
1

Multi-Stage Cable Routing through Hierarchical
Imitation Learning

Jianlan Luo∗,†, Member, IEEE, Charles Xu∗, Xinyang Geng, Gilbert Feng, Kuan Fang, Member, IEEE, Liam Tan,
Stefan Schaal, Fellow, IEEE, and Sergey Levine, Member, IEEE

Abstract—We study the problem of learning to perform multi-
stage robotic manipulation tasks, with applications to cable
routing, where the robot must route a cable through a series of
clips. This setting presents challenges representative of complex
multi-stage robotic manipulation scenarios: handling deformable
objects, closing the loop on visual perception, and handling
extended behaviors consisting of multiple steps that must be
executed successfully to complete the entire task. In such settings,
learning individual primitives for each stage that succeed with
a high enough rate to perform a complete temporally extended
task is impractical: if each stage must be completed successfully
and has a non-negligible probability of failure, the likelihood
of successful completion of the entire task becomes negligible.
Therefore, successful controllers for such multi-stage tasks must
be able to recover from failure and compensate for imperfections
in low-level controllers by smartly choosing which controllers to
trigger at any given time, retrying, or taking corrective action
as needed. To this end, we describe an imitation learning system
that uses vision-based policies trained from demonstrations at
both the lower (motor control) and the upper (sequencing)
level, present a system for instantiating this method to learn
the cable routing task, and perform evaluations showing great
performance in generalizing to very challenging clip placement
variations. Supplementary videos, datasets, and code can be
found at https://sites.google.com/view/cablerouting.

I. INTRODUCTION

Complex, multi-stage robotic manipulation tasks often arise
in robotic manipulation applications of practical interest: from
home robots that need to prepare a meal to industrial robots
that need to assemble a complex device. Many of the tasks we
might want to automate in these settings consist of complex
low-level behaviors and also require these behaviors to be
sequenced appropriately to perform the overall task. This
presents a major challenge: when a robot naı̈vely executes
a sequence of primitive behaviors to perform a complex task,
the probability of failing at the task grows multiplicatively
with each stage. Advances in perception, control, and robotic
learning can enable each stage of a task to be more performant,
but as long as sequencing stages naı̈vely leads to such diffi-
culties, elaborate multi-stage tasks that consist of a sequence
of individually difficult primitives will remain out of reach.
In this paper, we examine how hierarchical imitation learning

∗equal contribution
†Correspondence to jianlanluo@eecs.berkeley.edu
Jianlan Luo, Charles Xu, Xinyang Geng, Gilbert Feng, Kuan Fang, Liam

Tan, and Sergey Levine are with the Berkeley AI Research Lab (BAIR),
Department of Electrical Engineering and Computer Science, University of
California, Berkeley, Berkeley, CA 94720 USA.

Stefan Schaal is with Intrinsic Innovation LLC, Mountain View, CA 94043
USA.

pickup

route

perturb

route

clip 1

clip 2

clip 3

pickup

Fig. 1: Overview of our robotic cable routing system. The
robot needs to route the cable through three clips separately
by executing the sequence of primitives displayed on the right.

with levels of learned primitives and high-level sequencing
can address this issue, in the context of a difficult multi-stage
cable routing task. Our focus is on providing for robustness
at both levels of the hierarchy, not by trying to construct
perfect robotic skills that never fail, but by endowing both
levels of the hierarchy with the ability to correct and recover
from mistakes. We study the problem of multi-stage cable
routing, where a robot routes a cable through a series of
clips (see Figure 1). This task is representative of commonly
occurring scenarios in manufacturing and maintenance, where
a robot might need to route cables or hoses, and provides an
interesting challenge for robotic manipulation: each stage of
the cable routing task requires handling the deformable cable,
reasoning about complex contact patterns between the cable
and the clip, accounting for deformations, and also observing
that the cable has been clipped into each clip successfully.
At the same time, the higher-level sequencing of primitives
might require retrying a clipping motion, securing the cable
by pulling it taut, and dynamically deciding when to advance
to the next clip. This task is, therefore, both practically
relevant for industrial applications, and captures many of the
essential characteristics of multi-stage manipulation discussed
in the preceding paragraph, with challenges and ambiguity
at both the lower and upper level necessitating intelligent
controllers that combine perception and control, and recovery
from failure.

Learning provides a powerful tool for handling complex,
hard-to-model scenarios such as the manipulation of de-
formable cables, particularly when the robot controller needs
to tightly integrate perception and control. Methods based
on imitation learning (IL) [48, 7] and reinforcement learning

ar
X

iv
:2

30
7.

08
92

7v
5

 [
cs

.R
O

]
 1

3
Ja

n
20

24

https://sites.google.com/view/cablerouting

2

Primitive History

End-effector
Pose

Linear
Projection

ResNet 18

MLP

Primitive Logits

Low Level Primitives

ResNet 18

MLP

Linear
Projection

End-effector
Pose

Robot Action
Select Primitives

High Level Primitive Selection Policy

Fig. 2: Overview of the hierarchical cable routing policy. The high-level primitive selection policy takes the robot wrist and
side camera observations, as well as the history of executed primitives as input, and outputs a categorical distribution to select
the next primitive. The low-level single clip cable routing policy only uses the wrist camera observations and the robot state
to output a Gaussian distribution of robot actions. This decomposition of our system into high-level and low-level policies
allows us to collect data and train policies with large flexibility, thus enabling the robot to master sophisticated cable routing
tasks while reducing the overall complexity of our system.

Pickup Route
Success

Pickup Route
Failure

Perturb Route
Success

Go
Next

Pickup Route
Failure

Route
Success

Go
Next

Clip 1 Clip 2 Clip 3

Pickup

z

Route

Pickup

High-Level
Primitive
Selection
Policy

Perturb

Go
Next

High-Level
Primitive
Selection
Policy

Route

Pickup

Perturb

Go
Next

Route

Pickup

Perturb

Go
Next

Fig. 3: Sequence of primitives chained together by a successful high-level policy rollout. The primitives in the sequence are
color-coded following Figure 2. After successfully routing the cable through clip 3, the policy triggers go_next a third and
final time, signaling the end of the trajectory.

(RL) [37, 38] provide for the ability to learn vision-based
controllers end-to-end from data and experience, but such
methods are difficult to apply directly to complex multi-stage
tasks. As we show in our experiments in Section VI, naı̈ve
end-to-end learning for tasks such as the one in Figure 1
fails even when provided with idealized demonstration data.
However, learning methods can provide an excellent tool for
learning basic primitives, such as inserting the cable into
a single clip at a single position. Such primitives may not
succeed every time, but they are relatively easy to obtain
with minimal engineering effort (e.g., by using demonstration
data) and can operate directly on raw image observations
without any hand-designed perception system. Thus, if we
can combine such primitives with an intelligent higher-level
controller, we can make solving multi-stage tasks much easier.
However, as mentioned previously, simply sequencing the
primitives naı̈vely (e.g., inserting into each clip in turn) leads

to exceedingly low success rates when the individual primi-
tives are imperfect, as the probability of failing on the entire
task is the product of failure probabilities at each stage. We
therefore propose to employ a learned policy for higher-level
primitive sequencing that can compensate for imperfections in
the individual skills, resulting in a robotic learning system that
is more robust than the individual parts: the higher-level can
decide to automatically trigger a second attempt if the clipping
failed, tighten the cable to reduce slack and select intelligently
when to move on to the next clip.

Our complete system for learning-based cable routing in-
corporates the idea of learned controllers for recovering from
failure at both levels of the hierarchy. At the lower-level, we
show how we can train a clipping controller from demonstra-
tions that can insert a cable into a clip at various orientations,
respecting translational and rotational invariances, while at
the same time automatically recovering from small failures

3

through an appropriate choice of demonstration collection
strategy. At the higher-level, our high-level policy selects
primitives to trigger at each stage, dynamically choosing
when to move on to the next clip or reduce slack on the
cable. This policy is also trained with demonstrations, which
are significantly easier to gather as they require the human
operator to simply manually trigger one of a discrete set
of primitives at each stage. We find that the process of
gathering these demonstrations can be further simplified by
employing an interactive imitation learning strategy, similar
to DAgger [68]. We also explore design decisions for making
this system robust and practical, including the sharing of
convolutional network representations between the lower and
upper layer, encoding translational and rotational invariances
into the lower-level controller with an appropriate choice
of view-invariant representations, and using a learned word
embedding layer to encode primitive execution history.

Our primary contribution is a system for hierarchical imita-
tion learning applied to the cable routing task. We show that
learned and scripted lower-level primitives can be combined
via a learned higher-level policy into a multi-stage controller
that can perform temporally extended cable routing tasks,
compensating for failures in the lower-level by triggering
appropriate primitives at each stage. We describe the design
decisions behind our system and compare our approach to
methods that employ a flat end-to-end policy, as well as a naı̈ve
scripted sequencing strategy, showing that our method not only
outperforms them in terms of absolute performance but can
also adapt to entirely novel situations using our finetuning
mechanism with ten additional demonstrations.

