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Abstract—Multi-mobile robot systems show great advantages
over one single robot in many applications. However, the robots
are required to form desired task-specified formations, making
feasible motions decrease significantly. Thus, it is challenging to
determine whether the robots can pass through an obstructed en-
vironment under formation constraints, especially in an obstacle-
rich environment. Furthermore, is there an optimal path for
the robots? To deal with the two problems, a novel graph-
based motion planner is proposed in this paper. A mapping
between workspace and configuration space of multi-mobile robot
systems is first built, where valid configurations can be acquired
to satisfy both formation constraints and collision avoidance.
Then, an undirected graph is generated by verifying connectivity
between valid configurations. The breadth-first search method is
employed to answer the question of whether there is a feasible
path on the graph. Finally, an optimal path will be planned
on the updated graph, considering the cost of path length and
formation preference. Simulation results show that the planner
can be applied to get optimal motions of robots under formation
constraints in obstacle-rich environments. Additionally, different
constraints are considered.

Index Terms—Multi-mobile robot systems, motion planning,
formation constraints, obstacle-rich environment.

I. INTRODUCTION

IN recent years, multi-mobile robot systems (MMRS) have
attracted increasing attention from robotics researchers.

Compared with a single robot, the robots can cooperate with
each other to achieve better system robustness and flexibility.
Through collaboration among robots, complex tasks can be
accomplished, such as search and rescue [1], [2], exploring
[3], assembling [4] and transporting [5]. Moreover, MMRS can
replace the bigger single robot in scenarios with a restricted
and cramped environment, where there is not enough space.
In many applications of MMRS mentioned above, the robots
are usually required to form desired formations to achieve
cooperation, such as the object will connect the robots to form
a whole system during cooperative transporting. Accordingly,
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the flexibility of each robot will be decreased since it has
to satisfy formation constraints. In the meanwhile, the robots
also need to avoid obstacles when working, which requires
them to be as flexible as possible. Conflicts will arise if
simultaneously considering formation constraints and obstacle
avoidance when planning motions of robots, especially in
a dense environment with multiple obstacles. Therefore, it
is a challenging problem to determine whether MMRS can
pass through an obstructed environment under task-specified
formation constraints. Moreover, if it is possible, what is the
optimal path for the robots to fulfill the task? Thus, we focus
on multi-mobile robot motion planning problems under for-
mation constraints in obstacle-rich environments in this paper.
A novel graph-based motion planner is proposed. A mapping
between the workspace and configuration space of MMRS is
first built, where valid configurations are acquired according to
formation constraints and obstacle avoidance. An undirected
connected graph with boundary densification is then generated
by verifying the connectivity between valid configurations.
Vertices and edges on the graph represent valid configura-
tions and the connectivity between configurations, respectively.
Finally, the breadth-first search algorithm is adopted on the
graph to quickly determine whether there is a feasible path,
and the optimal path and motions of robots are computed
considering path length and formation preference. Cooperative
object transportation is used as a typical example. Simulation
results in different obstacle-rich environments demonstrate the
effectiveness and generality of the proposed planner. Besides,
the planner can be extended if there are additional constraints
brought by the tasks.

The main contributions of this paper are threefold. First, a
novel mapping between workspace and configuration space of
multi-mobile robot systems satisfying formation constraints is
proposed. Theoretical proofs show that the problems can be
solved on the undirected connected graph generated by map-
ping. Second, a boundary densification method is proposed
on the connected graph to facilitate planning and improve the
success rate for obstacle-rich environments. Third, the planner
can quickly determine whether it is feasible for MMRS to
pass an obstacle-rich environment under formation constraints.
Then, the optimal motions of the robots can be planned.

The rest of this paper is organized as follows. In Section
II, some related work is discussed. In Section III, we define
the basic concepts of multi-robot motion planning problems.
In Section IV, the proposed motion planner is explained in

ar
X

iv
:2

21
0.

03
34

0v
1 

 [
cs

.R
O

] 
 7

 O
ct

 2
02

2



2

detail. In Section V, the planner is employed for different
formation constraints by a case study in object transportation.
The simulations and results are given in Section VI. Section
VII concludes the paper and outlines the future work.

II. RELATED WORK

In many studies of multi-robot motion planning, formation
constraints among robots are not the key point. For each
robot, it regards other robots as dynamic obstacles and collab-
oration is not considered [6]–[8]. However, as tasks become
more complex, the collaboration between multiple robots is
inevitable, especially with formation constraints.

Generally, approaches in the previous works on motion
planning of MMRS under formation constraints can be divided
into two categories. The first category is individually planning
each robot while satisfying formation constraints and avoiding
obstacles. Under the combination of the two behaviors, the
system can hold desired formations [9]. Based on the leader-
follower and potential-based methods, desired formations with
obstacle avoidance were achieved in [10]–[12]. By combining
the virtual structure and obstacle avoidance methods, [13]
introduced an approach for multiple robots to maintain forma-
tions. Similarly, the combination can be found in [14]. Besides,
learning-based methods are also employed for the problems.
Formations could be adjusted independently by each robot to
pass through obstacle areas based on reinforcement learning
[15], [16]. In [17], the task space, including formation con-
straints and obstacle avoidance, was decomposed into different
convex regions through a global planner. Then, configurations
were planned through a local planner. In the above research,
the systems can all maintain desired formations tightly and
move to the goal in environments without obstacles. However,
when it comes to obstacle avoidance, some uncontrollable
deformation of system formations will appear more or less,
which is not acceptable for some cooperative tasks.

The second category considers the multi-robot system as
a whole 2D area, which is planned to be strictly separated
from obstacles. A system outlined rectangle approach was
proposed in [18], regarding the multi-robot system as a virtual
rectangle to avoid obstacles. Then, the problem was simplified
to the motion planning of a single robot. The idea can
also be found in [19], [20]. In [21] and [22], a constrained
optimization method was presented for motion planning of
multiple robots. The robots could always form the desired
formations in the largest convex obstacle-free region computed
in the neighborhood of the system. A region-based framework
for multi-robot systems was introduced in [23]. Based on
virtual structure, robots moved and formed formations inside a
changeable circular region always separated from obstacles. In
[24], formation control and change were achieved by caging
behaviors. The whole system was planned by the rapidly-
exploring random tree for obstacle avoidance. Sometimes, the
multi-robot systems have to be considered as a whole due to
special tasks, as in [25]–[28]. However, for the above research,
it is over-constrained since robots can actually be separated.
At least, the system could have crossed obstacles instead of
merely bypassing obstacles as a whole. Therefore, the system
loses part of its obstacle avoidance ability.

It is noted that current research did not explicitly consider
the formation constraints. Thus, the deformation of systems
during motion cannot be limited to a certain range of tasks.
The conflict between forming formations and avoiding obsta-
cles has not been fully handled. In some situations where rigid
or less flexible connections among the robots are required,
these methods are unsuitable. 2D region-based methods are
safe for obstacle avoidance. However, it is only suitable for
a few obstacles environment. Therefore, it is worth finding
a method for multi-robot motion planning in obstacle-rich
environments, at the same time keeping formation constraints.

