact modern robotics applications involving model
predictive control (MPC) and reinforcement learning. Faster
computation enables MPC control designers to increase the
prediction horizon which usually improves optimality and
stability properties of the MPC controller [2]. It can speed
up contact-aware online trajectory optimization [3], [4] and
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also shorten long training times in reinforcement learning from
simulations. Unsurprisingly, implementing efficient dynamics
simulators remains an active research area [5]–[9].

However, efficient dynamics algorithms are typically com-
plex with “a steep learning curve” [10] and are not discussed
in introductory robotics textbooks [11], [12]. Consequently,
robotics researchers often use dynamics algorithms (especially
constrained dynamics algorithms) implemented in simulators
as a black-box and are therefore unable to adapt or debug
the algorithms to suit their applications. By deriving efficient
constrained dynamics algorithms (CDA) as the solution of
an equivalent equality-constrained linear quadratic regulator
(LQR) problem, we believe that this paper makes efficient
CDAs accessible to researchers with an optimization and
control background. This includes many roboticists that are
MPC practitioners due to the rising popularity of differen-
tial dynamic programming (DDP) style [13] algorithms. The
optimization-based perspective as well as the LQR connection
opens up possibilities for transfer of software and recent
research results between the fields, especially the recent data-
driven methods for safe control of systems with uncertain
dynamics [14]. Our derivation is also self-contained and does
not assume prior knowledge of LQR derivation.

A. Related work

The first efficient recursive algorithms, with O(n) com-
plexity in the number of joints, for computing the uncon-
strained forward dynamics were independently discovered by
Vereshchagin [15] and Featherstone [16]. However, Vereshcha-
gin’s solver “was way ahead of its time and languished
in obscurity for a decade” [17]. Featherstone’s insight in-
volved efficiently propagating the solution of the Newton-
Euler equations through the links, while Vereshchagin’s ap-
proach was based on optimizing the Gauss’ principle of least
constraint [18] (a fundamental optimization-based formulation
of classical mechanics) using dynamic programming (DP)
[19]. Vereshchagin’s idea is analogous to the standard text-
book approach for solving the discrete-time linear quadratic
regulator (LQR) problem using DP [2, Chapter 1], which
we will use in the rest of this paper. Similar connection to
the LQR problem was independently made in [20] by noting
similarities between the Kalman filter and O(n) recursive
dynamics algorithms and this connection was further devel-
oped within a spatial operator algebra (SOA) framework [21],
[22], making efficient O(n) dynamics algorithms accessible
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to researchers familiar with filtering theory. However, the
SOA derivation is fairly complex, is performed over several
papers and assumes strong familiarity with filtering theory
literature and notation from 1960s and 1970s. Moreover, the
SOA derivation does not permit a straightforward extension to
constrained dynamics. Unlike SOA, our LQR approach starts
with the optimization problem arising from first principles,
includes motion constraints and readers will find our derivation
to be a significantly simpler and more direct connection to
LQR than [20].

(a) Environment imposes con-
straints on a robot which must be
accounted for in dynamics equa-
tions.

Inertia, forces,

Inverse OSIM

Base link (�xed/�oating)

Positions, velocities Accelerations

fext

Constraint

joint torque

(b) Three sweep structure of the
constraint dynamics solver paral-
leling forward simulation, back-
ward DP recursion and rollout in
LQR control.

Fig. 1: Efficient computation of constrained dynamics by
exploiting structure.

The simplicity arises from Gauss’ principle allowing
straightforward modeling of the motion constraints (like the
non-penetration constraints for the feet of the Go1 robot in
fig. 1a) by adding them as the constraints to the associated
optimization problem. This ease of modeling allowed Popov
and Vereshchagin (PV) to quickly extend their forward dy-
namics algorithm to an efficient O(n) constrained dynamics
algorithm [23], [24] for fixed-base kinematic chains with end-
effector constraints. But this extension of the LQR connection
to constrained dynamics remains largely unknown and unused
by the robotics community despite its simplicity and efficiency.
There have been a few robot control architectures using the
PV solver [25], [26], including an implementation in OROCOS-
KDL 1 for kinematic chains, but its wider usage remains lim-
ited. [25] also derives the PV solver by introducing the concept
of “acceleration energy” and extends it to trees by assembling
acceleration energies. For readers unfamiliar with acceleration
energy, their derivation is hard to follow and verify, while in
this paper we provide an expository derivation purely using
the mathematical perspective of dynamic programming on the
LQR problem.

Other independent contributions that can be used to solve
constrained dynamics includes the well-known operational-
space formulation [27]. However, [27] does not propose an

1https://www.orocos.org/kdl.html

efficient algorithm for computing the operational-space iner-
tia matrix (OSIM), which has a computational complexity
of O(n3) when computed naively in joint-space. A major
contribution to computing OSIM efficiently came in the form
of an O(n + m2d + m3) complexity recursive algorithm in
[28], [29], where m is the number of constraints and d is the
tree depth. An efficient formula for computing off-diagonal
blocks of the inverse OSIM using extended force propagators
(EFP) was proposed in [30]. However, they do not exploit
this EFP idea in their proposed algorithm and instead used a
recursive approach similar to [28] to obtain O(n+mn+m3)
complexity [30]. The idea of EFP was fully exploited in the
EFP algorithm (EFPA) [31] to obtain a reduced complexity of
O(n+md+m3). In [32], Featherstone reported that exploiting
the branching-induced sparsity in the joint-space inertia matrix
(JSIM) and the kinematic Jacobian to compute the OSIM more
efficiently than the existing recursive O(n) algorithms despite
having a worse O(nd2 + md2 + dm2) complexity (where d
is the depth of the tree) even for the Honda Asimo robot, a
complex robot with n = 40. This result has led to a much
wider usage of Featherstone’s higher complexity method in
rigid body dynamics like MUJOCO, PINOCCHIO [6], Raisim
and RBDL, to name a few, instead of the lower complexity
EFPA algorithm [31]. Recent work [6] derives Featherstone’s
OSIM algorithm [32] from the perspective of factorizing the
contact KKT matrix and utilizes proximal-point iterations to
solve for systems with redundant constraints.

Independent efforts to extend the efficient ABA algorithm
to internal kinematic closed loop constraints were realized
in [33], [34]. With the loop-closure constraint being a more
general constraint model than the simpler desired acceleration-
relative-to-ground constraint model considered in the PV
solver, these more general algorithms include the PV solver
computations as a subset of their computations. These algo-
rithms can be straightforwardly adapted to kinematic trees
with acceleration-relative-to-ground constraints to obtain an
algorithm virtually identical to the PV solver. The derivation
in [33] relies heavily on the physical insight of the readers,
while the derivation in [34] is relatively more formal by
algebraically solving the d’Alembert’s equations. [33] further
proposed a form of early constraint elimination that provides
O(m+n) complexity algorithm for certain kinematic mecha-
nisms. Similar ideas were also used in an O(n+m) complexity
Lagrange multiplier-free algorithm [35] for certain kinematic
mechanisms based on Kane’s equations formulation of me-
chanics [36]. However, our PV solver derivation approach
is different, and we will discuss in detail the comparison
with these algorithms in section IX-E. Moreover, we are not
aware of any open-source implementation of [33], [34] or
its computational comparison with the popular Featherstone’s
sparsity exploiting algorithms.

Another line of research for accelerating dynamics com-
putations includes the divide-and-conquer type of algorithms
that aim to exploit parallel computing [37]–[40] achieving an
O(log(n)) complexity provided that O(n) computational cores
are used. These algorithms can be used to compute constrained
dynamics by placing handles on the constrained bodies. The
PV solver derived in section V can also be similarly interpreted



as an algorithm that computes the relative inertia of these
handles. [41] presents a distributed algorithm specifically for
computing the OSIM. Their comparison with this paper’s
algorithms are further discussed in section IX-E.

The efficient algorithms discussed so far have complex
derivations, a third simple approach pioneered in [10], involves
constructing the KKT matrix in ‘maximal’ coordinates and
solving it using a sparse linear solver. Despite having a
favorable O(n+md+m3) complexity, Barraf’s [10] algorithm,
does not exploit as much structure as possible (for example
it computes joint constraint forces which are avoided in
other methods) and requires joint constraint stabilization. It is
generally not considered to be competitive with the recursive
or sparse factorization methods mentioned above [1].

The PV solver derivation using our standard DP approach
for LQR has the elegance and simplicity of Baraff’s derivation,
with a three-sweep structure that is analogous to forward
simulation, backward DP recursion and rollout in LQR control
as shown in fig. 1b. We also found it be more efficient than
state-of-the-art algorithms as we will show in the rest of this
paper.

B. Contributions

1) Expository derivation of the original PV solver and
extensions: We provide an expository derivation of the original
PV solver by adapting the textbook approach for solving the
LQR problem [2], highlighting its connection to constrained
dynamics more clearly than in existing literature. We then
derive extensions to the original PV solver to support: 1)
Floating-base robots 2) Constraints potentially on any link,
3) Kinematic trees and show its computational complexity to
be O(n+m2d+m3).

2) Connections to the OSIM: We show that the dual
Hessian, that is computed as an intermediate step of the PV
solver, is equal to the inverse OSIM. This connection is new
in literature, to the best of our knowledge, and provides an
efficient O(n+m2d+m2) algorithm, that is as yet unexploited
to compute the inverse OSIM. This algorithm is structurally
different from the currently known O(n) family algorithms
KRJ [28] and EFPA [30], [31], by requiring only two sweeps
over the kinematic tree instead of three and is found to be more
efficient in practice for most robots of interest despite having a
worse complexity than the O(n+md+m2) EFP algorithm. We
further accelerate OSIM computation for floating-base robots
with branching structure at the base.

3) O(n + m) algorithms: Building upon our expository
PV solver treatment, we derive two efficient and new (to the
best of our knowledge) constrained dynamics algorithms with
only O(n+m) computational complexity. The first algorithm
solves the so-called “soft Gauss principle” used in the popular
robot dynamics simulator MUJOCO [42] [7], that relaxes
the hard motion constraints with quadratic penalties. The
second algorithm solves the original problem with hard motion
constraints, by incorporating early elimination of Lagrange
multipliers, thereby limiting their backward propagation which
provides the improved computational complexity.

4) Benchmarking: Despite the PV solver and Brandl et
al.’s [33] contributions being over thirty-five years old, their
computational performance is untested against the state-of-the-
art algorithms, that are currently recognized to be fast in liter-
ature. We provide a comprehensive benchmarking of the PV
solver against Featherstone’s sparsity-exploiting algorithms
[32], [43] (currently used most widely in high-performance
robot simulators including the PINOCCHIO and MUJOCO
toolboxes), the lower-order EFPA [30], [31] algorithm as well
as our O(n+m) extensions to the PV solver. These numerical
results are new in literature to the best of our knowledge.

The source code of the solver is made available publicly 2.

C. Organization

We first discuss background material and preliminaries in
section II and derive the constrained dynamics solver for
a kinematic chain with a fixed-base and motion constraints
only on the end-effector in section III. We then discuss the
physical interpretation of the terms of this relatively simple
algorithm and also show the equality of the dual Hessian of the
constrained LQR problem and the inverse OSIM in section IV.
Later, we generalize the derivation to the more complex case
of floating-base robots with a kinematic tree structure and
constraints on any link in section V. This separation of the
PV solver derivation into two sections was made for clarity
of exposition as it is easier to first follow the derivation
for fixed-base kinematic chains before the generalization to
trees. We then present an efficient extension of the PV solver
to ‘soft’ motion constraints in section VI. We expand upon
the dual Hessian-OSIM connection in section VII and finish
our derivations with a fast O(n + m) algorithm for the
original problem with hard motion constraints in section VIII.
Section IX presents algorithm benchmarking and discussions,
and we make concluding remarks in section X.

