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Abstract—Online decision making under uncertainty in par-
tially observable domains, also known as Belief Space Planning,
is a fundamental problem in robotics and Artificial Intelli-
gence. Due to an abundance of plausible future unravelings,
calculating an optimal course of action inflicts an enormous
computational burden on the agent. Moreover, in many scenarios,
e.g., information gathering, it is required to introduce a belief-
dependent constraint. Prompted by this demand, in this paper,
we consider a recently introduced probabilistic belief-dependent
constrained POMDP. We present a technique to adaptively
accept or discard a candidate action sequence with respect to
a probabilistic belief-dependent constraint, before expanding a
complete set of future observations samples and without any
loss in accuracy. Moreover, using our proposed framework, we
contribute an adaptive method to find a maximal feasible return
(e.g., information gain) in terms of Value at Risk for the candidate
action sequence with substantial acceleration. On top of that, we
introduce an adaptive simplification technique for a probabilisti-
cally constrained setting. Such an approach provably returns an
identical-quality solution while dramatically accelerating online
decision making. Our universal framework applies to any belief-
dependent constrained continuous POMDP with parametric be-
liefs, as well as nonparametric beliefs represented by particles. In
the context of an information-theoretic constraint, our presented
framework stochastically quantifies if a cumulative information
gain along the planning horizon is sufficiently significant (e.g. for,
information gathering, active SLAM). We apply our method to
active SLAM, a highly challenging problem of high dimensional
Belief Space Planning. Extensive realistic simulations corroborate
the superiority of our proposed ideas.

I. INTRODUCTION

A comprehensive approach to craft many online decision-
making problems, characterized by the agent situated in an
environment and acting under uncertainty, is the Partially Ob-
servable Markov Decision Process (POMDP). For most such
problems, it is sufficient to assume that the belief-dependent
reward is merely the expectation of a state-dependent reward
with respect to belief. This assumption is the case in clas-
sical POMDP formulations. In contrast, numerous problems
in robotics, such as informative planning tasks [1], active
Simultaneous Localization and Mapping (SLAM) [2], and
sensor placement problem [3] are explicitly concerned with
decreasing uncertainty, thereby raising the need for planning
with general belief-dependent reward functionals.

General belief-dependent operators were examined in the
context of reward but hardly so in the context of the constraint.

This work was partially supported by the Israel Science Foundation (ISF).

In the robotics community, continuous POMDP with belief-
dependent information theoretic rewards is known as Belief
Space Planning (BSP) [4], [5]. One of the embodiments of
BSP, and also the subject of our interest, is active SLAM.
In this context, the robot’s state comprises the robot’s pose
trajectory and the map to be estimated. In the Gaussian
parametric full SLAM problem, the previous robot poses are
not marginalized out but kept to preserve the sparsity of the
information matrix [6].

Since belief is to be maintained over an increasingly high-
dimensional state, it is not an easy task for an online operating
robot. Keeping the whole robot’s trajectory causes the state
dimension to grow with time. Moreover, the fact that the
agent’s environment is part of the state, and the agent reveals
more area with operation time, also contributes to the state
dimensionality. This computational challenge is known as
curse of dimensionality. With an increasing planning horizon,
the number of possible measurements and candidate action
sequences grows exponentially, assembling the computation-
ally intractable decision making problem. This phenomenon is
usually regarded as the curse of history. Many research efforts
have targeted both curses.

The abundance of possible future observations within the
planning phase is often resolved, in robotics, by the Maximum
Likelihood (ML) assumption [7]. While widely used, taking
into account merely the most likely measurements is highly
unrealistic, particularly in the presence of significant uncer-
tainty. It is possible that the largest available reward is not the
most likely one, resulting in a substantial error in the objective
estimate and consequently suboptimal autonomous behavior.
One standing out approach to use a number of sampled
observations instead of ML assumption alongside generic
belief-dependent rewards builds upon reuse of calculations,
alleviating the computational burden [8], [9].

The Artificial Intelligence community also engaged in
augmenting the classical POMDP formulation with belief-
dependent rewards. The journey started from ρ-POMDP [10]
and significantly advanced through time [11], [12], [13].

Recent methods, merging both worlds, build upon the
simplification paradigm [14], [15], [16]. These simplification-
based methods finally relax limiting assumptions, e.g., Gaus-
sian belief, Piecewise linearity, or Lipshitz continuity of the
reward, and permitted universal belief-dependent rewards such
as differential entropy of general beliefs. Since the differ-
ential entropy operator acts over the belief, which can be
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parametrized in various ways, e.g., Gaussian or set of par-
ticles, questions of Piecewise linearity or Lipshitz continuity
are vague and well defined only when the state is discrete
and finite. In a continuous setting they shall be approached
individually for each belief parametrization. This fact discards
many early approaches [10], [11] to include belief-dependent
rewards to POMDP. Another line of simplification works
alleviate curse of dimensionality in the setting of multivariate
Gaussian distributions utilizing sparsification [17] and topolog-
ical [18] aspects. The simplification paradigm was also applied
with Gaussian-mixture distributed beliefs [19], [20]. Another
important mechanism for the interplay between computational
effort and the quality of the result is adaptivity [21].

All discussed above decision-making methods are con-
cerned with selecting the optimal action, disregarding the
actual amount of profit or risk entirely. However, it is essen-
tial since preventing the robot from performing unnecessary
or self-destructive operations is highly important. This gap
can be filled by introducing constraints into decision-making
formulation. Some attempts to do so in the context of safe
POMDPs include chance constraints [22].

A general belief-dependent constraint, however, has not re-
ceived proper attention so far except in our previous work [23],
where we focused on safety and not information gathering
tasks.

In this paper, we continue to investigate the facets of our
proposed earlier framework [23] of general belief-dependent
constrained continuous POMDP. Motivated by information
gathering, also called informative planning tasks, we focus
on the cumulative form of the constraint in contrast to the
multiplicative form as in our previous paper. One of the
specific applications of our framework is stopping exploration.
Moreover we provably extend the simplification framework
to both forms of the constraints in our novel probabilistically
constrained setting. The first form is cumulative and the second
is multiplicative.

There are attempts to use differential entropy gain as a
constraint to halt exploration in the problem of active SLAM
[24] [25]. However, it was never fully explored since, typically,
algorithms solving BSP, in particular, active SLAM under
partial observability, assume Maximum Likelihood observa-
tions [25] to alleviate the computational burden. Stopping
exploration is still regarded as an open problem [24].

Our probabilistic belief-dependent constraint of cumulative
form, which will become apparent later, generalizes previous
approaches. The naive way to threshold a belief-dependent
operator under partial observability is to perform expectation
with respect to observations. However, even this has gained
less attention so far and has not been done to the best of
our knowledge since commonly existing approaches take into
account only ML observations. In contrast to expectation with
respect to future observations, we propose a probabilistic con-
straint. Our proposed variant is sensitive to the distribution of
the belief-dependent constraint, while averaging with respect
to future observations is not.

As opposed to a threshold on expectation with respect to
observations, we propose two conditions. Interior condition
thresholds using δ the belief-dependent operator (return) for

given sequence of possible future observations. The exterior
condition verifies that the interior one is satisfied with con-
fidence level of at least 1 − ε. To rephrase it, we require
that the fraction of the observation sequences fullfilling the
interior condition will be at least 1 − ε. In due course,
we consider two different problem formulations. In the first
problem, δ is specified externally by the user. We coin this
problem as optimality under a probabilistic constraint. In
the second problem, that we name maximal feasible return,
δ is a free parameter. In turn, our formulation and approach
enable fast adaptive maximization of Value at Risk (VaR)
on top of a general belief-dependent return. This problem is
highly challenging due to the fact that VaR is not a coherent
functional [26].