In multi-robot motion planning studies, graph theory is a
powerful tool [29]–[31]. In [7], based on a graph and spanning
tree representation, a multi-phase approach was described.
Through the relationship between multi-robot planning prob-
lems and multi-flow problems, integer linear programming
models were proposed to compute optimal paths for multiple
robots on connected graphs [32]. Their models were further
extended in [33] in connection with different minimization ob-
jectives in path planning. The optimal solution or approximate
optimal solution could be quickly calculated on the connected
graphs. In [34], goal allocation and motion planning were
achieved on roadmaps for non-holonomic robots.

In the above studies with graph theory, the robots are more
likely to be planned individually, where the confliction be-
tween waypoints is the only connection among multiple robots
[35]–[38]. However, formation constraints are not considered.
Therefore, in order to solve the problem through graph the-
ory, the mapping between configuration space and workspace
needs to be studied [39]. Moreover, the configuration space of
MMRS should be further investigated, especially in the case
of integrated obstacle avoidance and formation constraints.

III. PROBLEM FORMULATION

In this work, we consider multi-mobile robot motion plan-
ning under both obstacle-rich environments and formation
constraints. The mobile robots are assumed to be holonomic,
and they move on a 2D plane. The typical task is to transport
an object from the initial position to goal position.

Some important notations are listed in Table I for conve-
nience. In a workplaceW ⊂ R3, the position of the ith mobile
robot is denoted as ri ∈ R2, i = 1, . . . , n, and n is used to
denote the number of mobile robots. The plane where robots
are located is denoted by P ⊂ R2. The center of multi-robot

systems is denoted as p = [x, y] :=
n∑

i=1

ri
n ∈ R2, which is used

to describe the absolute location of systems in the workplace.
Formation s ∈ S formed by robots is defined as follows.

s :=
{
d∗ij
}

i, j = 1, . . . , n i 6= j

d∗ij =‖ri − rj‖2
(1)

where s is the desired formation shape of multi-robot systems,
which consists of relative positions between robots. Since p
is not changed by the rotation of the same formation shape,
multiple positions of robots may exist. As shown in Fig. 1,
it can be seen that the two formation shapes are the same,
but ri is different from each other. Therefore, θ ∈ R is used
to denote the shape angle and distinguish positions of robots.
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TABLE I
DEFINITION OF SOME IMPORTANT NOTATIONS

ri The position of ith mobile robot.
p The center of multi-mobile robot systems.
P The plane where mobile robots are located.
S Formation constraints of multi-robot systems.
θ The angle of formations.
C Whole configuration space of a system.
c Configurations of a system, c = {x, y, θ,S}.
cs Configurations of a system in the same formation shape,

cs = {x, y, θ}.
oi The position of ith obstacle.
W(oi) Space occupied by obstacle oi.
W(ri) Space occupied by robot ri.
Cfree A set of valid configurations, Cfree ⊂ C.
Csfree A set of valid configurations in the same formation shape.
∂Csfree The boundary of Csfree.
N (cs, ξ) Neighborhood configurations of cs.
Ω(cs,p) Valid angles of the same formation S with the same p.

To sum up, the configuration c of multi-mobile robot systems
can be described as c = {p, θ,S}, and the whole configuration
space is denoted as C. Once c is given, the position of each
robot in the workspace can be determined as follows.

{r1, . . . , rn} = S−1(p, θ) (2)

where S−1 indicates positions of robots are calculated by the
relative position relationship within the formation shape.

Now, let oi ⊂ R2, i = 1, . . . ,m denotes the position of the
ith obstacle, and m is the number of obstacles. W(oi) ⊂ R3

is used to denoted the workspace occupied by the ith obstacle.
Similarly, W(ri) is the workspace occupied by the ith robot.
The set of valid configurations Cfree is defined as follows.

Cfree := {c | R ∩ O = ∅}
where R =W(ri) ∪ · · · ∪W(rn) (3)

O =W(oi) ∪ · · · ∪W(om)

In other words, c ∈ Cfree indicates that the desired formation
exists, satisfying that all robots are not in contact with obsta-
cles. Planning configurations in Cfree ensures safety during
movement. If we directly plan the motion of each robot with
formation constraints and obstacle avoidance, it will suffer
from the curse of dimensionality. Generally, it is as high as
R2n. To avoid this, configurations of systems will be planned
first, after which paths of robots can be quickly computed.
It can be found that configurations of a system consist of
absolute information {x, y, θ} and relative information S.
Therefore, planning configurations of a system is divided into
two parts. The first part is to plan S , which is more dependent
on formation constraints and will be further discussed. S is
strongly related to applications and tasks. The second part is
to plan {x, y, θ} for driving the system on P , which is more
concerned in this section.

(a) Shape with θ1 (b) Shape with θ2
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Fig. 1. The same formation shape with different angles. p is the same in (a)
and (b), while positions of robots are different.

For a multi-mobile system, the planning problem considered
in this paper can be formulated as follows.

Input : O,S
Output : {c1, . . . , ck}

Subject to


ci ∈ Cfree, ck is the goal

ci and ci+1 are connected

(4)

Since it is extremely hard to obtain a real continuous space
of Cfree in the graph, we will solve the problem (4) by translat-
ing it using the discretization method. If two configurations can
be switched to each other through all available configurations
in Cfree, they are defined as connected. Therefore, the first
issue to be studied is the connectivity between configurations
after discretizing the workspace.

First, given a formation shape s, the configuration space
of the same formation is denoted as cs = {x, y, θ}. The set
of valid configurations of this formation is defined as Csfree.
As shown in Fig. 2, cs1 and cs2 are connected because the
system can move from cs1 to cs2 while keeping the formation
continuously unchanged. However, cs2 and cs3 are not con-
nected although they are both in Csfree. They can switch to
each other only if ignoring the formation constraint. Hence,
it is necessary to study the connectivity between different
configurations before planning.

Theorem 1. For any cs ∈ Csfree, cs is connected in
a neighborhood area N (cs, ξ) := {c̃s}, configurations in
neighborhood area are defined as follows.∥∥(x̃− x)2 + (ỹ − y2

∥∥
2
< ξ

abs(θ̃ − θ) < ξ, ξ > 0
(5)

Proof : ∀cs = {x, y, θ} ∈ Csfree, from the definition (3), all
robots are separated from obstacles although their distances
may be very small. In this case, a specific obstacle-free space
Ti can be found for the ith robot, which satisfies

W(ri) ⊂ Ti, Ti ∩ O = ∅ (6)

Ti is a bounded open set. Since (6) is available for each
robot, the whole formation can move or rotate freely in any
direction if W(r̃i) still stays in Ti after movement, which will
generate new valid configurations. Therefore, cs is connected
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r3
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x-axis

y-axis

connected not connected

Three robots maintain a rigid formation

Fig. 2. Different valid configurations in Csfree of a system composed of
three mobile robots.

with these configurations, and the area is denoted as N (cs, ξ).
Obviously, ξ is strongly related to Ti and is relatively bigger
in an environment without obstacles. It should be pointed
out that definition (5) is a little conservative because the
whole formation may be able to move bigger than ξ in some
directions. However, the conservative definition does not affect
overall connectivity. �

Theoretically, the real continuous space of Cfree can be
obtained with infinite discretization. However, the calculation
cost is unacceptable. In order to get closer to the real Cfree and
improve the success rate of subsequent planning, a boundary
densification method is introduced. Naturally, we need to look
at how to find the boundary ∂Csfree.