II. RELATED WORK

Our hierarchical imitation framework combines concepts
from imitation learning and hierarchical policies to address the
challenges in multi-stage cable routing. We therefore survey
prior work on learning-based visuomotor control, composition
of skills, and deformable object manipulation.
Learning-based robotic control. Learning-based methods
have been proposed for a range of robotic control problems,
such as manipulation [67, 57, 48, 24, 47, 54, 95], naviga-
tion [71, 98, 72], and locomotion [46, 51]. Much of the
progress has been made possible by reinforcement learning
(RL) [36, 78, 66] and imitation learning (IL) [31] tech-
niques, which enable robots to solve various tasks by learning
from trial and error processes or human demonstrations. To
solve long-horizon tasks, hierarchical RL and IL algorithms
have been proposed to reuse primitive skills, reduce sample
complexity, and facilitate generalization [5, 6, 64]. In these
approaches, the hierarchy of the task can be discovered by
learning high-level and low-level policies from online inter-
actions [13, 16, 14, 3, 4, 20, 25] or offline dataset [44, 90,
43, 19, 41, 73, 52, 89]. Similar to several prior works on
hierarchical imitation [90, 19], our method uses a fixed set of
primitives and trains a high-level model to select skill indices.
However, we describe a set of design decisions that make it
feasible to extend hierarchical imitation to a complex multi-
stage cable routing task, including techniques for maximizing

the generalization and invariance of a learned low-level clip
insertion primitive, and strategies for data collection. We also
show that our high-level policy can be fine-tuned rapidly
for out-of-distribution scenarios through an interactive data
collection scheme.
Skill composition for multi-stage tasks. A large number
of works investigate how to solve long-horizon tasks by
composing primitive skills. With fixed control flows, behavior
trees [9, 59] are widely used in robotics and control systems
to switch between a finite set of tasks in a modular fashion.
Built on pre-defined action modes and the symbolic states
of the environment, Task and Motion Planning (TAMP) [22,
35, 15, 21] uses task planners to select feasible task plans
and motion planners to generate trajectories for solving long-
horizon tasks. An increasing number of works use learned
state estimators [60, 18, 11], planners [12, 84, 17, 65], and
skill trees [42] to apply planning and sequencing to real-
world environments where the ground truth states and models
are not provided. Such methods’ performance usually relies
on the accuracy of the state estimators and model of the
environment. It’s very challenging to build these components
for the considered task; for instance, it’s not obvious how
to build an effective state estimator for deformable cables,
particularly in the presence of occlusions that tend to occur
with clips and with the arm. In contrast to these works, our
method learns both the high-level and low-level policy to solve
multi-stage cable routing tasks. Recent works also use natural
language to compose hand-designed or learned skills using
pre-trained large language models to leverage prior knowledge
about the tasks [2, 76, 33]. Our work does not utilize any
additional sources of data for pre-training and performs the
task only based on visual inputs.
Deformable object manipulation. The manipulation of de-
formable materials, such as cloth, rope, and liquid, presents
a major challenge for robots [28, 93]. Several works have
designed motion planners and controllers based on models
of deformable objects for specific domains [77, 82, 27].
Most of these methods rely on extensive domain expertise,
and their design is typically specific to a particular type of
object, material, and task. Recently, an increasing number of
data-driven methods have been proposed to train robots to
manipulate deformable objects through physical interactions.
[92, 53, 30, 50, 23] learn to estimate the configuration and
model the dynamics of cloth and ropes based on visual
inputs. In [49, 56, 74, 79, 87], multi-modal sensory inputs,
such as haptics and audio, are utilized to enable a robot to
perform challenging deformable object manipulation tasks.
These works have enabled robots to perform a wide range
of tasks such as folding clothes [58, 45, 86, 91], rope re-
shaping [63, 97, 92, 34], knot tying [85, 62], rope untan-
gling [81, 80], dynamics rope manipulation [8, 94], etc. In this
paper, we are interested in the application of cable routing with
potential applications in industrial tasks. Prior work [74, 83]
has studied similar problems using hand-designed controllers
and planners. Many previous works on rope manipulation such
as Yan et al. [92] and Schulman et al. [69] model ropes as
linear objects and then estimate the best matching cable shape
from perceptual inputs, which assumes full visibility of the

4

cable in the scene and can be problematic in our setting due
to occlusions introduced by clips. As far as we know, ours
is one of the first works that use learning-based methods to
enable robots to route cables across multiple clips in unseen
scenarios based on visual inputs.

III. SYSTEM AND TASK SETUP

Figure 4 provides an illustration of our robotic manipu-
lation setup for cable routing. Our system consists of one
Franka Panda robot, two Basler RGB cameras mounted on
the robot’s end-effector, and two additional Intel RealSense
cameras mounted on the work cell, one providing a top-down
view and the other providing a front-facing view. The end-
effector cameras provide a close-in view of the cable and
facilitate robust insertion of the cable into clips, while the
static cameras provide an overview of the workspace to aid
in routing the cable through multiple clips while observing
the resulting deformations. We only use the RGB component
of the Intel RealSense output in our implementation. A space
mouse is also used for collecting human demonstrations.

While one end of the cable is fixed on the table, the task is
for the robot to pick up some part of the cable and then route it
through all the clips present on the table sequentially, as shown
in Figure 1. Each instance of the task has a different placement
of the clips in terms of their position and orientation.

Routing cables through clips can be difficult: since the
cables are deformable, they can take an infinite variety of
shapes, and their behavior is affected by the complex inter-
action between the gripper, the cable, and multiple other clips
that the cable might already be inserted into. To correctly slot
the cable into a new clip, the robot must keep track of the
point on the cable that contacts the clip while grasping it
at a different location, which necessarily requires closing the
loop on visual perception. So it is crucial to learn a robust
reactive policy that can not only perform reasonably routing a
single clip but also employs recovery and retry mechanisms in
terms of failure. This makes learning-based control particularly
appealing, as it can enable closing the loop on vision with
minimal manually encoded domain knowledge.

IV. CABLE ROUTING VIA HIERARCHICAL IMITATION
LEARNING

It is very difficult to learn a cable routing policy for the
multi-stage task described in the previous section that never
fails. Instead, we could design a hierarchical architecture
where a higher-level policy compensates for the deficiency
of lower level skills, sequencing appropriate primitives to
retry, repositioning the cable, and dynamically deciding when
to proceed to the next clip. Merely sequencing primitives
naı̈vely is unlikely to lead to much benefit in this case, but a
strategy that selects the primitives dynamically to compensate
for mistakes could lead to significantly better performance.

In this section, we present our complete system of sequential
multiple-clip cable routing. Our policy is structured in a
hierarchical fashion: at the low level, we have several primitive
policies that individually perform some part of the cable
routing task. These primitives comprise a variety of simple

Top view (Intel Realsense)Side view (Intel Realsense)

3Dconnexion
SpaceMouse

Franka Emika Panda

Cable

3x Clips

(b)

(a)

(c)

Wrist view 1 (Basler) Wrist view 2 (Basler)

Fig. 4: Top left: Picture of the entire system setup depicting
the robot arm mounted to a frame along with a metal board
where three clips are fixed. (a): White 1/4′′ thick poly cord
with colored segments. (b): Clip with 1cm wide opening. (c):
Eye-in-hand camera mounted to the wrist of the robot. Bottom
first from left: Side view of the workspace from the RealSense
camera. Bottom second from left: Top view of the workspace
from RealSense camera. Bottom second from right: Wrist
view 1 from Basler camera. Bottom first from right: Wrist
view 2 from Basler camera.

scripted behaviors for picking up and moving the cable, as
well as a learned clip insertion primitive that is trained to
put a grasped cable into a single clip. This single clip policy,
which addresses by far the most challenging of the low-level
skills, is designed so as to make it maximally invariant to
clip position and orientation. At the higher level, a primitive
selection policy is trained to integrate these primitives together
to perform the entire multi-stage routing task, using visual
observations to select which primitive to trigger. This higher
level policy uses a more global view of the scene to route
the cable through multiple clips. Particularly unfamiliar or
unusual clip configurations that differ significantly from those
seen in the training data can still cause the higher level policy
to fail, even when the invariant low-level skills generalize.
We therefore additionally explore how the higher level policy
can be finetuned efficiently via an interactive data collection
procedure to adapt it to especially difficult configurations for
which zero-shot generalization fails.

A. Low-Level Clip Routing Policy

We will first describe our low-level single clip routing
policy. The higher-level policy in our system can make use of
a number of primitives, the rest of which we will summarize in
Section IV-B, but the most important of these is the policy that
attempts to insert the cable near the current grasp point into the

5

closest clip. This primitive performs by far the most complex
low-level task, which requires carefully manipulating the cable
into the clip while holding it at a different location. It must use
visual feedback since proprioceptive readings provide the end-
effector position but not the cable configuration. It must also
generalize to a variety of clip positions and orientations, and
handle a variety of cable configurations (though the higher-
level policy can compensate somewhat by deciding to perturb
the cable if it is in a particularly unfavorable shape). For these
reasons, we use an end-to-end imitation learning approach to
train this primitive. The neural network architecture for this
policy is illustrated in Figure 2. In this section, we describe
the training procedure and dataset for this policy, as well
as techniques we employ to maximize the invariance and
generalization of this policy with respect to variation in the
clip position and orientation, which are based on using wrist-
mounted cameras and data augmentation.
End-to-end imitation learning of single clip policy. The
single clip policy assumes that the cable has already been
grasped, though it is trained to be robust to some variability in
the grasp point. In the full system, the grasp will be performed
by a separate primitive. The single clip policy needs to insert
the cable through a single clip. We first collect a dataset by
teleoperating the robot to perform the task in various locations
and for clips with various orientations. The dataset consists
of 1442 trajectories, but these trajectories are relatively quick
to collect, since they do not require regrasping. Each trial
is less than 10 seconds in length. At the beginning of each
trial, we randomize the poses of the robot’s end-effector and
clip. The teleoperator records two types of demonstrations:
“successful” and “recovery” trials. In about 800 of the trials,
the demonstrator successfully inserts the cable into the clip. In
about 600 of the trials, the demonstrator intentionally moves
the end-effector into some failure state (e.g., a partial or failed
insertion), and then demonstrates a recovery, as shown in
Figure 5. These recovery trials are intended to ensure that the
learned policy is more robust to small local mistakes. Both
sets of demonstrations are combined into one dataset, which
we denote D = {(o,a)}, where o is the sensor observation,
which we will describe later in this section, and a is the robot’s
action. The goal of imitation learning is to find a parameterized
policy πθ that can maximize the likelihood of the current
dataset D:

θ = argmax
θ

E
o,a∼D

[log πθ(a|o)] (1)

This corresponds to a standard behavioral cloning method and
can be implemented with simple supervised learning methods
for the architecture in Figure 2. We use Adam optimizer [40]
with a learning rate of 3e − 4. More details can be found in
Appendix C.
Generalization via view-invariant representations. The full
multi-stage cable routing task requires being able to execute
the clip insertion primitive (as well as other primitives) in a
variety of locations depending on the placement of the clips.
Therefore, it is critical to ensure that the clip insertion skill
generalizes effectively over clip configurations. We found that
we could significantly improve this by training the policy to