Our contributions are fourfold. First, we utilize our proba-
bilistically constrained Partially Observable Markov Decision
Process (POMDP) in the context of information-theoretic
constraint. We analyze Mutual Information constraint in this
context, following the expectation approach versus our novel
probabilistic constraining. Notably, we did not find any works
shifting the Mutual Information from the reward operator to
the constraint. Second, we cast unconstrained Risk Aware Be-
lief Space Planning with Value at Risk as a purely constraints-
driven problem. As we unveil in this paper, this reformulation
enables the decision maker to save time by adaptively ex-
panding the lowest required number of observations without
compromising the quality of the solution. Third, we rigorously
derive a theory of the simplification. Given a converging to the
constraint and reward bounds, our approach can be simplified,
gaining substantial speedup without any loss in performance.
We apply our technique to High Dimensional Belief Space
Planning. In particular, our case study is active SLAM.

The remainder of this paper is structured as follows. We
start from background and notations in section II. Our next
step is the in depth discussion of the problem formulation and
our approach (section III). We then present and application
of our methods (section IV) and continue to the simulations
and results (section V). The conclusions section VI finalizes
the paper We placed the proofs in the appendix to preserve
continuity flowing and remove clutter from the central paper
ideas.

II. BACKGROUND AND NOTATIONS

Let us formally introduce the Partially Observable Markov
Decision Process with belief-dependent rewards named ρ-
POMDP alias to BSP. By the bold symbols, we denote time
vector quantities; by �a:b, we mark series annotated by the
time discrete indices running from a to b inclusive. By P we
denote probability density function and by P the probability.
By lowercase letter we denote the random quantities or the
realizations depending on the context.

The ρ-POMDP is a tuple (X ,A,Z, T,O, ρ, γ, b0) where
X ,A,Z denote state, action, and observation spaces with
x ∈ X , a ∈ A, z ∈ Z the momentary state, action,
and observation, respectively. T (x′, a, x) = PT (x′|x, a) is
a stochastic transition model from the past state x to the
subsequent x′ through action a. So far, we have described



the classical components of POMDP. However, in BSP, the
observation model O(·) undergoes a customization that will be
apparent later. For now, we left it undefined. Further, γ ∈ (0, 1]
is the discount factor, b0 is the belief over the initial state
(prior), and ρ is the belief-dependent reward operator.

For conciseness let us denote interchangeably �k+ and
�k:k+L−1, as well as �(k+1)+ and �k+1:k+L. In this paper,
we deal with static action sequences of variable horizon L.
Namely, our action space is A , {aik:k+Li−1}

|A|
i=1. Our actions

along a particular action sequence are of different lengths. We
also can think about such an action sequence as a path P
comprising motion primitives. However, the action sequence
is a much more general notion.

An autonomous robot deployed in an unknown environment
repeatedly performs acting, sensing, and planning sessions up
until it reaches the required goal or fails to do so as we further
formulate.

Let ht denote history of actions a0:t−1 and observations z1:t
obtained by the agent up to time instant t and the prior belief
b0. To clarify, we denote by t an arbitrary time instant and
by k the time instant of the current planning session. Such
that if t ≥ k, the subscript t regards to future time. Another
representation of history is the posterior belief. We define the
posterior belief bt as a shorthand for the probability density
function of the state xt given all information up to time instant
t, i.e. bt(xt) , P(xt|ht). In this paper the belief converts
the history to a more convenient form, bt and can be used
interchangeably with ht, as opposed to our previous work [15].

Often times in BSP problems, the robot’s map is unknown
and therefore regarded as a random quantity. This allows
the robot to operate in unfamiliar environments. We opt for
landmarks map representation, so the robot’s state is

xt ,
(
x0:t, {`j}M(k)

j=1

)
, (1)

where M(k) is the number of landmarks the robot has
observed until time instant k inclusive. These landmarks
represent the unknown robot’s environment, specifically the
map, to be estimated. To emphasize that j is not a time index,
we denote it by a superscript instead of a subscript.

A. Random landmarks configuration vector

Let βt ∈ {0, 1}M(k) be a random vector of Bernoulli
variables, statistically independent given robot’s pose xt, as
will be shortly displayed by (2) and (3). Its dimensionality is
the number of landmarks present in the belief. Each realization
of βt defines a subset of visible landmarks. Such a realization
has ones at the indexes of visible landmarks and zeros else,
such that [β]j = 1,∀j ∈ {jν}n(β)ν=1 , where n(β) =

∑
j [β]j . (By

[·]j we indicate the coordinate j of a vector.) The superscript
ν defines a subsequence of indices jν of visible landmarks
(Fig. 1b). Let us clarify, j1, j2, . . . represent the strictly
increasing with ν values of indexes of enumerated landmarks
resulting in a random set {jν}n(β)ν=1 , such that jν = j(ν).

The mapping from the Boolean vector β to the random
finite set of indices {j1, j2 . . . } is invertible. Therefore, one
can define a probability over the random finite sets [27] instead
of boolean vectors.

(a) (b)

Fig. 1: (a) Visualization of the belief tree given the realization
of βk+1:k+2 for action sequence ak+. Here we show two
samples of observations per propagated belief. By purple and
blue colors, we denote possibly different dimensionality of the
observation stemming from the number of visible landmarks.
The yellow lace illustrate the observation sequence zk+1:k+2

(Section III-A); (b) One possible realization of configuration
is β = (01011)T .

One way to define a probabilistic model for visible land-
marks configuration given x is

Pβ([βt]
j = 1|xt, `j) = 1{‖xt−`j‖≤r},

Pβ([βt]
j = 0|xt, `j) = 1− 1{‖xt−`j‖≤r},

(2)

where r is a visibility radius. Our approach is not limited
to this specific model and supports any other model; for
instance in more complex scenarios Eqs. (2) would imitate
a camera field of view. Eqs. (2) portray that each landmark
deterministically has a visibility radius. If the robot is close
enough, it receives the signal from the landmark. Overall we
arrive at

Pβ

(
βt

∣∣∣∣xt, {`j}M(k)
j=1

)
=

M(k)∏
j=1

Pβ([βt]
j |xt, `j). (3)

Here, we assumed that t ≥ k and the planner does not reveal
new landmarks in planning session, that is, M(k) depends on
the present time but not the future time t.

Now we are ready to define a customized observation
model. This model is used in planning session

O(z,x, β) , P(z|x, β) =

n(β)∏
ν=1

PZ(zν |x, `j
ν

). (4)

B. The objective

A common BSP objective is given by

U(bk, ak+) = E
β(k+1)+

[
Uβ(k+1)+(bk, ak+)

∣∣∣∣∣bk, ak+
]
, (5)

where

Uβ(k+1)+(bk, ak+) = (6)

E
z(k+1)+

[
k+L−1∑
t=k

ρ(bt, at, zt+1, bt+1)

∣∣∣∣∣bk, ak+, β(k+1)+

]
,



and where t is the running time index and k is the present
time instant. The inner expectation Uβ(k+1)+(bk, ak+) (Fig. 1a)
corresponds to the utility conditioned on static set of visible
landmarks. Therefore, per time index, the dimension of the
observation is static (It can be different, however, per time in-
dex). Thus, the expectation operator is well defined. The outer
expectation performs, weighted in terms of β(k+1)+ (Fig. 1b)
average of such values. Note that, while it is appealing to
fold the conditional expectations in (6) using the law of total
expectation, we cannot do that since the dimension of the
observation zt depends on the number of visible landmarks
represented by each specific realization of βt. By ρ(b, a, z′, b′)
we denote a general-belief dependent reward depending on two
consecutive beliefs and the elements relating them. Further,
for clarity, we omit the dependency on the action and the
observation.

