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Simultaneous Localization and Actuation
Using Electromagnetic Navigation Systems

Denis von Arx, Cedric Fischer, Harun Torlakcik, Salvador Pané, Fellow, IEEE, Bradley J. Nelson, Fellow, IEEE
and Quentin Boehler, Member, IEEE

Abstract—Remote magnetic navigation provides a promising
approach for improving the maneuverability and safety of
surgical tools, such as catheters and endoscopes, in complex
anatomies. The lack of existing localization systems compatible
with this modality, beyond fluoroscopy and its harmful ionizing
radiation, impedes its translation to clinical practice. To address
this challenge, we propose a localization method that achieves full
pose estimation by superimposing oscillating magnetic fields for
localization onto actuation fields generated by an electromagnetic
navigation system. The resulting magnetic field is measured using
a three-axis magnetic field sensor embedded in the magnetic
device to be localized. The method is evaluated on a three-coil
system, and simultaneous actuation and localization is demon-
strated with a magnetic catheter prototype with a Hall-effect
sensor embedded at its tip. We demonstrate position estimation
with mean accuracy and precision below 1 mm, and orientation
estimation with mean errors below 2◦ at 10 Hz in a workspace
of 80 × 80 × 60 mm. This contribution aims to advance the
clinical adoption of remote magnetic navigation in minimally
invasive surgery.

Index Terms—Remote magnetic navigation, localization, Hall-
effect sensor, electromagnetic tracking, medical robotics

NOMENCLATURE

M Number of electromagnets
ia
m, ilm Actuation and localization current in electro-

magnet m
im Phasor of localization current in electromag-

net m in C
fm Oscillation frequency of localization current in

electromagnet m
ia Actuation current vector in RM

il Localization current phasor vector in CM

ba(p, t) Actuation field in R3 at position p and time t
bl(p, t) Localization field in R3 at position p and time t
bm Magnetic field phasor vector of frequency fm

in C3

K0,Ks,Kr Coordinate system of eMNS, device sensor and
reference sensor

b̂m Estimate of magnetic field phasor vector at
sensor location

[b̂m]Ks
Matrix of magnetic field phasor estimates
in C3×M expressed in Ks

b̆m(p, ia) Magnetic phasor field prediction
˘|bm|(p, ia) Magnetic phasor magnitude field prediction
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Tseq Acquisition duration of a measurement se-
quence

bsi Sequence in RNs of Ns magnetic field mea-
surements in sensor direction si

ba
si ,b̂

a
si Actuation field contribution to measurement

sequence and its estimate in RNs

blsi ,b̂
l
si Localization field contribution to measurement

sequence and its estimate in RNs

H Number of base sequences used for approxi-
mation of ba

si
fa
h h-th base sequence of length Ns in RNs

bri Sequence in RNs of Ns magnetic field mea-
surements in reference sensor direction ri

b̂
r

m Estimate of magnetic field phasor vector at
reference sensor position

gi(p) Localization gradient at p in direction ei

I. INTRODUCTION

REMOTE magnetic navigation (RMN) is a method for re-
motely steering devices containing magnetizable material

using magnetic fields [1]. This modality is particularly promis-
ing for minimally invasive surgery, as forces and torques
are directly applied to the tip of soft instruments such as
catheters [2]. This increases their dexterity and allows for safe
navigation in complex anatomies [3]–[5]. RMN also allows
for increased automation of surgical procedures, including
minimally invasive endovascular interventions [4].

In this context, accurate and precise position and orientation
feedback is crucial. Fluoroscopic imaging is commonly used
to continuously track surgical instruments intra-operatively [6]
despite the known adverse health effects of this imaging
modality. An alternative to this modality is to localize the
instrument using magnetic field measurements. For this pur-
pose, magnetic tracking systems are commercially available.
However, these systems are not compatible with magnetic
actuation systems which cause distortions of the fields used
for localization. Recent works using Hall effect sensors and
electromagnets for localization of surgical tools have been
reported in [7]–[9], but they use systems that are not designed
for actuation purposes.

Coupled magnetic actuation and localization have received
significant research attention. Di Natali et al. developed a
method for 6 degree-of-freedom (DOF) pose detection us-
ing multiple Hall sensors, and an inertial measurement unit
(IMU) for wireless capsule endoscopy that is compatible with
permanent magnet actuation [10], [11]. 6-DOF localization



2 SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS AS A REGULAR PAPER

with Hall effect sensors was also demonstrated in a system
using rotating magnetic dipole fields that could also be used
to actuate a magnetic capsule [12]. The combination of Hall
effect sensors and IMUs to provide a pose estimate has further
been considered in [13], [14]. A method for simultaneous
localization and actuation with Hall sensors and an IMU that
utilizes both dynamic magnetic fields and static magnetic fields
from permanent magnets for actuation was presented in [15].
Son et al. presented a 5-DOF localization technique using a
2D Hall sensor array that measures the magnetic field of a
permanent magnet under actuation which was also used for
capsule endoscope applications [16], [17].

Although these works provide relevant approaches and
offer unique advantages for their respective applications, their
adaptation to small tethered devices such as endoscopes,
guidewires or catheters still suffers from several limitations.
These methods either rely on the combination of several
sensors (which impedes their miniaturization and integration
into aforementioned devices), they do not provide localization
and actuation simultaneously, or they rely on sensing the
magnetic field of the magnet to be actuated which may not
be compatible with smaller magnets, localization over larger
distances, or applications where 6-DOF localization is required
such as for tethered endoscopes.

In certain applications, the magnetic object to be actu-
ated can also be continuous, such as magnetic continuum
robots [18], or the localization of multiple sensors within the
workspace may be required. The use of constant magnetic field
gradients generated by an electromagnetic navigation system
(eMNS) to localize magnetic devices using a single three-axis
Hall sensor was investigated in [19], [20]. However, using
a constant magnetic field and the measurement of a single
magnetic sensor is not enough to determine its pose without
incurring additional geometric constraints or applying chang-
ing magnetic fields, both being detrimental to a simultaneous
actuation.

To address these limitations, this paper introduces a method
which uses magnetic fields to simultaneously actuate and
localize with 6-DOF a magnetically-guided, tethered device
such as a catheter, endoscope or guidewire with the same
set of electromagnets, and without any additional geometrical
assumptions. The actuation is achieved by steering the object
in the desired direction using the magnetic field and advancing
or retracting the object using an advancement mechanism. The
method only requires a three-axis magnetic field sensor that
can be implemented in a single integrated circuit, resulting in
a significant reduction of the overall package size compared to
existing methods. The principle of the method also allows for
localization of multiple such sensors within the workspace of
the eMNS. These contributions can help advance the clinical
adoption of RMN in minimally invasive surgery. Simultane-
ous localization and actuation is achieved by adding small
oscillating fields of distinct frequencies to the actuation field
produced by each electromagnet in the eMNS. The method
introduced in section II, relies on a successive position and
orientation estimation of a single sensor which provides an
in-situ measurement of the magnetic field at the pose to be
determined (see Fig. 1). Localization accuracy is particularly

impeded by the non-linear and dynamic behavior of the
electromagnets. For this reason we also propose compensation
methods for these effects, making our method applicable to a
broad variety of systems. We evaluate our method experimen-
tally using an eMNS composed of three electromagnets (see
section III). We characterize the localization performance with
and without the influence of an actuation field, and for various
trajectories within the workspace of the system. We also
demonstrate a realistic navigation task for a magnetic catheter
in a flat vascular phantom, and show that we can precisely and
accurately steer and estimate the pose of the magnetic tip to
navigate the different branches of the model. We discuss our
methods and results and conclude in section IV.