II. BACKGROUND

A. Notation and Convention

Table I lists the notation used in this paper. Bold-faced lower
case letters or symbols are vectors and upper case letters or
symbols are matrices. AT is the transpose of a matrix A. In×n

and 0n×n are the identity matrix and zero matrix of dimension
n×n respectively. The := operator defines the left-side symbol
with the right-side expression. The ← operator assigns the
right-side expression to a left-side variable in an algorithm.

We use the popular Featherstone’s spatial algebra nota-
tion [1] throughout the paper. For a robot’s ith rigid body,
Xi ∈ SE(3), vi ∈ R6 and ai ∈ R6 denote the spatial pose,
velocity and acceleration respectively. SE(3) is the special
Euclidian group in 3 dimensions represented as a 6×6 spatial
transformation matrix. fi ∈ R6 is the spatial force acting
on the i-th body. For notational simplicity of the upcoming
derivations, all motion/force vectors vi, ai and fi are with
respect to a common inertial frame. × and ×∗ are the spatial
cross-product operators for motion vectors and force vectors
respectively.

2https://github.com/AjSat/spatial V2

https://github.com/AjSat/spatial_V2


TABLE I: Notation

Symbol Definition
{j}Xi Spatial pose of i-th link in j-th link’s frame.
vi 6D spatial velocity of the i-th link.
ai 6D spatial acceleration of the i-th link.
fi 6D spatial force acting on the i-th link.
qp vector of robot joint positions.
q̇ vector of robot joint velocities.
q̈ vector of robot joint accelerations.
τ vector of robot joint torques.
n Degrees of freedom of the robot.
Ki Acceleration constraint matrix on i-th link.
ki Desired constraint accelerations.
Ji Geometric Jacobian of the i-th link.
J̇i Time derivative of Ji.
J Joint-space constraint Jacobian.
J̇ Time derivative of J .
k Concatenation of all ki.
m Number of acceleration constraints on the robot.
M Joint-space inertia matrix.
c Joint torques due to bias accelerations, forces and gravity.
λ Lagrange multipliers of constraints.
Λ Operational-space inertia matrix.
L Lower triangular matrix in LTL decomposition [43].
Y Intermediate quantity in LTL-OSIM [43], see section II-C.
π(i) Index of i-th link’s parent link.
γ(i) Set of i-th link’s children links’ indices.
Si Motion subspace of the i-th joint.
Ti Force subspace of the i-th joint.
Hi 6× 6 spatial inertia tensor of the i-th link.
ab,i i-th link’s bias acceleration.
L The Lagrangian of the LQR problem.
Vi Cost-to-go Lagrangian at i-th link.
HA

i Articulated body inertia of i-th link.
LA
i Constraint’s coupling due i-th and its descendant joints.

KA
i Constraint force propagated to the i-th link.

fAi Resultant force on i-th link excluding constraint forces.
lAi Desired constraint accelerations propagated to the i-th link.
Di Apparent articulated body inertia along the i-th joint.
Pi Backward force propagator through the i-th joint.
fexti Resultant external wrench acting on the i-th link.
b Index of the floating-base link.
λA
i Concatenated multipliers on i-th and its descendant links.

r Number of branches from the floating-base link.

The whole robot’s state is (qp, q̇), where qp ∈ Q is its
pose in the configuration space Q, q̇ ∈ TqpQ ≃ Rn is its
generalized velocity in Q’s tangent space at qp and n is the
robot’s degrees of freedom (d.o.f). Let τ ∈ T ∗

qpQ ≃ Rn be the
generalized force acting on the robot in the dual tangent space
of Q and q̈ ∈ Rn be q̇’s time derivative. This Lie algebraic
notation allows a unified representation of floating-base robots
and multi d.o.f joints where a singularity-free representation
of position may require np ≥ n. For a fixed-base manipulator
with single d.o.f joints, qp = q, q̇, q̈ and τ are simply the
joint positions, velocities, accelerations and torques.

B. Preliminaries

We will now briefly summarize forward dynamics, inverse
dynamics and constrained dynamics problems. Forward dy-
namics computes q̈, that result from applying τ on a given
robot at state (qp, q̇), to simulate the robot state forward in
time. Conversely, inverse dynamics computes the τ required
to obtain a desired q̈ at state (qp, q̇). Constrained dynamics
is the forward dynamics problem with motion constraints in
addition to joint constraints and will be formalized in the next

paragraph. Inverse dynamics is, in general, easier to compute
than forward dynamics, which is in turn significantly easier to
compute than constrained dynamics.

Let the acceleration constraint on the i-th link be

Ki(qp)ai = ki(qp, q̇), (1)

with Ki ∈ Rmi×6, ki ∈ Rmi and mi the constraint dimen-
sionality. Without loss of generality, we scale the constraints
such that each row of Ki has unit norm. Both holonomic and
non-holonomic motion constraints can be converted to this
form by differentiation [11]. The acceleration constraints can
be transformed to the generalized coordinates using

ai = Ji(qp)q̈+ J̇i(qp, q̇)q̇, (2)

where Ji(qp) ∈ R6×n is ith link’s geometric Jacobian and
J̇i(qp, q̇) ∈ R6×n is its total time derivative. Substituting
eq. (2) in eq. (1) and stacking all the links’ constraints gives

J(qp)q̈+ J̇(qp, q̇)q̇ = k(qp, q̇), (3)

where J(qp) :=


K1(qp)J1(qp)

...
Ki(qp)Ji(qp)

...
Kn(qp)Jn(qp)

 ∈ Rm×n, J̇(qp, q̇) :=



K1J̇1(qp, q̇)
...

KiJ̇i(qp, q̇)
...

KnJ̇n(qp, q̇)

 ∈ Rm×n, k(qp, q̇) :=


k1(qp, q̇)

...
ki(qp, q̇)

...
kn(qp, q̇)

 ∈ Rm.

The constrained dynamics problem involves simultaneously
solving eq. (3) and the linear system

M(qp)q̈+ c(qp, q̇) + J(qp)
Tλ = τ , (4)

for unknowns q̈ and λ, where, M(qp) ∈ Rn×n, c(qp, q̇) ∈
Rn and λ ∈ Rm are the joint-space inertia matrix (JSIM),
generalized force due to Coriolis, centrifugal and gravity
effects and the Lagrange multipliers associated with the ac-
celeration constraint respectively. Solving for q̈ in eq. (4)
(which is always possible because M(qp) is positive definite)
and substituting in eq. (3) gives the operational-space form of
constrained dynamics [27] (with term dependencies dropped
for brevity from now on when it is clear from the context)

Λ−1λ = J̇ q̇− k+ JM−1(τ − c), (5)

with Λ(qp)
−1 := (J(qp)(M(qp))

−1J(qp)
T ) ∈ Rm×m and

Λ(qp) is the OSIM. The inverse OSIM Λ(qp)
−1 captures the

inertial coupling between constraints, where the i-th column of
Λ(qp)

−1 is the acceleration along all the constraint directions
caused by λi = 1 (i-th constraint force with unit magnitude).

Remark 1 Since M(qp) is a positive definite matrix, if J has
full row-rank, Λ−1 has full rank, is invertible and Λ exists.
Then, eq. (5) permits a unique solution for λ.

Remark 2 J may not have full row-rank in over-constrained
systems, when constraints conflict with each other or due



to loss of Ji’s rank at kinematic singular configurations and
depending on the numerical values of kis, there exists either
no solution or an infinite number of solutions for λ.

Typical strategies to address singular Λ−1 include Tikhonov
regularization, proximal-point iterations [6], Moore-Penrose
pseudo-inverse using the singular value decomposition (SVD),
relaxing the constraints with weighted quadratic penalties
[7] or employing prioritized conflict resolution [44]. Since a
discussion of these different strategies is not the focus here,
we assume that J has full row-rank in the rest of this paper.

C. Featherstone’s LTL algorithms
We now review Featherstone’s sparsity-exploiting algo-

rithms and introduce terms that will be benchmarked in sec-
tion IX. The LTL algorithm [43] is a Cholesky decomposition
for the JSIM

LTL = M, (6)

where L ∈ Rn×m is a lower triangular matrix. In contrast to
the traditional LLT Cholesky algorithm [45], the LTL method
ensures no fill-in (preserves the sparsity pattern of M in L)
even without resorting to pivoting methods that choose an
elimination ordering. The idea was extended in the LTL-OSIM
algorithm [32] to compute the OSIM for kinematic trees,
where the sparsity pattern of J is also exploited

Y = JL−1, (7)

where Y ∈ Rm×n also has the same sparsity pattern as J and

Λ−1 = Y Y T . (8)

D. Forward kinematics
Let a kinematic tree have n links indexed from 1 to n. The

world link (assumed to be a fixed inertial frame) is assigned
the 0 index. The i-th joint connects the i-th link to its parent
link π(i). The world link is tree’s root and does not have a
parent link. For floating-base robots, such as quadrupeds, a
chosen link b (usually the torso) is connected to the world
link through a free joint. γ(i) is the set of i-th link’s children.
A link j is a leaf link if γ(j) = ∅.

The spatial poses, velocities and accelerations of all links
in the tree can be computed recursively in a forward sweep
starting from the root (world link) using

Xj = (Xπ(j))(
{π(j)}Xj′)(

{j′}Xj), (9)
vj = vπ(j) + Sjq̇j , (10)
aj = aπ(j) + Sjq̈j + vj × Sjq̇j , (11)

where {π(j)}Xj′ is the j-th link’s pose in its parent link’s frame
when the j-th joint is at its home pose (usually computed from
the robot URDF file or the DH parameters) and {j′}Xj is
the spatial transformation due to the j-th joint’s displacement.
Sj ∈ R6×nj is the j-th joint’s motion subspace, where nj is
the joint’s d.o.f (usually 1). Sjq̇j is the j-th joint’s contribution
to vi. Let Tj ∈ R6×nj be the j-th joint’s force subspace, such
that Tjτj is the joint’s contribution to fj .

Remark 3 The force subspace Tj is the dual of the motion
subspace Sj , hence ST

j Tj = 1nj×nj
[1, eq. 3.39].

E. Gauss’ Principle

Gauss’ principle of least constraint [18] (GPLC) is an
optimization-based formulation of classical mechanics, which
is not as well known or widely used as the Lagrangian
formulation. Refer to [46] for a detailed discussion on Gauss’
principle, according to which, a constrained system under
the influence of forces undergoes accelerations that are as
close as possible (in a weighted least-squares sense) to the
unconstrained motion of the system under the same non-
constraint forces. For a system of rigid bodies with spatial
inertia tensor Hi ∈ R6×6 of the i-th link, under the external
forces fi, which includes the bias forces vi ×∗ Hivi, the
resulting accelerations ai are the minimizers of the following
optimization problem [47].

minimize
a1,...,an

n∑
i=1

1

2
(ai −H−1

i fi)
THi(ai −H−1

i fi), (12a)

subject to motion constraints. (12b)

F. Dynamic Programming Principle

Dynamic programming (DP) [19] is a general theoretical
framework for optimizing a function through a series of nested
optimizations over the decision variables in some order. DP’s
efficiency can crucially depend on the variable elimination
order. Each DP step optimizes over a function to return
a function, so its implementation is intractable, unless the
intermediate functions can be efficiently parameterized. The
discrete-time linear quadratic regulator (LQR) problem is one
such exception, where all the intermediate functions have the
quadratic form. Fortunately, for kinematic tree mechanisms,
the Gauss’ principle is algebraically identical to the discrete-
time LQR problem with scenario trees and can be solved
efficiently using DP. This robot dynamics-LQR connection
forms the basis of the derivations in this paper.