Now, we use Ω(cs,p) to denote all valid angles of the same
formation with the same p. The maximum range of Ω(cs,p)
is [0, 2π). A weak assumption is made for the following
statement. When the formation rotates in a fixed p, robots and
obstacles cannot critically contact all the time. This assumption
is quite weak because it occurs only when the shapes of robots
and obstacles are always inscribed.

Theorem 2. cs approaches the boundary ∂Csfree if and
only if Ω(cs,p) converges to a specific angle. In other words,
Ω(cs,p) = θ∗ when cs,p ∈ ∂Csfree.

Proof : Denote the initial position p = p0 and cs,p0 ∈ Csfree.
According to Theorem 1, cs,p0 is connected in N (cs,p0 , ξ0),
cs,p1 is randomly chosen in N (cs,p0 , ξ0), then do

(pk+1 − pk) = λk(p1 − p0) cs,pk+1 ∈ N (cs,pk , ξk) (7)

where λk is a positive coefficient, and this moves the system
in one direction. During (7), N (cs,pk , ξk) may become bigger
or smaller depending on the environment. cs,pk+1 approaches
the boundary ∂Csfree if and only if ξk+1 → 0. That means,
Ti → W(ri) at least for one robot and the robot is fairly
close to obstacles. Due to the assumption, shapes of robots and
obstacles are not inscribed. Therefore, the formation cannot
rotate around pk+1 and ξk+1 → 0. As a result, Ω(cs,pk+1)
will approach the intermittent value θ∗, which indicates that
Ω(cs,p) = θ∗ when cs,p ∈ ∂Csfree. A case is shown in Fig. 3,
the system forms a rigid formation, where Ω(cs,p0) = [0, 2π)
and Ω(cs,pk) → θ∗. It can be seen that Ω gradually reduces
to a specific angle when approaching the boundary. �

Theorem 1-2 are enrolled for unchanged formations. The
multi-robot system can move from the initial position to goal

Obstacle

Obstacle

r2

r3

r1

p0

r2

r3

r1

r2r3

r1

pk

( )  )0,
0,2

s p cΩ = ( )  ),
0,2is p cΩ

( ), ks p  =cΩ

x-axis

y-axis

pi

Fig. 3. The change of Ω when approaching the boundary.

Obstacle

Obstacle

r2

r3

r1

r2

r3 r1

Obstacle

r2

r3 r1

Change formation

x-axis

y-axis

Fig. 4. The system is forced to change formation in order to pass obstacles.

position with the desired formation if two configurations are
both in Csfree and connected. But in some situations, the
formation is expected or required to change. As shown in
Fig. 4, the system can never pass the obstacle if the formation
remains unchanged. Therefore, the switch between different
formations also needs to be studied. For the sake of brevity
but without loss of generality, we assume two formations and
the difference between them is small enough (This statement
is not rigorous, we will explain further in the following).

Theorem 3. If cs1,p ∈ Cs1free, cs2,p ∈ Cs2free, and ∃θ0 ∈
Ω(cs1,p) ∩Ω(cs2,p), two formations are switchable in p.

Proof : Assume robots form the first formation s1 with θ0
in p. The position of ith robot is rs11 . According to Theorem
1, W(rs1i ) ⊂ Ti. The difference between two formations is
small enough means W(rs1i ) ⊂ Ti and W(rs2i ) ⊂ Ti for
all robots. Then, the formation can switch from s1 to s2.
Though Theorem 3 is for two formations with relatively small
differences, it can be used to test whether two formations are
switchable. This is more practical in later applications. �

In the above statement, we adequately describe configura-
tions of multi-mobile robot systems. The connectivity between
configurations of the same formation and switching between
different formations have been studied in Theorem 1-3. Based
on these, our planner is designed, which will be further
introduced in the next section.

IV. THE PROPOSED PLANNER

For a given multi-mobile robot system and an environment
with obstacles, we assume that the desired formations S have
been determined. The framework of our planner is shown in
Fig. 5. The environment is firstly discretized into cells, which
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Obstacle

A multi-mobile robot system 

with formation constraints

Planning

Mapping
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3s

x-axis

y-axis

θ-axis

Fig. 5. The general framework of our planner. The workspace is mapped into the valid configuration space with boundary densification. An undirected
connected graph is generated by verifying the connectivity of valid configurations. Whether a path exists is quickly determined on the graph without cost.
The optimal path is planned on the updated graph considering path length and formation preference. Then, motions of robots are computed on the path.

are mapped into the valid configuration space of the system.
Areas of the configuration space near the boundary are further
refined. Then, the connectivity of two configurations is verified
to generate an undirected connected graph. Initially, there is no
specific cost in the graph, and the breadth-first search method
[40] can be applied to quickly decide whether a feasible path
exists or not. If the answer is yes, a cost function based on the
path lengths of robots and formation preference is assigned to
update the graph. Finally, the Dijkstra method [41] is applied
to find the optimal path in the updated graph. Our planner
is able to be combined with different formation constraints
in obstacle-rich environments. Moreover, this planner can be
extended in some special situations with additional constraints,
which will be discussed in the next section.

A. Mapping from Workspace to Configuration Space

The first step of our planner is to map the points p on the
plane of robots to the configurations c of the multi-mobile
robot system. Mapping between workspace and configuration
space has been widely used in robot planning. In this paper,
full mapping is considered to find the optimal planning path.
The mapping M between P and C is built as follows.

M(p) := {c | xc = xp, yc = yp, c ∈ C}
M(c) := {p | xp = xc, yp = yc, p ∈ P}

(8)

In our multi-mobile robot systems, configurations are denoted
as c = {x, y, θ,S}. Obviously, M(p) is a one-to-many
mapping, and M(c) is a many-to-one mapping.

To solve the problem through graph theory, we need to
discretize the space. As explained before, x, y ∈ P and
θ ∈ Ω are used to denote the absolute locations of robots.
P is discretized by g, and Ω ⊂ [0, 2π) is discretized by α.
Discrete scales g and α are crucial parameters in the planner,
determining the distance between adjacent robot waypoints.
In some cases, discrete scale is also called resolution or grid
size. g is chosen according to the following rules.
(1) g ∈ [gmin, gmax].

Algorithm 1: Configurations Mapping
Input: Multi-robot systems; Discrete scales g, α, gmin;

Formation constraints S; Environment with
obstacles {o1, . . . , om}.

Output: Valid configurations c ∈ Cfree.
1 Initializing: Cfree ← ∅;
2 pi ← PlaneDiscretized(g, α);
3 foreach pi do
4 c←M(pi);
5 if ValidConfiguration(c) is true then
6 c is added to Cfree;
7 end
8 end
9 foreach c ∈ Cfree do

10 if BoundaryDetect(c) is true then
11 pi ←M(c);
12 pnew ←

BoundaryDiscretized(pi, gmin, α);
13 foreach pnew do
14 Repeat 4-7;
15 end
16 end
17 end

(2) gmin is related to computational cost and accuracy. The
control accuracy of robots is limited and can never reach
such a resolution as small as possible. Therefore, gmin cannot
be selected too small. Otherwise, it will be impractical or
computationally unacceptable.
(3) gmax is related to the connectivity of configurations. This
is decided by the size of obstacles and robots. Path planning
may fail if gmax is selected too big.