II. METHOD

A. Electromagnetic Navigation Systems

An eMNS is composed of M electromagnets that generate
magnetic fields, which are controlled by the amount of elec-
tric current running through their conductive windings. The
resulting magnetic field b generates a force f and a torque τ
on the magnetic object to be steered [2]:

f = ∇(m · b)
τ = m× b

(1)

with m the magnetic moment of the object. An example of
an eMNS composed of M = 3 electromagnets is depicted
in Fig. 1a. In this work, we consider the actuation of an
object by steering it into a certain direction using the mag-
netic field and advancing or retracting it in space using an
advancement mechanism. The magnetic field b(p, i) generated
by an eMNS depends on the position p in space and on the
currents i flowing in the electromagnets in the system. To
actuate a magnetic object, these currents generate an actuation
field ba(p) to produce a desired torque τ ∗ or a desired force f∗

on the object according to (1). These currents are referred
to as actuation currents and denoted ia =

[
ia
1 · · · ia

M

]T
.

The method to compute ia depends on the navigation task
to be performed. In [21], Kummer et al. show a method to
compute ia(f∗, τ ∗) in terms of the desired torque and force on
the object, whereas [22] shows a method to compute ia(b∗, f∗)
in terms of the desired field at the location of the object and
the desired force on the object. The method presented in this
paper to simultaneously actuate and localize a magnetic object
using an eMNS is generic. It is fully independent of the way
that ia is computed and the navigation task to be performed.

B. Superposition of actuation and localization currents

The desired current i∗m(t), tracked by each electromag-
net m ∈ {1, . . . ,M} at time t using a dedicated control
scheme, is set as the superposition of the actuation cur-
rent ia

m(t) and a so-called localization current, denoted ilm(t),
that is sinusoidally oscillating (see Fig. 1c):

i∗m(t) = ia
m(t) + ilm(t) (2)

with

ilm(t) = Re
(
imej2πfmt

)
= Im cos(2πfmt+ θm) (3)
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Fig. 1. Simultaneous actuation and localization with an eMNS for minimally invasive endovascular procedures. a.) eMNS composed of electromagnets L1, L2

and L3 b.) Close-up of the catheter tip embedded with a 3-axis magnetic field sensor and a distal permanent magnet. c.) Currents in electromagnets consisting of
a superposition of actuation and localization currents. The oscillation frequency fm of the localization current is different for each electromagnet. d.) Magnetic
field measurement of the component bs2 of the magnetic field using the magnetic field sensor. The localization field can be decomposed in components of
frequencies fm.

Position

Position

Current

Magnetic field

Localization current

Actuation current

Localization field

Actuation field

Operating point

Fig. 2. Influence of position and actuation current on the localization field
caused by a given localization current in a single electromagnet. A small
oscillating localization current around two different actuation currents (ia

and ia
′
) results in oscillations of the localization field around the actuation

field through the magnetic response of the electromagnet (black lines). The
response depends on the position (here p0 or p1) and the actuation current,
due to the magnetic saturation occurring in the electromagnet.

The complex number im = Imejθm is a phasor comprising
the phase θm and amplitude Im of the localization current,
and fm denotes its oscillation frequency. The localization
currents create oscillations of the magnetic field around the

actuation field at the frequencies fm as depicted in Fig. 1d,
so that

b(p, t) = ba(p, t) + bl(p, t) (4)

where bl(p, t), referred to as the localization field, describes
the magnetic field oscillations caused by the localization
currents at position p and time t (see Figures 1d and 2). The
magnetic field b(p, t) is measured by a sensor integrated in the
device to be localized (see Fig. 1b and d). The amplitudes Im
of the localization currents are chosen sufficiently small and
the frequencies fm sufficiently high such that the resulting
localization field does not cause an appreciable motion of
the actuated object. How much motion of the actuated object
is tolerable as a result of the localization field depends on
the intended application. Within the scope of this work, the
frequencies and amplitudes were chosen in such a way that the
motion of a test catheter, presented in Section III-F, was an
order of magnitude smaller than the precision resulting from
the localization method. It is assumed initially that the actua-
tion currents are quasi-stationary compared to the localization
currents. Since the amplitudes of the localization currents are
small, their superposition leads to a linear response in the
magnetic field (see Fig. 2), and the localization field can then
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be written as

bl(p, t) =
∑
m

Re
(
bm(p, ia, il)ej2πfmt

)
(5)

with bm =
[
bm,e1e

jθm,e1 bm,e2e
jθm,e2 bm,e3e

jθm,e3

]T
K0

a
vector of phasors in C3 describing the amplitude and phase
of oscillation of the components of the localization field
of oscillation frequency fm and expressed in a coordinate
system K0 of standard basis vectors {e1, e2, e3} fixed to
the eMNS (see Fig. 1a). The vector bm(p, ia, il) depends
on the position in space and the localization current pha-
sors il =

[
i1 · · · iM

]T ∈ CM . It also depends on the actu-
ation currents ia ∈ RM due to magnetic saturation occurring in
the electromagnet cores [1] as illustrated in Fig. 2. Note that in
the notation for the phasor vector of the localization field bm

and the phasor of the localization current im the localization
superscript l is omitted. The l superscript is implicitly assumed
for all phasor quantities.

C. Localization method

1) Principle: For an eMNS composed of more than two
distinct electromagnets (M > 2), each pose in its workspace
is characterized by a unique combination of M vectors of
phasors b1, . . . ,bM generated by the electromagnets. The
principle of the localization method proposed here consists
of measuring these phasors at the pose to be determined with
an embedded magnetic sensor resulting in an estimate of the
phasors at the location of the sensor:

[b̂m]Ks =
[
b̂1 · · · b̂M

]
Ks

=

b̂1,s1 b̂M,s1

b̂1,s2 · · · b̂M,s2

b̂1,s3 b̂M,s3


Ks

(6)

where [b̂m]Ks
∈ C3×M refers to a matrix composed of the M

estimated vectors of phasors. The elements b̂m,si
of this matrix

are the coordinates of the vector b̂m along the axes si of the
sensor frame Ks (Fig. 1b). They correspond to the phasors of
the localization field produced by each electromagnet m along
each direction si . Each vector b̂m and its magnitude |b̂m|
for m ∈ {1, . . . ,M} are respectively compared to a prediction
of the phasor fields and phasor magnitude fields present in the
workspace of the eMNS:

b̆m(p, ia) (7a)

˘|bm|(p, ia) (7b)

These predictions are known by calibration in K0. Note that
in the above expressions, we omitted the dependency on il

since the localization current phasors are kept constant. The
dependency on ia is kept in the notation, since the actuation
currents change over time and influence the localization fields.
The pose of the sensor is characterized by its position and
its orientation which is described by the rotation matrix R
from Ks to K0. An estimate for the sensor position p̂ in K0,
and an estimate for the sensor orientation R̂ is obtained in

Fig. 3. Schematic overview of the pose estimation

two steps, by first estimating the position and then using the
position estimate to estimate the orientation:

p̂ = argmin
p

∑
m

(
|b̂m| − ˘|bm|(p, ia)

)2
(8a)

R̂ = argmin
R∈SO(3)

∥∥∥R[b̂m]Ks
− [b̆m(p̂, ia)]K0

∥∥∥
F

(8b)

A general overview of the localization method is depicted
in Fig. 3. The magnetic field measurements, acquired in
sequences of Ns samples for each sensor axis, are denoted
by bsi for each direction si of Ks. The phasors introduced
in (6) are estimated from bsi following a compensation of
the influence of the actuation field on these estimates. The
phasor and phasor magnitude fields introduced in (7) can be
predicted for any position p in the workspace W ⊂ R3 of the
eMNS. This prediction is performed in real time using data
from an offline calibration procedure, and measurements from
an additional reference sensor bri that is attached to a reference
sensor coordinate system Kr placed near the electromagnets.
The reference sensor phasor measurements b̂

r

m are used to
predict the influence of the actuation currents on b̆m(p, ia)

and ˘|bm|(p, ia).
2) Magnetic phasor measurement: The vectors bm must be

measured in-situ, at the position to be determined or calibrated.
The coordinates of their estimates b̂m are obtained using
the discrete Fourier transform (DFT) of a sequence of Ns

magnetic field measurements bsi ∈ RNs along each axis si
of Ks. This sequence is acquired over a so-called measure-
ment sequence of duration Tseq, and regularly sampled over
time with a three-axis magnetic sensor for each direction si
(see Fig. 4a and b). The measurement sequence acquisition
frequency, also referred to as the localization frequency in the
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Fig. 4. Magnetic field measurement and phasor estimation with a magnetic
field sensor. a.) Component bs1 of the magnetic field over a measurement
sequence of duration Tseq. b.) The sampling bs1 of bs1 starting at t = 0
(black points), and b′s1 with a time delay at t = ∆T (red points). c.) The
amplitudes of the measurements DFT are not affected by the delay, but d.)
the delay causes a phase shift 2πfm∆T on the measured phasors.

