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Abstract—High precision control of soft robots is challenging
due to their stochastic behavior and material-dependence nature.
While RL has been applied in soft robotics, achieving precision
in task execution is still a long way off. Traditionally, RL requires
substantial data for convergence, often obtained from a training
environment. Yet, despite exhibiting high accuracy in the training
environment, RL-policies often fall short in reality due to the
training-to-reality gap, and the performance is exacerbated by
the stochastic nature of soft robots. This study paves the way
for the implementation of RL for soft robot control to achieve
high precision in task execution. Two sample-efficient adaptive
control strategies are proposed, that leverage the RL-policy. The
schemes can overcome stochasticity, bridge the training-to-reality
gap, and attain desired accuracy even in challenging tasks such
as obstacle avoidance. Additionally, deliberate and reversible
damage is induced to the pneumatic actuation chamber, altering
the soft robot’s behavior to test the adaptability of our solutions.
Despite the damage, desired accuracy was achieved in most
scenarios without needing to retrain the RL-policy.

Index Terms—Reinforcement Learning (RL), Machine Learn-
ing Based Control, Bayesian Optimization (BO), Soft Robots,
Imitation Learning by Coaching, Cerebellum Inspired Compen-
sator for Motor Control.

I. INTRODUCTION

ACCURATE modeling of soft robots poses a significant
challenge due to their highly deformable mechanics [1].

Various solutions have been suggested in this domain (Sect.
II-A). One such modeling approach is Machine Learning
(ML)-based, chosen for its capacity to learn from real robot
data [2]. ML-based strategies have showcased superior per-
formance in enabling training of complex tasks (see Table
I). However, despite the incorporation of ML-based schemes,
there is a reported decline in control solution performance
when tested on the actual soft robot compared to performance
within training environments. This decline can be attributed
to the performance gap between the learned model and the
soft robot behavior, commonly known as the training-to-reality
gap.

The gap results from two primary factors: (1) Data-driven
models, such as trained recurrent neural networks, forecast
future states of the soft arm based on current actions and
past predictions. As these predictions are approximations,
small errors in current and past predictions accumulate over
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time, contributing to the performance disparity. (2) Inherent
stochasticity, as illustrated in Fig. 1a) , in the behavior of
a pneumatically actuated soft arm (see Sect. III-B), results
from intrinsic factors like nonlinear material properties (e.g.,
hysteresis) and other elastic properties under varying en-
vironmental conditions, and extrinsic factors related to the
soft arm’s design characteristics, such as length, number of
modules, variable moment of inertia, and initial positions.

Reinforcement Learning (RL)-based algorithms offer the
advantage of training inherently stable control solutions [3]
for complex tasks without an in-depth understanding of the
underlying platform. This makes them promising for ad-
dressing the challenges related to the control of soft robots.
However, their adaptability to variations in the evaluation
environment compromises task execution accuracy [4], making
the recovery of desired task accuracy while overcoming the
training-to-reality gap an active area of research in the robotics
community. In the context of soft robot control, this challenge
is exacerbated due to the stochastic nature of the systems.

In this study, we applied Proximal Policy Optimization
(PPO), an RL algorithm [5], to train a policy for a high-
precision control problem using a data-driven dynamics model
of a three-module pneumatically actuated soft continuum arm.
The policy was trained for a reaching task with obstacle
avoidance, as depicted in Fig. 1b). Experimental evaluation
revealed a significant decrease in policy performance when
applied to the soft arm compared to its performance in
the training environment. This difference is attributed to the
training-to-reality gap, worsened by the inherent stochasticity
in the soft arm, negatively impacting task repeatability with
the desired accuracy.

Two distinct control strategies were devised to successfully
bridge the performance gap and restore task accuracy in
the robot dynamics domain within seconds, as illustrated in
Fig. 1c). The first approach, Bayesian Optimization Assisted
Coaching (BOAC), draws inspiration from Imitation Learning
(IL) by coaching [6], a variant of traditional IL. Traditional
IL trains a task policy based on an expert’s task demonstra-
tions and action predictions from the same [7] or different
supervisor or oracle [8]. IL by coaching trains a policy based
on a coach and an oracle, with the coach presenting easy-
to-reach goals followed by gradual improvements to reach
the final goals, and the oracle predicting actions to reach
the respective goals. The second approach, Gaussian Process-
based Recurrent Cerebellar Architecture (GPRCA), trains an
online compensator using errors between observations made
by the robot in the task space and those made in the train-
ing environment. This scheme is inspired by the recurrent
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TABLE I
LITERATURE FOCUSED ON TASK ACCURACY

Modeling Scheme Task Robot Dimension
(dr) [mm]

No. of Modules
(Control Signals)

Error
(er) [mm]

Accuracy
( er
dr

x100)%

Non-data-driven Trajectory tracking [10] 110 3 (12) 27.1 24.6

Data-driven
(Open-loop)

line following [11]
circle following [11]

infinity following [11]
hypotrochoid following [11]

400 2 (6)

20± 25
51± 32

21.7± 15.3
49.3± 23.2

5± 6.25
12.75± 8
5.4± 3.8
12.3± 5.8

Data-driven
(Closed-loop)

dynamic reaching [12]
infinity following [13]

wavy circle following [13]
circle following [13]

400
440

2 (6)
2 (6)

26± 32
∼ 12.4
∼ 15.5
∼ 11.8

6.5± 8
2.8
3.5
2.7

architecture proposed in [9]. Both approaches utilize Bayesian
Optimization for improved sample efficiency.