In general, g is set within a reasonable range in order to
solve the problem practically and practicably. The choice of α
is similar to g. It cannot be too small because of the accuracy,
nor can it be too big to cross obstacles during rotation. Once
discrete scales are determined, for each formation constraint
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x-axis

y-axis

Top view of s

free

Fig. 6. A plane with boundary densification. It is firstly discretized by g,
generating the blue points, which can be mapped into valid configurations.
After finding areas near the boundary, it is further discretized by gmin,
generating the red points.

s, the 3D configuration space Csfree can be built. Valid
configurations near the boundary ∂Csfree are selected. Then,
p near the boundary in P is computed by M(c). For areas
on P near the boundary, the minimal discrete scale gmin will
be used to discretize them further. The newly resulting p is
added to the mapping. In this way, the most realistic situation
of Csfree can be approximated to the greatest extent without
excessively increasing the computation. An example is given
in Fig. 6. The blue points represent p discretized by g, and
these points can be mapped into valid configurations. After
finding theM(p) near ∂Csfree, the plane is further discretized
by gmin, generating the red points. Twice discretization can
make the boundary denser, thereby increasing the success rate
of planning, which will be demonstrated by simulations later.
The whole process of mapping is shown in Algorithm 1.

B. Connected Graph Generator
The second step is to generate an undirected connected

graph through valid configurations. Graph theory is usually
used to describe a relationship between certain things. Let
G = (V, E) denotes a connected graph, where V = {vi} is the
vertex set and E = {eij := (vi, vj)} is the edge set. Graphs
can be divided into directed graphs and undirected graphs,
depending on eij and eji. If eij = eji for all edges, the
graph is undirected. Otherwise, the graph is directed. In path
planning, the points or positions of robots are stored in V , and
costs between points are stored in E . The task is to schedule a
path from the initial vertex to the goal vertex. Due to previous
research, many quick and convenient planning methods can be
directly applied.

In our problem, vi represents a configuration, which has
been built by Algorithm 1. Then, it needs to find eij , which
represents the cost of configuration switch. To improve plan-
ning efficiency, whether two configurations can be transformed

Algorithm 2: Planning on Graph
Input: Valid configurations c ∈ Cfree; Cost function.
Output: Robot path R1, . . . , Rn.

1 Initializing: R1, . . . , Rn ← ∅, G(V, E)← ∅.
2 foreach ci ∈ Cfree do
3 ci is added to V as vi;
4 end
5 for vi, vj ∈ V do
6 if ConnectionDetect(vi, vj) is true then
7 eij is added to E ;
8 end
9 end

10 Γ← BFS(G);
11 if Γ exists then
12 G′ ← CostFunction(G);
13 Γ← Dijkstra(G′);
14 R1, . . . , Rn ← RobotPath(Γ);
15 return R1, . . . , Rn;
16 else
17 return R1, . . . , Rn;
18 end

into each other will be determined primarily. The specific
cost is not considered at first. The connectivity between
configurations can be verified according to Theorem 1 and
3. We exclusively consider the connectivity of two adjacent
configurations, which means only one dimension is different in
c. Although this is incomplete in finding eij , it does not affect
the overall connected graph and will significantly decrease the
computation. eij is added to the edge set E if vi and vj are
connected. Now, an undirected connected graph G is obtained.
In V , the initial and goal configurations are denoted as vinit and
vgoal, respectively. For G, we can use the Breadth First Search
(BFS) method to quickly search whether there is a path from
vinit to vgoal. If it exists, we will calculate the specific cost in
E and then find the optimal path. If it does not exist, path
planning fails, and all subsequent calculations will be saved.

There are three options for configuration change: movement,
rotation, and formation change. A cost function is designed
based on the consideration of path lengths of robots and
formation preference as follows.

eij =


∑N

k=1 λs
∥∥rvik − rvjk ∥∥2 move or rotate

∑N
k=1

∥∥rvik − rvjk ∥∥2 change formation
(9)

where
∑N

k=1

∥∥rvik − rvjk ∥∥2 is the total distance travelled by
all robots. λs is the indicator of preference. The system will
try to maintain the desired formation with a smaller λs.
As a result, we can change the tendency of formations by
controlling the relative relationship between λs of different
formations. After calculating the specific cost, G is updated to
G′. Dijkstra algorithm can be enrolled to find the optimal path
in G′. The whole planning process is shown in Algorithm 2.
Searching twice by different methods is trying to save time
and computational cost.
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V. CASE STUDY IN OBJECT TRANSPORTATION

In this paper, we take multi-robot object transportation as a
typical example. There are not only constraints brought by for-
mations but also by objects in transportation [42]. Therefore,
it is more challenging than other scenarios. Generally, multi-
robot transportation systems are composed of mobile robots
and the carrier. Carriers can be mobile robot itself [43]–[45],
deformable sheet [46]–[48], or manipulator [49]–[51], which
result in different system model and formation constraints. Still
and all, they can be solved by our planner, and the first two
will be used as examples in this paper.

Now, a little modification is made to the previous definition.
p = [x, y] is used to denote the position of object, and W(p)
is used to denote the space occupied by object and carriers.
There is a certain relationship as follows.

p = F(r1, . . . , rn) (10)

where F is the mapping between positions of robots and
the object, which is directly determined by the carrier. As
explained before, formation constraints S are the internal rela-
tive information of multi-robot systems. Therefore, if we care
about the relative positional relationship within the system,
Eq.(10) can be rewritten as follows.

p̂ = F(S) (11)

where p̂ is the relative position of objects inside the system.
Generally, Eq.(10) is used to describe the absolute locations of
the transportation system in the workplace, and Eq.(11) is used
for relative positions within the system. Since there are new
constraints brought by the object and carriers, the definition
of valid configurations (3) is changed as follows.

Cfree := {c | W(p) ∩R ∩O = ∅} (12)

The newly added constraints ensure that the object does
not collide with robots and obstacles during transportation.
Desired formations are determined according to Eq.(10)-(12).
For example, two cases are given later.

A. Transportation without Carrier

In some systems, there are no special carriers and mobile
robots themselves are regarded as carriers. These systems are
cheap and easy to control. This is the simplest case because
robots are often physically attached to objects, which means
the formation constraint S is fixed. During transportation,
relative positions between robots and objects are invariably
kept as the initial. Consequently, valid configuration space is
reduce to CSfree ⊂ R3. In the fixed S, the whole system can
be considered as a rigid body to avoid obstacles.

B. Transportation with Deformable Sheet

Multi-robot transportation with a deformable sheet as the
carrier is shown in Fig. 7. The transported objects are placed
on the deformable sheet held by robots. These systems are
universal to different shapes of objects and the position of
object can be manipulated by adjusting relative positions
between robots.