To summarize this section, BSP accommodates varying
dimension of observation conditioned on state and continuous
spaces.

III. PROBLEM FORMULATION AND APPROACH

In this work we tackle two problems. Our first problem is
the optimality under a probabilistic constraint

a∗ ∈ arg max
ak+∈A

U(bk, ak+) subject to

P(c(bk:k+L;φ, δ) = 1|bk, ak+) ≥ 1− ε,
(7)

where c is the indicator variable over inner condition as we
will shortly see, φ is the general belief dependent operator, δ
and 0 ≤ ε < 1 are scalars. In this problem the utility conforms
to (5). Importantly, as in our previous paper [23] δ and ε are
supplied by the user.

The constraint c(bk:k+L;φ, δ) in (7) can be of two forms.
The first (cumulative) form is

c(bk:k+L;φ, δ) , 1{(∑k+L−1
t=k φ(bt+1,bt))>δ}, (8)

and the second (multiplicative) is

c(bk:k+L;φ, δ) ,
∏k+L−1
t=k 1{φ(bt+1,bt)≥δ}. (9)

Further, let us refer to the inner inequality as the inner
constraint and correspondingly the outer inequality (7) as the
probabilistic (outer) constraint. From now on, for clarity, let
us denote constraining return and the actual return operator
as s(bk:k+L;φ) ,

∑k+L−1
t=k φ(bt+1, bt) and s(bk:k+L; ρ) ,∑k+L−1

t=k ρ(bt+1, bt), respectively. To include both cases ρ and
φ in further discussion, we will denote s(bk:k+L; ·).

Now, we contemplate what will happen, if δ is a free
parameter a not pre-determined as before. In this case we
would like to select action sequence corresponding to largest
maximal feasible return (actual or constraining s(bk:k+L; ·))
with probability of at least 1− ε. That is, maximal δ yielding
that, at most, a single action sequence is feasible. With this
insight in mind, we arrive to our second problem of maximal
feasible return defined as follows

a∗ ∈ arg max
ak+∈A

VARε

(
s(bk:k+L; ·)|bk, ak+

)︸ ︷︷ ︸
U(bk,ak+)

, (10)

where the Value at Risk (VaR) reads

VaRε

(
s(bk:k+L; ·)|bk, ak+

)
, δ∗ =

sup
{
δ : P

(
s(bk:k+L; ·) > δ|bk, ak+

)
≥ 1− ε

}
.

(11)

Due to noncompliance to Bellman form of (11) computing
(10) is notoriously challenging.

Another way to introduce a belief-dependent constraint
to POMDP setting would be by averaging with respect to
observations. Namely, the probabilistic constraint in (7) is
replaced by C(bk, ak+) ≥ δ given by

C(bk, ak+) = E
β(k+1)+

[
Cβ(k+1)+(bk, ak+)

∣∣∣bk, ak+], (12)

where

Cβ(k+1)+(bk, ak+) = (13)

E
z(k+1)+

[
k+L−1∑
t=k

φ(bt, at, zt+1, bt+1)
∣∣∣bk,ak+,β(k+1)+

]∣∣∣bk,ak+].
If φ is selected to be Information Gain, (13) is known as
Mutual Information (MI). However, if one transfers the utility
(5) to the constraint, in other words, when the ρ(·) ≡ φ(·) and
we use expectation in (12) and in (5) such a constraint appears
to be problematic. If U(·) ≡ C(·), we can always maximize the
utility and ask if optimal utility is larger than δ (U∗ > δ). In
general this is the question of what one verifies first, optimality
or feasibility. As we shall further see, in some cases the order
does matter and we can save time by fast feasibility check and
cancellation of action sequences. Another option would be to
use a maximum likely sequence of observations zML

k+1:k+L and
check (

k+L−1∑
`=k

φ(bt, at, z
ML
t+1, bt+1)

)
≥ δ, (14)

where the maximum likelihood observation zML
i+1 is obtained

as follows. We start from a maximum likely state

xML
t+1 ∈ arg max

xt+1

P(xt+1|bt, at), (15)

and then deterministically draw βt+1, using (2). This, in turn,
results in

zML
t+1 ∈ arg max

zt+1

P(zt+1|xML
t+1, βt+1) (16)

We can interpret the difference of expected constraint (13)
and our probabilistic risk aware constraint (7) as follows.
The conventional constraint is not aware of the distribution
of the cumulative values of operator φ. It decides either the
constraint is fulfilled or not solely using the expected value.
It is possible that the expected value of the constraint fails to
represent adequately the underlying distribution. In contrast,
our formulation is distribution aware.

In reality to evaluate the probabilistic constraint we shall
marginalize over observation sequences to calculate

P(c(bk:k+L;φ, δ)|bk, ak+) =∫
z(k+1)+

P(c(bk:k+L;φ, δ)|bk, ak+, z(k+1)+)·

P(z(k+1)+|bk, ak+)dz(k+1)+.

(17)



In the following sections, we develop a universal
theory to evaluate our proposed probabilistic inequality
P(c(bk:k+L;φ, δ) = 1; δ|bk, ak+) ≥ 1 − ε adaptively. On
top of that, we expedite the evaluation process even more by
extending simplification paradigm to our setting, enjoying the
substantially improved celerity versus baseline approaches.

A. Adaptive Belief Tree

The integral in eq. (17) is not accessible in a general setting.
One way to approximately evaluate the (17) is to sample from
observation likelihood P(z(k+1)+|bk, ak+). We assume that
we have a fixed budget m of samples of observation laces.
Our aim is to leverage the fact that we have a particular
structure of the probabilistic condition (17) and to address its
evaluation while constructing the belief tree, thereby saving
valuable running time or providing a more accurate solution.
For clarity, we recite some statements from our previous paper.
We remind the reader that this paper focuses on the open-loop
setting, namely static action sequences, instead of policies.

Imagine a candidate action sequence ak:k+L−1. To approx-
imate the utility and the probabilistic constraint (Eq. (7)),
an online algorithm at the root (for each candidate action
sequence) expands upon termination m laces appropriate to
the drawn observations

{zlk+1:k+L}ml=1. (18)

Through the paper we label the laces in the belief tree by the
superscript l (Fig. 1a). Each lace l corresponds to a particular
realization of the sequence of the beliefs, return s(bk:k+L; ρ)
or constraining return s(bk:k+L;φ). The sample approximation
of probabilistic constraint (17) is

1

m

m∑
l=1

c(blk:k+L;φ, δ) ≥ 1− ε. (19)

We employ an already expanded part of the belief tree to bound
the expression of the probabilistic constraint from each end
using the following adaptive upper and lower bounds

1

m

m̃∑
q=1

c(bl
q

k:k+L;φ, δ)︸ ︷︷ ︸
lb(1)

≤ 1

m

m∑
l=1

c(blk:k+L;φ, δ). (20)

1

m

m∑
l=1

c(blk:k+L;φ, δ)≤m−m̃
m

+
1

m

m̃∑
q=1

c(bl
q

k:k+L;φ, δ)︸ ︷︷ ︸
ub(1)

(21)

where, the algorithm already expanded m̃ ≤ m laces in
some order. We denote expanded laces by a sub-sequence
q ∈ 1 . . . m̃, such that lq is the index of the observation
sequence, i.e, lq ∈ 1 . . .m. By the adaptivity we mean the
expanding lowest number of laces depending on the situation
to accept or discard the candidate action sequence.