These strategies were evaluated not only for bridging the
training-to-reality gap with task repeatability and desired accu-
racy but also for their adaptability to scenarios that the training
environment could not account for, such as various damage
incidents to the soft arm (see Sect. V-A) and external loads
(details in the supplementary materials). The adaptive nature
of the control strategies, coupled with sample efficiency and
task repeatability, contributes to the overall reliability of soft
robots, complementing the existing literature on overcoming
the training-to-reality gap.

The main contributions of this study, as summarized in Fig.
1, include:

• Deploying a soft arm with nine pneumatic chambers for
obstacle avoidance and a high-precision reaching task
using RL in the robot dynamics domain;

• Bridging the training-to-reality gap by addressing the
soft arm behavioral stochasticity using two online control
strategies (Sect. V-C);

• Successfully performing the reaching task with the soft
arm, even after deliberately damaging it in various ways,
using the proposed control schemes (Sect. V-D);

• Achieving sample efficiency through the use of Bayesian
optimization in the control strategies;

• Demonstrating task repeatability with desired accuracy,
despite stochasticity (Sect. III-B), damage incidents (Sect.
V-A) or external loading (supplementary materials).

II. RELATED WORK

This section lists the available literature on soft robot
modeling and control using learning and non-learning-based
schemes, and comparison of proposed control strategies with
similar literature regarding overcoming the performance gap.

A. Non-learning vs Learning-based Methods for Modeling

When it comes to modeling soft robots, there have been
numerous advancements dealing with a range of challenges
highlighted in the literature, including Constant Curvature
(CC) [14], [15], Piecewise Constant Curvature (PCC) [16],
[17], Piecewise Smooth Curvature (PSC) [18], Cosserat rod
theory [19], [20], and Finite Element Method (FEM)-based
[21], [22]. The approaches explain soft robots’ behavior by
either approximating the curved geometry of a soft uniform
robot using fixed geometrical parameters for single or multiple
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Fig. 1. The figure presents the main contributions of this work. Figure (a) illustrates stochasticity exhibited by the three-module soft arm, where two
independent random actuation-space trajectories were used to actuate the soft arm twice. In each trial, the black and blue represent the first and second
trajectory for the respective actuation-space trajectory, respectively. Figure (b) describes the reaching task with obstacle avoidance with the soft arm in initial
and final positions. Finally, figure (c) shows the comparison between the accuracy, task repeatability and sample efficiency achieved with the policies resulted
from RL, BOAC and GPRCA. Please note, trials 1, 3, and 6 in figure (c) represent collision in RL-policy testing.
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curved segments, or low-order polynomials describing the flex-
ure motion by assuming smooth bending in an elastic beam,
or deriving a set of nonlinear partial differential equations to
compute differential displacements around a set of boundary
conditions for an elastic rod, or lastly computing non-linear
and non-uniform deformations in a soft body, respectively.

Although the underlying behavioral description of soft
robots has improved through new modeling schemes, acquiring
the generic behavior of soft robots even in a controlled
environment is still a long way off [23]. In [24]–[26] soft
robot behavior was emulated by training an Artificial Neural
Network (ANN) on data collected directly on the soft robot.
The behavior was reasonably approximated, although the
stochasticity in the soft platform due to inherent material prop-
erties or extrinsic stimuli still poses a performance discrepancy
between the model and the soft robot.

B. Non-learning vs Learning-based Methods for Control

Controlling soft robots using non-learning-based control
methods is a challenging area mainly due to intrinsic dif-
ficulties in deriving controllers for systems with virtually
infinite degrees of freedom. Most of the literature attempts
to approximate the Inverse Statics (IS) or Kinematics (IK)
of the soft robot to derive controllers. Chirikjian et al. [27]
proposed a modal-approach based on a set of time-varying
backbone curve functions for a hyper-redundant continuum
robot for planar and spatial movements. Coevoet et al. [28]
presented an interactive or contact handling controller based
on an IK model approximation using FEM. Models based on
non-learning have also been used, such as CC, PCC, PSC
and Cosserat models with a closed-loop control scheme in
3D trajectory tracking [29], curvature and bending control
[17], a multi-contact point handling framework for contact
force estimation, end-effector path planning and navigating
obstacles through planar structured environments [30], and
finally planer motion control using sliding mode control [31],
respectively. On the account of restricted capability of soft
robots exhibited under the umbrella of non-learning based
approaches in sophisticated situations, a comparative analysis
of non-learning to learning based was used in [32].

1) Supervised Learning (SL) for Control: This is the most
explored area for the control of soft robots [33]. Among the
pioneering works, [1], [11], [24], [34] use an ANN trained
using SL to approximate IK or forward dynamics model for
position control, quasi-static tracking, dynamic reaching and
self-stabilizing open loop dynamic control, respectively. Simi-
lar approaches also include [25], [26] for position control using
model predictive control and open-loop trajectory tracking,
respectively, on a data-driven model using SL. In this class
of algorithms, either an SL-trained model with an external
controller running feedback optimization has to be used [35]
or a controller trained on a task-specific data [36]. In both
cases, the solution may either lack robusticity/adaptability or
will perform merely qualitatively as in dynamic movement
primitives [37] or probabilistic movement primitives [38]
assisted adaptive controllers to approximate trajectory control.