(a) Physical model 

Robots

Object

Deformable

sheet

(b) Simulation model 

Fig. 7. Multi-robot transportation with a deformable sheet as the carrier.

The model of these systems has been studied in our previous
work [47]. A computational approach based on the Virtual
Variable Cables Model(VVCM) is presented for calculat-
ing Eq.(10), which simplifies the system to a robots-cables-
payload system. Then, F is replaced by VVCM as follows.

p = VVCM(r1, . . . , rn) (13)

Eq.(13) assumes that the position of object is at the state
of minimum gravitational potential energy solved by convex
optimization. It should be pointed out that the minimal sys-
tem is composed of three robots. For the minimal systems,
Eq.(10) can be directly calculated by VVCM. For systems
with a higher number of robots, there are multiple local static
equilibrium states, resulting in multiple solutions. To deal
with the multiple solutions, an optimal formation function is
introduced.

J(s) = Jtrans + Jpass + Jcross

s∗ = argmin J(s)
(14)

where Jtrans ensures the safety and stability of systems during
transportation. Valid configurations are included in Jpass and
Jcross, where the former is to bypass obstacles, the latter
is to cross obstacles. For an environment with obstacles,
optimal formations are obtained by Eq. (13) and (14). With
the generated optimal formations S, the planning problem can
be solved by our planner.

VI. SIMULATIONS AND DISCUSSIONS

A. Simulation Setup

In this section, we have designed three scenarios for multi-
mobile robot systems under different formation constraints to
test our planner. These systems are placed in an environment
containing a large number of randomly generated obstacles.
All our simulations are performed on a computer with Intel
Core i7-10700 CPU at 2.90 GHz (16 cores) and 64GB RAM.
The results are obtained by Gazebo and Rviz.

B. Simulation Results

1) Maintaining Rigid Formations
In the first part, mobile robots are required to form a rigid

formation while traversing an environment with obstacles.
Since the formation is rigid, which indicates that S is given
and onefold, the valid configuration of systems is reduced to
three-dimension. We set up an environment of 10m×10m. The
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(a) A four-robot system

(b) A six-robot system

Fig. 8. Multi-mobile robot systems traverse obstacle-rich environments while maintaining rigid formations. (a) Four robots form a square in a 10m×10m
environment. There are 65 obstacles with random positions and radii. (b) Six robots form a hexagon in a 15m×15m environment. There are 90 obstacles with
random positions and radii.

Fig. 9. A multi-mobile robot system composed of four robots transports a square object in a 10m×10m environment. There are 30 obstacles with random
positions and radii. The system is forced to bypass obstacles like a 2D whole.

initial position of formation center is (1.5,1.5)m, and the target
is (8.5,8.5)m. On the premise of ensuring that the initial and
target position exists, some obstacles with random positions
are generated in the environment, whose radiuses are also
randomly selected between 0.05m and 0.1m. The radius of
each robot is 0.35m. The results are shown in Fig. 8. In
Fig. 8(a), four robots try to maintain a square formation. There
are 65 obstacles in the environment. The average path length
of each robot is 19.1599m on the optimally planned path.
Similarly, in Fig. 8(b), six robots try to maintain a hexagon,
and there are 90 obstacles in an environment of 15m×15m.
The initial position of formation center is (2.5,2.5)m while the
target is (12.5,12.5)m. The average path length of each robot
is 24.7397m. It can be seen that the two multi-mobile robot
systems are able to traverse the obstacle-rich environments
while holding desired formations invariably unchanged. To our
best knowledge, no existing planner for multi-robot systems
can deal with these environments.

It should be pointed out that our planner may also fail in
these environments since all obstacles are randomly generated.
Therefore, we repeat lots of times for the system composed of
four robots under different numbers of obstacles. Moreover, in
order to study the effect of discrete scales in the planner, we
also repeat under different scales. The results are given in Ta-
ble II. For each time, obstacles are randomly generated while
the initial and goal positions are fixed, and the environment is

discretized only once by given scales. It can be seen that under
the same discrete scales, as the number of obstacles increases,
the success rate generally decreases, and the time spent on
mapping from workspace to configuration space increases
while the time spent on planning on the connected graph
decreases. Essentially, the whole configuration space is limited
and the same for determined discrete scales. When obstacles
increase, the time for validating valid configurations increases,
and obviously, the size of valid configuration space decreases.
Then, the size of connected graph decreases, resulting in less
time for planning. It can also be seen that for the same number
of obstacles, the success rate and total time are both larger
under smaller discrete scales. However, the success rate cannot
be significantly improved by minifying discrete scales when
the number of obstacles is more than 80. This means the
workplace is too harsh for the system.

As shown in Table II, decreasing the discrete scales will
significantly increase the computational cost. Therefore, we
try our proposed boundary densification method. The minimal
scale gmin = 0.025, and the results are given in Table III.
The relationship between the time spent on mapping and the
number of obstacles is no longer linear since the time on
BoundaryDetect in Algorithm 1 is irregular. Compared
with Table II, for the same environments, the success rate
is higher with boundary densification, as indicated by the
numbers marked in red and blue. Sometimes the success rate
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TABLE II
REPEAT Fig. 8(a) UNDER DIFFERENT CONDITIONS WITHOUT BOUNDARY DENSIFICATION

Obstacles
Discrete Scale: 0.08m 0.04rad Discrete Scale: 0.05m 0.04rad Discrete Scale: 0.025m 0.04rad

Success Rate
Average Time (s)

Success Rate
Average Time (s)

Success Rate
Average Time (s)

Mapping Planning Total Mapping Planning Total Mapping Planning Total

10 100/100 2.12479 0.50741 2.63220 100/100 5.26545 1.39201 6.65746 100/100 20.87622 5.98285 26.85907
20 99/100 2.18363 0.34327 2.52690 99/100 5.42517 0.82054 6.24571 99/100 21.50460 3.87619 25.38079
30 93/100 2.22332 0.22335 2.44667 93/100 5.53143 0.59595 6.12738 94/100 21.93061 2.76713 24.69774
40 67/100 2.25200 0.14657 2.39857 70/100 5.59970 0.40005 5.99975 77/100 22.30289 1.80580 24.10869
50 36/100 2.28206 0.10722 2.38928 41/100 5.67768 0.31582 5.99350 50/100 22.64238 1.31906 23.96144
60 23/100 2.31072 0.07745 2.38817 23/100 5.78103 0.21294 5.99397 26/100 22.95013 0.91771 23.86784
70 2/100 2.32667 0.05235 2.37902 2/100 5.84270 0.15498 5.99768 5/100 23.17927 0.66619 23.84546
80 0/100 2.34902 0.04201 2.39103 1/100 5.89965 0.11418 6.01383 1/100 23.34135 0.50529 23.84664
90 1/100 2.36974 0.03097 2.40071 1/100 5.95067 0.10586 6.05653 1/100 23.69105 0.42129 24.11234

100 0/100 2.38406 0.02386 2.40792 0/100 5.98362 0.07432 6.05794 0/100 23.90271 0.31573 24.21844

TABLE III
REPEAT Fig. 8(a) UNDER DIFFERENT CONDITIONS WITH BOUNDARY DENSIFICATION

Obstacles
Discrete Scale: 0.08m/0.025m 0.04rad Discrete Scale: 0.05m/0.025m 0.04rad Discrete Scale: 0.025m 0.04rad