following, is then denoted fseq := T−1
seq . The components b̂m,si

of the phasor b̂m in Ks (see (6)) are computed as

b̂m,si
=

2

Ns
F(bsi)km

(9)

where F(bsi)km
is the DFT of bsi evaluated at the discrete

frequency km := Tseqfm. The frequencies fm of the localiza-
tion currents are chosen as distinct integer multiples of fseq
such that km are distinct integer numbers. This also causes
the localization currents to generate distinct peaks in the DFT
of the magnetic field measurements (see Fig. 4c). Moreover,
the magnetic localization field will then also be periodic with
a period Tseq. The measurement of the phasors (9) depends
on the time within Tseq when the sampling is started. Note
that an acquisition delay ∆T causes a phase shift 2πfm∆T
on the measured components of bm, while the measurement
of their magnitude remains unaffected (see Fig. 4b and d).
In order to obtain unique phasor measurements, the sampling
of the magnetic field sensor should be synchronized with the
generation of the localization currents.

3) Compensation for the actuation fields dynamics: The
estimate of the phasors (9) assumes that the dynamics of the
actuation field ba can be neglected compared to the dynamics
of the localization field bl. In other words, it assumes that ba

does not generate significant frequency components at the
oscillation frequencies of the localization field. However, this
assumption may not hold if the actuation field undergoes
dynamic changes. During such a change in the actuation field,
the estimation of the phasor using (9) is less reliable, and in
turn, affects the precision and accuracy of the localization.
An example of a measurement for the component bs1 of the
magnetic field during a dynamic change and its DFT are shown
in Fig. 5a and b. Although the localization field produces

Fig. 5. Influence and compensation of a dynamic actuation field on the phasors
estimation. a.) Magnetic field measurement sequence bs1 and estimated
actuation field sequence b̂a

s1
for component bs1 sampled by sensor and b.)

absolute values of their respective DFT components c.) Estimated localization
field sequence b̂ls1 and d.) absolute values of its DFT components.

distinct peaks at the discrete frequencies km in the DFT of
the measurement, the actuation field significantly contributes
to these DFT components. This introduces an error in the
estimation of the localization field phasors based on this
measurement.

We can think of the measurement sequence as being made
up of a contribution from the actuation field and the local-
ization field bsi = ba

si + blsi with bsi , b
a
si , b

l
si ∈ RNs . We

refer to ba
si as the actuation field sequence and to blsi as the

localization field sequence. In order to reduce errors due to
dynamic actuation fields, we estimate the phasors from the
DFT of a localization field sequence estimate b̂lsi ∈ RNs as
follows:

b̂m,si
=

2

Ns
F(b̂lsi)km

(10)

with

b̂lsi = bsi − b̂a
si (11)

The estimate of the localization field sequence b̂lsi is
obtained by subtracting an estimate of the actuation field
sequence b̂a

si from the initial measurement sequence. The
result of this compensation is illustrated in Figure 5c, which
shows the estimated b̂lsi . Fig. 5d shows the DFT of this
estimated localization field sequence, which illustrates a sig-
nificant reduction of the frequency components contributed by
the actuation field sequence.

To identify b̂a
si for each measurement sequence, we model

it as a sum of H base sequences fa
h ∈ RNs of length Ns:

ci b̂a
si =

∑
h

ci,hf
a
h (12)

where ci = (ci,1, . . . , ci,H) ∈ RH are real coefficients to be
determined for every new measurement sequence. The base
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sequences should be chosen such that they can adequately
approximate the expected actuation field sequence within the
time interval of a measurement sequence. Assuming that the
localization field sequence produces frequency components
only at km and associated, complex conjugate components
at Ns − km, the DFT of the actuation field at any discrete
frequency k ̸= {k1, . . . , kM , Ns − k1, . . . , Ns − kM} can be
approximated as F(bsi)k, since the contribution of the lo-
calization field sequence at these frequencies is zero. The
coefficients in ci are thus determined in the following manner
at each new measurement sequence:

ci = argmin
c

∥∥∥F(bsi)k ̸=km
−F(cb̂a

si)k ̸=km

∥∥∥
2

(13)

where F(bsi)k ̸=km
∈ CNs−2M refers to the DFT of bsi where

the components at the discrete frequencies km and Ns − km
are omitted. This ensures that the DFT of the actuation field
sequence estimate F(ci b̂a

si) matches the DFT of the magnetic
field measurement sequence F(bsi) optimally for all discrete
frequencies with the exception of km and Ns − km (see
Fig. 5b). A closed form solution for the coefficients ci is de-
rived in Appendix A. In the case illustrated in Fig. 5, the base
sequences were chosen as fa

h[n] = nh−1 for h ∈ {1, 2, 3, 4},
where fa

h[n] refers to the n-th element of the sequence fa
h. Note

that this choice of base sequences corresponds to approximat-
ing the actuation field sequence ba

si as a third order polynomial
in time or sample index n. In general, a monomial base
of H sequences corresponds to a polynomial approximation of
order H−1 which can be interpreted as a Taylor approximation
of order H−1. How well this approximation works generally
depends on how big the higher order terms in the Taylor
expansion of the field components ba

si(t) are within the time
interval of a measurement sequence. In general, a shorter
measurement sequence duration Tseq and slower actuation field
dynamics will lower the approximation error in the Taylor
approximation. Slower actuation field dynamics (in the sense
of decreased higher order derivatives of the actuation field),
may be achieved by low pass filtering the desired actuation
field. A higher approximation order H will also lower the
approximation error but can lead to overfitting issues due
to sensor noise. Which approximation order is appropriate
for a given application typically has to be determined em-
pirically by applying dynamic actuation fields on top of
the localization fields in an experimental setup. The effect
of different approximation methods and orders can then be
determined in post-processing, which was also done in this
work in the experimental section III-E. The actuation field
compensation presented in this section helps in separating the
DFT components originating from dynamic actuation fields
from the DFT components caused by the localization field.
In principle, the method could also be applied to separate
the DFT contributions from other time-varying magnetic field
sources, such as ferromagnetic continuum robots [18], from
the localization field components.

4) Real time phasor field prediction: A predic-
tion b̆m(p, ia) of the phasor fields in the workspace of
the eMNS is required for pose estimation. The phasor
fields generally depend on both the position and the actuation

currents (under the assumption of constant localization current
phasors). Different numerical and analytical methods exist
for modelling bm(p, ia). In this work, we adapt the Saturated
Multipole Electromagnet Model (S-MPEM) from [1]. The
phasor field at each frequency fm is modelled as the product
of a phasor field bm(p, ia = 0) that is present when the
actuation currents are zero and a scalar factor αm that is used
to model the saturation behaviour of the electromagnets in
actuation current (see Fig. 2).

bm(p, ia)
S-MPEM≃ αm(ia)bm(p, ia = 0) (14)

The model of the phasor field above leads to the following
model for the phasor field prediction:

b̆m(p, ia)
S-MPEM
:= α̂m(ia)b̆m(p, ia = 0) (15)

The decoupling of b̆m(p, ia) into the factor α̂m(ia) and the
field b̆m(p, ia = 0) allows us to obtain the phasor field
prediction in two separate steps:

1) Offline calibration of b̆m(p, ia = 0): the workspace
W is discretized (see Fig. 6), and the pha-
sors bm(pc, ia = 0) at each point pc of a calibration
grid are measured in the absence of actuation currents.
These measurements are then interpolated.