Fig. 2: Conceptual visualization of our simplification approach
(Section III-B). For clarity we show a myopic setting. The
gradient displays the probability density, i.e., a larger number
of samples lands in the area of greater intensity. Using
the bounds, we want to assess whether the fraction of the
observation laces above δ is at least 1− ε. As we see, we can
invalidate bottom sample φ using solely the upper bound φ.
In a similar manner, we can validate the upper sample φ using
solely the lower bound φ. Note that the width of the vertical
strip has no role in this visualization.

B. Adaptive Simplified Constraint Evaluation
As introduced in [15], [14], [17], [19], the simplification

paradigm seeks to ease the computational burden in the
decision making problem while providing performance guar-
antees. The latter is achieved by applying bounds over various
quantities in the decision making problem (e.g. bounds over a
reward function). In this section we extend this concept to our
probabilistic belief-dependent constrained POMDP setting of
Eq. (7).

Suppose we have adaptive deterministic bounds over φ,
i.e. these bounds hold for any realization of the beliefs. Further,
evaluating these bounds is computationally cheaper than the
operator φ. Let us present the main theorem of this section,
which will shed light on how these bounds can be utilized,
propagating their adaptivity further to the adaptive constraint
evaluation.

Theorem 3.1 (Simplification machinery): Imagine a sample
set of the observations laces {zqk+1:k+L}nq=1. Assume that ∀q
holds

φ(bq`+1, b
q
`) ≤ φ(bq`+1, b

q
`) ≤ φ(bq`+1, b

q
`). (22)

Let two forms of sample version of inner constraint (8) and
(9) variants with bounds be

c(bqk:k+L;φ, δ) , 1{(∑k+L−1
t=k φ(bqt+1,b

q
t ))>δ}, (23)

c(bqk:k+L;φ, δ) , 1{(∑k+L−1
t=k φ(bqt+1,b

q
t ))>δ}, (24)

and

c(bqk:k+L;φ, δ) ,
∏k+L−1
t=k 1{φ(bqt+1,b

q
t )≥δ}, (25)

c(bqk:k+L;φ, δ) ,
∏k+L−1
t=k 1{φ(bqt+1,b

q
t )≥δ}. (26)



Eq. (22), in turn, implies that the following inequalities are
satisfied without dependency on the form

m̃∑
q=1

c(bqk:k+L;φ, δ)≤
m̃∑
q=1

c(bqk:k+L;φ, δ)≤
m̃∑
q=1

c(bqk:k+L;φ, δ).

(27)

We provide a detailed proof of Theorem 3.1 in Appendix C-A.
Let us now show how to speed up the process of evaluation

of the probabilistic constraint from (7). The key component
of the acceleration is that the adaptivity of the bounds is
delegated to adaptivity of the probabilistic constraint bounds
(27). Assume the bounds from (22) are adaptive, using insights
provided by Theorem 3.1, we first check if

1

m

m̃∑
q=1

c(bl
q

k:k+L;φ, δ)

?︷︸︸︷
≥ 1− ε. (28)

If the above relation holds we declare that the outer constraint
is fulfilled. If not, we probe if

1

m

m̃∑
q=1

c(bl
q

k:k+L;φ, δ)

?︷︸︸︷
< 1− ε. (29)

If yes, we declare that the outer constraint is violated. In case
we are not able to say anything (both relations do not hold),
we tighten the bounds. In other words, we make the bounds
closer to the actual value of φ (e.g., by utilizing more particles
[15], [16] or mixture belief components [19]). We presented
a conceptual visualization of our simplification approach in
Fig. 2.

Now our goal is to merge the insights gained in section
III-A with the simplification. Clearly from (20) and the left
side of (27) we have that

1− ε
?︷︸︸︷
≤ 1

m

m̃∑
q=1

c(bl
q

k:k+L;φ, δ)︸ ︷︷ ︸
lb(2)

≤ 1

m

m̃∑
q=1

c(bl
q

k:k+L;φ, δ)︸ ︷︷ ︸
lb(1)

.

(30)

Similarly from (21) and right side of (27) holds

m−m̃
m

+
1

m

m̃∑
q=1

c(bl
q

k:k+L;φ, δ)︸ ︷︷ ︸
ub(1)

≤

≤m−m̃
m

+
1

m

m̃∑
q=1

c(bl
q

k:k+L;φ, δ)︸ ︷︷ ︸
ub(2)

?︷︸︸︷
< 1−ε

(31)

By a question mark, we denote the inequalities that shall be
fulfilled online to check whether the outer constraint is met
(30) or violated (31). If we cannot incur the status of the outer
constraint we shall add more laces (adapt the first layer bound)
or/and tighten the bounds from (22). Such an approach permits
adaptive evaluation of the outer constraint in Eq. (7) before
expanding the m laces of the belief sequences bk:k+L.

(a)

(b)

(c)

(d)

Fig. 3: Visualization of adaptation from section III-C. Note
in all scenarios the value of dashed line is unknown. The
red line represents the confidence level 1 − ε to be satisfied
with probabilistic constraint. (a) Conceptual illustration of
challenging scenario. To accept such an action the lower
bound shall go a long way; (b) Conceptual illustration of
easy scenario, with a few contractions of the upper bound,
the action is discarded; (c) Another interesting situation, here
the upper bound shall go a long way to discard an action. (d)
With a few shrinkage iterations the lower bounds accepts the
action sequence.

C. The adaptation

It occurs that the proposed bounds have riveting properties.
To describe a pair of lower (lb(1), lb(2)) and a pair of upper
bounds (ub(1),ub(2)) simultaneously, we omit the superscript.
The lower bound is bounded by zero 0 ≤ lb and the upper
bound is bounded by one ub ≥ 1. When we adapt the bounds,
we add at most a single lace to the appropriate sum. Therefore,
the step of adaptation of the bounds is 1/m.

When we expand a single lace m̃ ← m̃ + 1, the lower
bound makes a step if c(blk:k+L;φ, δ) = 1, otherwise the upper
bound makes a step if c(blk:k+L;φ, δ) = 0. Alternatively, when
we increase the simplification level, some already expanded
laces possibly switch from 0 to 1 (c(bl

q

k:k+L;φ, δ) for some



lq), contracting the lower bound, and some from 1 to 0
(c(bl

q

k:k+L;φ, δ) for some lq) , tightening the upper bound.
Importantly when we expand a single observation lace and

calculate c(bl
q

k:k+L;φ, δ) we will obtain one with probability
at most P(c(bk:k+L;φ, δ) = 1|bk, ak+). Similarly we will
obtain c(bl

q

k:k+L;φ, δ) = 0 at the new expanded lace with
probability at most P(c(bk:k+L;φ, δ) = 0|bk, ak+). Both these
probabilities are not accessible.

Further, we have four scenarios illustrated in Fig. 3. By
analyzing these scenarios, we can speculate about anticipated
speedup. In Fig. 3 we show by the red vertical line several
positions of the outer threshold 1 − ε from (7). The first
scenario, shown in Fig. 3a, is challenging. The unavailable
to us probabilistic constraint is fulfilled (shown by green
dashed vertical line in Fig. 3a); therefore, no matter how many
iterations we perform, invalidation using the calculated ub and
Eq. (31) is not possible; only validation using lb and (30) will
eventually be possible. As we observe, many contractions of
the lb would be required, as we see in Fig. 3a up until lb
becomes larger than 1− ε according to Eq. (30). Conversely,
if with a large margin the outer constraint is violated as
we see in Fig. 3b, we discard the action sequence with a
few tightening iterations using ub and (31). We contemplate
a similar behavior in reciprocal cases (Figs. 3c and 3d). To
conclude the adaptation can be challenging in cases described
in Figs. 3a and 3c.