III. DERIVATION OF THE CONSTRAINED DYNAMICS
SOLVER

In this section we derive the PV solver for fixed-base
kinematic chains with end-effector motion constraints. We
first formulate the optimization problem in section III-A, then
derive its solution using DP in section III-B.

A. Problem formulation

Consider a kinematic chain with the links indexed such that
π(i) = i− 1, with 0-th link being the world link. The GPLC
optimization problem eq. (12) for this chain is

minimize
a1,...,an,q̈

n∑
i=1

1

2
(ai −H−1

i fi)
THi(ai −H−1

i fi), (13a)

subject to ai = ai−1 + Siq̈i + ab,i, i = 1, 2, ..., n, (13b)
Knan = kn, a0 = −agrav, (13c)

where eq. (13b) implicitly encodes joint motion constraints
using eq. (11), ab,i := vi × Siq̇i is the bias acceleration,
eq. (13c) encodes the end-effector constraint (a common



pattern e.g. when the end-effector is wiping a table) and
the fixed-base constraint, and agrav is the acceleration-due-
to-gravity vector. The reason for setting a0 to −agrav will be
explained in section III-B2. The parameters in the problem
such as Hi, fi, ab,i and Si are computed using the inputs to
the problem, namely qp, q̇, τ and the robot model.

The problem in eq. (13) is algebraically identical to the
discrete-time LQR problem: the forward propagation of link
acceleration along the kinematic chain (see eq. (13b)) is
analogous to the LQR’s forward state propagation in time,
with ai and q̈i corresponding to the LQR’s states and controls
respectively.

Remark 4 Either ais or q̈ can be considered the free variables
in eq. (13) as one can be computed from the other using
eq. (13b) because Si always has full rank [34].

Remark 5 The inertia tensor Hi is positive definite for all
links, therefore eq. (13) is a strongly convex quadratic program
(QP) with a unique solution, when feasible.

Conflicting constraints or unachievable desired accelerations
at configuration qp can make the QP infeasible.

B. Dynamic programming solution
We now solve the optimization problem in eq. (13) using

DP by following the textbook LQR derivation [2, Chapter 1].
The recurrence relation constraints in eq. (13b) and the a0 =
−agrav constraint will be eliminated via substitution. However,
unlike the textbook version, eq. (13) has a hard ‘terminal’
constraint (due to the end-effector constraint) which cannot be
similarly eliminated via substitution. Therefore, we adapt the
textbook derivation to instead solve for the primal-dual saddle
point of QP’s Lagrangian, which includes only the end-effector
motion constraint as the joint and fixed-base constraints are
eliminated through substitution

L(q̈,λ) :=
n∑

i=1

1

2
(ai −H−1

i fi)
THi(ai −H−1

i fi)+ (14)

λT (Knan − kn).

We define “cost-to-go Lagrangian” as the tail problem
consisting of the Lagrangian terms corresponding to the ith
link and its descendants

Vi(ai−1, q̈i, ..., q̈n,λ) :=
n∑

j=i

1

2
(aj −H−1

j fj)
THj(aj −H−1

j fj) + λT (Knan − kn).

Due to its additive structure, the cost-to-go Lagrangian
follows the recurrence relation (after simplifying the quadratic
objective and grouping the constant terms)

Vi(ai−1, q̈i, ..., q̈n,λ) =
1

2
aTi Hiai−fTi ai+

Vi+1(ai, q̈i+1, ...,q̈n,λ)+ constant.

When convenient, we will drop constant terms from now
on for brevity. The Bellman’s recurrence relation [19] for the
optimal cost-to-go Lagrangian is

V ∗
i (ai−1,λ) = min

q̈i

{1
2
aTi Hiai − fTi ai + V ∗

i+1(ai,λ)}. (15)

Optimizing the cost-to-go Lagrangian at the end-effector

Vn(an−1, q̈n,λ) =
1

2
aTnHnan − fTn an + λT (Knan − kn),

(16)
over q̈n gives V ∗

n (an−1,λ). To do this, we first substitute an
with the acceleration recursion equation in eq. (13b)

Vn(an−1, q̈n,λ) =

1

2
(an−1 + Snq̈n + ab,n)

THn(an−1 + Snq̈n + ab,n)−

fTn (an−1 + Snq̈n + ab,n)+

λT (Kn(an−1 + Snq̈n + ab,n)− kn). (17)

Then we collect the linear-quadratic terms in q̈n and solve for
the optimal q̈∗

n, where the quadratic function’s gradient is zero

q̈∗
n = (ST

nHnSn)
−1ST

n {fn −Hn(an−1 + ab,n)−KT
n λ},

substituting which back in eq. (17) provides V ∗
n (an−1,λ),

which remains a quadratic form in an−1 and λ. Therefore,
let us hypothesize that V ∗

i (ai−1,λ) minimizes the following
quadratic form

V ∗
i (ai−1,λ) = min

q̈i

{1
2
aTi H

A
i ai −

1

2
λTLA

i λ+ (18a)

λTKA
i ai − fAT

i ai + lTi λ}+ constant

= min
q̈i

{1
2
(ai−1 + Siq̈i + ab,i)

THA
i (ai−1 + Siq̈i + ab,i)−

1

2
λTLA

i λ+ λTKA
i (ai−1 + Siq̈i + ab,i)− (18b)

fAT
i (ai−1 + Siq̈i + ab,i) + lTi λ}+ constant.

where eq. (18b) is obtained by substituting eq. (13b) in
eq. (18a). Optimizing eq. (18b) over q̈i by setting the objective
function’s gradient to zero gives

q̈∗
i = D−1

i ST
i {fAi −HA

i (ai−1 + ab,i)−KAT
i λ}, (19)

where D−1
i := (ST

i H
A
i Si)

−1 ∈ Rni×ni exists because Si

always has full column rank [34] and HA
i (which we will

show to be the articulated body inertia matrix) is positive
definite. Back-substituting q̈∗

i from eq. (19) in eq. (18b) gives
V ∗
i (ai−1,λ), substituting which in the Bellman recurrence re-

lation eq. (15) for V ∗
i−1(ai−2,λ) gives the following recursive

formulae for the hypothesized quadratic form in eq. (18a),

HA
i−1 = Hi−1 + PiH

A
i , (20a)

fAi−1 = fi−1 + Pi(f
A
i −HA

i ab,i), (20b)

KAT
i−1 = PiK

AT
i , (20c)

li−1 = li +KA
i {ab,i + SiD

−1
i ST

i (f
A
i −HA

i ab,i)}, (20d)

LA
i−1 = LA

i +KA
i Si(Di)

−1ST
i K

AT
i , (20e)

where Pi := (16×6 − HA
i Si(Di)

−1ST
i ) ∈ R6×6 is the

projection matrix that propagates forces and inertia backward
through the ith joint.

The end-effector cost-to-go Lagrangian in eq. (16) conforms
to the hypothesized quadratic form in eq. (18a), with HA

n =
Hn, fAn = fn, KA

n = Kn, ln = −kn and LA
n = 0n×n being

the starting point of the backward recursion using eq. (20).
With this, we can show inductively that the assumed quadratic
form validly parameterizes the optimal cost-to-go-Lagrangian.



Performing backward recursion until the root link yields
V ∗
1 (a0,λ)’s expression, where the known value of a0 =
−agrav is directly substituted, thereby eliminating all the
primal variables of the Lagrangian to obtain the dual function

V ∗
0 (λ) = −

1

2
λTLA

0 λ+ λT (l0 +KA
0 a0). (21)

Assuming that LA
0 has full rank, the dual function has the

unique maximizer

λ∗ = (LA
0 )

−1(l0 +KA
0 a0). (22)

The numerical value of λ∗ computed above enables rolling
out the “control policy” in a forward sweep to compute the
optimal joint accelerations q̈∗

i s using eq. (19) and eq. (13b).
1) Details on fi: fi is the resultant of all the non-constraint

forces acting on the ith link, namely the force due to ith joint
torque τi, the bias forces, the reaction force from τi+1 and all
the other the external forces

fi = Tiτi − vi ×∗ Hivi − Ti+1τi+1 + f exti . (23)

Note: the total reaction force on the ith link due to τi+1,
must also include the backward propagation of the force acting
on the i+1-th link due to τi+1, Ti+1τi+1, using eq. (20b) in
addition to the immediate reaction force −Ti+1τi+1,

−Ti+1τi+1+Pi+1(Ti+1τi+1) (24)

= −HA
i+1Si+1(Di+1)

−1ST
i+1Ti+1τi+1

= −HA
i+1Si+1(Di+1)

−1τi+1

which agrees with the known result on the backward reaction
forces applied by joint actuators [1, eq. 7.20].

2) Including the effect of gravity: The straightforward ap-
proach to account for gravity is to include the each link’s
weight in eq. (23), but a more efficient and commonly used
trick [48] is to add a gravity field by setting a0 ← −agrav,
where agrav. Then ai = −agrav if the ith link is in equilibrium
and ai = 0 if it is in free fall. This addition of gravitational
acceleration to each link’s acceleration must also be reflected
the acceleration constraints through the update

kn ← kn −Knagrav

IV. PHYSICAL INTERPRETATION

We will now provide the physical interpretation for the
backward recursion in eq. (20). This section is involved
for readers not familiar with existing propagation-based con-
strained dynamics literature and may be skipped/skimmed dur-
ing the first read. Pi is the projection matrix, that propagates
fi through the i-th joint to the i − 1-th link after removing
the component that causes the i-th joint’s motion. It is used in
eq. (20b) to propagate the forces backwards in the chain. Pi

also propagates the inertia of the descendant links through the
i-th joint in eq. (20a), to compute the well known articulated
body inertia HA

i . Suppose that the i-th link was disconnected
from its parent link but remained connected to its descendant
links, HA

i would be this link’s apparent inertia including the
influence of all the descendant links. Di is the apparent inertia
of the i-th link along the i-th joint, obtained by projecting HA

i

onto the i-th joint’s motion subspace Si.

In the absence of end-effector constraints, only eq. (20a)
and eq. (20b) need to be computed during the backward
recursion and these two formulae are identical to the inertia
and force propagation equations in Featherstone’s well known
articulated body algorithm (ABA) [16], which remains the
fastest algorithm to compute unconstrained forward dynamics
[1]. The PV solver reduces to ABA in the unconstrained setting
and an unconstrained LQR-based derivation would essentially
be an alternate derivation for the ABA algorithm.

Each row of Kn is the unit spatial force exerted by the end-
effector due to the associated constraint, whose magnitude (the
unknown Lagrange multipliers) must be solved for. These unit
constraint forces are propagated backwards in the chain sim-
ilarly to the non-constraint forces using the force propagator
matrix Pi in eq. (20c). Therefore, −KAT

i λ is the force felt at
the i-th link due to end-effector constraint forces.

Substituting the solution for joint accelerations from eq. (19)
into the acceleration recurrence relation in eq. (13b) gives

ai = PT
i (ai−1 + ab,i) + SiD

−1
i ST

i (f
A
i −KAT

i λ), (25)

where PT
i is the projection operation that propagates ai−1

to child link i, after removing ai−1’s acceleration component
along Si. This reveals an interesting symmetric relationship
between the forward acceleration propagator PT

i and the
backward force propagator Pi about the i-th joint, previously
noted in [49]. Let us compose the force propagators to define
the extended force propagator [31]

Pn
i := PiPi+1...Pn, and Pn

n+1 := 16×6 (26)

that directly propagates end-effector forces to the i − 1-
th link. Due to the symmetric relationship, PnT

i propagates
accelerations from the i − 1-th link to the end-effector di-
rectly. Repeated substitution of eq. (19) for all joints in the
acceleration recurrence relation eq. (13b) gives

an = PnT
1 a0 +

n∑
i=1

PnT
i ab,i+ (27)

n∑
i=1

{PnT
i+1SiD

−1
i ST

i (f
A
i −KAT

i λ)}.