2) Online estimation of α̂m(ia): a reference sensor fixed
to the coordinate system Kr measures the magnetic
field during the navigation in the presence of actuation
currents ia and is used to obtain the estimate α̂m(ia).

a) Offline calibration: this first step takes place offline
prior to navigation and without actuation currents. A cali-
bration sensor is attached to a positioning stage in a known
orientation relative to K0. The sensor is moved to a calibration
point pc belonging to a regular grid defined to sample the
workspace (blue points in Fig. 6). The desired currents are
set according to (2) with ia

m(t) = 0. The magnetic field
is measured and an estimate b̂m(pc, ia = 0) is computed
using (9). This step is repeated for all calibration points of
the grid. The obtained phasor measurements are given in the
coordinate frame Kc

s of the sensor during calibration. The
orientation of Kc

s relative to K0 is known such that ultimately
the phasors matrix can be expressed in K0. The value of
the phasors at any position between the calibration points is
interpolated using an interpolation method such as tricubic
interpolation. Additionally, a reference sensor with reference
sensor frame Kr, placed near the electromagnets, measures
the magnitudes |b̂

r

m|ia=0 of the field phasors at the reference
sensor position in the absence of any actuation currents.

b) Online estimation: this second step is performed
online during navigation. The reference sensor measures the
magnitude of the field phasors at its position |b̂

r

m| when
actuation currents are generated. The factors αm are then
estimated as

α̂m =
|b̂

r

m|
|b̂

r

m|ia=0

(16)

and capture the influence of the actuation currents on the
localization field.
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Fig. 6. Workspace W and coordinate system K0 of the eMNS. Calibration
cells used to compute the phasor fields are indicated with dotted lines and
bounded by the grid point vertices pc in blue. A test point for evaluating the
position estimate accuracy located in between the grid points is shown in red.
The moving sensor with attached frame Kc

s is used to sample the magnetic
fields. The position of the reference sensor coordinate system Kr outside the
workspace is indicated.

5) Phasor vector magnitude prediction: For the estima-
tion of the sensor position, a prediction of the phasor
magnitude field ˘|bm|(p, ia) in the workspace needs to be
computed. In principle, this could be achieved by comput-
ing ˘|bm|(p, ia) := |b̆m(p, ia)| (e.g. first interpolate the phasor
vector from the calibration grid measurements and then take
the magnitude of that vector). However, this computation
method is sensitive to errors caused by time delays in the
phasor measurements (see also Fig. 4). Such errors can be
avoided in the computation of ˘|bm|(p, ia) by first computing
the magnitude of the phasor vectors on the calibration grid
points |b̂m(pc, ia = 0)| (this computation is not affected by
errors caused by sensor acquisition delays) and then interpo-
lating these phasor magnitude values.

D. Pose estimation

1) Position: First, the position of the sensor is estimated
regardless of its orientation. Given the prediction for the
phasor magnitude field ˘|bm|(p, ia) and the estimated phasors
at the location of the sensor, an estimate p̂ of the location
of the magnetic sensor is obtained by minimizing a quadratic
objective function as follows:

p̂ = argmin
p

∑
m

(
|b̂m| − ˘|bm|(p, ia)

)2
(17)

where |b̂m| refers to the magnitude of the estimated phasor
vectors at the location of the sensor as defined in (10).

2) Orientation: We then estimate the orientation of the
coordinate system Ks aligned with the axes of the sensor
(see Fig. 1b) with respect to the coordinates system K0

fixed to the eMNS and in which the phasors map is known
(see Fig. 1a). The relationship between the phasors expressed
in Ks and K0 is given by

R[bm]Ks
= [bm]K0

(18)

with R the rotation matrix from Ks to K0. Given the position
estimate p̂ from (17) and the prediction for the phasor field
from (15), we can predict the phasors present at the position of
the sensor as [b̆m(p̂, ia)]K0

. Given the phasor measurements

from the sensor, we compute an estimate R̂ of the rota-
tion matrix which minimizes the following objective function
for R ∈ SO(3)

∥∥∥R[b̂m]Ks
W − [b̆m(p̂, ia)]K0

∥∥∥
F

(19)

with W = diag(w1, · · · , wM ) a diagonal matrix which
multiplies each measurement phasor with a complex valued
weight wm. Introducing this weighting matrix allows for the
compensation of phase shifts due to measurement delays (see
Fig. 4d) and errors on the estimated phasor magnitude due to
noise. Finding both an estimate Ŵ of the weighting matrix
and R̂ of the rotation matrix to minimize (19) is known
as a weighted orthogonal Procrustes problem. A numerical
algorithm for solving this problem for real matrices is found
in [23], and can be extended to complex matrices, which
results in Algorithm 1. It solves the problem by applying two
solution steps iteratively. In the first step, (19) is minimized
for the rotation matrix where the weights are considered
constant. This problem is a regular orthogonal Procrustes
problem with complex matrices whose solution is derived in
Appendix B-A. In a second step, the optimal weights that
further minimize (19) for the given rotation matrix estimated
during the first step are computed. The solution for the optimal
weights is derived in Appendix B-B. At each new iteration,
the first step is applied using the updated weight estimates,
and the procedure is repeated until convergence on the weight
values occurs.

Algorithm 1 Orientation estimation procedure
Input

A := [b̂m]Ks ∈ C3×M ▷ Phasor measurement matrix
B := [b̆m(p̂, ia)]K0 ∈ C3×M ▷ Estimated phasor matrix

Output
R̂ ∈ SO(3) ▷ Estimate for rotation
Ŵ = diag(w1, · · · , wM ) ∈ CM×M ▷ Estimate for weights

Ŵ← I3 ▷ Initialize weights
δ ←∞ ▷ Initialize convergence criterion

while δ > ϵ do
Step 1: Estimate R̂ given Ŵ

U,Σ,V← SVD(Re{(AŴ)BH}) ▷ Compute SVD
R̂← Vdiag(1, · · · ,det

(
UVT

)
)UT ▷ Update R̂

Step 2 : Estimate Ŵ given R̂

X← AHA ▷ X ∈ RM×M

Y ← BHR̂A ▷ Y ∈ CM×M

w′
i ← Y[i, i]∗/X[i, i] ▷ Compute weights

Ŵ← diag(w′
1, · · · , w′

M ) ▷ Update Ŵ

Check convergence

δ ← max(|wi − w′
i|/|wi|) ▷ Compute δ

wi ← w′
i ▷ Update weights

end while
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Fig. 7. Experimental setup. a) Interface board for the three-axis Hall sensor.
b) Overview of the experimental platform. c) Calibration sensor mounted in
different orientations {Ω1,Ω2,Ω3} on the effector of the linear stage. d)
Control loop used to generate actuation and localization fields.

III. RESULTS

A. Experimental setup

Our method is evaluated experimentally using the eMNS
consisting of the three cylindrical electromagnets depicted
in Fig. 7b. The currents in the electromagnets are driven
using a custom power amplifier supplied by two laboratory
power supplies that provide a voltage of 90V and a power
of 450W to the amplifier. The currents were controlled using
the control loop depicted in Fig. 7d that was implemented on
a TMDSCNCD28388D control card from Texas Instruments.
The actuation currents were computed using a linear model of
the eMNS:

ia = A−1ba(p0) (20)

with A an actuation matrix identified experimentally using the
calibration procedure proposed in [22] at the position p0 at the
center of the workspace defined as

W = [20, 100]× [−40, 40]× [−30, 30] mm

in coordinates of K0 that is attached to the center of the eMNS
front surface in Fig. 7b. The reference sensor is attached to the
front surface of the coils as shown in Fig. 7b. The desired ac-
tuation currents were low-pass filtered with a cutoff frequency
of 10Hz (filter denoted TLP in Fig. 7d). A PI controller K(s)
was used to track the desired currents. The measurements
from the current sensors were filtered using an anti-aliasing
filter H(s). The actuation currents were controlled using a
ROS (Robot Operating System) based software framework
that overlaid the images of the camera in real-time with an
actuation field map. The amplitude of the oscillating currents
was chosen as 400mA, which resulted in a mean oscillation
amplitude of the magnetic field of 630 µT throughout the
workspace. The localization current amplitude and oscillation
frequencies were chosen to ensure that the catheter model used
in section III-F did not show noticeable vibrations even when
held close to the coils and that such vibrations would remain
significantly smaller than the precision resulting from the
localization method as mentioned in section II-B. The voltage
amplitudes necessary to generate these oscillating currents
were in the range of 15V to 22V.