Success Rate
Average Time (s)

Success Rate
Average Time (s)

Success Rate
Average Time (s)

Mapping Planning Total Mapping Planning Total Mapping Planning Total

10 100/100 2.73023 1.19019 3.92042 100/100 6.57826 2.66315 9.24141 100/100 20.87622 5.98285 26.85907
20 99/100 2.77770 0.91127 3.68897 99/100 6.50419 1.97885 8.48304 99/100 21.50460 3.87619 25.38079
30 93/100 2.80989 0.74911 3.55900 94/100 6.42345 1.46426 7.88771 94/100 21.93061 2.76713 24.69774
40 69/100 2.76320 0.53806 3.30126 72/100 6.38639 1.06474 7.45113 77/100 22.30289 1.80580 24.10869
50 37/100 2.75822 0.40120 3.15942 47/100 6.48182 0.84711 7.32893 50/100 22.64238 1.31906 23.96144
60 23/100 2.67300 0.29691 2.96991 24/100 6.47801 0.64271 7.12072 26/100 22.95013 0.91771 23.86784
70 2/100 2.65702 0.22995 2.88697 3/100 6.33030 0.45257 6.78287 5/100 23.17927 0.66619 23.84546
80 0/100 2.62448 0.17087 2.79535 1/100 6.28102 0.34993 6.63095 1/100 23.34135 0.50529 23.84664
90 1/100 2.58503 0.12706 2.71209 1/100 6.33555 0.29529 6.63084 1/100 23.69105 0.42129 24.11234

100 0/100 2.50583 0.07612 2.58195 0/100 6.25361 0.22073 6.47434 0/100 23.90271 0.31573 24.21844

is even close to the case with minimal scales. However, the
computational cost is far less than discretization directly by
minimal scales. Therefore, the proposed boundary densifica-
tion method can facilitate planning.

2) Object Transportation without Carrier
In the second part, mobile robots are required to transport

objects without a carrier, which also needs robots to maintain
rigid formations. But different from the first part, there are
additional constraints brought by objects. Robots and envi-
ronment are the same as Fig. 8(a). The transported object is
a square with a side length of 1.5m. There are 30 obstacles
randomly generated, and the results are shown in Fig. 9. The
system also can reach the goal position without collision,
and the average path length of each robot is 18.4439m.
Since obstacles are all higher than the system, constraints of
formations and safe transportation can be synthesized, which
is that the 2D outline of the whole system does not overlap
obstacles. Compared with the first part, the obstacle-crossing
ability of this system is observably reduced. It has to merely
bypass obstacles and cannot cross them.

3) Object Transportation with Deformable Sheet
In the third part, mobile robots are required to transport

objects with a deformable sheet, the model of which has been
studied in our previous work [47]. Now, formation constraints
are no longer rigid, and the system is able to change formations
to bypass or cross obstacles depending on the height of
transported object. We first test a three-robot system. Each
side length of the original deformable sheet is 1.6m, and the
height of each contact point between robots and the sheet is
1m. These parameters will be used to calculate the model

as described in Eq.(13). The environment is also 10m×10m,
and the radius of each robot is 0.15m. The initial position
of formation center is (1.5,1.5)m, and the target is (8.5,8.5)m.
There are 80 obstacles randomly generated with random radius
between 0.1m and 0.15m, among which 30 are 0.25m in
height, 40 are 0.42m in height, and 10 are 1m in height.
Limited by formation constraints and the deformable sheet, the
system has to bypass some obstacles. λs is set as the smallest
for the formation of a triangle with each side length of 0.7m.
The results are shown in Fig. 10, and the deformable sheet
is simplified to a robots-cables-payload system as described
before. Obstacles of different heights are distinguished by
different colors. The system can traverse this obstacle-rich
environment without collision. The average path length of each
robot is 17.1758m. In Fig. 10(c), it can be seen that the system
has to change formations to uplift transported object to cross
some obstacles. The height of object during transportation is
shown in Fig. 10(d).

We secondly test a four-robot system in a more complex
environment including a narrow corridor. The environment is
16m×4m and contains 70 obstacles. λs is set as the smallest
for the formation of a square with each side length of 1.1314m.
The results are shown in Fig. 11. The average path length
of each robot is 29.1217m. For comparison, we tried the
motion planning method in [22]. The strategy is to find the
largest obstacle-free space containing the system, inside which
motions of robots are planned. Due to ignoring heights, the
system is considered on the 2D plane. The result is shown
in Fig. 12. The red polygon is the largest obstacle-free space
currently containing the robot system. Motions of robots can
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The height of transported object

(a) Pictures during transportation

(b) Top view (c) Robot’s view (d) Object’s height

Fig. 10. A multi-mobile robot system composed of three robots transport objects with a deformable sheet in a 10m×10m environment. The deformable
sheet is simplified to a robots-cables-payload system. There are 80 obstacles with random positions and radii. Obstacles of different heights (0.25m, 0.42m,
1m) are distinguished by different colors. (a) Pictures during transportation. (b) Top view of the whole environment. (c) Robot’s view. It can be seen that
some obstacles can only be bypassed. (d) The height of object during transportation.

(a) Pictures during transportation

(b) Top view (c) Robot’s view (d) Object’s height

The height of 

transported object

Fig. 11. A multi-mobile robot system composed of four robots transport objects with a deformable sheet in a 16m×6m environment. There are 70 obstacles.
(a) Pictures during transportation. (b) Top view of the whole environment. (c) Robot’s view. (d) The height of object during transportation.

be planned freely in the red polygon which changes with
the movement of the system. It can greatly avoid collisions
and maintain desired formations. However, the method failed
after several movements because the obstacle-free space could
not be found anymore for the system to move toward the
destination. This method is not appropriate in such obstacle-
rich environments.

C. Discussion

In the planner, we propose a novel mapping between
workspace and configuration space of multi-mobile robot
systems, which can be efficiently used in planning. Besides, a
boundary densification method is added for facilitating plan-
ning. The planner can deal with different formation constraints

and additional constraints brought by special tasks. We take
object transportation as a typical example to test our planner.
Simulation results show that the planner can be applied to
obstacle-rich environments. In the second part, the system
is regarded as a whole on the 2D plane to avoid obstacles,
which has also appeared in other papers. Possibly, the problem
may be solved by the methods in [22], [24], [28], [45].
However, these works have not been tested in such a complex
environment. As for the first and third parts, to the best
of our knowledge, no other existing methods can achieve
the same effect. State-of-the-art methods are either unable to
maintain formations or cannot be used in these environments.
Despite taking some specific examples in the simulations, the
planner can be potentially used in many scenarios as long as
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Robots

Obstacles

Fig. 12. Motion planning by the method in [22]. The largest obstacle-free
space currently containing the robot system is denoted by the red polygon.
Robots can move freely in the red polygon. However, it cannot drive the
system to the destination if considering the formation constraints.

formation constraints are determined. However, our planner
also has some limitations. First, discrete scales are difficult to
be chosen in different environments. There is no existing path
in the simulations if the scales are set inappropriately. The
choice of scales dominates our planner. Moreover, it remains
uncertain whether there is a path or scales are inappropriate
if planning fails. Instructively, discrete scales are selected
according to control accuracy and obstacle size. Scales smaller
than the control accuracy are not practically meaningful, and
only theoretically feasible solutions exist in this case. Second,
the time spent on planning is too heavy, especially when S
contains many formations. Now, the planner cannot be applied
in an environment with dynamic obstacles. Since the mapping
is full, each valid configuration space of different formations
needs to be built. Indeed, sometimes it is unnecessary and
wasteful.