From the constraint propagation equations in eq. (20c), one
can easily verify that

KA
i = KnP

nT
i+1. (28)

We remind readers that the end-effector acceleration con-
straint is Knan + ln = 0. Let us call Knan, constraint
acceleration (because it is the end-effector acceleration along
the constrained direction) and −ln the desired constraint
acceleration. Substituting an from eq. (27) in the acceleration
constraint equation and simplifying using eq. (28) gives

Knan + ln = KA
0 a0 +

n∑
i=1

KA
i PT

i ab,i+ (29a)

n∑
i=i

{KA
i SiD

−1
i ST

i (f
A
i −KAT

i λ)}+ ln = 0.

KA
0 a0 is the constraint acceleration due to the known fixed-

base acceleration. Collecting the terms not containing the



unknown λ in the previous equation and comparing with
backward recursion in eq. (20d), one can verify that

lAi−1 =

n∑
k=i

{KA
k PT

k ab,k + {KA
k SkD

−1
k ST

k (f
A
k }}+ ln, (30)

recursively computes constraint acceleration caused by the bias
accelerations, bias forces, joint torques and external forces up
to the i-th joint and updates the desired constraint acceleration
that must be supplied by the unknown constraint forces.
Comparing eq. (20e) and eq. (29), we see eq. (20e) recursively
computes the λ-dependent terms in eq. (29) with

LA
i−1 =

n∑
k=i

KA
k SkD

−1
k ST

k K
A
k (31)

where the j-th column of LA
i−1 is the constraint accelerations

caused by a unit magnitude j-th constraint force due to
motions along the joints from the n-th joint back up to the i-th
joint in the chain. LA

0 represents the inertial coupling between
constraints considering the whole tree’s motion, providing
intuition for why LA

0 must be the inverse OSIM Λ−1, which
was previously defined in the joint-space in eq. (5).

Λ−1 = JM−1JT = Kn(JnM
−1JT

n )KT
n , (32)

where JnM
−1JT

n maps any force acting on the end-effector
fn to end-effector acceleration caused due to this force

afn := (JnM
−1JT

n )fn. (33)

From eq. (27), we collect all the terms depending on fn
that cause end-effector acceleration (remember that fAi also
depends on fn because of inward force recursion ) to get

afn = {
n∑

i=1

PnT
i+1SiD

−1
i ST

i P
n
i+1}fn. (34)

In eq. (33) and eq. (34) have linear mappings from fn
to afn, where fn is free to take on any value in R6 and
the linear mappings depend only on qp. Thus, it must be
that JnM

−1JT
n =

∑n
i=1 P

nT
i+1SiD

−1
i ST

i P
n
i+1. Pre and post-

multiplying this equality with Kn and KT
n , we get

Kn(JnM
−1JT

n )KT
n =

n∑
i=1

KnP
nT
i+1SiD

−1
i ST

i P
n
i+1K

T
n ,

(35)

where using eq. (32), eq. (28) and eq. (31), we get Λ−1 = LA
0 .

The physical interpretation presented here is essentially the
argument used in [33] to derive their constrained dynamics
solver for kinematic loops, which we refer readers to for more
insight especially related to the effect of internal kinematic
loops. Compared to [33], our derivation is mathematical using
the DP algorithm and does not require readers to possess
physical insight. The physical interpretation provided here is
only a post hoc explanation. However, the derivation in [33]
does not assume prior optimization knowledge and may be
more accessible to some readers, especially for those familiar
with Featherstone’s ABA algorithm derivation [16] because
[33] is a natural extension of [16] that follows a similar
variable elimination approach.

V. EXTENSION TO TREES WITH FLOATING-BASE

We now extend the original PV solver, that only dealt
with end-effector constrained fixed-base kinematic chains, to
kinematic trees with possibly a floating-base and possibly
motion constraints on any link. We first modify the problem
formulation to allow kinematic trees in section V-A, solve it
using DP in section V-B and finally present the algorithm and
analyze the computational complexity in section V-C.

A. Problem formulation

The GLPC optimization problem for a given tree is

minimize
a,q̈

n∑
i=1

1

2
(ai −H−1

i fi)
THi(ai −H−1

i fi), (36a)

subject to ai = aπ(i) + Siq̈i + ab,i, i = 1, 2, ..., n,
(36b)

Kiai = ki, i = 1, ..., n, (36c)

where, π(j) and γ(j) are the parent link and the set of children
for any given link j respectively, as explained in section II-D.
Compared to the problem in eq. (13), the recurrence relation
in eq. (36b) is indexed differently due to the tree structure, and
any link’s motion can be constrained in eq. (36c). It is easily
verifiable that the problem remains a strongly convex QP, but it
is no more analogous to a simple discrete-time LQR problem.
Instead, this problem shares its structure with scenario-trees
from control of systems with dynamics uncertainty [50].
However, the DP approach remains applicable and will provide
a tree-structured Riccati recursion [51].

B. Dynamic programming solution

Similarly to kinematic chains, we apply DP on the La-
grangian of the optimization problem in eq. (36)

L(q̈,λ1, ...,λn) =

n∑
i=1

1

2
(aTi Hiai − fTi ai)+ (37)

n∑
i=1

λT
i (Knai − ki).

For notational simplicity in the upcoming derivation, let us
define λA

i := [λT
i ,λ

AT
γ(i)1

,λAT
γ(i)2

...λAT
γ(i)C(i)

]T as the concate-
nation of the multipliers associated with constraints on the i-th
link and its descendants, where C(i) is the cardinality of the
set γ(i). Analogously to the eq. (15), the Bellman recurrence
for the optimal cost-to-go Lagrangian for the kinematic tree is

V ∗
i (aπ(i),λ

A) =min
q̈i
{1
2
aTi Hiai − fTi ai + λT

i (Kiai − ki)+∑
j∈γ(i)

V ∗
j (ai,λ

A
j )}+ constant. (38)

Similarly to eq. (18a), let us hypothesize that the optimal
cost-to-go Lagrangian has the quadratic form

V ∗
i (aπ(i),λ

A
i ) = min

q̈i

{1
2
aTi H

A
i ai −

1

2
λAT
i LA

i λ
A
i + (39)

λAT
i KA

i ai − fAT
i ai + lTi λ

A
i }+ constant.



Substituting ai above using eq. (36b) gives

V ∗
i (aπ(i),λ

A
i ) = min

q̈i

{1
2
(aπ(i) + Siq̈i + ab,i)

THA
i (aπ(i)+

Siq̈i + ab,i)−
1

2
λAT
i LA

i λ
A
i + λAT

i KA
i (aπ(i)+

Siq̈i + ab,i)− fAT
i (aπ(i) + Siq̈i + ab,i)+ (40)

lTi λ
A
i }+ constant.

Optimizing this function for optimal q̈i gives

q̈∗
i = (Di)

−1ST
i {fAi −HA

i (aπ(i) + ab,i)−KAT
i λA

i }, (41)

substituting which back into eq. (40) gives V ∗
i (aπ(i),λ

A
i ).

Substituting the expression V ∗
j (ai,λ

A
j ), thus computed for

all j ∈ γ(i) in Bellman recurrence relation eq. (38) confirms
that the optimal cost-to-go function has the quadratic form
hypothesized in eq. (39) for link i if the hypothesis holds for
all the children links j ∈ γ(i). The quadratic form for the i-th
link is given by the recursive equations

HA
i = Hi +

∑
k∈γ(i)

PkH
A
k , (42a)

fAi = fi +
∑

k∈γ(i)

Pk(f
A
k −HA

k ab,k), (42b)

KA
i =


Ki

...
KA

k PT
k

...

 , (42c)

li =


−ki

...
lk +KA

k {ab,k + SkD
−1
k ST

k (f
A
k −HA

k ab,k)}
...

 , (42d)

LA
i =


0mi×mi

. . .
LA
k +KA

k Sk(Dk)
−1ST

k K
AT
k

. . .

 .

(42e)

The cost-to-go Lagrangian at any leaf node j is
Vj(aj ,λ

A
j ) = 1

2a
T
j H

A
j aj − fTj aj + λT

j (Kjaj − kj). Thus,
HA

j = Hj , LA
j = 0mj×mj , KA

j = Kj , fAj = fj , lj = −kj

for all j that are leaf links. Therefore, it can be shown again
inductively that the equations assumed in eq. (39) correctly
model the cost-to-go function.

For a fixed-base robot, the backward recursion is performed
until the base link 0, and the known fixed-base acceleration
is substituted to obtain the dual function, which is maximized
to compute the optimal dual variables λA∗

0 (assuming that LA
0

has full rank) analogously to eq. (22)

λA∗
0 = (LA

0 )
−1(l0 +KA

0 a0). (43)

For a floating-base robot, the backward sweep is conducted
until the floating-base link b, from where the optimal base

acceleration and the dual variables are the saddle point of the
optimal cost-to-go Lagrangian at the floating-base

λA∗
b ,a∗b = argmax

λA
b

{min
ab

(
1

2
aTb H

A
b ab −

1

2
λAT
b LA

b λ
A
b + (44)

λAT
b KA

b ab − fAT
b ab + lTb λ

A
b )}.

The stationary gradient condition of the first-order necessary
KKT conditions provides the simultaneous linear equations,

a∗b =(HA
b )−1(fAb −KAT

b λA∗
b ), (45)

λA∗
b =(LA

b )
−1(KA

b a∗b + lb). (46)

We can substitute a∗b from eq. (45) in eq. (46) to get

λA∗
b = (LA

b +KA
b (HA

b )−1KAT
b )−1(KA

b (HA
b )−1fAb + lb),

(47)
and the optimal base acceleration is then recovered using
eq. (45) and the inverse OSIM matrix is

LA
0 = (LA

b +KA
b (HA

b )−1KAT
b ), (48)

which is no different from performing the usual backward
recursion at the free-joint b with, Sb = I6×6 as the free joint
is allowed to move in all directions.

Alternately, if LA
b is invertible one can also substitute the

expression for λA∗
b from eq. (46) in to eq. (45) to get

a∗b = (HA
b +KAT

b (LA
b )

−1KA
b )−1(fAb −KAT

b (LA
b )

−1lb),
(49)

and optimal Lagrange multipliers can then be recovered using
eq. (46). The accelerations of the rest of the segments are then
computed in the second forward sweep (rollout). The choice
computing eq. (47) or eq. (49) can significantly impact the
computational efficiency of the algorithm depending on the
branching structure and the number of constraints.

Suppose that kinematic tree branches at the floating-base,
then LA

b has a block-diagonal structure because the LA
i terms

from different branches occupy their respective diagonal block
in eq. (42e). Factorizing or inverting (LA

b )
−1 is easier due

to this block-diagonal structure. Then computing eq. (49)
requires solving a small linear system of fixed size 6×6, which
makes using eq. (49) a superior choice in this case. On the
other hand, computing eq. (48) performs a dense m×m update
to LA

b , which destroys the block-diagonal sparsity pattern and
then requires solving a dense linear system of size m×m.

C. Algorithm

Algorithm 1 presents the PV solver for kinematic trees with
floating-base. Let S be an ordered list of all the links in the
kinematic tree, such that i precedes j in the list if i-th link is
the j-th link’s ancestor. Let Sr be the reversed list of S. In
algorithm 1, we use eq. (49) instead of eq. (47).