Fig. 5: A recovery trial. The leftmost frame shows an initial
failure state, where the rope has missed the slot and is on the
side of the clip. The rest of the demo, depicted in the remaining
frames, shows a recovery resulting in successful insertion into
the slot.

act in the frame of reference of the robot’s gripper with wrist
cameras. This effectively puts all of the low-level policy’s
sensory observations and control commands into the frame of
the end-effector. We use two eye-in-hand cameras as shown in
Fig. 4, as they are more robust to view shifts [55, 29, 1]. For
the robot’s proprioceptive information, such as end-effector
pose, we reference them w.r.t. the randomized reset pose of
each episode. The full sensor observation o therefore consists
of images from two wrist cameras and the TCP pose, which
we find sufficient to only take the z component since other
spatial information can be inferred from the wrist cameras. The
control command is a 4-D Cartesian twist with full translation
components and the rotation component around the z-axis. We
detail the exact procedure of calculating these quantities by
doing frame transformation in the appendix A.
Policy network architecture. The single clip routing policy
is represented by a deep neural network, as illustrated in
Figure 2, which in the end produces a Gaussian distribution
over the action at each step given the current observation
o. The input images from the two wrist cameras are first
fed into two convolution neural networks to obtain the cor-
responding feature embedding vectors. We use ResNet18 [26]
with group normalization [88] instead of the original batch
normalization [32] for simplicity. As mentioned in the previous
section, we only take the z component of the end-effector
pose, which we found practically sufficient in terms of ad-
ditional spatial information. We embed the z-coordinate by
passing it through an additional fully connected layer to get
a higher-dimension embedding. We concatenate the 2 camera
embedding vectors and the z-coordinate embedding vector and
pass the result through a 3-layer multi-layer perceptron (MLP)
network to obtain the final mean and log-standard deviation
of the resulting Gaussian action distribution. This model can
then be trained end-to-end via maximum likelihood on the
demonstration dataset, as described previously.
Data augmentation. We employ data augmentation tech-
niques [75] to facilitate the generalization capability of the
learned policy to deal with image view shifts at test time
such as variation in lighting conditions, small perturbations
in camera pose, and variability in the objects in the scene.
In order to balance the augmentation effectiveness and the
complexity of tunable hyperparameters, we employ the Ran-
dAugment [10] technique, where a set of image transforms are
chosen at random and applied sequentially each time to obtain
the augmented image. Specifically, we apply two transforms
sequentially and choose the strength of augmentation to be
nine. We visualize the randomly augmented image in Figure 6.

6

With image augmentation, the data becomes much more
diverse, allowing us to train more robust skills with smaller
datasets.

Wrist Views Augmented Wrist Views after RandAugmentation

Fig. 6: Visualization of image augmentation. Left: original
images from both wrist cameras when the rope is being
grasped. Right: randomly sampled augmented images using
RandAugmentation during training. Data augmentation signif-
icantly alters the images during training, enabling the policy
to be more robust to distribution shift at runtime.

B. High-Level Primitive Selection Policy

Policy architecture overview. Similarly to the low-level cable
routing policy, the high-level primitive selection policy is also
fully parameterized by a deep neural network and trained end-
to-end, as illustrated on the left side of Figure 2. However,
unlike the low-level policy, which directly commands low-
level actions on the robot, the high-level policy performs
planning from a global perspective, and therefore we make
the following design choices to suit its purpose. First, in order
to choose the right clip to route, the high-level policy must
be able to see the entire cable and all clips. To this end,
we feed the side camera image into an additional ResNet18
network to obtain a third embedding vector, along with the two
embedding vectors from the robot wrist cameras. For sample
efficiency, we reuse the pre-trained ResNet18 parameters from
the low-level routing policy and freeze them for training high-
level policy. It is very important for the high-level policy to
utilize a history of recent observations so that the primitive
sequence for the current clip can be Markovian. For example,
if a particular primitive fails, the policy might choose some
corrective action, such as perturbing the cable, so that it
does not fail in the exact way again. Even though the task
is typically fully observed from the side camera perspective,
we found that this addition improved the high-level policy’s
ability to correct mistakes. We, therefore, augment the input of
the high-level policy with the history of at most 6 primitives
chosen at prior high-level policy steps for the current clip. We
concatenate the indices of past primitives into a sequence and
feed it into a learned word embedding layer [61] to obtain
a vector representation. We concatenate this vector with the
embedding vectors of the three cameras and feed the result
into a three-layer MLP to obtain the final logits for choosing
the primitive.
Primitives. The full set of primitives available to the high-
level policy consists of the learned clip insertion primitive
described previously, as well as three scripted primitives:

Pickup, Perturb_cable, and Go_next. We found that
these three additional primitives could be solved via existing
robotic solutions and did not require learning, as they perform
relatively simple tasks, and the high-level policy could reliably
compensate for their imperfections with appropriate choices
at the upper layer of the hierarchy. Note that our hierarchical
system is designed to be modular, so any of these primitives
can be replaced with other solutions as well.

The clip configuration can be fully represented by a list
containing the estimated position of each clip in the desired
order, which can be estimated with a standard computer vision
detector. We use these estimated positions to parameterize
primitives, though they are not visible to the routing policy
itself. The high-level policy proceeds through each clip in the
list in order. At each clip, it can trigger a variety of primitives,
and select when to advance to the next clip (incrementing the
current clip index). All of the primitives operate on the current
clip that the high-level policy is handling, and the history of
previously selected primitives is reset each time the high-level
policy advances to the next clip.
Pickup: The Pickup primitive is used for picking up the
cable at a particular position and holding it within the gripper.
We designed this separate Pickup primitive instead of hard-
coding it as a precursor to Route to allow re-trying the
Route without having to drop and re-grasp the cable. As
shown in Fig. 4, different segments of the cable are marked
with different colors. We move the arm out of the way to avoid
occlusion before using the top camera as shown in Fig. 4 to
detect the colored marker corresponding to the current clip to
route, and then choose the center point of the detected region
to construct a pick-up pose in the camera frame. This pose
is then converted back to the robot’s base frame by using
the top camera’s extrinsic calibration information and a fixed
z-position based on table height rather than the depth map
from the RGBD camera because we find it to be inaccurate in
practice for our thin cable. Note that this is the only camera
that needs to be calibrated.

(a) Pickup detection (b) Pickup

Fig. 7: The pickup primitive uses image segmentation to
detect the grasping point illustrated by the green dot in 7a and
picks up the rope.

Perturb_cable: Repeated application of various primi-
tives can cause the cable to end up in a shape from which
other primitives will consistently fail. One of the benefits of
our hierarchical design is that the high-level policy can detect
this by leveraging the history input and camera observations.
In this case, the Perturb_cable primitive can be used to
rearrange the cable into a new shape, which can get it out
of a pathologically difficult configuration. We use the same
detection method as described for the Pickup primitive to
grasp the cable at specific locations, and then apply pre-defined

7

motions to change the shape of the cable before releasing it.
Although picking the right perturbation motion w.r.t. any given
cable shape is generally difficult, we found in practice it’s
sufficient to just stretch the cable along one direction so the
amount of slackness in the cable can be reduced.

(a) Before Perturb_cable (b) After Perturb_cable

Fig. 8: Perturb_cable applies a pre-defined motion to a
specified point on the cable, changing the cable shape from
8a to 8b.

Go_next: The Go_next primitive advances the task to
route the cable into the next clip. This primitive releases the
cable and moves the robot’s end-effector to a position that is
close to that of the next clip in the sequence, applying a small
random perturbation to offset the end-effector from the clip.
The random offset is sampled from the same distribution that
we use to determine initial states for training the single-clip
policy, as described in Sec. IV-A. That way the end-effector
pose ends up within the distribution of relative poses seen
during training of the low-level single-clip skill. Note that this
primitive moves the end-effector while the cable is grasped in
hand.
Training the high-level policy. We now discuss how we train
the high-level primitive selection policy. Denote images from
three cameras (the two wrist cameras and the side camera)
as I1, I2, I3. We pass these images through the ResNet18
encoders and get three embeddings e1, e2, e3. Let h be the
list containing the indices of up to six primitives that have
been executed so far for the current clip, with the number 0
as paddings to fill the empty slots if the length of the history is
less than six. Each element is a categorical variant that takes
on one of four values (the learned single-clip skill and the
three scripted primitives). The high-level policy πϕ takes these
image embeddings and primitive history as inputs, together
with the z component of the end-effector pose. It outputs a
categorical distribution over primitives, represented as a four-
way softmax. That is,

πϕ(·|e1, e2, e3, h, z) ∼ Categorical4(·) (2)

To train this policy, we also collect a dataset of about 250 tra-
jectories from a human demonstrator selecting the primitives
to route a cable through the clips, using a keyboard. To make
the learned high-level policy more robust to local variations
when making a decision, we further augment the dataset by
relabelling the nearby frames where the policy needs the select
primitives. Specifically, we label the adjacent three to five
frames with the same primitive selection choice from the
human. This dataset can be significantly smaller than the one
we use for the low-level policy, since the image encoders
are reused, and the action space of the high-level policy is
significantly simpler. This dataset is used to train the high-level

policy via a standard maximum likelihood behavioral cloning
loss (i.e., a cross-entropy loss, since the output is categorical).
A sample rollout of the policy is visualized in Figure 3.