VII. CONCLUSION AND FUTURE WORK

This paper proposes a novel multi-mobile robot motion
planner with excellent obstacle avoidance ability under forma-
tion constraints. The optimal motions of robots can be planned
in obstacle-rich environments. Valid configurations of systems
are defined to satisfy formation constraints. Then, a mapping
between workspace and configuration space is introduced
with theoretical analysis. An undirected connected graph is
generated to solve the planning problem, on which some
existing search methods can be used efficiently. Moreover, a
boundary densification method is used for improving the suc-
cess rate of planning. The generality and effectiveness of the
planner are proved by implementing different cases. Despite
taking specific examples, the framework of our planner can be
potentially employed in other scenarios.

Regarding future work, we will further improve the effi-
ciency of the planner to save time. Since full mapping is
unnecessary sometimes, a hierarchical planning structure may
be considered. And, a trade-off between planning time and
approximate optimal solution can also be enhanced. Obviously,
the planner cannot be used in environments with dynamic
obstacles. In this regard, a possible direction is to combine the
planner as a global planner with some local obstacle avoidance
methods. When the multi-mobile robot system approaches
a dynamic obstacle, local methods will be employed for
real-time obstacle avoidance. More practically, we also will

study the disturbance problem when tracking the planned
path. Sensors may be carried by robots in order to react to
unforeseen events. Then, physical experiments can be carried
out.

REFERENCES

[1] J. S. Jennings, G. Whelan, and W. F. Evans, “Cooperative search
and rescue with a team of mobile robots,” in 1997 8th International
Conference on Advanced Robotics. Proceedings. ICAR’97. IEEE, 1997,
pp. 193–200.

[2] V. Shree, B. Asfora, R. Zheng, S. Hong, J. Banfi, and M. Campbell,
“Exploiting natural language for efficient risk-aware multi-robot sar
planning,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp.
3152–3159, 2021.

[3] C. Nieto-Granda, J. G. Rogers III, and H. I. Christensen, “Coordination
strategies for multi-robot exploration and mapping,” The International
Journal of Robotics Research, vol. 33, no. 4, pp. 519–533, 2014.

[4] M. Dogar, R. A. Knepper, A. Spielberg, C. Choi, H. I. Christensen,
and D. Rus, “Multi-scale assembly with robot teams,” The International
Journal of Robotics Research, vol. 34, no. 13, pp. 1645–1659, 2015.

[5] P. Culbertson, J.-J. Slotine, and M. Schwager, “Decentralized adaptive
control for collaborative manipulation of rigid bodies,” IEEE Transac-
tions on Robotics, vol. 37, no. 6, pp. 1906–1920, 2021.

[6] J. P. Van Den Berg and M. H. Overmars, “Roadmap-based motion
planning in dynamic environments,” IEEE Transactions on Robotics,
vol. 21, no. 5, pp. 885–897, 2005.

[7] M. Peasgood, C. M. Clark, and J. McPhee, “A complete and scalable
strategy for coordinating multiple robots within roadmaps,” IEEE Trans-
actions on Robotics, vol. 24, no. 2, pp. 283–292, 2008.

[8] S. Kloder and S. Hutchinson, “Path planning for permutation-invariant
multirobot formations,” IEEE Transactions on Robotics, vol. 22, no. 4,
pp. 650–665, 2006.

[9] T. Balch and R. C. Arkin, “Behavior-based formation control for mul-
tirobot teams,” IEEE transactions on robotics and automation, vol. 14,
no. 6, pp. 926–939, 1998.

[10] W. L. Seng, J. C. Barca, and Y. A. Sekercioglu, “Distributed formation
control in cluttered environments,” in 2013 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics. IEEE, 2013, pp.
1387–1392.

[11] T. Chi, C. Zhang, Y. Song, and J. Feng, “A strategy of multi-robot
formation and obstacle avoidance in unknown environment,” in 2016
IEEE International Conference on Information and Automation (ICIA).
IEEE, 2016, pp. 1455–1460.

[12] G. Wen, C. P. Chen, and Y.-J. Liu, “Formation control with obstacle
avoidance for a class of stochastic multiagent systems,” IEEE Transac-
tions on Industrial Electronics, vol. 65, no. 7, pp. 5847–5855, 2017.

[13] H. Rezaee and F. Abdollahi, “A decentralized cooperative control
scheme with obstacle avoidance for a team of mobile robots,” IEEE
Transactions on Industrial Electronics, vol. 61, no. 1, pp. 347–354, 2013.

[14] D. Zhou, Z. Wang, and M. Schwager, “Agile coordination and assistive
collision avoidance for quadrotor swarms using virtual structures,” IEEE
Transactions on Robotics, vol. 34, no. 4, pp. 916–923, 2018.

[15] H. M. La, R. Lim, and W. Sheng, “Multirobot cooperative learning for
predator avoidance,” IEEE Transactions on Control Systems Technology,
vol. 23, no. 1, pp. 52–63, 2014.

[16] C. Bai, P. Yan, W. Pan, and J. Guo, “Learning-based multi-robot forma-
tion control with obstacle avoidance,” IEEE Transactions on Intelligent
Transportation Systems, 2021.

[17] X. Zhang, L. Yan, T. L. Lam, and S. Vijayakumar, “Task-space decom-
posed motion planning framework for multi-robot loco-manipulation,”
in 2021 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2021, pp. 8158–8164.

[18] Q. Tang, Y. Zhang, F. Yu, and J. Zhang, “An obstacle avoidance approach
based on system outlined rectangle for cooperative transportation of
multiple mobile manipulators,” in 2018 IEEE International Conference
on Intelligence and Safety for Robotics (ISR). IEEE, 2018, pp. 533–538.

[19] Y. Li and K. Gupta, “Real-time motion planning of multiple forma-
tions in virtual environments: Flexible virtual structures and continuum
model,” in 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2008, pp. 1902–1907.

[20] J. Jiao, Z. Cao, N. Gu, S. Nahavandi, Y. Yang, and M. Tan, “Trans-
portation by multiple mobile manipulators in unknown environments
with obstacles,” IEEE Systems journal, vol. 11, no. 4, pp. 2894–2904,
2015.



12

[21] J. Alonso-Mora, R. Knepper, R. Siegwart, and D. Rus, “Local motion
planning for collaborative multi-robot manipulation of deformable ob-
jects,” in 2015 IEEE international conference on robotics and automa-
tion (ICRA). IEEE, 2015, pp. 5495–5502.