The fact that we have a pair of lower (lb(1), lb(2)) and a
pair of upper bounds (ub(1),ub(2)) raises the question which
bound from each pair shall we adapt in case that a pair is
inconclusive.

When we cannot incur whether the outer constraint from
(19) is fulfilled, we shall decide to refine the bounds or add
more laces (observation sequences). Luckily for us, these two
operations are parallelizable in terms of multithreading. We
simultaneously refine the simplification levels, as in [14] of the
bounds, and add more laces up until the decision is possible.

To conclude this section, we proposed a two-layered ap-
proach to ease a computational burden. The first layer ex-
presses adaptivity in terms of the number of observation
laces. The second layer permits utilization of the adaptive
deterministic bounds on realizations of φ|bk, π.

One example of using our technique is to save time in open
loop planning or spend more time on the action sequences
which fulfill the probabilistic constraint. With such an ap-
proach, we are able to cut down on the cost of exhaustively val-
idating candidate action sequences. In the setting of Gaussian
high dimensional beliefs in SLAM problem, a lower number of
observation laces is especially important due to loop closures.
Another example is the closed loop setting, where we deal
with policies.

Thus far we presented general theory, and now we specifi-
cally address the second problem described by Eq. (10).

D. Maximal Feasible Return

Picture in your mind that you guess the δ and the step
size ∆. For clarity we drop the dependence of s on bk:k+L.
However, we shall remember that a single realization of s

Fig. 4: Visualization of Alg. 3. We never increase the step
size. Therefore, as we see, each candidate action sequence in
the bottom visualization is shifted to the left relative to the
situation displayed in the top. The action sequence a1 can be
safely discarded in the top illustration (Section III-D).

corresponds to a single lace in the belief tree (Fig. 1a). Observe
the following pair of relations

P
(
s > δ|bk, ak+

)
≥ P

(
s > δ + ∆|bk, ak+

)
, (32)

P
(
s > δ|bk, ak+

)
≤ P

(
s > δ −∆|bk, ak+

)
. (33)

Suppose we fulfill the probabilistic inequality with δ for a sub-
set of candidate action sequences, that is, P

(
s > δ|bk, ak+

)
≥

1 − ε. We shall increase δ to invalidate more candidate
action sequences up until a single candidate action sequence
is left. Currently invalidated candidate action sequences can
be discarded for eternity, they will never fulfill the outer
constraint with larger δ, due to the never increasing step size
in our approach of alternating increases and decreases of δ.
Now, suppose we violate the probabilistic inequality with δ,
that is, 1 − ε > P

(
s > δ|bk, ak+

)
for all the candidate

action sequences. We shall decrease the δ to render more
candidate action sequences feasible. If we will obtain δ such
that all the candidate action sequences besides the single one
are invalidated, we know that this candidate action sequence
maximizes (11). This is the underlying principle of Alg. 3.
See visualization in Fig. 4. As we see in Fig. 4, δ2 > δ0 so
P
(
s > δ0|bk, ak+

)
≥ P

(
s > δ2|bk, ak+

)
. To the step size, we

imply the bisection principle. To rephrase it, we solve

a∗k+, δ
∗ = arg max

{ak+}
max
δ

δ

s.t. ∃ ak+ ∈ A : P(c(bk:k+L;φ, δ)|bk, ak+) ≥ 1− ε
(34)

This formulation is equivalent to solving the maximal fea-
sible return problem portrayed by equation (10). Before we



Algorithm 1 Optimality under probabilistic constraint

1: Input: A . Set of the action sequences
2: a∗k+ ← undef , Û∗(m) ← −∞, S ← {}
3: for each ak+ ∈ A do
4: for l = 1 : m do
5: Draw observation sequence zlk+1:k+L

6: Calculate c(blk:k+L;φ, δ),
7: if 1− ε ≤ 1

m

∑l
q=1 c(b

q
k:k+L;φ, δ) then . Outer

constraint is fulfilled
8: S ← S ∪ ak+ . Accept the ak+
9: break . check the next action seq.

10: else if 1
m

∑l
q=1 c(b

q
k:k+L;φ, δ) < 1−ε−m−l

m then
. Outer constraint is violated

11: break . check the next action seq.
12: end if
13: end for
14: end for
15: for each ak+ in S do
16: expand missing laces and get Û (m)(bk, ak+)
17: if Û∗(m) < Û

(m)(bk, ak+) then
18: a∗k+ ← a, Û∗(m) ← Û

(m)(bk, ak+)
19: end if
20: end for
21: Return a∗k+

Algorithm 2 Optimality under probabilistic constraint (base-
line) ρ(·) ≡ φ(·), U(·) ≡ C(·)

1: Input: A
2: a∗k+ ← undef , Û∗(m) ← −∞,
3: for each ak+ in A do
4: Expand m laces and get Û (m)(bk, ak+)
5: if Û∗(m) < Û

(m)(bk, ak+) then
6: a∗k+ ← ak+, Û∗(m) ← Û

(m)(bk, ak+)
7: end if
8: end for
9: if Û∗(m) ≥ δ then

10: Return a∗k+
11: else
12: Return No feasible action sequence present
13: end if

continue, note that in Appendix B we discuss sample approx-
imations used in our proposed algorithms. We are ready for
the next section, where we formulate algorithms to tackle both
of our problems.

E. Algorithms

In this section, we present four algorithms. All the algo-
rithms receive as input the set of candidate action sequences.
How these action sequences are obtained is out of the scope of
this paper. For both our problems, we propose our technique
and describe the baseline. Our algorithms shall surpass the
baseline methods in terms of celerity or/and quality of the
solution. Importantly, the overhead from the adaptation shall
be neglectable.

Algorithm 3 Maximal feasible return (Bisection method)

1: Input: A, δ ∆, m
2: S ← A, T ← A, δ̃ ← (δ + ∆) · 0.5
3: ∀ak+ ∈ A expand a single lace and m̃← 1 . warm up
4: while true do . Trials loop
5: for each ak+ ∈ S do
6: if !ADAPTBOUNDS(ak+, m̃) then
7: S ← S \ ak+,
8: end if
9: end for

10: if |S| == 1 then
11: return ak+ ∈ S, δ̃
12: else if S ⊂ ∅ then
13: S ← T , ∆← δ̃, δ̃ ← (δ + δ̃) · 0.5
14: next
15: else
16: T ← S, δ ← δ̃, δ̃ ← (δ̃ + ∆) · 0.5
17: end if
18: end while
19: procedure ADAPTBOUNDS(action seq: ak+, counter: m̃)
20: while true do
21: if m̃ < m then
22: m̃← m̃+ 1, Draw a lace zm̃k+1:k+L,
23: end if
24: if 1

m

∑m̃
l=1 c(b

l
k:k+L;φ, δ̃) < 1− ε− m−m̃

m then
25: status ← false
26: break
27: else if 1− ε ≤ 1

m

∑m̃
l=1 c(b

l
k:k+L;φ, δ̃) then

28: status ← true
29: break
30: end if
31: end while
32: return status
33: end procedure

Algorithm 4 Baseline maximizing V̂aR
(m)

ε

1: Input: A
2: a∗k+ ← undef , Û∗(m) ← −∞
3: for each ak+ ∈ A do
4: Expand m laces and approximate V̂aR

(m)

ε

5: if Û∗(m) < V̂aR
(m)

ε then

6: a∗k+ ← ak+, Û∗(m) ← V̂aR
(m)

ε

7: end if
8: end for
9: Return a∗k+

1) Optimality under probabilistic constraint: For the first
problem (7), we adaptively check the feasibility of all the
action sequences and select the optimal from the set of
feasible action sequences Alg. 1. The competing approach is
finding the optimal action sequence and verifying feasibility
afterwards, see Alg. 2.