For the calibration of the phasor fields, the workspace was
discretized as a regular grid with a grid spacing of 2 cm (see
one calibration cell delimited by the blue points in Fig. 6).
Tricubic interpolation from the Python Scipy package was
used for the interpolation of the phasor magnitude fields and
trilinear interpolation was used for the interpolation of the pha-
sor fields. The magnetic measurements were performed with
a three-axis Hall sensor AKM09973D (Fig. 7a) that exhibits a
measurement range of 36mT and a resolution of 16 bits for all
three sensor directions. Measurements were acquired in low-
noise mode at 500Hz. The gains of the sensor were measured
and compensated for using a Helmholtz coil in order to min-
imize errors due to sensitivity mismatches between different
sensor Hall elements. Synchronization between magnetic field
measurements and localization field generation was obtained
by sending a synchronization signal from the driver to the
readout boards connected to the Hall sensor interface boards
at the start of each localization period. The implementation
ensured that the measurement delay ∆T remained below 1 ms
(see II-C2 and Fig. 4).

The ground-truth for the pose during the calibration and
for the estimation of the precision and accuracy of the local-
ization was obtained by mounting the sensor on a three-axis
linear position stage from SmarAct. Both the electromagnets
and the measurement setup, consisting of linear stage and
sensor mounted on a plastic rod, had to be dismounted
in between different sets of experiments. In order to avoid
absolute orientation and position errors caused by remounting
the sensor and positioning stage, a calibration was obtained
prior to conducting the set of experiments. The experimental
conditions in the remainder of this section are summarized in
Table I.
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Fig. 8. Localization method applied to test sets T4 to T6 (without actuation field). The trajectory of the linear stage is indicated in red and the position
estimates in blue. a) T4: circles trajectory. b) T5: spiral trajectory. c) T6: cube trajectory

TABLE I
EXPERIMENTAL CONDITIONS.

Experiment
(
f1 f2 f3

)
[Hz] fseq [Hz] Actuation field

III-B
(
92 98 104

)
2 No

III-C
(
92 98 104

)
2 Yes (static)

III-D1
(
92 98 104

)
2 No

III-D2
(
70 90 110

)
2, 5, 10 No

III-E
(
70 90 110

)
10 Yes (dynamic)

III-F
(
70 90 110

)
10 Yes (dynamic)

TABLE II
POSE ESTIMATE ERROR WITHOUT ACTUATION FIELD.

Test set Localization accuracy

Positions Orientation N ep [mm] eR [◦]

T1 Grid Ω1 48 0.27 0.48
T2 Grid Ω2 48 0.36 1.83
T3 Grid Ω3 48 0.36 1.73

T4 Circles Ω1 296 0.38 0.61
T5 Spiral Ω1 201 0.32 0.56
T6 Cube Ω1 176 0.58 0.59

B. Accuracy of the pose estimation

We first evaluated the pose estimation method in the absence
of an actuation field. The Hall sensor was attached to the linear
position stage in different reference orientations (see Fig. 7b
and c). The stage was used to drive the sensors at different
poses divided into six different test sets, T1 to T6. The sets
T1 to T3 were composed of grid points located between the
calibration points (indicated in red in Fig. 6), and the sensor
was oriented in three different orientations (Ω1, Ω2 and Ω3

depicted in Fig. 7c). The sets T4 to T6 were composed from
positions sampled over three different types of trajectories (see
Fig. 8) and with the sensor in orientation Ω1. For each test
set, N poses were evaluated (see Table II) and their pose
estimates were averaged out over 16 measurement sequences
in order to reduce noise.

1) Position: Measurements are collected at each position
with the linear stage providing the ground truth position pn

with n ∈ {1, . . . , N}. The position at each test point was
estimated using (17) resulting in the mean positional esti-
mate p̂n. The error in the position estimation of the n-th test
point is evaluated using the Euclidean distance between the
ground-truth and position estimate ep = ∥pn − p̂n∥2. The
mean position estimation error over the whole test set is then
obtained as ep = 1

N

∑
n ep.

The mean position estimate errors for the different test sets
and the different sensor orientations are listed in Table II, and
Fig. 8 shows the position estimates compared to the ground
truth trajectories for the test sets T4 to T6. The mean error
was slightly higher for the orientations Ω2 and Ω3, which was
attributed to an imperfect calibration of the sensor gains and
did not affect the measurements in orientation Ω1, since this
orientation was the same as during the calibration.

2) Orientation: The mean rotation matrix R̂n

with n ∈ {1, . . . , N} for each test point was estimated
using Algorithm 1. The accuracy of the orientation estimate
at the n-th test position is evaluated using the following error
metric:

eR =
∥∥∥log(R̂T

nR
ref
)∥∥∥

2
(21)

with Rref the expected rotation matrix of the sensor for its
orientation Ω ∈ {Ω1,Ω2,Ω3} during each test set. This metric
represents the angle of the smallest rotation necessary to align
the rotation matrices R̂n and Rref [24]. The mean orientation
estimation error over the whole test set is then obtained
as eR = 1

N

∑
n eR. Table II lists the mean orientation error

for the different test sets. The orientation errors for test sets
with orientations Ω2 and Ω3 were again higher than Ω1. In
addition to the aforementioned imperfect sensor calibration,
the orientation accuracy could also be affected by an inaccurate
rotation of the sensors in Fig. 7c.

C. Influence of the static actuation field on the pose estimation

As outlined in section II-C4, the phasor fields depend on
the actuation currents. Although this effect is captured by the
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Fig. 9. Influence of static actuation fields on the pose estimation. a)
Test points located in between calibration grid points. b) Actuation field
magnitude distributions at every test point ptest over their distance from
the electromagnets for |ba(p0)| = 10 mT generated along e1. Position c)
and orientation d) estimate errors at the test positions for six different field
orientations and |ba(p0)| = 10 mT. Position e) and orientation f) error
distributions over the magnitude of the actuation field at p0.

phasor field estimate (15), it does not perfectly compensate for
the nonlinear behaviour of the eMNS, and the generation of
actuation fields is thus expected to affect the accuracy of the
pose estimation. In order to evaluate this effect experimentally,
the pose of the sensor was estimated while generating static
actuation fields with the eMNS.

The test points for this experiment are depicted in Fig 9a
and consist of a subset of the test points used in T1-3 at
distances {30, 50, 70, 90} cm from the coils (the distance
is indicated by the color scheme). A set of actuation fields
was generated using (20) for combinations of different di-
rections and magnitudes so that ba(p0) = b e, with e ∈
{e1, e2, e3,−e1,−e2,−e3}, and b ∈ {0, 2, 4, 6, 8, 10} mT.
The actuation field magnitude measured at the test points
for b = 10mT and e = e1 are depicted in Fig. 9b as a function
of the distance of each test point from the coils’ surface.
The position and orientation estimate accuracies for each test
position and for each applied actuation field were evaluated
as in section III-B using the same error metrics. Figures 9c
and d show the position and orientation errors for b = 10mT,
and Fig. 9e and f the distribution of position and orientation

Fig. 10. Precision of the position estimate over the gradient gi(p) defined
in (23) for Tseq = 500ms, with σp̂i the standard deviation on the position
estimate component p̂i. Precisions predicted using (22) are indicated using
the black line.