1) Computational complexity: We now analyze the worst-
case computational complexity of algorithm 1. The computa-
tions in lines 2, 3, 4, 5, 7, 8, 9, 17 each require fixed number
of operations at every joint and requires O(n) operations in
total. The lines 10, 12, 16 require O(m) operations per at
most d executions, where d is the depth of the tree requiring
O(md) operations. Line 11 needs O(m2) operations per joint



Algorithm 1 PV solver for kinematic trees with floating-base

Require: qp, q̇, τ , Kis, kis, X{b}, v{b}, robot model
First forward sweep

1: for i in S do
2: X{i} = X{π(i)}

{π(i)}X{i′}
{i′}X{i}

3: vi = vπ(i) + Siq̇i

4: ab,i = vi × Siq̇i

5: fAi ← fAi + Tiτi − vi ×∗ Hivi + f exti ; KA
i ← Ki;

li ← −ki; LA
i ← 0mi×mi HA

i ← Hi;
fAπ(i) ← fAπ(i) − Tiτi

Backward sweep
6: for i in Sr do
7: Di = ST

i H
A
i Si; Pi = (16×6 −HA

i Si(Di)
−1ST

i )
8: fAπ(i) ← fAπ(i) + Pi(f

A
i −HA

i ab,i)

9: HA
π(i) ← HA

π(i) + PiH
A
i

10: KA
π(i) ←

[
KA

π(i)

KA
i PT

i

]
11: LA

π(i) ←
[
LA
π(i)

LA
i +KA

i Si(Di)
−1ST

i K
AT
i

]
12: lπ(i) ←

[
lπ(i)

li +KA
i {ab,i + SiD

−1
i ST

i (f
A
i −HA

i ab,i)}

]
13: a∗b = (HA

b +KAT
b (LA

b )
−1KA

b )−1(fAb −KAT
b (LA

b )
−1lb)

14: λA∗
b = (LA

b )
−1(KA

b a∗b + lb)
Second forward sweep (roll-out)

15: for i in S do
16: q̈∗

i = (ST
i H

A
i Si)

−1ST
i {fAi −HA

i (aπ(i) + ab,i)−
KAT

i λA∗
i }

17: ai = aπ(i) + Siq̈
∗
i + ab,i

and O(m2d) operations in total. Factorizing LA
b in line 13 has

the worst case complexity of O(m3). Aggregating these terms,
the algorithm has requires O(n+m2d+m3) operations in the
worst case.

Best case complexity: The computational complexity is sig-
nificantly better than the worst case complexity for favorable
tree structures and constraints. Suppose that the branching
occurs at the (floating) base link and there is one end-effector
(a constrained link with at most 6 dimensional constraint)
per branch. Quadrupeds and humanoid robots often have this
structure. Let r be the number of branches and d be the
length of the longest branch. Line 11 is executed d times for
r branches leading to O(dr) operations. Similarly factorizing
the block-diagonal matrix LA

b needs O(r) operations for each
block of size at most 6×6. As m = O(r), the total complexity
of the constrained dynamics for this tree is O(n+md+m).

The equality of Λ−1 and L0 established in section IV can be
repeated for kinematic trees as well using identical arguments
and hence will be skipped for the sake of brevity.

VI. SOFT GAUSS’ PRINCIPLE

We have considered only hard motion constraints so far, but
it is also conceivable to relax these motion constraint through a
penalty method and solve this easier problem, which is further
always feasible even if the constraints are linearly dependent.
This is precisely the approach taken in the MUJOCO toolbox
[42], [7], a popular rigid body dynamics simulator using

the so-called “soft Gauss’ principle”, where the hard motion
constraints are relaxed through a quadratic penalty,

minimize
a,q̈

n∑
i=1

1

2
{(ai −H−1

i fi)
THi(ai −H−1

i fi)+

(Kiai − ki)
TR−1

i (Kiai − ki)}, (50a)
subject to ai = aπ(i) + Siq̈i + ab,i, i = 1, 2, ..., n, (50b)

where Ri ∈ Rmi×mi is a diagonal positive definite matrix.
After expanding the objective function in eq. (50a), collecting
the quadratic and linear terms and ignoring the constant terms,
we get an equivalent optimization problem,

minimize
a,q̈

n∑
i=1

{1
2
aTi (Hi +KT

i R
−1
i Ki)ai −

(fi +KiR
−1
i ki)

Tai}+ const, (51a)
subject to ai = aπ(i) + Siq̈i + ab,i, i = 1, 2, ..., n, (51b)

which is a special case of the kinematic tree optimization
problem in eq. (36), but without motion constraints (apart
from the joint constraints in eq. (50b) which will be eliminated
through substitution) and with the modified Hi and fi terms

Hi ← Hi +KT
i R

−1
i Ki; fi ← fi +KiR

−1
i ki. (52)

As there are no motion constraints, the LA
i , li and KA

i terms
are not computed for the soft Gauss’ problem, for which the
algorithm 1 reduces simply to ABA with the update in eq. (52).

A. Computational complexity

The ABA has O(n) complexity while the inertia and forces
updates in eq. (52) require O(m) operations. Therefore, the
total computational complexity for solving the soft Gauss’
principle is O(m+ n).

The state-of-the-art simulator MuJoCo solves the problem in
the joint-space resulting in a significantly higher computational
complexity of O(nd2+m2d+d2m). It uses the composite rigid
body algorithm (CRBA) algorithm [52, Method 3] to compute
the JSIM and factorizes it, which has worst-case complexity
of O(nd2). It considers constraints by modifying the JSIM [7,
eq. 7] analogously to our inertia update in eq. (52) and solves
this updated inertia matrix using the matrix inversion lemma
accounting for the additional terms in the complexity.

VII. O(n) ALGORITHM FOR OSIM

The OSIM itself is an important expression in many rigid-
body simulators in both the robotics and the computer graphics
(where its inverse is known as the Delassus operator) com-
munities. It also has applications in constrained inverse dy-
namics [53] and dynamically-consistent nullspace projection
in prioritized torque control [54]. OSIM is particularly useful
for resolving inequality constraints (also called unilateral con-
straints), because an inequality constraint becoming inactive
can be easily handled by removing the corresponding row and
column of the inverse OSIM and efficiently updating the fac-
torization [55]. Therefore, we isolate the OSIM computations
in the PV solver and present a stand-alone algorithm. Further,



we propose an at-best structure exploitation for floating-
base robots that avoids factorizing the dense inverse OSIM,
which all the existing approaches perform, to the best of
our knowledge. Finally, we end the section with a qualitative
comparison of the proposed algorithm with the existing O(n)
complexity OSIM solvers KJR [28] and EFPA [31].

A. The PV-OSIM algorithm

Algorithm 2 lists the PV solver computations necessary for
the OSIM.

Algorithm 2 The PV-OSIM algorithm

Require: qp, Kis, robot model
First forward sweep

1: for i in S do
2: X{i} = X{π(i)}

{π(i)}X{i′}
{i′}X{i}

3: KA
i ← Ki; LA

i ← 0mi×mi
HA

i ← Hi;
Backward sweep

4: for i in Sr do
5: Di = ST

i H
A
i Si; Pi = (16×6 −HA

i Si(Di)
−1ST

i )
6: HA

π(i) ← HA
π(i) + PiH

A
i

7: KA
π(i) ←

[
KA

π(i)

KA
i PT

i

]
8: LA

π(i) ←
[
LA
π(i)

LA
i +KA

i Si(Di)
−1ST

i K
AT
i

]
9: if floating-base? then

10: LA
0 = (LA

b +KA
b (HA

b )−1KAT
b )

11: Λ = (LA
0 )

−1

B. The PV-OSIM-fast for floating-base robots

For floating-base trees with branching at the base link, LA
b

has block diagonal structure. This sparsity structure is lost in
the update in line 10 in algorithm 2 (eq. (48)) by adding a
dense matrix to LA

b . The inverse OSIM (and the OSIM) is a
dense matrix for floating-base robots because the constraints
on different branches are coupled through the floating-base.
All existing approaches, that we know of, compute this dense
inverse OSIM and factorize it, which scales poorly in the
presence of many constraints. We propose to avoid this by
exploiting the structure of the update in eq. (48).

The update to LA
b in eq. (48) is structurally a symmetric

rank-6 update. If we assume that LA
b is invertible, which is a

reasonable assumption for floating-base robots like humanoids
and quadrupeds during operation, the matrix inversion lemma
(MIL) [56] can be used to factorize LA

0 without having to
explicitly construct this dense matrix. The MIL states

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1,
(53)

applying which to solve eq. (48) yields

(LA
0 )

−1 = (LA
b )

−1 − (LA
b )

−1KA
b {(HA

b )+ (54)

KAT
b (LA

b )
−1KA

b }−1KAT
b (LA

b )
−1,

= Λb − ŁK{(HA
b ) +KAT

b ŁK}−1ŁT
K (55)

where Λb := (LA
b )

−1 (easy to compute because of its block
diagonal structure which is retained even after inversion) and
ŁK := ΛbK

A
b . Please note that the right-hand side (RHS) of

the above equation is not evaluated to get the (LA
0 )

−1 matrix
as that would destroy sparsity. Instead, the RHS is meant to
be directly multiplied with vectors, similarly to how solving a
linear system involves factorization and not matrix inversion.

1) Computational complexity of PV-OSIM-fast: The orig-
inal PV-OSIM algorithm, computes and factorizes the dense
LA
0 , which requires O(m3) operations. In contrast, the struc-

ture exploiting method computes Λb, which requires O(m
3

r2 )

operations, and LK , which requires O(m
2

r ) operations, bring-
ing the total complexity to O(m

3

r2 ), where we have assumed
for simplicity of analysis that the m constraints are equally
distributed among the r branches. Thus, the proposed al-
gorithm in this subsection can provide a significant speed-
up for factorizing the inverse OSIM of floating-base robots
with a favorable branching structure compared to the existing
approaches that all solve dense linear systems.

Limitation of PV-OSIM-fast: Strictly speaking, PV-OSIM-
fast is applicable in a subset of the cases where the regular
PV-OSIM is applicable because of its assumption that LA

b is
invertible. It is possible that LA

b is not invertible, but LA
0 is

invertible due to the addition of symmetric rank-6 matrix in
eq. (48). This situation may occur if there is a high dimensional
constraint applied on a link close to the base link or if the robot
reaches a kinematically singular configuration.

C. Comparison with existing O(n) OSIM algorithms

We now compare the PV-OSIM algorithm with the existing
recursive O(n) algorithms: the KJR algorithm [22], [28],
whose optimized version was presented in [32], and the
extended force propagator algorithm (EFPA) [31]. The three
algorithms share the main idea of propagating the inverse iner-
tia matrices, but differ significantly in the details. The primary
structural difference of the PV-OSIM is that it computes the
inverse OSIM in two sweeps while both KJR and EFPA require
three sweeps.