2) Maximal feasible gain: Here, we propose our adaptive
method described in Section III-D and summarized in Alg. 3



and evaluate/compare it versus the brute force maximization
of Value at Risk Alg. 4.

Having introduced the algorithms we shall discuss possible
drawbacks and overhead.

F. Adaptation overhead

When we use presented above adaptation mechanisms, we
store laces cl(bk:k+L;φ, δ) for every expanded l. Accordingly,
the memory consumption is elevated, however not much since
these are boolean values. Moreover, we shall evaluate the
inner constraint and perform the sum for multiple values of
δ in Alg. 3. Nevertheless, as we believed and verified by
the experiments, this overhead is neglectable compared to the
saved time on skipped laces due to loop closures. In addition,
these additional operations can be easily parallelized in terms
of multithreading.

We can, however, encounter a worst-case scenario. Imagine
the ε is close to 1 from the left. Many action sequences will
satisfy the probabilistic constraint. In general, we can say that
a more accurate precision of δ will be required to differentiate
between the action sequences since the working area is closer
to zero and the interval [0, 1 − ε) is shorter. Therefore, more
iterations of Alg. 3 will be required. Moreover, a pair of action
sequences may be extremely close to each other in terms of
Value at Risk, requiring a tremendous amount of iterations
of the Alg. 3. To solve this issue, we shall introduce a final
precision.

IV. APPLICATION TO BELIEF SPACE PLANNING

In this section we apply proposed algorithms to informative
planning with high dimensional robot’s state. We express the
exploration problem with our framework (7).

A. Belief structure

Let us delve into the mechanics of maintaining and up-
dating high-dimensional belief on top of a stochastic process
- sequential decision making. A standard and widely used
tool used to maintain a high-dimensional belief is a factor
graph [28]. Its building blocks are the probabilistic motion
and observation models. These models induce probabilistic
dependencies over the state variables. The models are the
factors that comprise the factor graph.

In this paper, the stochastic motion and observation models
are described by the following dependencies involving the
Gaussian distributed sources of stochasticity.

xi+1 = f(xt, at;wt), wt ∼ N (0,Wt), (35)

zj
ν

t = g(xt, `
jν ; vt), vk ∼ N (0, Vt), (36)

where Wt and Vt are covariance matrices. In this paper we
assume that the data association is solved. Namely, in general,
the belief would be (see, e.g.,[29], [30])

bk(xk) , P(xk|b0, a0:k−1, z1:k) = (37)∑
β1:k

P(xk|b0, a0:k−1, z1:k, β1:k)P(β1:k|b0, a0:k−1, z1:k).

We, however, assume that given an observation the the real-
ization of corresponding β is known. This fact simplifies the
belief structure as such

P(xk|b0, a0:k−1, z1:k) = P(xk|b0, a0:k−1, z1:k, β1:k). (38)

Applying the Bayes Rule, we arrive at

bk(xk)∝b0(x0)

k∏
i=1

(
PT
(
xt
∣∣xt−1, at−1)︸ ︷︷ ︸

motion factor

n(βi)∏
νi=1

PZ
(
zνit
∣∣xt, `jνi )︸ ︷︷ ︸

observation
factor

)

(39)

Eq. (39) can be illustrated as a factor graph [6]. In this paper,
we utilize Gaussian probabilistic models (35) and (36) in our
simulations.

B. Information Gain

Let us address the cumulative form of the inner constraint
(8). Similar to [25], we define the operator φ as follows

φ(b′, b) , IG(b, a, z′, b′). (40)

There are various ways to define the Information Gain (IG)
over a pair of the beliefs. One possibility is as follows

IG(b, a, z′, b′) = −h(b′) + h(b). (41)

The differential entropy h(b) is defined by

h(b) ,
∫
x

b(x) log b(x)dx. (42)

To employ Alg. 3 we require to supply minimal (δmin) and
maximal (δmax) threshold for inner constraint (eq. (8) and (9)).
Let us unveil how we do that.

Differential entropy (42) was widely researched in the
context of multivariate Gaussian beliefs and led to the formu-
lation of the D-optimality criterion being the multiplication of
eigenvalues of the covariance matrix of the belief (the volume
of d-dimensional parallelepiped proportional to the volume
of a hyper-ellipse manifested by the covariance matrix). The
information gain becomes

0 ≤︸︷︷︸
require
I′≥I

− d

√√√√ d∏
i

λ′,i︸ ︷︷ ︸
I′≤0

+ d

√√√√ d∏
i

λi︸ ︷︷ ︸
−I

≤ d

√√√√ d∏
i

λi, (43)

where d is the dimension of the subset of the variables selected
from the Gaussian belief. For the reason that our focus is
on the uncertainty of the environment surrounding the robot,
we select all the landmarks as such a subset alongside the
current robot pose. Since we do not add landmarks in the
planning session, the same dimensionality is preserved.

Moreover from (43) we elicit that the maximal feasible δ is

δmax , d

√∏d
i λ

d. Meaning, the uncertainty has been reduced
to zero in the resulting Gaussian (partial) belief. To continue
exploration we select δmin = 0. To summarize in the setting

of multivariate Gaussian beliefs 0 < δ ≤ d

√∏d
i λ

i.
Having untangled these aspects, we are keen to demonstrate

the superiority of the proposed approach in the following
section.



(a) PRM (b) Obtained diverse paths

Fig. 5: Separate, algorithmically selected paths to the goal (b)
on top of PRM (a). We show the path number on the vertex,
which is removed for finding the subsequent diverse path. The
last’s path number is shown at its final vertex (the goal).

V. SIMULATIONS AND RESULTS

The previous discussion leads us to the actual implemen-
tation and simulations of the proposed methods in section
III-E. We evaluate our approach by tackling the problem
of navigation to the goal in unknown environments as an
incarnation of BSP. The simulation involves a highly realistic
SLAM scenario using the gtsam library [31].

As previously mentioned, the generation of candidate paths
is not the focus of this paper. Therefore, we generate candidate
paths following a similar procedure to [32]. First, we employ
a well-studied Probabilistic Road MAP (PRM) method [33].
Then, on top of PRM, to obtain diverse shortest paths, we
remove a single vertex from the previous path and utilize
Breadth-First Search on the reduced PRM. The path generation
requires only the boundaries of an unknown map. In such
a way, we obtain |A| diverse paths to the goal of various
lengths. These paths constitute the space of action sequencesA
(Fig. 5a). To avoid confusion, we recite that any other method
for generating candidate paths would be applicable to evaluate
our proposed techniques. We illustrated the described above
in Fig. 5.

To keep the examination clear, we do not perform re-
planning sessions. Instead, we have a preliminary mapping
session with manually supplied to the robot action sequence
of unit length motion primitives. In the preliminary session,
the robot starts from b0, detects the landmarks, incorporates
them into its state, and obtains the belief bk. This belief
serves as input to the planning session on top of the candidate
paths. After a single planning session, the robot follows the
calculated optimal path.

We assume Gaussian sources of stochasticity. For mo-
tion (35) and observation (36) models we select Wt =
‖a‖2 · diag(0.015, 0.015, 0.015) and Vt = diag(0.001, 0.001)
respectively. Noticeable, we need to multiply the motion
model covariance matrix by the action length since our ac-
tions are of variable length. Our prior belief is Gaussain
over the robot’s pose b0 ∼ N (µ0,Σ0) with the parameters
µ0 = (0.0, 0.0, 0.0)T , Σ0 = diag(0.001, 0.001, 0.001). The
boundaries of our map are [0, 5]× [0, 5].