estimate errors as a function of b.
Different effects lead to systematic errors in the pose

estimation. The prediction of the phasor fields is not ideal
and subject to inaccuracies in the magnetic field model (15),
such as interpolation errors, which increase closer to the
electromagnets due to the higher curvature of the magnetic
field components in this region. The measurements of the
phasors are also subject to systematic errors due to differences
in the Hall element sensitivities despite careful calibration. The
sensitivity of the position estimation to such systematic errors
in the phasor measurements increases with distance from the
coils. In Fig. 9c, the position estimation error increases with
distance from the coils which may be explained by the fact that
the position estimation procedure becomes more sensitive to
relative errors in the phasor estimation and prediction. Closer
to the coils, the error increases again slightly which may be
due to increased errors in the phasor magnitude field prediction
as a result of interpolation or other modelling errors that
increase closer to the coils. The orientation estimation in Fig.
9d increases closer to the coils which is likely due to increased
phasor field prediction errors, presumably interpolation errors,
that lead to a less accurate prediction of the phasor vector
directions. This conclusion is supported by the fact that in
9f, the orientation error does not increase significantly with
applied actuation field. This indicates interpolation errors in
the field prediction 15, that do not increase with actuation
field, are the dominant source of errors for the orientation
estimate. The position estimation error increased from a mean
of 0.35 mm to around 0.6 mm with applied actuation field
(Fig. 9e) which indicates that the actuation field is the main
contributor to position estimate errors.

D. Precision of the pose estimation

1) Influence of the magnetic field gradient:
Measurements are subject to both intrinsic noise
from the sensor and noise generated by the eMNS.
Consider the position p =

[
p1 p2 p3

]T
K0

and its

estimate p̂ =
[
p̂1 p̂2 p̂3

]T
K0

, it is shown in Appendix C
that the precision of the localization estimate σp̂i

of the given
method is given by:

σp̂i(p) =
σHall√
2Ns

· gi(p)−1 (22)
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Fig. 11. Precision of the pose estimate over the localization frequency fseq.
a.) Standard deviations on the position estimate components. b) Orientation
error distributions.

In this equation σHall refers to the RMS noise of the Hall
sensor (which is assumed to be equal for all three measurement
directions), Ns is the number of samples in the measurement
sequence and the gradient gi is defined as

gi(p) =


√√√√∑

m

(
∂|bm|
∂pi

∣∣∣∣
p

)−2


−1

(23)

In Fig. 10, the standard deviations σp̂i
of the positional

estimates in e1- e2- and e3-direction are plotted against the gra-
dient gi(p) introduced in (23). The precision of the positional
estimates was evaluated by computing the standard devia-
tion σp̂i

of 16 estimated position coordinates at each test point.
The gradients were computed from the calibration introduced
in II-C4 by computing the spatial difference quotients of the
field magnitudes and interpolating the obtained values using
tricubic interpolation. The precision in e1-direction, pointing
away from the coils, was generally the best due to higher
magnetic field gradients in this direction. The localization
precision in e2- and e3-direction showed similar values and
were worse than those in the e1-direction.

2) Influence of the localization frequency: We evaluated
the influence of the measurement sequence duration on the
precision of the localization for fseq equal to 2Hz, 5Hz and
10Hz. Figure 11a shows the measured standard deviations of
the positional estimates in e1-, e2-, and e3-direction as a func-
tion of fseq. The standard deviations of the position estimate
components showed an increase approximately proportional
to
√

fseq as indicated by the dashed lines. Figure 11b shows
the distribution of the orientation errors for all test points in
the workspace in dependence of fseq.

E. Influence of dynamic actuation field on the pose estimation

The generation of transient actuation fields introduces errors
in the pose estimation (see section II-C3). To reduce this
effect, the actuation field is compensated for in the mea-
surements using (10). Here, we evaluate this compensation
method experimentally. The pose of a sensor located at the
center of the workspace was estimated while simultaneously
applying a set of sinusoidally oscillating actuation fields at
a magnitude of 10mT and direction e1. The actuation field

Fig. 12. Influence of dynamic actuation fields on the pose estimation with
and without compensation for a 10 mT sinusoidal actuation field in e1
direction oscillating at different frequencies fact. a) Mean position and b) mean
orientation estimate error. Close-ups for 2nd and 3rd order for the compensation
in c) and d). The mean error for the zero applied actuation field is indicated
by the dotted black line.

frequencies were chosen as fact ∈ {0.25, 0.5, 1, 2, 4} Hz. The
base sequences used to estimate the actuation field within a
sequence according to (12) were chosen as either 2nd degree
polynomials (H = 3) or 3rd degree polynomials (H = 4),
and (13) was used to compute the value of the coefficients ci,h:

b̂a
si [n] =

H∑
h=1

ci,hn
h−1 (24)

Figure 12 shows the evolution of the pose estimation error
as a function of applied actuation frequency with and without
compensation of the actuation field. The compensation signif-
icantly reduces errors caused by transient actuation fields. The
2nd and 3rd degree compensation offer a similar performance
up to an actuation frequency of 1Hz. At 2 and 4Hz, the
approximation of the actuation field is worse for the 2nd degree
polynomial compared to the 3rd degree polynomial, leading to
increased errors in the pose estimation.

F. Simultaneous actuation and pose estimation of a catheter

In order to demonstrate simultaneous actuation and local-
ization in a realistic case, a catheter model was fabricated as
depicted in Fig. 13a. Its rigid tip embeds an AKM09973D
3-axis Hall effect sensor and an NdFeB cylindrical magnet
of 3mm in diameter and 6mm in length. The sensor was
placed approximately 6mm from the permanent magnet in
order to avoid saturation of the sensor. Under these conditions,
the permanent magnet generated a field of around 10mT in
the s2 direction of the sensor. Since the sensor has a range
of 35mT, actuation fields of up to 25mT can be generated
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Fig. 13. Simultaneous actuation and localization of a magnetic catheter in a flat vascular model. a) Design of the magnetic catheter with a tip-integrated Hall
sensor (red circle) and distal magnet. b) position estimate in phantom plane and c) orientation estimate compared to the ground-truth projected in the camera
view for the different poses of the tip over the trajectory.

Fig. 14. Experimental data for simultaneous actuation and localization of a
magnetic catheter in a flat vascular model. a)-e) Pose estimate. f) Actuation
field measured by the Hall sensor.

without saturating the sensor. The catheter was steered through
a flat vascular phantom (see Fig. 13b) by applying actuation
fields in different directions (see Fig. 14f) and simultane-
ously advancing or retracting the catheter with a manually
operated catheter advancement mechanism1. In addition to
demonstrating simultaneous actuation and localization of a
tethered object, the purpose of this experiment is to evaluate
how possible motion of the catheter caused by the localization
field affects the pose estimation.

The ground-truth for the 2d-position and orientation of the
catheter’s rigid tip in the plane of the phantom was provided
by an overhead camera Basler acA1920-40gc (see Fig. 7b),
which tracked two red markers placed on the tip and at known
locations with respect to the sensor (see Fig. 13c). The vascular
phantom and camera were placed at a known calibrated pose
in front of the eMNS, so that the camera provides the ground-
truth 2d-position pcam =

[
pcam
1 pcam

2

]T
along the axes e1

and e2 in K0, and orientation φcam in the plane of the 2d
phantom of normal direction e3 (see Fig. 13c). The axis s2
of the Hall sensor was aligned with the main axis of the
catheter tip, so that the estimated angle φ̂ could be retrieved
from the rotation matrix estimate R̂. We also retrieved an
estimate of the inclination angle denoted θ̂ corresponding to
the angle formed between the main axis of the catheter tip and
the plane of the vascular model. For the localization fields,
the frequencies fm ∈ {70, 90, 110} Hz were chosen. For
the given localization currents, a camera position estimation
noise of σcam

p1
= σcam

p2
= 27 µmrms was measured when the

localization field was applied to the catheter in the center of
the workspace. From these measurements, it can be concluded
that the catheter motion resulting from the localization field is
an order of magnitude smaller than the localization precision
measured in Section III-D.