This difference arises because PV-OSIM computes inverse
inertia due to the motion of the ith joint and its descendants
directly in the constraint space LA

i during the backward
sweep, using the EFP to propagate constraint forces to a joint
and the constraint accelerations back to the constrained link.
However, both KJR and EFPA first compute the articulated
body inertia in a backward sweep and then compute the spatial
inverse inertia matrices of size 6 × 6 for all the necessary
links in a forward sweep, which is avoided in the PV-OSIM.
Propagating spatial inverse inertia matrices is a particularly
expensive operation since they need to be transformed from
one link’s frame to another’s (because dynamics algorithms
are efficiently implemented in the link frame) in KJR and
EFPA. This transformation is not required in PV-OSIM be-
cause the inverse inertia is directly computed in the constraint
space. Then KJR and EFPA compute the relative inverse
inertia (essentially the matrix that maps forces on one link
to the accelerations caused on another link) between every
pair of links that are constrained. KJR performs computation



inefficiently by propagating the relative spatial inverse inertia
matrices through the path connecting two constrained links for
every possible pair of constrained links. EFPA computes the
relative inverse inertia matrices more efficiently by directly
transmitting the constraint forces and accelerations between
constrained links through a common ancestor link using EFP.
Finally, after all these inverse inertia matrices are computed,
EFPA and KJR project them to the constraint space to get the
inverse OSIM.

Thus, the PV-OSIM appears to exploit the structure of the
problem better by using one less sweep to compute the inverse
OSIM and its computational performance relative to existing
OSIM algorithms will be benchmarked in section IX-B. It must
be noted that despite performing some extra computations, the
EFPA algorithm has a lower order computational complexity
of O(n + md + m2) compared to the O(n + m2d + m2)
complexity of the PV-OSIM for computing the inverse OSIM.
Therefore, for kinematic trees of high depth and many con-
straints, we can expect the EFPA algorithm to be faster than
the PV-OSIM, which we test in section IX-B.

Also, note that the derivation of KJR or EFPA is complex
and requires significant knowledge of and insight into efficient
dynamics algorithms literature, while the PV-OSIM derivation
is relatively simpler and self-contained as we are able to derive
it from first principles (Gauss’ principle) within this paper.
Moreover, all the existing approaches compute and factorize
the dense inverse OSIM matrix for floating-base robots, which
the PV-OSIM-fast algorithm in section VII-B avoids.

VIII. EARLY MULTIPLIER RESOLUTION

The original PV solver first eliminates the primal variables,
recursively computes the inverse OSIM and factorizes it,
which results in a worst case O(n+m2d+m3) complexity.
This can get particularly expensive when m ∼ O(n). However,
if computing the OSIM is not required (for some other
purpose during control or simulation), we can generalize the
elimination ordering by aggressively eliminating dual variables
earlier during the backward sweep to obtain an algorithm with
an improved complexity of only O(n + m). We now derive
this algorithm by adapting our original PV solver derivation.
This early elimination idea was already partly introduced in
eq. (49), when we eliminated the dual variables just before
eliminating ab and will be further developed now. A form of
early elimination is also proposed in [33], where they eliminate
the constraint forces of an internal kinematic loop as soon as
all the link accelerations within that loop are eliminated.

According to Bellman’s principle of optimality [19], the
solution to an optimization problem also optimizes its tail sub-
problem. Hence, for the tail sub-problem at the i-th link

λA∗
i = argmax

λA

V ∗
i (aπ(i),λ

A
i ). (56)

The objective function above is of the form in eq. (39) and
is guaranteed to be bounded above and have a solution only
when LA

i has full rank. There is a rank-ni update to LA
i at

every i-th joint during the backward recursion (see eq. (42e))

LA
i ← LA

i +KA
i Si(Di)

−1ST
i K

AT
i (57)

Substituting the singular value decomposition (SVD) [45] of
LA
i in eq. (39) gives

λA∗
i = argmax

λA

{−1

2
λAT
i

[
U1
i U2

i

] [Σi

0

] [
U1T
i

U2T
i

]
λA
i +

aTi K
AT
i

[
U1
i U2

i

] [U1T
i

U2T
i

]
λA
i + (58)

lTi
[
U1
i U2

i

] [U1T
i

U2T
i

]
λA
i }+ constant,

where Σi ∈ Rmir×mir is the diagonal matrix of the positive
singular values, U1

i ∈ Rmif×mir and U2
i ∈ R(mif )×(mif−mir)

are the singular vectors corresponding to the positive and zero
singular values of LA

i , respectively, mir and mif are the rank
and the size of LA

i , respectively. The left and right singular
vectors are equal because LA

i is symmetric. Moreover, the
singular vectors are orthonormal[

U1
i U2

i

] [U1T
i

U2T
i

]
= Imif×mif

, (59)

which we use to project λA
i , KA

i and li to two mutually
orthogonal linear bases,

λ̃A
i = U1T

i λA
i , λ̂A

i = U2T
i λA

i , (60)

K̃A
i = U1T

i KA
i , K̂A

i = U2T
i KA

i ,

l̃i = U1T
i li, l̂i = U2T

i li,

where λ̃A
i ∈ Rmir , K̃A

i ∈ Rmir×6, l̃i ∈ Rmir and λ̂A
i ∈

R(mif−mir), K̂A
i ∈ R(mif−mir)×6, l̂i ∈ R(mif−mir) are the

components of λA
i , KA

i and li in the basis spanned by the sin-
gular vectors U1

i and U2
i respectively. Using these quantities,

the optimization problem in eq. (58) can be decoupled into a
separate optimization problem and a dual feasibility condition
along the columnspace and nullspace of LA

i , respectively,

λ̃A
i = argmax

λ̃A
i

{−1

2
λ̃AT
i Σiλ̃

A
i + aTi K̃

AT
i λ̃A

i + l̃Ti λ̃
A
i },

(61a)

K̂i
A
ai + l̂i = 0. (61b)

The solution to eq. (61a) is easily computed due to the
diagonality of Σi,

λ̃A∗
i = Σ−1

i (K̃A
i ai + l̃i). (62)

Substituting eq. (62) back into the cost-to-go Lagrangian in
eq. (39) gives the following updates to its terms,

HA
i ← HA

i + K̃AT
i Σ−1

i K̃A
i , fAi ← fAi + K̃AT

i Σ−1
i l̃i,

KA
i ← K̂A

i , li ← l̂i, λA
i ← λ̂A

i ,

LA
i ← 0(mif−mir)×(mif−mir). (63)

The backward recursion is performed using these modified
terms in eq. (42). The early elimination is performed at
each joint after LA

(i) is updated, which resets LA
(i) to zero

matrix. Early elimination reduces the number of propagated
constraints at each i-th joint by mi, which is the rank of
KA

i Si and usually equal to ni, except in the case of redundant
constraints or kinematic singularities. If all the constraints are



eliminated before reaching the root node, the backward sweep
reduces to the ABA algorithm.

During the forward sweep, the optimal λA∗
i is reconstructed

using λ̃A∗
i from eq. (62) and λ̂A∗

i (available from the previous
link) by transforming back to the original basis

λA∗
i = U1

i λ̃
A∗
i + U2

i λ̂
A∗
i . (64)

For the common case of a single d.o.f joint, LA
i under-

goes a rank-1 update in eq. (57) and computing its SVD is
computationally simple, with the singular vectors given by the
following symmetric reflection matrix 3,[

U1
i U2

i

]
= Imif×mif

− 2
wiw

T
i

wT
i wi

, (65)

and the positive singular value is

Σi =
[
∥ksi∥2/Di

]
(66)

where

wi = ksi +
ksi1
|ksi1|

∥ksi∥e1, ksi = KA
i Si, (67)

where ksi1 is the first element of ksi and e1 is the first
canonical basis vector.

Remark 6 Since the rank-1 update SVD can be computed
using just ksi and Di, the LA

i matrix need not be explicitly
updated. Furthermore, U1

i and U2
i matrices are not explicitly

computed either because they are only needed for multiplying
other matrices in eq. (60) and eq. (64), which is efficiently
achieved by simply multiplying the right-hand-side of eq. (65).
For example,[

K̃A
i K̂A

i

]
= {Imif×mif

− 2
wiw

T
i

wT
i wi
}KA

i . (68)

Remark 7 The eq. (67) assumes ks1 ̸= 0. If ks1 = 0, the
rows of ksi are permuted such that ksi1 ̸= 0, similarly to the
pivoting methods in matrix factorization algorithms [45].

Remark 8 If ksi = 0mif×1, the ith joint’s acceleration is
unaffected by the constraint forces KAT

i λA
i . In this case, the

rank-1 update of LA
i in eq. (57) would only add a zero matrix

and is not performed. The terms KA
i and li are propagated to

the parent link as in the original solver using eq. (42c) and
eq. (42d) without size reduction.

Complexity analysis

The PV-early solver’s salient feature compared to the PV
solver is that LA

i is not computed (hence LA
0 is not factorized)

and the matrices KA
i and lAi reduce in size during the

backward sweep instead of growing with the accumulation of
constraints. If the number of rows of KA

i and lAi is bounded
by 6, the complexity of the PV-early solver is O(n+m), as the
number of operations at every joint is bounded by a constant.

Remark 9 If the KA
i and lAi have more than 6 rows in

the PV-early solver, it implies an over constrained system
with more than 6 constraints on a link’s acceleration. Then

3https://math.stackexchange.com/questions/704238/singular-value-
decomposition-of-rank-1-matrix

either the constraints are feasible with redundant constraints
or infeasible, when one can remove the redundant constraints
to obtain a constraint matrix KA

i with at most 6 rows or declare
infeasibility early respectively.

IX. EXPERIMENTS AND DISCUSSION

We now benchmark and discuss the proposed algorithms.
We 1) explain our implementation, 2) benchmark the OSIM
computation 3) benchmark the constrained dynamics algo-
rithms themselves 4) empirically test the computational scaling
of the different algorithms 5) discuss results and limitations
of the proposed algorithms.

A. Implementation

We implemented the algorithms by extending Featherstone’s
highly readable MATLAB software toolbox SpatialV2 [57].
For computing the OSIM, we implemented PV-OSIM and PV-
OSIM-fast algorithms and to benchmark them we also imple-
mented the KJR, EFPA and LTL [32], [43] algorithms. For
computing the constrained dynamics, we implemented PV, PV-
early and the PV-soft algorithms and to benchmark them we
also implemented the constrained dynamics algorithms using
Featherstone’s sparsity-exploiting LTL approach considering
both the hard and the soft motion constraints. Robot specific
C-code was generated for these algorithms using CASADI’s
scalar expressions (SX) [58] and its runtimes are used for the
comparison. All the numerical experiments are performed on
a single CPU core on a laptop with Intel i7-8850H CPU @
2.60GHz processor running an Ubuntu 18.04 operating system.
We disabled Intel Turbo Boost during the benchmarking to
reduce CPU frequency variability.

Implementing rigid body dynamics algorithms efficiently
involves various nuances discovered by the robotics commu-
nity over the years. For example, computing quantities in
the local body frame instead of the inertial world frame can
significantly reduce the number of operations needed [48].
Thus our implementation also uses body frame though the
derivation of the algorithms in this paper uses inertial frame
for notational simplicity. Also using the Denavit-Hartenberg
(DH) structure for modelling the robot kinematics, whenever
possible, makes the dynamics algorithms more efficient [59].
However, this is not always possible, e.g. for kinematic trees,
where a parent link can, in general, have DH structure with
only one of the children joints. [32], [43] carefully accounted
for these nuances in their comparison of the LTL and ABA
algorithms. Additionally, robot design can also significantly
influence the operation count, e.g. some links in the Kuka
Iiwa have a 90-degree rotation between the parent joint’s axis
and the child joint’s axis, resulting in a rotation matrix with
only 3 non-zeros (either 1 or -1) requiring even fewer compu-
tations than DH nodes. Therefore, an algorithm’s operation
count is robot-specific, and manually counting them for a
given robot and constraint combination taking into account
all the computational nuances would be tedious. Conveniently,
CASADI’s SX expression graph of an algorithm automatically
provides the operation count allowing us to compare the



best possible robot-specific operation count of the different
algorithms, which we report later in this section.