2) Beyond Supervised Learning for Control: RL for control
[39] has attracted more attention of soft roboticists than
other classes of ML algorithms, using non-learning-based and
learning-based models. Some examples of the former category
are: A Cosserat model simulator in [40] and [41] employed
to follow different trajectories in 2D and 3D under cluttered
environments using RL [42]. SoMo [43], a framework able
to approximate continuum manipulators through rigid link
systems with spring-loaded joints, deployed for a variety of
tasks [44], and also to benchmark RL-controllers. An FEM
simulator [45], which accounts for material properties in a
soft robot deformation, has been exploited for tasks where
interactions with the external environment are required [46].
Commercial simulation engines are also used with a simplified
continuum manipulator for feedback, such as Gazebo to find
an unknown object in the robot workspace [47], and MuJoCo
to reach target-positions with the end effector tip [48] and
distance maintenance for minimally invasive surgery [49].

For the second category, the kinematics or dynamics of a
soft robot are learned using an ANN and employed in an
open loop [11], [50] for self-stabilizing trajectory and position
control, respectively, or closed loop [12], [13] for dynamic
reaching and trajectory following, respectively. As opposed
to conventional or data-driven modeling methods, in [51]
Oikonomou et al. presented a modified version of continuous
actor-critic learning automaton to learn a policy capable of
passing through a series of target waypoints generated using
dynamic movement primitives (and proposed probabilistic
movement primitives for soft robots with stochastic perfor-
mance). Approaches other than RL-based schemes may also
follow a similar trend, such as an adaptive controller, using a
cerebellum-inspired approach built on top of a data-driven IK
model [52] to enable desired trajectory tracking.

C. Overcoming Performance Gaps in Controls
The studies outlined in Table I present controllers in the

soft robot’s dynamic domain, revealing significant declines in
control solution performance when they are tested in evalua-
tion environments. The declines are a result of the controllers’
inability to account for the stochasticity, training-to-reality gap
or any other factor affecting soft robot’s behavior control.

The studies that focus on addressing the behavioral gaps
are either applied directly to the model [53], [54] or to the
derived control solution [55]–[57]. Our proposed schemes
belong to the latter category. For the first category, Fang
et al. [53] proposed learning forward and inverse kinematic
models using neural networks on a simulator. Then, they used
fewer samples directly from the hardware to train additional
layers, which thus mitigated the performance gap. Similarly,
Dubied et al. [54] optimized different elements associated
with the Finite Element Method (FEM), such as meshing
elements and resolution, and numerical damping, to improve
the performance disparity between the simulation environment
and the soft robot’s performance.

For the second category, Johnson et al. [55] combined a
deep neural network with a first-principles model to improve
the overall accuracy of a non-linear model predictive con-
troller (MPC). Despite being quite similar to our proposed
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approaches, this solution does not account for the stochasticity
in the robot’s behavior. The solution in [55] takes 88% more
data samples than our approaches, on average, to reduce the
error in MPC performance by 52%. Our approaches take fewer
samples to reduce the error in RL-policy performance by 67%
on the soft robotic arm while accounting for the training-
to-reality gap and stochasticity, ensuring task repeatability.
Similar approaches are also presented in [56] and [57] to
overcome the performance disparity. Neither of these ap-
proaches accounts for the training-to-reality gap. The scheme
proposed in [56] learns to perform a trajectory in a simulation
environment and validates it (also in the same simulation
environment) by overcoming the uncertainty introduced in the
inverse kinematics. The adaptor is a cerebellar-inspired control
architecture, which takes approximately 75% more data sam-
ples than our solutions to reduce the error by 70%. On the
other hand, [57] uses an RL-agent to learn to compensate for
performance discrepancy. This approach may not be practical
for soft robots as it takes approximately 10 hrs to learn to
provide the compensation.

ML-based schemes can emulate a soft robot’s performance
with a good degree of accuracy and control for a desired
task. However, adapting to the range of soft robot’s behaviors
over time while continuing to perform the intended task
with a similar proclivity is still an active area of research.
In this study, we have targeted this area and successfully
demonstrated overcoming stochasticity, bridging the training-
to-reality gap, and ensuring accuracy in the task execution,
even for scenarios the trained model is incapable of accounting
for, such as damage incidents and external loadings. In the
following sections we attempt to quantify the stochasticity
(Sect. III-B), model the robot dynamics (Sect. III-C), derive a
control policy offline using the dynamics model with an RL
algorithm (Sect. IV-A), present two control schemes (Sects.
IV-B and IV-C), and the obtained results (Sect. V) along with
the policy evaluation scenarios on a soft arm (Sect. III-A).
Finally, we discuss the findings (Sect. VI) and conclude (Sect.
VII).

III. PRELIMINARIES

A. Experimental Setup

The robot in question is a pneumatically actuated three-
module soft continuum arm as shown in Fig. 2b. This platform
was initially designed to provide support to the elderly in
taking shower as presented in [58], [59]. Each module in
the soft arm is independently actuated using three pneumatic
chambers placed at 120◦ in a circular arrangement. Each
pneumatic chamber consists of two McKibben-based flexible
fluidic muscles. The chambers are constrained by thin disks
made of polypropylene. This arrangement ensures bending in
all directions by actuating the chambers individually or in
pairs. Once all three chambers have been actuated simulta-
neously with equal pressure, it produces whole arm extension.
A collection of such behaviors ensure that the space around
the robot is accessible. Since each module is actuated inde-
pendently, the whole arm is capable of exhibiting redundant
behavior, up to a certain degree. This redundancy, along with

adaptive decision-making capability, can be exploited to elicit
recovery from behavior-altering factors, such as repeatable and
reversible damage incidents and external loadings. The soft
arm (with three modules) is operated using nine pneumatic
control signals.