[22] J. Alonso-Mora, S. Baker, and D. Rus, “Multi-robot formation control
and object transport in dynamic environments via constrained optimiza-
tion,” The International Journal of Robotics Research, vol. 36, no. 9,
pp. 1000–1021, 2017.

[23] D. Roy, A. Chowdhury, M. Maitra, and S. Bhattacharya, “Multi-
robot virtual structure switching and formation changing strategy in
an unknown occluded environment,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp.
4854–4861.

[24] H. Song, A. Varava, O. Kravchenko, D. Kragic, M. Y. Wang, F. T.
Pokorny, and K. Hang, “Herding by caging: a formation-based motion
planning framework for guiding mobile agents,” Autonomous Robots,
vol. 45, no. 5, pp. 613–631, 2021.

[25] J. Fink, M. A. Hsieh, and V. Kumar, “Multi-robot manipulation via
caging in environments with obstacles,” in 2008 IEEE International
Conference on Robotics and Automation. IEEE, 2008, pp. 1471–1476.

[26] Z. Wang and M. Schwager, “Force-amplifying n-robot transport system
(force-ants) for cooperative planar manipulation without communica-
tion,” The International Journal of Robotics Research, vol. 35, no. 13,
pp. 1564–1586, 2016.

[27] T. Machado, T. Malheiro, S. Monteiro, W. Erlhagen, and E. Bicho,
“Multi-constrained joint transportation tasks by teams of autonomous
mobile robots using a dynamical systems approach,” in 2016 IEEE
international conference on robotics and automation (ICRA). IEEE,
2016, pp. 3111–3117.

[28] D. Koung, O. Kermorgant, I. Fantoni, and L. Belouaer, “Cooperative
multi-robot object transportation system based on hierarchical quadratic
programming,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp.
6466–6472, 2021.

[29] K. Solovey and D. Halperin, “k-color multi-robot motion planning,” The
International Journal of Robotics Research, vol. 33, no. 1, pp. 82–97,
2014.

[30] J. Yu, “Intractability of optimal multirobot path planning on planar
graphs,” IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 33–40,
2015.

[31] A. Adler, M. de Berg, D. Halperin, and K. Solovey, “Efficient multi-
robot motion planning for unlabeled discs in simple polygons,” IEEE
Transactions on Automation Science and Engineering, vol. 12, no. 4,
pp. 1309–1317, 2015.

[32] J. Yu and S. M. LaValle, “Planning optimal paths for multiple robots
on graphs,” in 2013 IEEE International Conference on Robotics and
Automation. IEEE, 2013, pp. 3612–3617.

[33] J. Yu and S. M. LaValle, “Optimal multirobot path planning on graphs:
Complete algorithms and effective heuristics,” IEEE Transactions on
Robotics, vol. 32, no. 5, pp. 1163–1177, 2016.

[34] J. Salvado, M. Mansouri, and F. Pecora, “Combining multi-robot motion
planning and goal allocation using roadmaps,” in 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2021,
pp. 10 016–10 022.

[41] R. Jonker and A. Volgenant, “A shortest augmenting path algorithm for
dense and sparse linear assignment problems,” Computing, vol. 38, no. 4,
pp. 325–340, 1987.

[35] W. Wu, S. Bhattacharya, and A. Prorok, “Multi-robot path deconfliction
through prioritization by path prospects,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp.
9809–9815.

[36] J. Motes, R. Sandström, H. Lee, S. Thomas, and N. M. Amato, “Multi-
robot task and motion planning with subtask dependencies,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 3338–3345, 2020.

[37] D. Le and E. Plaku, “Multi-robot motion planning with dynamics via
coordinated sampling-based expansion guided by multi-agent search,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1868–1875,
2019.

[38] S. D. Han, E. J. Rodriguez, and J. Yu, “Sear: A polynomial-time multi-
robot path planning algorithm with expected constant-factor optimality
guarantee,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 1–9.

[39] W. Wan and R. Fukui, “Efficient planar caging test using space map-
ping,” IEEE Transactions on Automation Science and Engineering,
vol. 15, no. 1, pp. 278–289, 2016.

[40] D. J. Rose, R. E. Tarjan, and G. S. Lueker, “Algorithmic aspects of vertex
elimination on graphs,” SIAM Journal on computing, vol. 5, no. 2, pp.
266–283, 1976.

[42] E. Tuci, M. H. Alkilabi, and O. Akanyeti, “Cooperative object transport
in multi-robot systems: A review of the state-of-the-art,” Frontiers in
Robotics and AI, vol. 5, p. 59, 2018.

[43] J. Chen, M. Gauci, W. Li, A. Kolling, and R. Groß, “Occlusion-based
cooperative transport with a swarm of miniature mobile robots,” IEEE
Transactions on Robotics, vol. 31, no. 2, pp. 307–321, 2015.

[44] A. Yufka and M. Ozkan, “Formation-based control scheme for coopera-
tive transportation by multiple mobile robots,” International Journal of
Advanced Robotic Systems, vol. 12, no. 9, p. 120, 2015.

[45] H. Ebel, W. Luo, F. Yu, Q. Tang, and P. Eberhard, “Design and exper-
imental validation of a distributed cooperative transportation scheme,”
IEEE Transactions on Automation Science and Engineering, vol. 18,
no. 3, pp. 1157–1169, 2020.

[46] K. Hunte and J. Yi, “Collaborative object manipulation through indirect
control of a deformable sheet by a mobile robotic team,” in 2019 IEEE
15th International Conference on Automation Science and Engineering
(CASE). IEEE, 2019, pp. 1463–1468.

[47] J. Hu, W. Liu, H. Zhang, J. Yi, and Z. Xiong, “Multi-robot object
transport motion planning with a deformable sheet,” IEEE Robotics and
Automation Letters, vol. 7, no. 4, pp. 9350–9357, 2022.

[48] K. Hunte and J. Yi, “Collaborative manipulation of spherical-shape
objects with a deformable sheet held by a mobile robotic team,” IFAC-
PapersOnLine, vol. 54, no. 20, pp. 437–442, 2021.

[49] A. Petitti, A. Franchi, D. Di Paola, and A. Rizzo, “Decentralized motion
control for cooperative manipulation with a team of networked mobile
manipulators,” in 2016 IEEE international conference on robotics and
automation (ICRA). IEEE, 2016, pp. 441–446.

[50] Y. Ren, S. Sosnowski, and S. Hirche, “Fully distributed cooperation
for networked uncertain mobile manipulators,” IEEE Transactions on
Robotics, vol. 36, no. 4, pp. 984–1003, 2020.

[51] M. Wu, Y. He, and S. Liu, “Collaboration of multiple mobile manipu-
lators with compliance based leader/follower approach,” in 2016 IEEE
International Conference on Industrial Technology (ICIT). IEEE, 2016,
pp. 48–53.


	I Introduction
	II Related Work
	III Problem Formulation
	IV The Proposed Planner
	IV-A Mapping from Workspace to Configuration Space
	IV-B Connected Graph Generator

	V Case Study in Object Transportation
	V-A Transportation without Carrier
	V-B Transportation with Deformable Sheet

	VI Simulations and Discussions
	VI-A Simulation Setup
	VI-B Simulation Results
	VI-C Discussion

	VII Conclusion and Future Work
	References