C. Interactive Finetuning

While our system provides a robust framework for tackling
the cable routing problem with a variable number of clips
in different locations, it is still possible for these pre-trained
policies to fail to generalize to a novel condition, such as
an arrangement of clips that is outside the range of clip
placements seen in the training data, or a new number of
clips. Additionally, it’s often very desirable to have a high
success rate for such systems to be deployed in real industrial
settings, and it could be entirely possible that our system can’t
meet these stringent requirements of reliability initially. In
these scenarios, we can further finetune our policy for better
performance with a small amount of interactive training for the
high-level policy. Specifically, we adopt the HG-Dagger [39]
method, where the high-level policy attempts to complete
the task under human supervision. When the policy makes
a mistake and selects the wrong primitive, the human operator
will intervene by overriding the high-level policy with the
correct primitive, repeating this process until the episode is
completed successfully. This interactive training procedure is
easy and less disruptive since a human can immediately tell if
a policy’s selection will make sense without having the robot
actually execute it. After the policy outputs a primitive index,
this integer number will be displayed on the computer screen
waiting for human input; if the current selection will result in
a non-recoverable state, the human will override the policy’s
selection; otherwise, we’ll advance the policy’s selection. For
instance, if the policy decides to skip routing the current cable
and go to the next one, the human operator can override this
command right after seeing it from the computer screen. We
illustrate such a procedure in Fig. 10.

In our interactive finetuning experiments, we use this pro-
cedure to collect up to ten additional trials with human
corrections for each new scenario. Note that we don’t use
the previous dataset collected for the high-level policy when
finetuning to a new configuration. Rather, we finetune the
weights of the MLP solely on this newly collected dataset
with a learning rate warm-up. Further details can be found in
Appendix C.

V. DATA COLLECTION AND OPEN-SOURCE RELEASE

In this section, we detail our data collection procedure for
both the low-level policy and high-level policy as well as the
now publicly-available dataset resulting from this research.

A. Data Collection

For all of the experiments, we fixed one end of a cable to
the table and fix the clips in the randomization areas defined
in Fig. 9.
Single clip cable routing data collection. For each of
the three clips, we vary its position within the constraints
described in Fig. 9 and collect a total of 1442 demonstration

8

Fig. 9: Each of the three clips is placed randomly within a
12.5 cm by 15 cm rectangular region, with the regions spaced
7.5 cm apart. Additionally, each clip can be rotated between
0 and 45 degrees.

trajectories via a human expert teleoperating the robot at 5Hz.
As mentioned in Sec. IV-A, of the 1442 demonstrations, about
800 start within a region in space, measuring 10cm by 10cm
by 2cm in the x, y, and z direction, centered 10cm above and
5cm in front of the clip. The other 600 or so demonstrations
start on the lower end of the table, where the starting position
was not precisely controlled to demonstrate recovery.
High-level data collection. After training the single clip rout-
ing policy and the other primitives, we collect demonstrations
for the high-level policy by having a human expert trigger
primitives in sequence to perform the complete multi-stage
cable routing task. We ask humans to use combinations of
primitives to route cables when there are one clip, two clips,
or three clips on the table. In each demonstration, the cable
starts lying flat on the table in an arbitrary shape, and the
expert inputs the next primitive for the robot to execute until
the task is complete. We record the sensory information of
entire trajectories when executing low-level primitives. We
also augment the dataset by labeling the adjacent states of
the actual state where the human makes a selection with the
same executed primitive index.

B. Open-Source Dataset
To facilitate the reproducibility of our work, we release

the datasets used to train the low-level and high-level poli-
cies hosted on our website: https://sites.google.com/view/
cablerouting. The dataset used to train the low-level policy
consists of human teleoperated robot cable routing trajectories.
Each trajectory contains around 20 time steps, and each time
step contains a tuple of four robot camera images, robot
configuration state vector, and the human teleoperator’s com-
manded action. The entire low-level policy dataset contains
1442 such trajectories, each trajectory is around 3-5 seconds
long. The high-level policy data consists of high-level trajecto-
ries of robot observations between primitive executions, where
one timestep in a trajectory corresponds to one observation
and the index human selected primitive. This dataset contains
257 such trajectories, where one full such trajectory is roughly
1 minute. Furthermore, to ensure that our robot setup can be
reproduced, we also release the CAD file of the plastic clips we
used, which can be easily produced by common 3D printers.

VI. EXPERIMENTAL EVALUATION

In this section, we describe the experiments we conducted
to evaluate our hierarchical imitation learning system for cable

Human Primitive Selection

Pickup
Route

Go
Next

Perturb

Autonomous Primitive Execution

(2)Route

(1)Pickup

Go
Next

(4)

(3)Perturb

Fig. 10: After the low-level primitives are acquired, data for
the high-level policy can be collected by a human selecting
the appropriate primitive to execute after the previous has
autonomously finished until the cable is successfully routed
through all the clips.

routing. One central premise of our method is the necessity
of adopting hierarchical structures. To examine this claim, one
natural question to ask is: can such long-horizon behavior be
acquired via “flat” imitation learning approaches? Hierarchical
methods will be much more convincing choices if they can
outperform recent state-of-the-art “flat” methods [70, 96]. An-
other goal of the experiment is to validate the effectiveness of
the main design choices in our system. Dissecting these design
choices will facilitate the improvement and adoption of such a
learning-based system in dealing with deformable objects in a
much more general sense. Finally, to validate the capability of
our system, it’s crucial to examine its performance in terms of
generalization, both in terms of zero-shot performance and in
terms of fine-tuning with a small amount of human guidance.
With these considerations in mind, our experiments study the
following questions:

• How effective is our low-level clip insertion policy com-
pared to baseline approaches, and how important are the
specific design choices we made in the training process
for this policy?

• How effective is our method compared to other imitation
learning methods that compose low-level skills in differ-
ent ways?

• How well does our high-level policy generalize to novel
clip arrangements?

• How efficient is our finetuning scheme in quickly han-
dling out-of-distribution clip arrangements as well as
improving the system to achieve desirable performance?

A. Experiment Setup

We evaluate the low-level and high-level policies under
several different scenarios. For the trained low-level policy,
we test its performance in the case of single-clip routing with
different clip placement variations. For that, we ask the robot
to repeatedly execute the trained neural network control policy
autonomously, starting from various initial arm configurations.

https://sites.google.com/view/cablerouting
https://sites.google.com/view/cablerouting

9

The high-level policy is evaluated on multiple runs of full cable
routing tasks, and each such trial is only marked as successful
if the cable is routed through all of the clips correctly.

B. Evaluating the Low-Level Single Clip Routing Policy

We evaluate the low-level routing policies by first sampling
five clip positions from the same distribution as used for
training. For each of the clip positions, we identify two
different cable shapes: one that curves toward the clip opening
and one that curves away from it. From experience, the former
is much easier than the latter for both learned policies and
human experts. In the hard configurations, the cable tends to
make a small radius curve of close to 90° near the grasping
point perpendicular to the direction of the narrow straight
opening on the clips. Without another arm to manipulate the
curvature of the cable, this configuration makes the cable much
harder to be routed through for both learned policies and
human experts. An example of the different shapes is shown
in 11. For each combination of clip position and cable shape,
we roll out each policy five times, for a total of 50 attempts
per policy. Before the start of each rollout, we position the
end-effector approximately 5 centimeters in front of the clip
with the cable grasped in the fingers. We roll out the policy
for a total of 50 timesteps and consider the trials successful if
a section of the cable is completely in the clip.

(a) Curving toward clip (b) Curving away from clip

Fig. 11: Wrist view of the two different cable shapes for the
same clip. 11a is an easier configuration to route than 11b
because the cable makes a smaller angle with the opening of
the clip and is easier to align.

Our learned low-level policy successfully inserts the cable
into the clip on 18 out of 25 trials with the easier cable
shape, and 5 out of 25 trials with the harder cable shape
across different clip positions, for an overall success rate of
46%. This is a reasonable number as compared to that of a
human operator: during data collection, we filter out failed
episodes, but roughly a human can achieve a 60% success
rate by teleoperating the robot. While the learned policy is far
from perfect, we will see below that it drastically outperforms
a scripted alternative and various ablations, though it still
requires an intelligent higher-level policy to compensate for
its failures and mistakes.
Comparison to a scripted policy. In principle, a central
benefit of training the low-level clip insertion policy end to

Method Easy Hard Overall

Scripted 7 / 25 3 / 25 10 / 50
Ours 18 / 25 5 / 25 23 / 50

TABLE I: Low-level single-clip policy comparison against a scripted
baseline. Our learned policy outperforms the hand-designed alternative.

end is that it can close the loop on visual perception and
observe the cable as it is being inserted into the clip, in contrast
to simple scripted strategies that blindly match end-effector
offsets from the clip. To evaluate whether we improve on
such simple baselines, we compare our low-level policy to
a scripted strategy that uses the ground-truth clip position and
orientation, which is not available in our vision system but
does not attempt to perceive the cable itself. This scripted
strategy follows a series of predefined waypoints relative to the
clip to attempt to insert the cable and then wiggles the cable
(using normally distributed noise added to target positions) to
attempt to insert it. The results of this comparison are shown
in Table I. Although the scripted policy even uses privileged
information that is otherwise not available to our policy, we
can see our policy has twice the success rate. This confirms
that the single clip insertion task is challenging, and also
suggests that the additional visual perception enabled by our
end-to-end policy is quite helpful.
Ablation experiments. To examine the effectiveness of the
design choices we made in Sec. IV, we conduct extensive
ablation experiments on the low-level policy. The results
are shown in Table II. We first note the drastic drop in
performance when we omit image augmentation, highlighting
its utility in facilitating robustness. Additionally, using separate
ResNet18 encoders for the two eye-in-hand cameras in the
low-level policy provides marginal benefit. This is reasonable
and suggests that the network might have enough capacity
to digest current inputs. Replacing the eye-in-hand cameras
with the external side camera view yielded a drastic drop
in performance, indicating the importance of view-invariant
representations. Finally, excluding the correction demonstra-
tions from the offline dataset caused a noticeable drop in
performance, with many of the failures involving the cable
missing the clip and the policy failing to lift up the cable to
recover and retry routing within the 50 rollout timesteps.

Design Choice Easy Hard Overall

No image augmentation 9 / 25 2 / 25 11 / 50
No shared ResNet 18 / 25 3 / 25 21 / 50
Side camera view 5 / 25 1 / 25 6 / 50
No correction data 15 / 25 3 / 25 18 / 50
Our full method 18 / 25 5 / 25 23 / 50

TABLE II: Ablation experiments for the low-level policy, showing
performance on single clip insertion after ablating each design choice. The
variant with decoupled ResNet encoders performs somewhat similarly, but the
other variants are significantly worse than our full design.