The ground-truth measurements were linearly interpolated
over time for comparison with the pose estimates. The accu-
racy of the 2d-position estimate can be evaluated using the
Euclidean distance

ep =
√
e2p1

+ e2p2
(25)

1A video of this experiment is available as a multimedia attachment with
this paper.
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with epi
= pcam

i − p̂i the relative error on each component of
the 2d-position. The accuracy of the orientation estimate can
be evaluated based on the relative difference in the angle

eφ = φcam − φ̂ (26)

The mean position error along the trajectory was evaluated
at ep = 0.68mm and the mean absolute angle error |eφ|
at 0.79◦ where the averaging was done over time from the
beginning to the end of the catheter motion. Figure 14a-e
shows the evolution of the pose estimates over time. Although
no ground-truth exists for the component p3 and θ, their
estimate p̂3 and θ̂ stayed within the range imposed by the
geometry of the 2d phantom depicted by the gray zones in
Fig. 14c and e. The values ∆h and ∆θ are the maximum range
of vertical motion and inclination angle that we estimated
considering the dimension of the vascular model and the rigid
catheter tip. The estimation errors for the observed degrees
of freedom {p̂1, p̂2, φ̂} stayed in the expected range of errors
determined from the experiments with the 3D positioning stage
in sections III-C and III-E. From this, it can be concluded
that possible errors due to catheter motion caused by the
localization field do not lead to a notable increase in overall
pose estimation errors.

G. Scaling considerations

Both the precision of the localization method, and the
necessary electrical requirements of the driver to generate the
localization field are affected by the dimension of the eMNS
and of its workspace. Consider a system that is scaled up by
a factor γ > 1 in linear dimension compared to the one used
in this paper. We assume such a system would generate the
phasor fields b′

m(p) given by:

b′
m(p) = bm(p/γ) (27)

E.g. the amplitudes of the localization fields are the same but
extend over the scaled workspace.

1) Precision: The general expression for the preci-
sion σp̂i

(p) given in (22) is proportional to the inverse
gradient gi(p)−1 given in (23). The localization precision σ′

p̂i

of the scaled system becomes

σ′
p̂i
(γp) = γσp̂i

(p) (28)

which follows directly from (23). Therefore, the precision is
expected to scale linearly with the system size.

2) Active and reactive power: The generation of the lo-
calization field requires the transmission of reactive power
to the electromagnets. In order to do this, an oscillatory
voltage needs to be applied to the electromagnet on top of
the voltage required for actuation. For the system considered
in this work, around 36 V was needed to drive the maximum
actuation current of 10 A and around 22 V was needed to drive
the localization current of 0.4 A at the maximum frequency
of 110 Hz. For a scaled electromagnet, driven with the same
actuation current density, it can be shown that the active power
to drive the maximum actuation current scales as P ∼ γ3

and the reactive power to drive the localization currents scales
as Q ∼ γ4 given the assumptions on the magnitude of the

localization field. The maximum actuation field would scale
as |ba

max| ∼ γ.
Consider a γ := 2.5 scaled system with a workspace W ′ of

the following dimensions:

W ′ = [50, 250]× [−100, 100]× [−75, 75] mm

which would be relevant for clinical applications. For such a
system, the maximum power dissipated in the electromagnet P
would increase from 360 W to 5.6 kW, and the maximum
reactive power transfer to the electromagnet Q would increase
from 220 VAr to 8.5 kVAr. Note that the required Q increases
stronger since Q scales stronger than P . The power require-
ments could be implemented using a driver with current ca-
pacity of 35 A and output voltage of 450 V. The system would
generate an increased maximum field of |ba

max| = 25 mT at
the center of its workspace due to the actuation field scaling.

IV. DISCUSSION & CONCLUSIONS

We propose a method to estimate the pose of a three-axis
magnetic field sensor within the workspace of an eMNS, while
simultaneously generating actuation fields to steer a magnetic
device in which the sensor is to be embedded. The method
can be used to simultaneously localize and actuate medical
devices, which extends the functionality of an eMNS from
pure actuation, to both actuation and localization, effectively
making the eMNS a 2-in-1 system. To steer the device, this
method only requires a magnetic sensor to be integrated into
the device, thus favoring a miniaturization of the hardware
necessary to implement this strategy. Our method is generic
and can be applied to any eMNS composed of more than two
electromagnets.

The method was demonstrated in a volume of 80 × 80 ×
60 mm using an eMNS composed of three electromagnets.
In these conditions, the pose was estimated at a localization
frequency of up to 10 Hz. We consistently showed a mean
position accuracy and precision below 1 mm in our experi-
ments, and a mean orientation error of less than 2◦ throughout
the various tests we performed. Our method accounts for
phase shifts in the measurements caused by time acquisition
delays, thus eliminating the need for precise hardware-based
synchronized acquisition between the calibration and online
localization measurements.

To demonstrate how the localization and actuation of a
medical device can work with the proposed method, a catheter
prototype was constructed and steered through a flat phantom
at a localization frequency of 10 Hz. Under these conditions
and with actuation fields up to approximately 8 mT, the 2D
mean position estimation error was measured as 0.68 mm and
the planar angle error was measured as 0.79◦. A limitation of
the demonstration catheter prototype was the rigid tip of 6 mm
length. This limitation could be addressed in the future by
making the link between the sensor and the distal magnet
flexible. In order to account for rotations between the sensor
and the distal magnet, the position of the distal magnet relative
to the sensor could be estimated using DC measurements of
the Hall sensor which are so far not used by the presented
localization method. The localization method presented in this
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paper lends itself for the localization of tethered surgical tools
such as catheters, guidewires or endoscopes.

Due to the relatively low signal to noise ratio of the phasor
measurements, the localization frequency was limited to 10 Hz
to achieve a mean precision of approximately 0.35 mm
throughout the workspace. For scaled up systems with lower
gradients, post processing of the pose estimations using a
Kalman filter could be considered [25] in order to improve
the precision, especially close to the edges of the workspace
where the precision is lower.

Using our phasor field prediction method based on a single
reference sensor we estimated the influence of the actuation
currents on the localization fields and measured a mean
accuracy of 0.35 mm throughout the workspace that increased
to 0.6mm when applying actuation fields up to 10 mT at
the center of the workspace. More advanced methods for
modelling the influence of the actuation currents [1] could
be explored in the future to further improve the accuracy of
the method with stronger actuation fields.

Both the accuracy and the precision of the method are
expected to scale linearly with the length scale of the eMNS,
assuming that oscillating fields of the same amplitude would
be generated throughout the workspace of the scaled system.
This follows from the fact that the error in position estimation
is inversely proportional to the localization field gradients as
discussed in Appendix C-C and section III-G.

The method presented in this paper requires the transmission
of reactive power to the electromagnets by application of an
oscillatory voltage. For the system in this paper, a maximum
of 22 V needed to be applied to drive the localization currents
of 0.4 A and transmit a maximum of 220 VAr to the
electromagnet at the point of highest actuation current. We
discussed the scaling of these quantities and showed the
feasibility of a scaled system implementing our method.

We proposed methods to compensate for both the non-linear
response of the electromagnets and their dynamic behaviour,
making our method generic, model-free, and applicable to a
broad variety of eMNS. For these reasons, we believe this
approach constitutes a contribution that can help advance the
clinical adoption of RMN in minimally invasive surgery in the
future.

APPENDIX A
ESTIMATION OF ACTUATION FIELD

In (12), an estimate of the actuation field sequence was in-
troduced by representing each of the three estimated actuation
field sequences ci b̂a

si as a sum of base sequences

ci b̂a
si =

∑
h

ci,hf
a
h

where ci,h are the components of the coefficient vec-
tor ci ∈ RH . These coefficients were chosen in (13) such
that the DFT of the estimated actuation field closely matches
the DFT of the measured magnetic field at all discrete fre-
quencies except km and Ns − km. Introducing the short-
hand notation x̌ := F(x)k ̸=km

∈ CNs−2M for the DFT of a
vector x ∈ RNs with the entries km and Ns−km omitted, the

square of the objective function to be minimized in (13) can
be written as

o(ci) =

〈
b̌si −

∑
h′

ci,h′ f̌a
h′ , b̌si −

∑
h′

ci,h′ f̌a
h′

〉
where ⟨·, ·⟩ denotes the standard inner product of CNs−2M .
The minimization of o requires that

∂o

∂ci,h
= −2Re

〈
f̌a
h , b̌si −

∑
h′

ci,h′ f̌a
h′

〉
= 0

This equation can be rearranged to the following form:[
Re
(〈
f̌a
h, b̌si

〉)]
=
[
Re
(〈
f̌a
h , f̌a

h′

〉)]
ci

which is a linear system that can be solved for the coefficient
vector ci.