To pneumatically actuate the chambers we used an elec-
tronic proportional microregulator series K8P with an operat-
ing pressure from 0 to 4 bars (400 KPa). For the safety
of the soft arm, the pressure ceiling was set to 1.5 bars
(150 KPa). There were a total of nine regulators responsible
for the low-level control of nine chambers. As a result of
the nine pneumatic signals, we tracked the tip of all three
modules using a motion capture system (Vicon system) with
eight Bonita cameras. We placed three markers arranged at
120◦ on the tip of each module. The markers acted as the three
corners of an equilateral triangle, the center of this triangle
represented the tip position of that module. Additional three
markers were placed on the base of the soft arm to generate the
origin plane for the soft arm which also served as the origin
frame. The cameras of motion capture system were set to
capture different perspectives of the soft robot with redundancy
(i.e., each marker is tracked by at least two cameras) in
order to recreate the entire network of markers. The Vicon
system was set to track the markers at 100 Hz; additional
delays were introduced to synchronize the tracking with our
control/optimization loop. The positions of all the markers
(with respect to the robot origin frame) were published via
ROS to the Python environment for closed-loop control with
the RL-policy.

For the task setting, a fixed cuboid obstacle (5 mm thick
rectangle) was placed with a dimension (in mm scale) ex-
tending from −60.0 to 60.0 in the x direction, −50.0 on the
y axis (with a thickness of 5 mm) and −500.0 to −700.0
on the z axis (according to the robot’s origin plane). The
obstacle was stationary, and mostly restricted the workspace
of the third module and partially the second module of the
soft arm, and completely blocked direct access to the goal-
point. The tip of the third module was required to reach the
goal-point in the 3D robot reference frame, while avoiding a
collision with the obstacle. The learning agent must learn to
use the unrestricted modules of the soft arm, as assistive limbs,
to ensure the tip of the third module reaching the desired goal-
point. Additionally, for faster convergence, the search space of
the policy was restricted by introducing a boundary (in mm)
that extended from −130.0 to 90.0 along x-axis, −150.0 to
50.0 along the y-axis, and −700.0 to −570.0 along the z-axis.
Different environments with varied goal-points in all three axes
(in the third module) were trained and tested with proposed
schemes. With each of these goal-points, the obstacle location
was also varied, mostly along the z axis, to see different ways
in which the policy enabled reaching desired goal-point with
sufficient accuracy. The placement of the goal-points behind
the obstacle made some of the goal-points more difficult to
reach than others. The results with different goal-points are
compiled in Table II along with the evaluation scenarios as
listed in Sect. V-A.
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B. Stochasticity Analysis

The stochasticity in the soft robot’s performance could be
linked to either intrinsic factors (inherent to the material)
such as material hysteresis and its variable elastic properties
due to environmental conditions, etc., or extrinsic factors
(related to the characteristic length and mode of actuation)
such as variable initial positions due to flexible shape, variable
moments of inertia due to imbalanced morphology resulted
from manufacturing inaccuracies, and incomplete depletion of
pneumatic channels during operation.

To study the stochasticity in the soft arm, we created a
random trajectory in the actuator space with nine pneumatic
actuators for the three-module soft arm shown in Fig. 2b. We
conducted ten trials with the same actuation space trajectory.
At the end of each trial, a change in the resting position of
the soft arm was observed due to its flexible morphology. The
difference in the initial conditions introduced visible variability
in the task-space recordings. There is also a possibility that
there are manufacturing inaccuracies in the soft arm, leading
to an imbalanced morphology. This imbalance can cause
variations in the moments of inertia along the length of the
soft arm. Additionally, actuating the pneumatic chambers at
high frequency leaves less time for them to inflate and deflate
fully. These factors, combined with material’s own hysteresis,
contributes to the stochasticity in its behavior.

The first trial in the experiments was taken as the base-
trial and distances of the following trials were computed with
respect to the base trial. Population statistics of the trials, in
the form of a dispersion in the mean distances among the
trials, is shown as a boxplot in Fig. 2. We conducted similar
experiments on a single-module and two-module soft arm as
well that are one-third and two-thirds of the length, approxi-
mately, compared to the three-module soft arm, respectively.
The stochasticity was found to be relatively insignificant in
the single-module and more visible in the two-module arm.

C. Dynamics Modeling of Three-module Soft Arm

To model the dynamics of the three-module soft arm (shown
in Fig. 2b), we used a data-driven modeling technique where
the data gathered on the robot were used in supervised learning
(using a neural network as a function approximator) to predict
the general behavior underlying the gathered dataset. For this
purpose, we collected the tip movements of all three modules
using the Vicon system for a dynamically saturating pressure
signal for 10mins (6000 points at 10 Hz). Here the time cho-
sen can be treated as a hyperparameter, which varies depending
on the soft arm complexity, desired accuracy, and the function
approximator selected for modeling. A pressure ceiling was
set for safe operation. During the data gathering, the pressure
ceiling was varied dynamically, while respecting the safety
threshold, and saturated at that pressure for randomly chosen
time instants for all nine pressure signals. This helped in
acquiring a variety of non-repetitive robot movements within
its workspace.