C. Evaluating the High-Level Policy for Cable Routing

We first evaluate our full hierarchical system on one-, two-,
and three-clip routing tasks. For a given number of clips, we
sample each clip position from the same distribution as used
for our training data. For each number of clips, we evaluate

10

four randomly sampled configurations and six trials each, for a
total of 24 trials. At the start of each trial, we place the cable
flat on the table. Then we roll out the high-level policy by
executing each primitive that it outputs until the policy outputs
go_next at the last clip. We consider the trial successful only
if the cable has been routed through all of the clips that are
currently on the table.

One Clip Two Clips Three Clips Total

Success Rate 19 / 24 14 / 24 12 / 24 45/72

TABLE III: Hierarchical policy evaluation for different numbers of clips,
evaluating in-distribution test scenarios.

The results are presented in Table III. Fig. 12 gives a visu-
alization of how we conduct this randomization procedure. It’s
important to note that the performance of our system doesn’t
drop exponentially as the number of clips increases from one
to three. Rather, it maintains a reasonable performance in the
most challenging three-clip scenario compared to the one-clip
case; though the task there is much harder. This resonates
with our key motivation that the smart combinatorial use of
primitives can compensate for the deficiency of each individual
one; so that the overall performance of the resulting system
will largely not be subject to compounding errors in long-
horizon tasks in a mechanical way.

Fig. 12: The red boxes depict the randomization areas where
each of the three clips could be placed independently from
one another, creating large variations in the subsequent cable
shape.

Baseline comparison. Table IV compares the experimental
results of our model with the following baselines:

1) State machine: The primitives are composed together
using a state machine that sequentially performs
pickup, attempts to route through the current clip
twice before prompting go_next, and then executes
perturb_cable before the pickup for the next clip.
This sequential composition was inspired by strategies
that the authors found to work reasonably efficiently at
successfully completing the routing task during demo
collection. Note that this strategy is not as naı̈ve as
simply executing the low-level clip insertion policy
repeatedly, and actually includes a scripted strategy
for correcting mistakes. While it is indeed possible
to always develop a better state machine, we found
it increasingly complex in dealing with combinatorial
variations; eventually became infeasible under practical
constraints.

Model Success Rate

State Machine 5 / 24
End-to-End BC 0 / 24
End-to-End BeT 0 / 24
End-to-End ACT 0 / 24
Hierarchical Imitation (ours) 12 / 24

TABLE IV: Comparisons on the full multi-stage routing task. Our full
method significantly outperforms both end-to-end (non-hierarchical) baselines
and a hierarchical method with a non-learned higher-level state machine.

2) Flat BC policy: To verify the necessity of hierarchical
structures, we train a flat end-to-end BC policy on the
long-horizon trajectories during the high-level policy
data collection phase. We adopt the same policy neural
network architecture as in Fig. 2, with an additional
action dimension to control the gripper closure. We
found it achieved 0% success rate out of 24 trials; and
it never succeeded even in routing the first clip, which
corresponded to failure modes such as not picking up
the cable, directly moving the arm out of the board,
missing the clip, prematurely dropping the cable before
it’s routed, and combinatorial of such. This indeed
suggests the proposed task is a challenging one that
poses difficulties in a compounded way that necessitates
reasonable hierarchical approaches dealing with those
difficulties modularly.

3) Behavior Transformer(BeT): One possible reason that
flat BC policy performs poorly is the multimodal nature
of human demonstrations. To address this point so that
we can make concrete a conclusion in terms of hier-
archical structure. We compare to a BeT policy [70], a
promising approach specifically geared towards handling
multi-modal inputs, trained on the same dataset we train
the flat BC policy as mentioned in the last paragraph. We
refer to Appx. C for implementation details of BeT. It is
observed that BeT policy also ended up with 0% success
rate as well as exhibiting similar failure modes as the flat
BC policy, including not grasping the cable and missing
the clip. This suggested although human demonstrations
may be naturally multi-modal, the bottleneck of the
proposed problem is largely orthogonal to that.

4) Action Chunking(ACT): Results from the aforemen-
tioned flat BC policies motivate the use of hierarchical
approaches to address error-compounding issues in this
long-horizon task. One natural intermediate step be-
tween a fully flat method to a fully hierarchical method
such as ours with complex machinery is the semi-
hierarchical approach. One instance of such an approach
is Action Chunking(ACT) [96], which employs multiple-
step action prediction and ensembles to alleviate issues
of error accumulation. We detail the algorithm imple-
mentation in Appx. C. While we did find the executed
action smoothness improved, the trained ACT policy was
not able to succeed at the task at all. The failure modes
are missing the clip and dropping the cable to pick up
the next section when the current clip is not routed.

We can draw several conclusions from these results: (1) The
poor performance of the flat BC and BeT methods is consistent

11

with our hypothesis that hierarchically organized policies are
important for recovering from compounding errors over the
stages of the task. (2) Methods like ACT, which resemble a
kind of implicit hierarchical approach by predicting temporally
extended action sequences, still significantly underperform
our explicit hierarchical policies. (3) However, designing the
high-level state machine manually is also insufficient, and
the recovery strategies acquired automatically by our learned
higher-level policies lead to more than double the success rate
of the hand-designed state machine.

Model Success Rate

Hierarchical Imitation, no history 0 / 24
Hierarchical Imitation (ours) 12 / 24

TABLE V: History ablation for the high-level policy, showing that
including the history of previously triggered primitives is essential for good
performance.

Ablation experiments with the high-level policy. Table V
compares the experimental results for our full method with a
memoryless variant, demonstrating the importance of using
history information. Specifically, withholding the primitive
history embedding causes the policy to fail when switching
between clips. After one clip is successfully routed, the
memoryless policy continuously recognizes the completion of
the routing through the first clip and repeatedly prompts the
go_next primitive, but fails to move on and begin routing
the next clip (i.e., prompting a pickup). In practice, we found
maintaining a reasonable length of context history helps the
high-level policy make better decisions; for example, more
recovering behavior will be attempted.
Qualitative analysis of learned behavior. Our high-level
policy makes decisions by processing its sensory inputs. By
training on a diverse dataset end-to-end, our policy in theory
should also generate new emergent behavior that was not seen
in the training dataset. Indeed, we observed a few interesting
behaviors at test time. The robot expanded the usage of the
Perturb_cable primitive combining with other primitives
to create novel recovery mechanisms. For example, as shown
in Fig. 13, the robot applies Perturb_cable. However, the
cable resulted in the inner corner of the clip where it couldn’t
be picked up; then the robot applied again Perturb_cable
to adjust the shape of the rope to a level it could pick up the
cable.
Failure mode analysis. We observe that over 95% of the
failures in the system occur when the high-level policy would
predict the go_next primitive while the cable is not actually
successfully routed, especially if the cable is just behind the
clip, resulting in an irrecoverable state. We hypothesize this is
because the visual feature of a clip being inside versus behind
the clip is not very distinctive, and perhaps a different camera
placement would alleviate the issue.

D. Interactive Fine-Tuning to Quickly Improve Performance
We additionally demonstrate the ability of our model can

fine-tune its performance in both out-of-distribution(OOD) and
in-distribution scenarios with a small amount of interactive
training, as described in Section IV-C.

(a) Before Perturb (b) Perturbed Once (c) Perturbed Twice

Fig. 13: This figure shows the Perturb_cable primitive
used twice in a row. 13a: The initial state is hard for the
Route primitive to succeed. 13b: The red pickup point on
the cable is next to the left clip and cannot be picked up. 13c:
The cable is perturbed again so it can be picked up.

Fig. 14: Out-of-distribution clip configurations. Top left, Top
right, Bottom left: OOD clip configurations in the 3-clip
routing task, the drastically different clip orientation makes
them particularly challenging due to the resulting slackness of
the cable. Bottom right: 4-clip routing task with the additional
clip not seen in the offline dataset.

Out-of-distribution finetuning. We first evaluate our system
on the configurations presented in Figure 14. Three configura-
tions (OOD 1, OOD 2, OOD 3) were specifically selected
so that some clips were outside the 12.5cm by 15cm box
used for selecting the corresponding clip configurations in the
training set, or outside the 0 to 45 degree range of orientations
used in training, which resulted in scenarios that present a
particularly significant generalization challenge. The fourth
configuration was selected to include an additional fourth clip
that did not appear in any of the original training data for
the high-level policy. For each of the four out-of-distribution
clip configurations, we collected 10 interactive demonstrations
which were used to fine-tune the policy. Figure 15 shows the
overall generalization performance of the fined-tuned policies
compared with the direct zero-shot transfer of our original
policy while Table VI details the number of successes for each
configuration. In the case of three clips, we find our policy
was able to quickly improve its performance twofold with
this handful amount of fine-tuning data. In the four-clip case,
due to view shifts observed by the side camera, the original
policy was not able to succeed at all. However, the fine-tuned
policy was able to rapidly adapt to this new challenging OOD
situation with only ten demonstrations.
In distribution finetuning. It is often of concern in industrial
robotic applications that a task should be executed with a fairly
high success rate to imply the potential deployment of such
systems. Towards that end, we further study how our system
can improve reliability for a particular case when the initial
success rate is not sufficiently high. To study this setting,
we finetuned our pre-trained model on four new randomly

12

Fig. 15: Evaluation of fine-tuning our high-level policy. Fine-
tuning enables out-of-distribution generalization to clip con-
figurations in Figure 14, including to a configuration where
an additional fourth clip was added. This demonstrates the
modularity of our system and the ability to extend our method
to new clip configurations.