Our implementation further uses simple optimizations such
as avoiding matrix-matrix operations whenever possible, and
performing Cholesky factorization and solve instead of com-
puting matrix inverses. The source code of the implementa-
tion 4 and the simulation videos of the proposed algorithms 5

are made available. Baumgarte’s stabilization was used in the
simulations to stabilize the constraints over a long period of
time [60], choosing a stabilization period of 0.1 seconds to
avoid overly stiff dynamics as suggested in [1, Section 8.3],
which interested readers are referred to for further details.

In our numerical experiments below, H and H3 denotes a
general 6D and 3D constraint on the ‘hand’ link of a robot,
with the corresponding Ki being a random matrix of size 6×6
and 3× 6 respectively. F and F3 are defined similarly for the
‘foot’ link. For the Iiwa, the end-effector was considered the
hand link.

B. Benchmarking the OSIM algorithms

Figure 2 gives the operation count along with internal break-
down for the proposed PV-OSIM and PV-OSIM-fast algo-
rithms along with the existing SOTA O(n+md+m3) EFPA
algorithm [31] and the SOTA sparsity-exploiting O(nd2 +
m2d + dm2) LTL-OSIM algorithm [32]. Similarly to [31],
we found KJR to be significantly slower than EFPA for all
the considered robots and KJR would also scale worse due to
its higher complexity, hence we omit the KJR results.

We found PV-OSIM to be more efficient than the EFPA for
all the considered robots. With the computation of articulated
body inertia IA, the task-space EFP KA and the Cholesky
decomposition of inverse OSIM requiring the same number
of computations for both algorithm, the difference arises in
the inverse OSIM Λ−1 computation. This is because EFPA
requires an additional forward sweep, that propagates inverse
inertia matrices forward with expensive similarity transforma-
tions, unlike the PV-OSIM as discussed in section VII-C.

LTL-OSIM was the fastest algorithm for the KUKA Iiwa,
which has only 7 d.o.f. However, for the 18 d.o.f Go1 robot
the PV-OSIM was already slightly faster than the LTL-OSIM
due to its lower computational complexity. For bigger robots
like the Atlas (37 d.o.f) and Talos (50 d.o.f), LTL was the
slowest of all the considered algorithms due to its higher
computational complexity. A major difference between the
LTL vs EFPA comparison in [31] (which found EFPA to be
slower than LTL for the Honda Asimo robot) and ours is that
we also include the cost of computing the constraint Jacobian
computation J in the LTL algorithm. We believe this to be a
fairer comparison because the PV-OSIM and EFPA algorithms
do not require J . KA propagates forces and accelerations from
end-effectors to other links fulfilling a role similar to J in
LTL. For fewer number of constraints, both PV-OSIM and
EFPA are faster than LTL for the Atlas robot. However, if we
assume that J is computed elsewhere and is available for re-
use, its computation cost can be excluded from LTL operation

4https://github.com/AjSat/spatial V2
5https://tinyurl.com/z78hkaah

count. Then our findings would concur with [31], where LTL
would be faster than EFPA for Atlas with 18 or 24 constraints,
but still slower than the PV-OSIM. For Talos, LTL was not
competitive with the lower order methods especially due to
the expense of computing and factorizing a bigger JSIM.

The PV-OSIM-fast avoids computing and factorizing the
dense inverse OSIM matrix explicitly using the matrix inver-
sion lemma, and scales better than the PV-OSIM as the size
of the OSIM matrix increases. It is the fastest algorithm for
the considered floating-base robots and even nearly 2x faster
than the LTL for the humanoid robots.

Though the PV-OSIM was computationally faster than the
EFPA for all the considered robots, the EFPA has a lower order
computational complexity of O(n + md + m2) compared to
the O(n + m2d + m2) of the PV-OSIM for computing the
inverse OSIM Λ−1. This would make EFPA scale better than
PV-OSIM for longer mechanisms with many constraints. To
test this, we consider a long-stemmed mechanism (nstem is the
number of links in the stem). From both stem ends, mbranches

chains of 7 links each branch out as shown in fig. 2e. Each
branch’s tip link is fixed with a 6D weld constraint.

Figure 2f shows the computational scaling of the ratio
of PV-OSIM and EFPA operation counts w.r.t to nstem for
different values of mbranches. EFPA was found to be always
slower than PV-OSIM for up to 8 branches (8× 6 constraints
propagated) irrespective of nstem. For 9 or more branches, the
EFPA eventually becomes more efficient than PV-OSIM at a
cross-over point stem length nstem. The value of the crossover
point depends on mbrances as well as the branches’ link length
for the considered mechanism. More branches would reduce
the cross-over point as EFPA can more efficiently propagate
large number of constraints through the stem links. Shorter
branch length can also reduce the cross-over point because
the constraint propagation through the stem links (where
EFPA is more efficient than PV-OSIM) will form a fraction
of the computations. For a mbranches = 10, the cross-over
nstem = 54 for branch length of 7, which is a very large
mechanism with 54+ 10× 7× 2 = 194 links. For an extreme
branch length of only 1 link, the cross-over nstem can be as
small as 7. Based on these findings, we conclude that the
PV-OSIM requires fewer operations for most realistic robot
mechanisms unless one is considering a heavily constrained
mechanism with most constraints propagated through a large
fraction of the joints.

C. Benchmarking constrained dynamics solvers

We compared the PV solver, PV-e solver and the PV-s
solver with the state-of-the-art sparsity exploiting LTL solver
of Featherstone [43], [32]. The LTL-OSIM [32] solver is
a popular algorithm implemented in the high-performance
simulator software PINOCCHIO [61]. The LTL solver is also
used in MUJOCO [42] which uses a joint-space version of the
soft-Gauss principle. To make a fair comparison with the LTL
solvers, we implemented them ourselves and table II reports
the computation time taken by the different algorithms. The
type and the number of constraints imposed are reported next
to the robot name in parentheses.

https://github.com/AjSat/spatial_V2
https://kuleuven-my.sharepoint.com/:f:/g/personal/ajay_sathya_kuleuven_be/EkuNpQF8BF5NhMiFajeiskIB0steWelFr_sxQkGa1P_Nrg?e=GS9SPg
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(a) Comparing the OSIM algorithms on the Atlas robot.
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(b) Comparing the OSIM algorithms on the Talos robot.
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(c) Comparing the OSIM algorithms on the Unitree Go1
quadruped.
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(d) Comparing the OSIM algorithms on the KUKA Iiwa ma-
nipulator.
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Fig. 2: Benchmarking the number of computation operations of the OSIM algorithms for various robots.

The computation times for the nominal C++ and C exe-
cution of PINOCCHIO (Pin) and MUJOCO (Mu) respectively
cannot be considered a fair comparison because they do not
use code-generation (which prunes unnecessary computations)

and may compute additional quantities that are not required
for constrained dynamics. We still report their computation
timings for reference and indicative purpose of the speed-ups
these software may achieve by exploiting code-generation.



TABLE II: Benchmarking computational performance of PV
solver with other constrained dynamic solvers in MUJOCO
and PINOCCHIO. All times are in microseconds.

Robot PV PV-e LTL Pin∗ PV-s LTL-s Mu∗

Iiwa (0D) 0.55 0.55 0.63 2.15 0.55 0.63 3.11
Iiwa (H3) 0.75 0.61 0.83 2.73 0.61 0.80 4.45
Iiwa (H) 1.01 1.09 1.08 3.53 0.63 0.89 4.88
Go1 (0D) 1.65 1.67 1.74 4.68 1.64 1.74 7.10
Go1 (F3) 1.88 1.81 1.96 5.61 1.70 1.84 11.2

Go1 (2F3) 2.10 1.98 2.20 6.40 1.76 1.98 12.0
Go1 (3F3) 2.32 2.14 2.48 7.33 1.82 2.16 12.8
Go1 (4F3) 2.53 2.33 2.85 8.20 1.90 2.33 13.5
Atlas (0D) 3.44 3.47 4.64 12.3 3.47 4.64 15.9
Atlas (F) 4.59 3.94 5.88 15.4 3.61 5.58 31.5
Atlas (2F) 6.09 4.40 7.52 18.5 3.73 6.61 34.2

Atlas (2F+H) 7.37 5.03 8.69 22.3 3.76 6.93 36.5
Atlas(2F+2H) 8.27 5.52 11.8 26.5 3.82 7.77 38.8

Talos (0D) 4.92 4.97 8.14 17.1 4.96 8.28 23.6
Talos (F) 5.63 5.48 9.25 21.1 4.96 8.65 51.3
Talos (2F) 6.72 6.45 10.9 25.2 4.99 9.21 54.3

Talos (2F+H) 8.40 7.06 13.4 30.0 5.08 10.6 57.0
Talos(2F+2H) 10.13 7.40 15.4 34.7 5.11 11.9 59.4

∗ Pin and Mu are nominal execution of PINOCCHIO and MUJOCO without
code-generation and hence cannot be considered fair comparison.

1) Hard motion constraints: The PV-solver was as fast or
faster than the sparsity-exploiting LTL methods for all the
considered robots. The difference, while negligible for the 7
d.o.f Iiwa robot, widens for larger robots and more constraints
due to its lower order complexity. Our PV-e solver scales even
better than the PV solver, due to its lower order complexity
of O(n+m). For larger robots like Atlas or Talos with a high
number of constraints, PV-e offers nearly a 50% and 30%
reduction in computation compared to LTL and the PV-solver
respectively.

2) Soft constraints: The last three columns of the table II
present the computation times of our PV-s solver (see sec-
tion VI), our implementation of the MUJOCO’s soft Gauss
principle using LTL and the nominal C execution in MUJOCO
itself. In MUJOCO, we imposed 6D weld-type equality con-
straints for F or H and 3D connect-type equality constraints
for F3 and H3 respectively. We deactivated all other constraints
and frictional contacts (turned on by default in MUJOCO) to
ensure that it solves the same equality constrained dynamics
problems. The PV-s implementation is significantly faster than
all the other algorithms. It is nearly twice as fast as LTL-s and
nearly thrice as fast as LTL (which arguably solves harder
problem with hard motion constraints). It is unlikely that any
constrained dynamics algorithm, that we know of, can compete
with PV-s since its computation cost is nearly the same as
that of the ABA algorithm (unconstrained forward dynamics
algorithm with O(n) complexity).

3) Accuracy of the proposed solvers: We benchmarked the
accuracy of the soft Gauss principle for different value of
weights in fig. 3. We present the whisker plots of ℓ2 norm
of the constraint residuals in fig. 3a and the ℓ2 norm of
the difference in q̈∗ computed by the PV solver (reference
algorithm because it considers hard motion constraints) in
fig. 3b for the Talos robot with 2H+2F constraint (both its
feet and hands are fixed with a full 6D constraint) at 1000
different randomly sampled joint configurations. PV, PV-e
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Fig. 3: Benchmarking the numerical accuracy of soft Gauss
solver for different weights.

and LTL that solve for hard equality constraints satisfy the
constraint to high level of accuracy, with PV-e appearing
to be numerically slightly stabler than the other two. Both
the soft Gauss solvers, PV-s and LTL-s, have a significantly
higher value of constraint residual, though the residual keeps
reducing as the penalty weights are increased. Both PV-s
and LTL-s satisfy the constraints equally well. However, for
weights higher than a certain point (∼ 108), the optimal joint
accelerations computed by the soft Gauss solvers and the hard
Gauss solvers begin to diverge due to numerical issues, where
the high penalty weights begin to affect the joint acceleration
solution in the nullspace of the constraints. Between the two
soft Gauss solvers, PV-s appears to be more numerically stable
than LTL-s.