The movement recorded at an instant t is in terms of a state
(xt) and action (τt) vectors with a dimension of 1x9 each. The
state vector includes the end-effector positions (in task space)
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Fig. 2. The figure aims to quantify the stochasticity in the form of a
distribution, shown in (a), for the soft arm, shown in (b), based on ten trials
conducted using the same actuation space trajectory. The blue box (with
red border) represents the middle 50% of the underlying dataset and the
red horizontal line within the box represents the median of the central 50%
dataset. The lower and upper extreme red whiskers, extending from the box,
represent the minimum and maximum range of the data, respectively. Each
blue circle (with red border) outside the extreme whiskers represent an outlier.

of all three modules, while the action vector has nine signals
for nine pressure chambers. We trained a recurrent neural
network based architecture (using Long-Short-Term-Memory
(LSTM)-type layers) with the gathered data. The architecture
is a single hidden layer with 128 nodes, followed by a Dense
output layer, and a 30% neuron-drop dropout layer with Adam
optimizer and non-linearly decreasing learning rate from 0.001
to 0.0001. We used the softsign activation function for the
input, hidden and output layers. The dataset was normalized
in the range −1 to 1 to optimize the training process. The
network architecture was trained with 30 batch size and 50
epochs. It was treated as a multivariate regression problem
for time-series forecasting. The dynamics model training took
approximately three minutes on a laptop with Python-based
environment, a 64 bit Linux-based operating system, 32 GB
RAM (with 32 GB virtual RAM) and Intel core i7-10750H
CPU@2.60GHz. The trained neural network predicts only a
single time step ahead state vector (xt+1) with an input vector
that includes the pressure signal (τt) associated with the next
state vector, the current state vector and the associated pressure
signal (xt, τt−1), and the past state vector and the associated
pressure signal (xt−1, τt−2).

Fφ(xt+1|X , τ) where
X = [xt, xt−1], and τ = [τt, τt−1, τt−2]

(1)

The dynamics model is shown in Eq. (1). During model
evaluation or use in the training environment, current predic-
tions of the trained dynamics model are used as feedback for
next instant state prediction, accumulating error over time and
therefore, contributing to the training-to-reality gap.
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IV. PROPOSED CONTROL ARCHITECTURE

This section presents the offline policy training using an RL
algorithm for the desired task in a training environment with
the data-driven dynamics model, and the two proposed online
control strategies to recover desired accuracy.

A. Offline Policy Training

PPO algorithm [5] exploits monotonic on-policy improve-
ments, while demonstrating improved sample efficiency in its
class of algorithms, with minimal requirements for hyper-
parameter tuning. For soft robots, its ability to incorporate
adaptive exploration, flexibility in hyperparameter tuning, and
scalability to complex environments is particularly useful. In
this work, we have used this algorithm for offline policy
training.

1) Action and Observation Space: Based on the informa-
tion presented in Sect. III-C, the input and output dimension
is 45 and 9, respectively, as shown in Eq. (1). For the
control policy training, we wrapped our dynamic model in
the training framework presented by openai gym [60] and
employed the algorithmic routine by Haarnoja et al. in [61]
for PPO implementation. The observation space of the learning
agent was a continuous space and consisted of the transition
state (xt+1) predicted by the dynamics model (Fφ) and the
distance of the third-module tip from the goal and the obstacle.
The observation space was normalized in the range −1 to 1
based on the minimum and maximum values (in individual
axes in each module) taken from the dataset used for the
dynamics model training. Similarly, the action space of the
learning agent was also a continuous space vector of nine
signals. Each value in the action space ranged from −0.2 to
0.2.

2) Task Description: The goal of the task was to achieve
high precision in reaching a chosen goal-point in 3D space
while avoiding collision with the obstacle, with a controller
acting in the dynamics domain of the soft arm. High-precision
is assessed in terms of a percentage error i.e., error divided
by the soft arm’s characteristic length. Based on this, the task
objective was set to impose a percentage error of ≤ 1%, i.e.,
≤ 5 mm of acceptable distance error, for a soft arm of length
598 mm, between the tip of the soft arm’s distal module
(denoted by x3t at a time instant t) and the chosen goal-point.
At every instant t, Gdist and Odist, the distances of x3t from
the goal-point and the obstacle respectively, were calculated.
Here, Gdist was always computed using a simple Euclidean
distance formula between current tip and desired goal-point,
while Odist was a Euclidean distance of a 3D point from a
cuboid plane (Pobs) computed using ~n·~V

|~n| , where ~n is a vector
normal to Pobs, ~V is a vector from x3t to an arbitrary point on
Pobs.

The reward function (given in Eq. (2)) for this task was
composed of three parts: 1) Mind the boundary; It limited the
soft arm search space, ensuring faster convergence by avoiding
time spent in space too far from the desired goal. The boundary
in Eq. (2) is represented by B and its limits are described in
Sect. III-A. It also added a constant -2.0 per-step penalty to
encourage policy search for shortest path to the goal-point.