Configuration
Zero-shot
(10 Trials)

Finetuned
(10 Trials)

Three Clips In Distribution
Configuration 1 5 9
Configuration 2 6 9
Configuration 3 4 8
Configuration 4 5 8
Subtotal 20/40 34/40

Three Clips Out of Distribution
Configuration 1 1 3
Configuration 2 2 6
Configuration 3 3 6
Subtotal 6/30 15/30

Four Clips Out of Distribution
Configuration 1 0 2
Subtotal 0/10 2/10

Total 26/80 51/80

TABLE VI: Detailed table comparing success rates of zero-
shot and fine-tuned high-level policies on 4 in-distribution con-
figurations with three clips, 3 out-of-distribution configurations
with three clips, and 1 out-of-distribution configuration with
four clips.

sampled clip configurations within its training distributions
(separate from the configuration in Section VI.C). Presented
in Table VI, our system was able to improve its performance
from 50% to 85% with only ten additional demonstrations each
measured over 10 trials per each of the four configurations for
a total of 40 trials. This suggests our system not only enjoys
broad generalization capability but also rapidly improves its
reliability when a high success rate is desirable.

VII. DISCUSSION AND FUTURE WORK

We presented a hierarchical imitation learning system ap-
plied to the task of cable routing. Our approach is based
on the principle that temporally extended multi-stage tasks

become more practical when each stage of the pipeline can
compensate for and correct mistakes when they arise. In this
way, performing a task that requires multiple stages (e.g.,
inserting the cable into a series of clips) does not lead to
a success rate that drops exponentially with each step. The
high-level policy in our system, which selects primitives at
each stage, can trigger primitives to retry or correct mistakes,
and the learned low-level clip insertion primitive can also
correct small mistakes because of the corrections present in
the demonstrations. In our experimental evaluation, we show
that this approach enables the robot to route cables through a
series of clips, and even for harder clip arrangements where
the system does not succeed consistently, it can be fine-tuned
with as few as 10 additional trials.

Our method still has a number of limitations. Although
the success rate of our approach significantly exceeds that
of baselines that do not employ learned policies at both
levels of the hierarchy, the absolute success rate is still not
perfect for industrially relevant applications. Of course, as
with all learning systems, larger datasets are likely to lead
to improvements in performance. However, it would also be
interesting in future work to explore how the addition of more
diverse primitives can further enhance the capability of the
higher level to correct for mistakes and further reduce failure
rates, or how autonomous improvement with RL can improve
the method further.

APPENDIX

A. View-invariant coordinate system

We use a coordinate system attached to the robot’s end-
effector frame to express observation and actions. This way,
the policy will not over-fit to any particular absolute positions;
rather generalize to new clip placements if we can keep
the same spatial relativity between clips and end-effector.
This is also a convenient mechanism for the system to gain
robustness by randomizing the end-effector’s initial pose; from
the policy’s perspective, this is equivalent to physically moving
the goal (clip) but requires no additional mechanical apparatus
beyond the robot itself.

Firstly, we use the wrist camera views to train the policies,
which are mounted in the end-effector so they directly enjoy
the benefit of the mentioned view-invariant coordinate. We also
only use the z-position, or the height, of the end-effector in
the policy observation space, which is rotational invariant for
our 4DoF action space (translation about the XYZ-axis and
rotation about the Z-axis).

The policy outputs the 4D twist Vt (all translation com-
ponents, rotation around the z-axis) w.r.t. current end-effector
frame Tt. For controlling the Franka robot with its control
software, we convert it back to the robot’s base frame as V ′

t

using Adjoint mapping, which is a function of Tt. Note Tt is
a homogeneous transformation matrix as:

Tt =

[
Rt pt
01×3 1

]
.

Then the Adjoint map to relate the two twists in the current

13

frame and base frame can be defined as:

Adt =

[
Rt 0

[pt] ·Rt Rt

]
,

where [pt] is the skew-symmetric matrix constructed from pt;
then we calculate V ′

t = [Adt]Vt which to be sent to the Franka
controller.

B. Neural Network Details

For all neural networks, we use ResNet18 as backbones
[26]. For low-level routing policy, we first linear project the
z-value to a 128-dimensional vector, then concatenate with
ResNet embeddings; then go through a 2-layer MLP with 256
nodes each, and finally output the mean and variance of a
TanhGaussian policy. For the high-level primitive selection
policy, we take the pre-trained ResNet18 from training the low-
level policy and keep their parameters frozen while training
high-level policy. We pass through three view images through
the ResNets to get three embedding vectors, we then up-project
the z-value to a 128-dimensional vector. For the primitive
sequence embedding, we use a learned word embedding layer
[61] to project it to an embedding matrix of size 6 × 4, we
then flatten this matrix and up-project it to a 128-dimensional
vector; we then concatenate all the vectors so far to pass
through a single-layer MLP of size 256 with softmax activation
in the end.

C. Training Hyperparameters

Hyperparameters Routing Policy

Optimizer Adam
Base learning rate 3e-4
Weight decay 0.05
Optimizer momentum β1 = 0.9, β2 = 0.99
Batch size 512
Learning rate schedule cosine decay

TABLE VII: Hyperparameters for training low-level routing
policies

Hyperparameters Primitive Selection Policy

Optimizer Adam
Base learning rate 3e-4
Weight decay 0.05
Optimizer momentum β1 = 0.9, β2 = 0.99
Batch size 128
Learning rate schedule cosine decay
(Finetuning) Warmup Epochs 5

TABLE VIII: Hyperparameters for training high-level primi-
tive selection policies

Hyperparameters Behavior Transformer

Optimizer AdamW
Base learning rate 1e-5
Weight decay 2e-4
Optimizer momentum β1 = 0.9, β2 = 0.99
Batch size 16
Number of bins k 64
Attention Heads 8
Block Size 144
Decoder Layers 6
Output Embedding Size 256
Resnet Embedding Size 512

TABLE IX: Hyperparameters for training Behavior Trans-
former

Hyperparameters Action Chunking

Optimizer AdamW
Base learning rate 1e-3
Weight decay 3e-3
Batch size 256
Chunk Size 5
Optimizer momentum β1 = 0.9, β2 = 0.99
Exponential moving average weight 0.01
Learning rate schedule cosine decay

TABLE X: Hyperparameters for training with Action Chunk-
ing

ACKNOWLEDGMENTS

This work was partially supported by ONR N00014-20-
1-2383, NSF IIS-2150826, AFOSR FA9550-22-1-0273, and
Intrinsic Innovation LLC. We also thank the computing re-
sources provided by the Berkeley Research Computing (BRC)
program.

REFERENCES

[1] Ananye Agarwal, Ashish Kumar, Jitendra Malik, and Deepak
Pathak. Legged locomotion in challenging terrains using ego-
centric vision. In 6th Annual Conference on Robot Learning,
2022.

[2] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Cheb-
otar, Omar Cortes, Byron David, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alexander Herzog, Daniel
Ho, Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric
Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jesmonth,
Nikhil Jayant Joshi, Ryan C. Julian, Dmitry Kalashnikov,
Yuheng Kuang, Kuang-Huei Lee, Sergey Levine, Yao Lu, Linda
Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka
Rao, Jarek Rettinghouse, Diego M Reyes, Pierre Sermanet,
Nicolas Sievers, Clayton Tan, Alexander Toshev, Vincent Van-
houcke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, and Mengyuan
Yan. Do as i can, not as i say: Grounding language in robotic
affordances. ArXiv, abs/2204.01691, 2022.

[3] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-
critic architecture. In Proceedings of the AAAI conference on
artificial intelligence, volume 31, 2017.

[4] A. Bagaria and G. Konidaris. Option discovery using deep skill
chaining. In International Conference on Learning Representa-
tions (ICLR), 2020.

[5] Andrew G Barto and Sridhar Mahadevan. Recent advances
in hierarchical reinforcement learning. Discrete event dynamic
systems, 13(1-2):41–77, 2003.

[6] Matthew Michael Botvinick. Hierarchical reinforcement learn-
ing and decision making. Current opinion in neurobiology, 22
(6):956–962, 2012.

14

[7] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Cheb-
otar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan,
Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1:
Robotics transformer for real-world control at scale. arXiv
preprint arXiv:2212.06817, 2022.

[8] Cheng Chi, Benjamin Burchfiel, Eric Cousineau, Siyuan Feng,
and Shuran Song. Iterative residual policy: for goal-conditioned
dynamic manipulation of deformable objects. arXiv preprint
arXiv:2203.00663, 2022.

[9] Michele Colledanchise and Petter Ögren. Behavior trees in
robotics and AI: An introduction. CRC Press, 2018.

[10] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le.
Randaugment: Practical automated data augmentation with a
reduced search space. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition workshops,
pages 702–703, 2020.

[11] Aidan Curtis, Xiaolin Fang, Leslie Pack Kaelbling, Tomás
Lozano-Pérez, and Caelan Reed Garrett. Long-horizon manip-
ulation of unknown objects via task and motion planning with
estimated affordances. In 2022 International Conference on
Robotics and Automation (ICRA), pages 1940–1946, 2022. doi:
10.1109/ICRA46639.2022.9812057.

[12] Michael Danielczuk, Andrey Kurenkov, Ashwin Balakrishna,
Matthew Matl, David Wang, Roberto Martı́n-Martı́n, Animesh
Garg, Silvio Savarese, and Ken Goldberg. Mechanical search:
Multi-step retrieval of a target object occluded by clutter. In
2019 International Conference on Robotics and Automation
(ICRA), pages 1614–1621. IEEE, 2019.

[13] P. Dayan and Geoffrey E. Hinton. Feudal reinforcement learn-
ing. In Advances in Neural Information Processing Systems,
1992.

[14] Peter Dayan and Geoffrey E Hinton. Feudal reinforcement
learning. Advances in neural information processing systems,
5, 1992.

[15] Lavindra de Silva, Amit Kumar Pandey, Mamoun Gharbi, and
Rachid Alami. Towards combining htn planning and geometric
task planning. arXiv:1307.1482, 2013.

[16] Thomas G Dietterich. Hierarchical reinforcement learning with
the maxq value function decomposition. Journal of Artificial
Intelligence Research, 13:227–303, 2000.

[17] Danny Driess, Jung-Su Ha, Russ Tedrake, and Marc Toussaint.
Learning geometric reasoning and control for long-horizon tasks
from visual input. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 14298–14305. IEEE,
2021.