APPENDIX B
ORIENTATION ESTIMATION PROCEDURE AS A WEIGHTED

ORTHOGONAL PROCRUSTES PROBLEM FOR COMPLEX
MATRICES

Algorithm 1 was introduced to estimate the orientation
of the sensor by solving the weighted orthogonal Procrustes
problem, which minimizes (19) for both the rotation matrix R
and the weighting matrix W. The algorithm iteratively applies
the two solution steps detailed below in order to minimize the
objective function of the form

∥RAW −B∥F (29)

for R ∈ SO(3) and W = diag(w1, · · · , wM ) ∈ CM×M , with
complex matrices A,B ∈ C3×M .

A. Step 1: rotation matrix estimation

The first step consists of computing the rotation matrix R,
which minimizes (29) for a given guess of the weighting
matrix W. This consists of solving an orthogonal Procrustes
problem for complex matrices. The derivation presented here
is based on [26] but takes into account the fact that the
matrices C := AW and B are complex-valued. The square
of the objective function to be minimized is written as

∥RC−B∥2F = tr
(
(RC−B)H(RC−B)

)
= tr

(
CHC+BHB−BHRC− (RC)HB

)
= tr

(
CHC+BHB− 2Re(BHRC)

)
where MH denotes the conjugate transpose of a matrix M.
Only the last term depends on R, so minimizing the objective
function is equivalent to maximizing the following expression:

tr
(
Re(BHRC)

)
= tr

(
RRe(CBH)

)
which is maximized by choosing R as [26]

R̂ = Vdiag(1, 1,det
(
UVT

)
)UT (30)

with the singular value decomposition

UΣVT = Re(CBH) = Re((AW)BH)
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B. Step 2: weighting matrix estimation

The second step consists of computing the weighting ma-
trix W, which minimizes (29) for a the given estimate R̂ of
the rotation matrix determined in the first step. The square
of the objective function can be written in the following way
with D := R̂A

∥DW −B∥2F = tr
(
(DW −B)H(DW −B)

)
= tr

(
WHDHDW −BHDW − (DW)HB

)
+ tr

(
BHB

)
= tr

(
WHDHDW − 2Re(BHDW) +BHB

)
Its value is a quadratic function of the weights determined
by the first two terms of the last expression. These can be
rewritten as ∑

i

xi|wi|2 − 2Re

(∑
i

yiwi

)
(31)

with xi the diagonal elements of X := DHD = AHA and yi
the diagonal elements of Y := BHD = BHR̂A. Let us
denote wi := ai + jbi, the expression (31) becomes∑

i

xi

(
a2i + b2i

)
− 2 (ai Re(yi)− bi Im(yi)) (32)

The sum (32) can be minimized for ai and bi, resulting in the
optimal weights

wi =
Re(yi)− j Im(yi)

xi
=

Y[i, i]∗

X[i, i]

where ∗ denotes the complex conjugate.

APPENDIX C
PRECISION OF LOCALIZATION METHOD

In this appendix, it is shown that the intrinsic noise of the
Hall effect sensor characterized by the standard deviation σHall

causes a position estimation noise with standard deviation σp̂i

as stated in (22):

σp̂i
=

σHall√
2Ns

√√√√∑
m

(
∂|bm|
∂pi

∣∣∣∣
p

)−2

=
σHall√
2Ns

gi(p)
−1

A. Noise on phasors

Consider the estimation of a phasor using the DFT accord-
ing to (10). Consider n ∈ RNs to be the noise of the Hall
sensor in a noisy measurement sequence b̃si such that b̃si =
bsi +n where bsi is an ideal, noiseless measurement sequence
(Fig. 15a). The Hall sensor noise results in a random noise
phasor n being added to the measurement of the phasor bm,si
(Fig. 15b). We can think of n as a complex valued random
variable. If we assume that the Hall sensor noise is white, the
variance of n is given by σ2

Hall/Ns due to Parsevals theorem
(for the sake of simplicity, we assume that the noise in all three
directions is the same for the Hall sensor). We can think of the
random noise phasor as having two independent components,
one in the direction of bm,si and one perpendicular such
that n = ded + qeq where ed and eq are local unit phasors
(Fig. 15b) and d and q are real valued random variables. Both

Fig. 15. a.) Noise measurement sequence n added on Hall measurement
sequence bsi b.) Random noise phasor n added on noiseless phasor measure-
ment bm,si

orthogonal noise components are independent and contribute
equally to the variance of n such that

σ2
n = σ2

d + σ2
q =

σ2
Hall

Ns
(33)

We consider how the noise phasor n affects the measurement
of the phasor magnitude |bm,si

| which is used to localize the
sensor:

˜|bm,si
| =

√
(|bm,si

|+ d)2 + q2 ≈ |bm,si
|+ d (34)

In the above equation, ˜|bm,si
| is the noisy magnitude estimate

and we assumed d, q ≪ |bm,si
| and linearized the expression

around |bm,si
|. From the above equation, it is seen that only

the noise component in direction of the phasor (d-component)
contributes noise to the phasor magnitude measurement.

B. Noise on phasor vector magnitudes
The noisy measurement of the magnetic field phasor vector

magnitude is given by

˜|bm| =
√
|bm,s1

+ n1|2 + |bm,s2
+ n2|2 + |bm,s3

+ n3|2

where n1, n2, n3 describe the noise phasors on the components
of bm. As we assume that the noise is small relative to the
phasor quantities, the above expression can be linearized as
follows:

˜|bm| = |bm|+
|bm,s1

|
|bm|

d1 +
|bm,s2

|
|bm|

d2 +
|bm,s3

|
|bm|

d3 (35)

again assuming that only the d-components of the phasor
noise contributes to the magnitude measurement (Eq. (34)).
The random variables d1, d2, d3 in (35) are independent and
therefore, we can write for the variance σ2

|bm|:

σ2
|bm| =

( |bm,s1
|

|bm|

)2

σ2
d +

( |bm,s2
|

|bm|

)2

σ2
d +

( |bm,s3
|

|bm|

)2

σ2
d

= σ2
d =

σ2
Hall

2Ns

C. Position estimation noise
In order to see how the noise on the phasor vector magni-

tudes |bm| affects position estimation we consider (17) which
is used to estimate the position:

p̂ = argmin
p

∑
m

(
|b̂m| − ˘|bm|(p, ia)

)2
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We assume that the phasor magnitude field estimate is perfect,
i.e. ˘|bm|(p, ia) = |bm|(p, ia). We also assume again that
the phasor noise introduces random, independent errors ϵm
with variance σ2

|bm| in the magnitude measurements of the
phasor vectors so that |b̂m| = |bm|(p0, i

a) + ϵm. Linearizing
the objective function around the sensor position p0 and
solving the resulting linear system leads to

p̂ = p0 +
[

∂p
∂|bm|

]
[ϵ1 · · · ϵM ]T (36)

with
[

∂p
∂|bm|

]
∈ R3×M the inverse Jacobian of the magnetic

phasor magnitude field. Given the properties of the random
errors ϵm, we can write for the variance of the position
estimate in direction ei:

σ2
p̂i

= σ2
|bm|

∑
m

(
∂pi

∂|bm|

)2

=
σ2
Hall

2Ns

∑
m

(
∂|bm|
∂pi

)−2

from which (22) follows.
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