2) Avoid collision; At every step, Odist was calculated. If
it ranged from 20 mm to 10 mm, a warning was generated
and a proportional penalty was added to the overall reward,
but the environment did not reset. The environment reset only
if the collision flag was up and, if it was, the environment
reset with a substantial penalty. The training environment did
not include contact modeling; The collisions were detected
mathematically, at every instant, in two ways: a) intersection
between a line segment l1 = line(xt, xt−1) and a finite plane
Pobs, or b) Odist ≤ 10 mm. 3) Distance to the goal; At
each step, Gdist was also computed, and its negative added
as a continuous penalty to the overall reward. The goal-point
was considered reached if Gdist ≤ 5 mm. Note, the first
and second penalties were quite sparsely distributed, so the
third penalty mainly drove the policy training, nonetheless,
resulting in successfully learning the task in the offline training
environment.

reward =


−100.0 x3t /∈ B
−5.0 ∗ (20.0−Odist) 10 < Odist ≤ 20

−10000.0 ~l1 · ~n 6= 0, Odist ≤ 10

−Gdist Gdist > 5.0
(2)

3) Training: We used a single hidden dense layer with 128
neurons for the critic network and two hidden dense layers
with 64 neurons each for the actor network. For activation in
the actor network, we used softsign in the input, hidden and
output layers. A linearly decreasing learning rate from 0.01 to
0.001 and 0.003 to 0.0001 was selected for the critic and the
actor, respectively. The other hyperparameters were as follows:
episode length to 150 timesteps, batch size to 5, epochs to 10,
and number of policy updates per episode to 6.

To speed up the process, the gym-based training environ-
ment with the dynamics model was vectorized and 4 processes
(one training environment per process) were launched in
parallel to share the rollouts for the policy training. On a laptop
with Python-based environment, 64 bit Linux-based operating
system, 32 GB RAM (with 32 GB virtual RAM), Intel core
i7-10750H CPU@2.60GHz, and NVIDIA GeForce RTX 4080
GPU, the policy training took approximately 3 hrs for a total
of five million timesteps (35000 episodes with maximum 150
timesteps per episode). There was no substantial change in the
reward after 15000 episodes, however, the number of timesteps
needed to reach the goal-point with desired accuracy continued
to decrease. The significance of this point is highlighted in
Sect. VI.

The RL-policy (πθ(τt|xt)) aimed to maximize the reward
function given in Eq. (2), by attempting to reach the goal-
point as fast as possible while avoiding the obstacle. The
policy took continuous actions in the range −0.2 to 0.2, while
the dynamics model accepted actions in the range −1 to 1.
The range −1 to 1 corresponded to the pressure from 0 to
1.5 bars. The gym-based tracking environment kept track of
the action taken by the agent at the previous step. The current
action proposed by the agent was added to the previous action
and passed on to the dynamics model. A constraint applied
in the training environment ensured that the overall action
passed on to the dynamics model was not above the threshold
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Fig. 3. The figure shows offline policy training for the desired task within the
training environment. The training took three hours on average. The policy
training was performed using the reward function as described in Eq. (2).
The subfigure on the top refers to the reward per episode, while the one on
the bottom refers to the average number of timesteps per episode. We set the
maximum length of an episode to 150 timesteps.

(1.5 bars) as it might compromise the safety of the robot
during policy testing. Another constraint was applied to ensure
that the difference between the action passed to the model in
the previous step and current step was not above the safety
threshold: if it was, the environment did not take the action
and added the usual penalty. The safety threshold was set to
0.15 bars.

B. Bayesian Optimization Assisted Coaching (BOAC)

This scheme is based on IL by coaching, inspired from [6]
where there is an oracle responsible for generating trajectories
for a desired task. A student policy is trained by using these
trajectories. The student policy then attempts to predict actions
as good as the oracle’s on the training set. This approach works
particularly well if there exists a significant difference in the
information of the environment available to the oracle and
the student policy [8]. In our setting, the RL-trained policy
(πθ) acted like the oracle while the student policy (πi) was
a new policy trained and optimized based on the trajectories
generated by executing πθ with the soft arm.

IL by coaching also requires a coach as presented by Hal
Daumè et al. [6]. The coach can be a human or a synthetic
agent, responsible for providing the student policy with easy-
to-reach goals and incrementally raising the level to match
the desired goals based on the progress as seen from a value
function. In our case, the coach was a synthetic agent based
on a k-means clustering algorithm, responsible for providing
easy-to-follow trajectories to reach the desired goal-point with
reduced accuracy, and incrementally raising the accuracy to
match desired precision. The progress was tracked based on

a Mean Squared Error (MSE) computed from the currently-
followed trajectory and coach-proposed trajectory. For a given
goal-point and obstacle placement in the training environment,
the RL-trained policy can produce a trajectory that avoids
the obstacle and reaches the goal-point with the desired
accuracy. During the policy evaluation (and also in the training
environment), different trajectories can be obtained, even when
executing the policy in the deterministic mode, by changing
the initial conditions of the dynamics model.

So, different deterministic trajectories were accumulated
in a data buffer Dd and k-means clustering algorithm was
applied on them. The K-means clustering algorithm generated
Lx3 clusters where L was equal to the average length of
the trajectories. The coach was trained for 10 different seeds,
randomly chosen initial centroids, and 300 iterations with a
tolerance of 10−4 using an Expectation-Maximization-style
algorithm [62]. The algorithm took less than a second to train
on the work station defined in the Sect. III-A. The output
cluster was a new path made up of the centroids of clusters
whose points have been visited the more often by the policy
in deterministic mode. The path was treated as a sequential
series of target states (xdt ) to be reached by the student policy
to reach a desired goal-point.