[18] Yilun Du, Tomas Lozano-Perez, and Leslie Pack Kaelbling.
Learning object-based state estimators for household robots.
In 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 12558–12565, 2022. doi:
10.1109/IROS47612.2022.9981287.

[19] Roy Fox, Richard Shin, William Paul, Yitian Zou, Dawn Song,
Ken Goldberg, Pieter Abbeel, and Ion Stoica. Hierarchical vari-
ational imitation learning of control programs. arXiv preprint
arXiv:1912.12612, 2019.

[20] Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John
Schulman. Meta learning shared hierarchies. arXiv preprint
arXiv:1710.09767, 2017.

[21] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack
Kaelbling. Pddlstream: Integrating symbolic planners and black-
box samplers via optimistic adaptive planning. In Proceedings
of the International Conference on Automated Planning and
Scheduling, volume 30, pages 440–448, 2020.

[22] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay,
Beomjoon Kim, Tom Silver, Leslie Pack Kaelbling, and Tomás
Lozano-Pérez. Integrated task and motion planning. Annual
Review of Control, Robotics, and Autonomous Systems, 4(1):
265–293, 2021.

[23] Jennifer Grannen, Priya Sundaresan, Brijen Thananjeyan, Jef-
frey Ichnowski, Ashwin Balakrishna, Minho Hwang, Vainavi

Viswanath, Michael Laskey, Joseph E Gonzalez, and Ken
Goldberg. Untangling dense knots by learning task-relevant
keypoints. 2020.

[24] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey
Levine. Deep reinforcement learning for robotic manipulation
with asynchronous off-policy updates. In 2017 IEEE interna-
tional conference on robotics and automation (ICRA), pages
3389–3396. IEEE, 2017.

[25] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine,
and Karol Hausman. Relay policy learning: Solving long-
horizon tasks via imitation and reinforcement learning. arXiv
preprint arXiv:1910.11956, 2019.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016.

[27] Shinichi Hirai, Tatsuhiko Tsuboi, and Takahiro Wada. Robust
grasping manipulation of deformable objects. In Proceedings
of the 2001 IEEE International Symposium on Assembly and
Task Planning (ISATP2001). Assembly and Disassembly in
the Twenty-first Century.(Cat. No. 01TH8560), pages 411–416.
IEEE, 2001.

[28] John E Hopcroft, Joseph K Kearney, and Dean B Krafft. A
case study of flexible object manipulation. The International
Journal of Robotics Research, 10(1):41–50, 1991.

[29] Kyle Hsu, Moo Jin Kim, Rafael Rafailov, Jiajun Wu, and
Chelsea Finn. Vision-based manipulators need to also see
from their hands. In International Conference on Learning
Representations, 2022.

[30] Zixuan Huang, Xingyu Lin, and David Held. Self-supervised
cloth reconstruction via action-conditioned cloth tracking. In
IEEE International Conference on Robotics and Automation
(ICRA), 2023, 2023.

[31] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and
Chrisina Jayne. Imitation learning: A survey of learning
methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

[32] Sergey Ioffe and Christian Szegedy. Batch normalization: Ac-
celerating deep network training by reducing internal covariate
shift. In International conference on machine learning, pages
448–456. pmlr, 2015.

[33] Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang,
Yongqiang Dou, Yanjun Chen, Li Fei-Fei, Anima Anandkumar,
Yuke Zhu, and Linxi (Jim) Fan. Vima: General robot manipu-
lation with multimodal prompts. ArXiv, abs/2210.03094, 2022.

[34] Shiyu Jin, Wenzhao Lian, Changhao Wang, Masayoshi
Tomizuka, and Stefan Schaal. Robotic cable routing with spatial
representation. IEEE Robotics and Automation Letters, 7(2):
5687–5694, 2022. doi: 10.1109/LRA.2022.3158377.

[35] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical
planning in the now. In Workshops at the Twenty-Fourth AAAI
Conference on Artificial Intelligence, 2010.

[36] Leslie Pack Kaelbling, Michael L Littman, and Andrew W
Moore. Reinforcement learning: A survey. Journal of artificial
intelligence research, 4:237–285, 1996.

[37] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz,
Alexander Herzog, Eric Jang, Deirdre Quillen, Ethan Holly,
Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Qt-opt: Scalable
deep reinforcement learning for vision-based robotic manipula-
tion. arXiv preprint arXiv:1806.10293, 2018.

[38] Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin
Swanson, Rico Jonschkowski, Chelsea Finn, Sergey Levine, and
Karol Hausman. Mt-opt: Continuous multi-task robotic rein-
forcement learning at scale. arXiv preprint arXiv:2104.08212,
2021.

[39] Michael Kelly, Chelsea Sidrane, Katherine Driggs-Campbell,
and Mykel J Kochenderfer. Hg-dagger: Interactive imitation
learning with human experts. In 2019 International Conference
on Robotics and Automation (ICRA), pages 8077–8083. IEEE,
2019.

15

[40] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

[41] Thomas Kipf, Yujia Li, Hanjun Dai, Vinicius Zambaldi, Alvaro
Sanchez-Gonzalez, Edward Grefenstette, Pushmeet Kohli, and
Peter Battaglia. Compile: Compositional imitation learning and
execution. In International Conference on Machine Learning,
pages 3418–3428. PMLR, 2019.

[42] George Konidaris, Scott Kuindersma, Roderic Grupen, and An-
drew Barto. Robot learning from demonstration by constructing
skill trees. The International Journal of Robotics Research, 31
(3):360–375, 2012.

[43] Sanjay Krishnan, Roy Fox, Ion Stoica, and Ken Goldberg.
Ddco: Discovery of deep continuous options for robot learning
from demonstrations. In Conference on robot learning, pages
418–437. PMLR, 2017.

[44] Hoang Le, Nan Jiang, Alekh Agarwal, Miroslav Dudı́k, Yisong
Yue, and Hal Daumé III. Hierarchical imitation and reinforce-
ment learning. In International conference on machine learning,
pages 2917–2926. PMLR, 2018.

[45] Alex X Lee, Henry Lu, Abhishek Gupta, Sergey Levine,
and Pieter Abbeel. Learning force-based manipulation of
deformable objects from multiple demonstrations. In Robotics
and Automation (ICRA), 2015 IEEE International Conference
on, pages 177–184. IEEE, 2015.

[46] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen
Koltun, and Marco Hutter. Learning quadrupedal locomotion
over challenging terrain. Science robotics, 5(47):eabc5986,
2020.

[47] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel.
End-to-end training of deep visuomotor policies. The Journal
of Machine Learning Research, 17(1):1334–1373, 2016.

[48] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and
Deirdre Quillen. Learning hand-eye coordination for robotic
grasping with deep learning and large-scale data collection.
The International journal of robotics research, 37(4-5):421–
436, 2018.

[49] Hao Li, Yizhi Zhang, Junzhe Zhu, Shaoxiong Wang, Michelle A
Lee, Huazhe Xu, Edward Adelson, Li Fei-Fei, Ruohan Gao, and
Jiajun Wu. See, hear, and feel: Smart sensory fusion for robotic
manipulation. arXiv preprint arXiv:2212.03858, 2022.

[50] Yunzhu Li, Antonio Torralba, Anima Anandkumar, Dieter Fox,
and Animesh Garg. Causal discovery in physical systems from
videos. Advances in Neural Information Processing Systems,
33, 2020.

[51] Antonio Loquercio, Ashish Kumar, and Jitendra Malik. Learn-
ing visual locomotion with cross-modal supervision. arXiv
preprint arXiv:2211.03785, 2022.

[52] Yuchen Lu, Yikang Shen, Siyuan Zhou, Aaron Courville,
Joshua B Tenenbaum, and Chuang Gan. Learning task decom-
position with ordered memory policy network. 2021.

[53] Jianlan Luo, Eugen Solowjow, Chengtao Wen, Juan Aparicio
Ojea, and Alice M. Agogino. Deep reinforcement learning for
robotic assembly of mixed deformable and rigid objects. In
2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2062–2069, 2018. doi: 10.1109/
IROS.2018.8594353.

[54] Jianlan Luo, Eugen Solowjow, Chengtao Wen, Juan Aparicio
Ojea, Alice M Agogino, Aviv Tamar, and Pieter Abbeel. Rein-
forcement learning on variable impedance controller for high-
precision robotic assembly. In 2019 International Conference
on Robotics and Automation (ICRA), pages 3080–3087. IEEE,
2019.

[55] Jianlan Luo, Oleg Sushkov, Rugile Pevceviciute, Wenzhao Lian,
Chang Su, Mel Vecerik, Ning Ye, Stefan Schaal, and Jonathan
Scholz. Robust Multi-Modal Policies for Industrial Assembly
via Reinforcement Learning and Demonstrations: A Large-

Scale Study. In Proceedings of Robotics: Science and Systems,
Virtual, July 2021. doi: 10.15607/RSS.2021.XVII.088.

[56] Shan Luo, Wenzhen Yuan, Edward Adelson, Anthony G Cohn,
and Raul Fuentes. Cloth texture recognition using vision and
tactile sensing. In ICRA 2018 workshop: Active touch for
perception and interaction: how nature inspires robotics, 2018.

[57] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey,
Richard Doan, Xinyu Liu, Juan Aparicio Ojea, and Ken Gold-
berg. Dex-net 2.0: Deep learning to plan robust grasps with
synthetic point clouds and analytic grasp metrics. arXiv preprint
arXiv:1703.09312, 2017.

[58] Jeremy Maitin-Shepard, Marco Cusumano-Towner, Jinna Lei,
and Pieter Abbeel. Cloth grasp point detection based on
multiple-view geometric cues with application to robotic towel
folding. In 2010 IEEE International Conference on Robotics
and Automation, pages 2308–2315. IEEE, 2010.

[59] Alejandro Marzinotto, Michele Colledanchise, Christian Smith,
and Petter Ögren. Towards a unified behavior trees framework
for robot control. In 2014 IEEE International Conference
on Robotics and Automation (ICRA), pages 5420–5427. IEEE,
2014.