We utilize the popular incremental solver ISAM2 [34] to
maintain the belief. Noticeably, loop closures impose a compu-
tational challenge even with such a sophisticated incremental

Fig. 6: Robot first preliminary mapping session, by transparent
gray circles, we depict landmarks’ visibility radius. The robot
starts at the top right corner and moves towards the bottom
left corner making two full squares. As we can see, the robot
passed inside the visibility radius of the landmarks, detected
them and incorporated them to its state. We show covariance
ellipses for current robot poses. The landmarks visibility radius
is 0.8. By the dashed line we connect estimated robot pose
with ground truth.

solver. Especially since we need to perform inference for each
posterior node in the constructed belief tree. This fact makes
early eliminating or accepting actions highly important for
efficient robot’s operation.

The robot constructs a belief tree for each candidate path
withing planning session. With each promotion of the depth of
the belief tree, we reduce the number of observations at each
belief node by factor two, up to a possible single observation at
the lowest levels. Once the maximal number of observations of
the belief node is expanded, we maintain a circular slider that
selects the subsequent observation with the following arrival
at this belief node.

The advantage of our proposed methods is acceleration
without compromising the solution quality. We calculate the
speedup using the following equation

tbaseline − tour

tbaseline
. (44)

Each planning session is initialized by the same seed. In
addition, we do the same calculation to the relative fraction of
the skipped laces

ntotal − nexpanded

ntotal
. (45)

Note that maximal values of (44) and (45) are 1. This means
that our approach skipped all the laces (nexpanded = 0 in (45))
and run in zero time (tour = 0 in (44)).

A. Optimality under Probabilistic Constraint

Following the previous discussion, we continue with the
experiments. We start from our first problem (7) (optimality
under a probabilistic constraint) and study Alg. 1 versus Alg. 2.
Noticeable, in Alg. 2 we do not have a mechanism for early



TABLE I: Optimality under probabilistic constraint. Here we set 300 observation laces per path. Each quantity was averaged
over 5 trials.

ε δ P∗ Û∗
(m)

№discarded paths time [sec] ± std speedup (44) laces frac. (45) total laces №paths №land.

Alg. 2 - 0.0 14 36.98 · 10−5 - 1171.21± 74.48 0 9000/9000

30 4

Alg. 1 0.023 0.0 no feasible - 30 77.67± 4.01 0.934 0.95 459/9000

Alg. 1 0.3 0.0 14 36.98 · 10−5 29 489.44± 26.46 0.58 0.60 3559/9000

Alg. 1 0.5 0.0 14 36.98 · 10−5 29 813.29± 34.27 0.31 0.37 5685/9000

Alg. 1 0.7 0.0 14 36.98 · 10−5 27 974.18± 51.14 0.17 0.134 7794/9000

Alg. 1 0.8 0.0 14 36.98 · 10−5 23 1099.98± 45.41 0.06 0.029 8738/9000

Alg. 1 0.9 0.0 14 36.98 · 10−5 0 1130.77± 56.47 0.03 0.0 9000/9000

Fig. 7: Alg. 2 and Alg. 1 both selected path number 14 from
Fig. 5b as optimal. We recognize that a pair of landmarks
nearest to starting position (5, 5) of preliminary mapping
session in Fig. 6 greatly contribute to uncertainty diminishment
since the robot twice made a loopclosure there.

action dismissing until we expand all the observation laces
per action sequence. We examine a simple scenario with
four landmarks. We show the preliminary mapping session in
Fig. 6. We elicit that, as anticipated, the uncertainty over the
belief grows until the robot makes a full square and starts to
experience loop closures. The path number 14 is highly likely
to be optimal from an information perspective since the belief
is Gaussian, and this path lies closest to the landmarks. We
employ Alg. 1 with m = 300 laces per path from Fig. 5a,
δ = 0.0 and various values of ε. Our resolution in terms of ε
is ∆ε = 1/m. Empirically we found that for ε ∈ [0, 0.023],
without dependency on m as expected, all the paths were
discarded as unfeasible (7 from 300 laces given path 14 were
violating the inner constraint). Meaning no path is present with
the fraction of the laces larger than 1− 0.023 fulfilling inner
constraint.

We show a rigorous comparison versus Alg. 2 in Table. I.
In Fig. 7 we display the robot following the identified optimal
path. Note that with Alg. 1 we do not accelerate decision
making when we cannot discard action sequences. We shall
note that due to internal gtsam multi-threading, measuring the
time speedup is a challenging task. To alleviate that we repeat
each run in Table. I five times and report averaged running
time and the speedup obtained from averaged value of the

Fig. 8: Robot second preliminary mapping session, by trans-
parent gray circles we depict landmarks’ visibility radius. As
we can see that robot detected the landmarks and incorporated
to its state. The landmarks visibility radius is 0.8.

Fig. 9: Alg. 4 and Alg. 3 both selected path number 4 from
Fig. 5b as optimal.

running time. Remarkably, from the bottom line of Table I
we observe that with extremely loose probabilistic constraint
(ε = 0.9) we do not eliminate any action sequence but the
running time is not larger than the baseline. This fact indicate
that there is no overhead from adaptation.



Fig. 10: Illustration of the third preliminary mapping session
with randomly drawn landmarks.

B. Maximal Feasible Return

We continue to our second problem (maximal feasible return
(10)). Let us increase the number of landmarks to obtain more
good candidate paths for information gathering. We show our
second preliminary mapping session in Fig. 8. Here we need
many paths with nonegative information gain to examine using
Alg. 3 early acceptance as well and not only early invalidation
as was done in previous section. Our baseline is Alg. 4, which
calculates VaR in a straightforward way. We report results in
Table. II.

We also have an additional simulation with randomly draw-
ing landmarks. For gtsam stability purposes we add random
landmarks uniformly on the square [2, 5] × [2, 5]. We also
slightly changed the preliminary action sequence (Fig. 10).
Results are presented in Table. III. In our simulations we set
the final precision to 1 · 10−6 · δmax. As we witness from
Tables II and III we always obtain a significant speedup. How-
ever, early action elimination appears to be more prominent
than early accept. We explain it as follows. It is more likely
that will be paths violating the probabilistic constraint and we
land at the scenario depicted in Fig. 3b. Conversely, it is less
likely that many paths fulfill the probabilistic constraint and
we will land at the scenario depicted in Fig. 3d.

C. Technical details

We used 3 computers with the following characteristics:
1) 8 cores Intel(R) Xeon(R) CPU E5-1620 v4 working at

3.50GHz with 80 GB of RAM;
2) 8 cores Intel(R) Xeon(R) CPU E5-1620 v4 working at

3.50GHz with 64 GB of RAM;
3) 16 cores 11th Gen Intel(R) Core(TM) i9-11900K working

3.50GHz with 64 GB of RAM.

VI. CONCLUSIONS

We presented a novel adaptive technique to evaluate prob-
abilistic belief-dependent constraints. On top of that, we
provably extended the simplification paradigm to our setting.
Our rigorous theory is summarized by two novel adaptive

algorithms solving optimality under a probabilistic constraint
problem and maximal feasible return problem correspondingly.
Our algorithms return identical quality or more profitable
solution in a fraction of the baseline running time. By a more
profitable solution, we mean elimination of all candidate action
sequences using Alg. 1, thereby preventing the robot from
redundant actions when the robot is already deployed and
operates online, e.g, stopping exploration. Extensive simula-
tions show the superiority of our methods. In the exceptionally
challenging problem of active SLAM with a high dimensional
state, we obtained a typical speedup of 30%.