The schematic flow of this approach is presented in Fig.
4 and the algorithm 1. In the algorithm, dπθ represents a
distribution of n episodes as given in Eq. (4) where each
episode consists of T state-action pairs (xt, πθ(xt)). The state-
action pairs were converted into a timeseries in a sequence, as
shown in the Eq. (3), where xt+1 was a state transition from
current state (xt) based on the action (πθ(xt)). Each state-
action pair has an associated reward that was also calculated
from the testing environment with reduced desired accuracy.
Based on these rewards, a total return can be computed for the
nth episode as R(n). N episodes with maximum total return
were sampled from dπθ and stored in the buffer D. This buffer
was used to train and optimize the student policy.

Fig. 4. The figure shows the schematic flow of BOAC. Gaussian process-
based student policy πi was trained and optimized periodically using a data
buffer D to eliminate the training-to-reality gap. The policy takes the desired
(xd) and the current robot state (x) to predict an action (τ ) to reach desired
state.The dotted line underscores the batchwise training of the student policy
based on the joint buffer D ∪Di.

(
xt+1, xt, πθ(xt)

)
←
(
xt, πθ(xt)

)
where t = 1 : T − 1

(3)

dπθ =

{(
x
(n)
t+1, x

(n)
t , πθ(x

(n)
t )
)}T−1

t=1

where n = 1, 2, 3, ...

(4)
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Algorithm 1 Bayesian Optimization Assisted Coaching
(BOAC)

1: Initialize D, Di, Dd, π0
2: D ← Sample N trajectories from dπθ
3: Train π0 on D
4: while not Gf :
5: Coaching trajectories: K-Means Clustering (Dd)
6: while not Lf :

7: Coaching episode:
{
xdt
}T
t=0

8: for i = nB : TB do :
9: (state: xt+1, action: τ it ) ← πi(xt, x

d
t )

10: Reform: Di ← (xt+1, x
d
t , τt) (as in Eq. (3))

11: D ← D ∪Di
12: Re-train: πi+1 on D using MSE loss

Algorithm 1 and Fig. 4 outline this approach once the
coach-proposed trajectories are acquired. π0 in the Algorithm
1 represents the preliminary version of the student policy as
trained on D using MSE as a surrogate loss function. Other
elements in the BOAC include Gf , Lf , Di, (πi), nB and TB
which are the global goal flag (for the desired goal), local goal
flag (surrogate loss below 5 mm), instantaneous data buffer to
store state-action reformed pairs, ith instant of student policy,
batch size for periodic student policy optimizations and total
number of batches inside an episode, respectively. Note that
the student policy was based on a Gaussian process and it
acted as a local inverse dynamics model of the underlying
soft arm.

C. Gaussian Process-based Recurrent Cerebellar Architecture
(GPRCA)

This scheme aims to train an adaptive plant-compensator
based on recurrent cerebellar architecture [9]. It was originally
proposed to compensate for the three-dimensional vestibulo-
ocular reflex to solve the motor-error problem. Porrill et al. [9]
presented it as a converging solution to the modular control
of systems with high degrees of freedom. The architecture
is shown in Figure 2b in [9]. This architecture computes the
training signal (motor-error) for the compensator as e(t) =
x̂(t) − x(t) where x̂(t) is an observation coming from the
plant model, and x(t) is the actual observation.

In our case, the control policy was learned in a training
environment with the dynamics model (Fφ) of the robot as
in Eq. (1). The model was an approximate depiction of a de-
formable robot with virtually infinite degrees of freedom and it
did not account for the intrinsic or extrinsic uncertainties in the
observations. We thus used [9] as an adaptive compensator to
adapt the trained policy to the real environment. We revamped
this recurrent architecture to suit our current implementation as
shown in Fig. 5. The dynamics model took feedback directly
from the soft arm, as shown in Fig. 5, ensuring the information
being fed to it was X = [xt, xt−1], and consequently, the
difference between the training environment and the soft arm
response was captured, at the current instant without any drift,
to train the compensator.

Fig. 5. The figure shows the schematic flow of GPRCA. The approach
employs a Gaussian Process Gπθi to bridge the training-to-reality gap with
e(t) as the training signal and actions proposed by the RL-trained policy as an
input. The output of this process is a compensatory signal for the observation
from the soft robot based on the robot dynamics model used in the original
training environment. The dotted line underscores the batchwise training of
the compensator based on the joint buffer D ∪Di.

At an instant t = 0, the RL-trained policy (πθ) generated an
action based on the arm’s current resting position. The action
was used to generate the next instant observation of the arm
and the training environment. The discrepancy between the
training environment and the soft arm observation generated
the error signal. The rollout dataset (Eq. (5)) was used to train
the Gaussian Process (Gπθi ), which sent a compensatory signal
in order to bridge the gap (the gap is visible in Fig. 7 without
a compensatory signal). In the rollout dataset, et = x̂t − xt
is the sensory-error signal where x̂t = Fφ(πθ(st−1)) with
X = [xt, xt−1] and, xt is the observation from the robot under
the same action πθ(st−1).