[60] Toki Migimatsu and Jeannette Bohg. Grounding predicates
through actions. IEEE International Conference on Robotics
and Automation (ICRA), 2022.

[61] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and
Jeff Dean. Distributed representations of words and phrases and
their compositionality. In C.J. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 26. Curran
Associates, Inc., 2013.

[62] Takuma Morita, Jun Takamatsu, Koichi Ogawara, Hiroshi
Kimura, and Katsushi Ikeuchi. Knot planning from observation.
In 2003 IEEE International Conference on Robotics and Au-
tomation (Cat. No. 03CH37422), volume 3, pages 3887–3892.
IEEE, 2003.

[63] Ashvin Nair, Dian Chen, Pulkit Agrawal, Phillip Isola, Pieter
Abbeel, Jitendra Malik, and Sergey Levine. Combining self-
supervised learning and imitation for vision-based rope manip-
ulation. In 2017 IEEE international conference on robotics and
automation (ICRA), pages 2146–2153. IEEE, 2017.

[64] Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai
Quek. Hierarchical reinforcement learning: A comprehensive
survey. ACM Computing Surveys (CSUR), 54(5):1–35, 2021.

[65] Chris Paxton, Nathan D. Ratliff, Clemens Eppner, and Dieter
Fox. Representing robot task plans as robust logical-dynamical
systems. 2019 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 5588–5595, 2019.

[66] Jan Peters and Stefan Schaal. Learning to control in operational
space. The International Journal of Robotics Research, 27(2):
197–212, 2008. doi: 10.1177/0278364907087548.

[67] Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision:
Learning to grasp from 50k tries and 700 robot hours. In
2016 IEEE international conference on robotics and automation
(ICRA), pages 3406–3413. IEEE, 2016.

[68] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduc-
tion of imitation learning and structured prediction to no-regret
online learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pages 627–
635, 2011.

[69] John Schulman, Alex X. Lee, Jonathan Ho, and P. Abbeel.
Tracking deformable objects with point clouds. 2013 IEEE
International Conference on Robotics and Automation, pages
1130–1137, 2013.

[70] Nur Muhammad Mahi Shafiullah, Zichen Jeff Cui, Ariuntuya
Altanzaya, and Lerrel Pinto. Behavior transformers: Cloning
k modes with one stone. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho, editors, Advances in
Neural Information Processing Systems, 2022.

[71] Dhruv Shah, Ajay Sridhar, Arjun Bhorkar, Noriaki Hirose, and

16

Sergey Levine. GNM: A General Navigation Model to Drive
Any Robot. In International Conference on Robotics and
Automation (ICRA), 2023.

[72] Dhruv Shah, Ajay Sridhar, Nitish Dashora, Kyle Stachowicz,
Kevin Black, Noriaki Hirose, and Sergey Levine. Vint: A
foundation model for visual navigation, 2023.

[73] Tanmay Shankar, Shubham Tulsiani, Lerrel Pinto, and Abhinav
Gupta. Discovering motor programs by recomposing demon-
strations. In International Conference on Learning Representa-
tions, 2020.

[74] Yu She, Shaoxiong Wang, Siyuan Dong, Neha Sunil, Alberto
Rodriguez, and Edward Adelson. Cable manipulation with a
tactile-reactive gripper. The International Journal of Robotics
Research, 40(12-14):1385–1401, 2021.

[75] Connor Shorten and Taghi M. Khoshgoftaar. A survey on image
data augmentation for deep learning. J. Big Data, 6:60, 2019.
doi: 10.1186/s40537-019-0197-0.

[76] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-
actor: A multi-task transformer for robotic manipulation. ArXiv,
abs/2209.05451, 2022.

[77] Dong Sun, Xiaolun Shi, and Yunhui Liu. Modeling and coop-
eration of two-arm robotic system manipulating a deformable
object. In Proceedings of IEEE International Conference on
Robotics and Automation, volume 3, pages 2346–2351. IEEE,
1996.

[78] Richard S Sutton and Andrew G Barto. Reinforcement learning:
An introduction. MIT press, 2018.

[79] Finn Süberkrüb, Rita Laezza, and Yiannis Karayiannidis. Feel
the tension: Manipulation of deformable linear objects in en-
vironments with fixtures using force information. In 2022
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 11216–11222, 2022. doi: 10.1109/
IROS47612.2022.9982065.

[80] Vainavi Viswanath, Kaushik Shivakumar, Justin Kerr, Brijen
Thananjeyan, Ellen Novoseller, Jeffrey Ichnowski, Alejandro
Escontrela, Michael Laskey, Joseph E Gonzalez, and Ken Gold-
berg. Autonomously untangling long cables.

[81] Vainavi Viswanath, Jennifer Grannen, Priya Sundaresan, Brijen
Thananjeyan, Ashwin Balakrishna, Ellen Novoseller, Jeffrey
Ichnowski, Michael Laskey, Joseph E Gonzalez, and Ken Gold-
berg. Disentangling dense multi-cable knots. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 3731–3738. IEEE, 2021.

[82] Takahiro Wada, Shinichi Hirai, Sadao Kawamura, and Norimasa
Kamiji. Robust manipulation of deformable objects by a simple
pid feedback. In Proceedings 2001 ICRA. IEEE International
Conference on Robotics and Automation (Cat. No. 01CH37164),
volume 1, pages 85–90. IEEE, 2001.

[83] Gabriel Arslan Waltersson, Rita Laezza, and Yiannis Karayian-
nidis. Planning and control for cable-routing with dual-arm
robot. In 2022 International Conference on Robotics and
Automation (ICRA), pages 1046–1052. IEEE, 2022.

[84] Chen Wang, Danfei Xu, and Li Fei-Fei. Generalizable task
planning through representation pretraining. IEEE Robotics and
Automation Letters, 7:8299–8306, 2022.

[85] Fei Wang, Etienne Burdet, Ronald Vuillemin, and Hannes
Bleuler. Knot-tying with visual and force feedback for vr
laparoscopic training. In 2005 IEEE engineering in medicine
and biology 27th annual conference, pages 5778–5781. IEEE,
2006.

[86] Thomas Weng, Sujay Bajracharya, Yufei Wang, Khush Agrawal,
and David Held. Fabricflownet: Bimanual cloth manipulation
with a flow-based policy. In Conference on Robot Learning,
2021.

[87] Achu Wilson, Helen Jiang, Wenzhao Lian, and Wenzhen Yuan.
Cable routing and assembly using tactile-driven motion prim-
itives. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pages 10408–10414, 2023. doi:
10.1109/ICRA48891.2023.10161069.

[88] Yuxin Wu and Kaiming He. Group normalization. In Proceed-
ings of the European conference on computer vision (ECCV),
pages 3–19, 2018.

[89] Markus Wulfmeier, Dushyant Rao, Roland Hafner, Thomas
Lampe, Abbas Abdolmaleki, Tim Hertweck, Michael Neunert,
Dhruva Tirumala, Noah Siegel, Nicolas Heess, et al. Data-
efficient hindsight off-policy option learning. In International
Conference on Machine Learning, pages 11340–11350. PMLR,
2021.

[90] Fan Xie, Alexander Chowdhury, M De Paolis Kaluza, Linfeng
Zhao, Lawson Wong, and Rose Yu. Deep imitation learning for
bimanual robotic manipulation. Advances in neural information
processing systems, 33:2327–2337, 2020.

[91] Zhenjia Xu, Cheng Chi, Benjamin Burchfiel, Eric Cousineau,
Siyuan Feng, and Shuran Song. Dextairity: Deformable ma-
nipulation can be a breeze. arXiv preprint arXiv:2203.01197,
2022.

[92] Mengyuan Yan, Yilin Zhu, Ning Jin, and Jeannette Bohg.
Self-supervised learning of state estimation for manipulating
deformable linear objects. IEEE robotics and automation letters,
5(2):2372–2379, 2020.

[93] Hang Yin, Anastasia Varava, and Danica Kragic. Modeling,
learning, perception, and control methods for deformable object
manipulation. Science Robotics, 6(54):eabd8803, 2021.

[94] Harry Zhang, Jeffrey Ichnowski, Daniel Seita, Jonathan Wang,
Huang Huang, and Ken Goldberg. Robots of the lost arc: Self-
supervised learning to dynamically manipulate fixed-endpoint
cables. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 4560–4567. IEEE, 2021.

[95] Tony Z. Zhao, Jianlan Luo, Oleg Sushkov, Rugile Pevceviciute,
Nicolas Heess, Jon Scholz, Stefan Schaal, and Sergey Levine.
Offline meta-reinforcement learning for industrial insertion. In
2022 International Conference on Robotics and Automation
(ICRA), pages 6386–6393, 2022. doi: 10.1109/ICRA46639.
2022.9812312.

[96] Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea
Finn. Learning fine-grained bimanual manipulation with low-
cost hardware, 2023.

[97] Jihong Zhu, Benjamin Navarro, Robin Passama, Philippe
Fraisse, André Crosnier, and Andrea Cherubini. Robotic
manipulation planning for shaping deformable linear objects
withenvironmental contacts. IEEE Robotics and Automation
Letters, 5(1):16–23, 2019.

[98] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim,
Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-driven
visual navigation in indoor scenes using deep reinforcement
learning. In 2017 IEEE international conference on robotics
and automation (ICRA), pages 3357–3364. IEEE, 2017.

	Introduction
	Related Work
	System and Task Setup
	Cable Routing via Hierarchical Imitation Learning
	Low-Level Clip Routing Policy
	High-Level Primitive Selection Policy
	Interactive Finetuning

	Data Collection and Open-Source Release
	Data Collection
	Open-Source Dataset

	Experimental Evaluation
	Experiment Setup
	Evaluating the Low-Level Single Clip Routing Policy
	Evaluating the High-Level Policy for Cable Routing
	Interactive Fine-Tuning to Quickly Improve Performance

	Discussion and Future Work
	Appendix
	View-invariant coordinate system
	Neural Network Details
	Training Hyperparameters