APPENDIX A
THEORETICAL OBSERVATION LIKELIHOOD

To express the observation in terms of probabilistic models
available to our disposal we marginalize over the xt+1

P(zt+1|bt, at, βt+1)P(βt+1|bt, at) =∫
xt+1

P(zt+1|bt, at, βt+1,xt+1)· (46)

P(xt+1|bt, at, βt+1)P(βt+1|bt, at)dxt+1 =∫
xt+1

P(zt+1|bt, at, βt+1,xt+1)· (47)

P(xt+1|bt, at)Pβ(βt+1|xt+1)dxt+1.

All quantities in the (47) are available for us. Such a represen-
tation enables us to draw the observations in look-ahead step
t+ 1.

APPENDIX B
SAMPLE APPROXIMATIONS

The core of our sample approximations is sequential sam-
pling the observations zt+1|bt, at, βt+1 using previously sam-
pled βt+1|bt, at. Following the theoretical derivation presented
in Appendix A, we leverage the structure verified by (47) in
the following way. First, we sample the last pose and the land-
marks from the corresponding marginal of the belief. Since our
belief is Gaussian, this operation does not introduce a problem.
We just pull the appropriate portion of the covariance matrix
and the mean value.

xot+1 ∼ P(xt+1, {`j}M(k)
j=1 |bt, at)︸ ︷︷ ︸

Gaussian

. (48)

Afterwards, we deterministically decide the configuration of
visible landmarks using (2) and draw samples of the obser-
vation laces (18) from the observation model (4). Finally,
the sample approximation of U and C(·) are denoted by
Û (m) and Ĉ(m) respectively and calculated by sample means
of {s(blk:k+L)}ml=1. Similarly V̂aR

(m)

ε is obtained by sample
quantile.

APPENDIX C
PROOFS

A. Proof of Theorem 3.1 (Simplification machinery)

It is sufficient to show, that for every sample zqk+1:k+L holds

c(bqk:k+L;φ, δ) ≤ c(bqk:k+L;φ, δ) ≤ c(bqk:k+L;φ, δ). (49)



TABLE II: Solving maximum feasible return problem on top of 30 candidate paths (Fig. 5b) with scenario presented in Fig. 8.
In this study the number of observation laces is 64 per path. We observe that the speedup is approximately as the fraction of
expanded laces, as expected since it is a little overhead from the adaptation. The values of time are averaged over 10 trials.
The speedup is calculated from mean planning time.

ε P∗ δ∗ time [sec] ± std speedup (44) laces frac. (45) laces evaluations №paths with VaRε > 0 №paths № landmarks

Alg. 4
0.3

4 9.71 · 10−6 2568.97± 6.32 - 0 1920/1920
18

30 18

Alg. 3 4 8.93 · 10−6 1515.44± 27.35 0.41 0.57 830/1920

Alg. 4
0.5

5 1.06 · 10−5 3233.26± 65.59 - 1920/1920
19

Alg. 3 5 1.09 · 10−5 2201.36± 38.93 0.32 0.35 1250/1920

Alg. 4
0.7

5 1.73 · 10−5 3299.26± 71.26 1920/1920
20

Alg. 3 5 1.59 · 10−5 2433.06± 46.19 0.26 0.27 1411/1920

TABLE III: Analysis of the behavior with randomly drawn landmarks. Each trial we randomly drawn 10 landmarks in the
square [2, 5]× [2, 5]. Here the visibility radius of the landmarks is 0.8. Note that mean time based speedup and the accumulated
time based speedup are identical since the difference in running time in two possibilities is only the division by the number
of trials.

№ paths 30 30 30 30 30

accumulated time based speedup 0.35 0.26 0.21 0.14 0.055

min speedup 0.14 0.092 0.14 0.08 0.019

max speedup 0.57 0.43 0.32 0.22 0.081

mean time based speedup 0.35 0.26 0.21 0.14 0.055

mean time [sec] ± std Alg. 4 817.79± 132.12 771.59± 119.82 1670.69± 260.39 1607.60± 248.46 1671.69± 259.52

mean time [sec] ± std Alg. 3 530.47± 162.30 574.55± 130.11 1320.71± 216.86 1382.89± 245.19 1580.00± 230.63

accumulated time [sec] Alg. 4 8177.92 7715.88 16706.90 16075.98 16716.86

accumulated time [sec] Alg. 3 5304.69 5745.51 13207.11 13828.99 15800.04

accumulated skipped laces frac. 0.36 0.29 0.23 0.15 0.065

accumulated expanded laces Alg. 3 12285 13689 14800 16304 17944

total № of laces 19200 19200 19200 19200 19200

№trials 10 10 10 10 10

№ landmarks 10 10 10 10 10

ε 0.2 0.3 0.5 0.7 0.9

δmin 0.0 0.0 0.0 0.0 0.0

We start from the left inequality of (49). Assume
that c(bqk:k+L;φ, δ) = 0. This implies that trivially
c(bqk:k+L;φ, δ) ≤ c(bqk:k+L;φ, δ). Now suppose that
c(bqk:k+L;φ, δ) = 1. If the inner constraint of the form (8)
so (

k+L−1∑
t=k

φ(bqt+1, b
q
t )

)
≥

(
k+L−1∑
t=k

φ(bqt+1, b
q
t )

)
> δ. (50)

We have that c(bqk:k+L;φ, δ) = 1. If the inner constraint of the
second form (9) so ∀t

φ(bqt+1, b
q
t ) ≥ φ(bqt+1, b

q
t ) > δ. (51)

Again we arrive at c(bqk:k+L;φ, δ) = 1. To prove the inverse
direction, observe that if c(bqk:k+L;φ, δ) = 0, we behold the
following situation with the first form

δ ≥

(
k+L−1∑
t=k

φ(bqt+1, b
q
t )

)
≥

(
k+L−1∑
t=k

φ(bqt+1, b
q
t )

)
. (52)

and with the second form ∃t such that

δ ≥ φ(bqt+1, b
q
t ) ≥ φ(bqt+1, b

q
t ). (53)

It follows that for both forms we have that c(bqk:k+L;φ, δ) ≤
c(bqk:k+L;φ, δ).

Now we prove the right inequality of (49).
If c(bqk:k+L;φ, δ) = 1 it is trivial. Assume that
c(bqk:k+L;φ, δ) = 0. For the first form (8) it means
that(

k+L−1∑
t=k

φ(bqt+1, b
q
t )

)
≤

(
k+L−1∑
t=k

φ(bqt+1, b
q
t )

)
≤ δ. (54)

Subsequently, for the second form (9) it means that ∃t such
that

φ(bqt+1, b
q
t ) ≤ φ(bqt+1, b

q
t ) ≤ δ. (55)

Arguing in the similar manner as with the lower bound for
inverse direction, suppose that c(bqk:k+L;φ, δ) = 1. We obtain

δ <

(
k+L−1∑
t=k

φ(bqt+1, b
q
t )

)
≤

(
k+L−1∑
t=k

φ(bqt+1, b
q
t )

)
, (56)

and ∀t
δ < φ(bqt+1, b

q
t ) ≤ φ(bqt+1, b

q
t ). (57)



For both forms we have that c(bqk:k+L;φ, δ) ≤
c(bqk:k+L;φ, δ).

This concludes the proof. Note that we also land at a identi-
cal result for theoretical counterparts of following probabilities
and not sample approximations by taking the limit.

lim
m→∞

1

m

m∑
q=1

c(bqk:k+L;φ, δ)≤ lim
m→∞

1

m

m∑
q=1

c(bqk:k+L;φ, δ) (58)

lim
m→∞

1

m

m∑
q=1

c(bqk:k+L;φ, δ)≤ lim
m→∞

1

m

m∑
q=1

c(bqk:k+L;φ, δ). (59)

�
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