D. Computational scaling

We empirically tested the computational scaling of the
different constrained dynamics algorithms and present the
results in fig. 4. In fig. 4a, we show computational times of
the different algorithms for kinematic chains ranging from 6
to 100 revolute joints. The end-effectors are fixed with full
6D constraints. As expected, the O(n) complexity PV, PV-e
and PV-s solvers scale linearly and more gracefully than the
higher-order LTL and LTL-s algorithms used in PINOCCHIO
and MUJOCO respectively. Beyond a certain number of links,
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Fig. 4: Computational scaling of the different algorithms.

the generated C-code for LTL and LTL-s became too large for
effective compiler optimization and they became slower than
even the nominal C++ execution in Pinocchio.

Then we compared the different algorithms on a highly
constrained ladder-shaped mechanism (see fig. 4b) with m ∼
O(n), with each rung consisting of 7 links. The segment
connecting two ends of a rung on one side has 3 links and
the other ends of the rung are constrained to be fixed with
full 6D constraints. The computational timings of different
algorithms as more rungs (and constraints) are added to the
mechanism are presented in fig. 4c. The PV solver with its
cubic complexity in the number of constraints also begins
to scale badly like the LTL and LTL-s solvers, while the
O(m+ n) solvers PV-e and PV-s scale linearly.

E. Discussion and limitations

Parallel algorithms: Our comparison was limited to imple-
mentations on a single core. However, the divide-and-conquer
algorithms [37]–[40] may be computationally faster, especially
for bigger mechanisms, when multiple cores are utilized. On
a single core however, they are unlikely to be faster for
typical robots since they are known to be several times more
expensive than ABA [38]. However, due to a lack of open
source implementation and due to the complexity of their
implementation, we leave this comparison for future work.

Among these divide-and-conquer methods the PV solver
appears to be most closely related to the DCAp algorithm
[38], which has outward acceleration propagation and inward
force propagation similarly to the PV solver and the ABA is
shown to be a special case of DCAp. It appears to be possible
to provide an alternative derivation of the PV solver from the
DCAp algorithm by placing a handle on the floating-base and
the constrained links. The handles on the constrained links
would be in the constraint space instead of the spatial handle
explicitly considered in [38]. Then, using the two-handle
equation in [38, sec. 4.1], for a specific order of assembly
from the leaf nodes to the root, it is possible to show that [38,
eq. 29a, 29g, 29b, 29h, 29d] correspond to eq. (42a), eq. (42b),
eq. (42c), eq. (42d) and eq. (42e) respectively. However, such
an assembly ordering is not the recommended ordering in
divide-and-conquer algorithms as it does not assemble two
trees of similar sizes which is necessary for obtaining a
reduced order complexity in the divide-and-conquer methods.

Though there is no direct analogue for the PV-early algo-
rithm in DCAp, a simpler form of early elimination can also be
performed in DCAp when the LA matrix reaches full rank by
eliminating the constraint forces by taking Schur complement.
Due the divide-and-conquer methods being among the most
complex rigid-body dynamics algorithms in literature, deriving
the PV solver this way may not be of interest to readers.
However, this connection opens up interesting possibilities for
parallelizing the algorithm, which we leave for future work.

Closed-loop solvers: The PV solver is closely related to
the algorithms in [33] and [34]. In the PV solver’s backward
recursion, the eq. (20c), eq. (20d) and eq. (20e) correspond to
[33, eq. 16c, eq. 18a and eq. 18b] respectively and [34, eq.
41c, eq.51b, eq.51a] respectively. Application-wise, the main
difference between PV-solver and [33], [34] is that we consider
known acceleration constraints (which includes all the loop
closure constraints with the ground as a special case), while
both [33], [34] tackle the harder problem of internal kinematic
loop constraints. We also explicitly consider floating-base
systems which was not considered in [33], while [34] does
consider floating-base systems in one of their examples though
not in the main derivation. Both [33] and [34] can be straight-
forwardly adapted to solve the constrained dynamics problems
considered by the PV solver. This connection between the
PV solver, [33] and [34] appears to not have been made in
existing literature. Despite not being a fundamentally new
algorithm, the expository PV solver derivation in section III
and section V is of value to the readers because it utilizes a
different LQR perspective that permitted a mechanistic deriva-



tion of the algorithms, that would make the material accessible
to researchers with control and optimization background. In
contrast, [33] required significant physical insight to come
up with an efficient propagation of Newton-Euler solutions
similarly to the ABA algorithm [16]. However, [33] approach
may be more accessible to researchers with a background in
mechanics and without prior experience in optimal control or
optimization.

O(n+m) solvers: Our expository derivation also allowed
us to easily derive two different and original (to the best of our
knowledge) O(n+m) solvers, using the soft Gauss principle
adopted by MUJOCO and early elimination of dual variables.
A form of early elimination is also proposed in [33], [34],
where they eliminate the dual variables of a loop after passing
over all the links in that loop. For certain robot architectures
where the loops are not heavily interconnected (the same link
being part of multiple loops), their early elimination procedure
can also lead to O(m+n) performance. Our early elimination
is fundamentally different as it reduces the dimensionality of
the propagated constraints at every joint.

A relatively more recent O(n + m) complexity solver
for kinematic loops [35] uses the same ideas as [33] by
introducing zero-mass phantom link for loop-cutting and early
elimination at the loop level. However, unlike [33] and the
PV solver, [35] proposes a Lagrange multiplier free algorithm
based on Kane’s formulation of constrained dynamics [36].
The algorithm in [35] is fairly complex, does not have an
open-source implementation and does not appear to have
been benchmarked with the PV solver, [33] or [34]. It is
not obvious how to efficiently adapt it to the kinematic-tree
structures considered by the PV-solver. Despite [35] being
a challenging algorithm to understand and implement, the
Lagrange multiplier-free approach is interesting and may be
computationally beneficial, especially for mechanisms with
kinematic loops, and will be investigated in the future.

The SVD currently proposed for PV-early is admittedly an
expensive algorithm for multi d.o.f joints, when we cannot
exploit the efficient rank-1 update formulae presented in
section VIII, unless the multi d.o.f joints are modelled as
several equivalent fictitious single d.o.f joints in a chain.
However, this workaround is non-ideal as it introduces issues
like representation singularity and non-physical meaning of
velocities of these fictitious joints. It may be worthwhile
to explore replacing the SVD with the more efficient rank-
revealing QR decomposition [45] in the future, which provides
the desired orthogonal bases similarly to the SVD.

OSIM and computational benchmarking: That the backward
recursion in PV solver, [34] and [33] provides an efficient
algorithm to compute the OSIM is a new connection made
in this paper that we could not find in literature. We are also
not aware of existing work that computationally benchmarked
the PV-solver or the [33], [34] algorithms with the currently
popular sparsity-exploiting methods of Featherstone for the
constrained dynamics problems considered in this paper. Our
findings indicate that for larger robots like the humanoid
robots the sparsity-exploiting methods are not competitive
with the PV solver, which has implications for the existing
simulators and as well as for biomechanical applications where

the degrees of freedom are typically over 100.
Our benchmarking methodology included code-generating

and compiling robot-specific C code, which while contributing
to the speeds we observe, is also a limitation as we need
to know all the possible contact situations that may arise.
Nominal C++ implementations such as in PINOCCHIO can
deal with these scenarios more effectively as they do not
require re-compilation at runtime. However, in many applica-
tions e.g. humanoid walking, all the possible contact scenarios
can be compiled in advance and loaded depending on the
contact scenario using look-up tables. In any case, the speed-
up we observed due to code-generation is high enough that
it is interesting for simulators to explore a hybrid method
combining the strengths of both code-generation and nominal
C++ execution for different parts of the algorithm.

Finally, we refer interested readers to several extensions
of the unconstrained LQR algorithm to equality-constrained
problems [62]–[65] in a control setting. Out of these methods
[62] is analogous to the original PV solver and [64]’s method
is most similar to our PV-early solver, where they also used
SVD.

X. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We provided a self-contained derivation of several advanced
constrained dynamics solvers from the first principles by
connecting it to the LQR problem. Our derivation, building
upon Vereshchagin’s approach, is much simpler than the better
known SOA framework of Rodriguez [20] that uses this LQR
connection. Our expository derivation extended the original
PV solver to floating-base kinematic trees, which resulted in an
algorithm closely related to [34] and [33], but is derived using
a different LQR perspective. This paper makes constrained
dynamics accessible to researchers in optimization and control
as well as roboticists, with knowledge of control, that currently
treat robot dynamics as a black-box and are therefore unable
to debug or adapt existing dynamics software to their applica-
tions. The LQR connection can foster transfer of software and
ideas between fields in the future. For example, recent research
from data-driven LQR control may transfer to robust control of
robots with uncertain dynamics. The optimization perspective
in our derivation is valuable as accounting for uncertainty in
parameters is performed naturally in an optimization frame-
work [66], [67].

The equality we showed between LQR’s dual Hessian
and the inverse OSIM provided an efficient state-of-the-art
OSIM algorithm, which we further significantly accelerated
for specific, but common, robot structures that have branching
at the base. The LQR-based approach allowed straightforward
derivation for the PV-s and PV-early algorithms, resulting
in two original algorithms with O(n + m) complexity. Our
numerical experiments suggest that the PV solver is com-
putationally superior to currently popular higher-order sparse
factorization algorithms by Featherstone for larger robots like
the humanoid robot Atlas, for which the LTL needs up to 2x
more computations than the PV-solver. This PV-solver speed-
up can be arbitrarily higher for longer mechanisms, typical



in biomechanical applications, due to the inherent complexity
difference. Finally, our work recognizes the historical contribu-
tion of Popov and Vereshchagin who proposed the first O(n)
constrained dynamics solver, which remarkably remains the
state-of-the-art nearly fifty years after its invention and yet
remains largely unknown in the robotics community.

B. Future work

There are multiple exciting directions for future work,
apart from the applications in robot control and trajectory
optimization. The algorithms presented here are limited to
equality constraints, and it is a natural research direction to
extend the algorithms to include internal kinematic loops,
frictional contacts and unilateral contact constraints. We will
also explore proximal point iterations [6] for applying the
solver to problems with ill-conditioned and nearly redundant
constraints. Analytical gradients, which are found to be faster
than automatic differentiation, can also be developed for the
PV solver for optimal control and reinforcement learning
applications. In particular, transfer of new research results
from data-driven LQR to robot control is an exciting future
research direction.
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recursion for equality-constrained linear quadratic optimal control,”
arXiv preprint arXiv:2302.14836, 2023.

[66] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust optimization.
Princeton university press, 2009, vol. 28.

[67] A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures on stochastic
programming: modeling and theory. SIAM, 2021.

Ajay Sathya obtained his Bachelors degree
and Masters degree from NITK Surathkal,
India and KU Leuven, Belgium respectively.
He is currently pursuing a PhD degree at
Mechanical Engineering department of KU
Leuven, Belgium.

Dr. Bruyninckx (Personal webpage) ob-
tained the Masters degrees in Mathematics (Li-
centiate, 1984), Computer Science (Burgerlijk
Ingenieur, 1987) and Mechatronics (1988), all
from the KU Leuven, Belgium. In 1995 he
obtained his Doctoral Degree in Engineering
from the same university. He is full-time Full
Professor at the KU Leuven, and partime at
the Eindhoven University of Technology. The
research focus in both places is on the com-
posability of the most advanced, knowledge
driven algorithms for the dynamics of motion

control of complex robotics applications, with distributed sensor
processing and resource monitoring. The complementary objectives
are to realise such systems with the least amount of resource costs,
with “good enough” quality, and with full “explainability”.
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