D =

{(
πθ(st−1), et

)}T
t=1

where et = x̂t − xt, and x̂t = Fφ(πθ(st−1))
st−1 = xt−1 + ct−1, x ∈ XR and c ∈ Gπθ

(5)

The compensator predicted ct given the input signal (action
predicted by the RL-policy); ct was then added to the obser-
vation for the next instant. The new compensated observation
was used to predict the action for the following instant, and so
on. Based on the current action proposed by πθ, Gπθ produced
the compensatory signal for the next instant, as shown in
Fig. 5 and Algorithm 2. In the algorithm, nB is the batch-
size for training the compensator (it may be considered as
a hyperparameter, we set it to five timesteps) and LE is the
length of the episode executed. This scheme was executed
until it reached the desired accuracy (i.e., until the global goal
flag (Gf ) was raised), as opposed to gradually increasing the
desired accuracy as in Algorithm 1 where there were also local
goal flags (Lf ).

V. RESULTS

This section presents the evaluation scenarios and the results
achieved with the RL-policy and proposed control strategies.

A. Evaluation Scenarios
In the first set of experiments, the RL-policy was tested with

the soft arm in open and closed loop setting to achieve task
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Algorithm 2 Gaussian Process based Recurrent Cerebellar
Architecture (GPRCA)

1: Initialize D, Gπθ0
2: Get Dynamics Model: Fφ, Policy: πθ
3: while not Gf :
4: for i = nB : LE do :
5: ct ← Gπθi (πθ(st−1))
6: x̂t+1 ← Fφ(πθ(st))
7: xt+1 ← robot(πθ(st))
8: Di ← (τt, et+1) (as in Eq. (5))
9: D ← D ∪Di

10: Re-train Gπθi+1 ← D

execution with desired accuracy, without using the proposed
control strategies, demonstrating a performance gap. In the
second set of experiments, labelled as scenario 0 or S0, pro-
posed control schemes were employed to bridge the exhibited
performance gap. In the final set of experiments, proposed
strategies were evaluated for additional four scenarios, show-
casing their adaptability to damage incidents.
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Fig. 6. The figure presents distribution of a dataset representing the per-
formance gap across different evaluation scenarios. The gap distribution was
formed by executing an actuation-space trajectory, as used for the trials in
Sect. III-B, with the soft arm and its dynamics model several times. Mean
Absolute Distance (MAD) error (in millimeters) was computed between the
dynamics model in the training environment and the response of the individual
modules in the soft arm for scenarios 0 to 4.

In the three-module soft arm, each module is independently
actuated with three pneumatic chambers. In scenario 1 or
S1, we disrupted the pressure supply of one of the chambers
in the first module (connected to the base of the soft arm)
by deploying a manual pneumatic rotary knob for pressure
control. Similarly in scenario 2 or S2, we restored the pressure
supply for the chamber in module 1 and disrupted a chamber
in module 2. A similar pattern was also repeated in scenario
3 or S3 where a chamber in module 3 was disrupted, while
the chamber in module 2 was restored. In scenario 4 or S4,
we disrupted two chambers, one in module 1 and another in
module 2. These disruptions forced the soft arm to employ
redundant limbs to compensate for the change in its behavior.
The clear difference in performance among different scenarios
is shown in Fig. 6, which highlights that each subsequent
scenario tends to pose a bigger performance gap than the

preceding one.

B. RL-policy Testing

1) Open-loop Testing: The trained policy was tested in an
open-loop setting with the soft arm, where the instantaneous
positions of the soft arm did not influence the action selected
by the policy. We observed that replicating the sequence of
actions taken in the training environment to reach the desired
goal did not result in the soft arm successfully reaching the
goal-point because of the training-to-reality gap. We conducted
17 trials in this setting, which are summarized in Fig. 7.
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Fig. 7. The figure shows the open-loop testing of πθ . The boxplot presents
four quantities calculated from 17 trials: start-point, final point, minimum,
and average distance from the goal. In all the trials, even with different initial
conditions the training environment achieved a 94% success rate with the
desired accuracy (≤ 5 mm). However, in this setting, policy testing with
the soft arm, the success rate dropped to 0% in terms of achieving desired
accuracy. Nevertheless, in 47% of the trials, the soft arm managed to approach
the goal-point within a range of 15 mm to 25 mm. In approximately 20%
of the trials, a collision occurred, and in the remaining cases, the soft arm
settled at a distance greater than 25 mm from the goal-point.

2) Closed-loop Testing: For closed-loop testing, the dynam-
ics model in the testing environment was replaced with the soft
arm. Instantaneous positions of the soft arm, and distances to
the target and obstacle (calculated in real-time) were fed to
the policy for action-selection. Based on the results with the
open-loop setting, we set the desired accuracy to 15 mm. We
consideried the policy successful if it managed to get the robot
to a distance ≤ 15 mm from the goal-point without collision.
The result with this setting for a total of 21 trials is shown in
Fig. 8.

C. Online Optimization for the Training-to-Reality Gap

It is clear from the training-to-reality gap (S0 from the
Fig. 6) that we need a solution that can generalize well
over the stochastic nature of the robot and the discrepancy
due to the dynamics model. Although the RL-trained policy
was capable of doing this, it lowered the accuracy of task
execution. We now present two control schemes to recover
the desired accuracy.
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Fig. 8. The figure shows the closed-loop testing of πθ with the soft arm. Both
boxplots illustrate four quantities derived from 21 trials: start-point, final point,
minimum, and average distance from the goal (left subplot) and the obstacle
(right subplot). In a closed-loop setting, the observed outcomes included
successfully reaching the goal with the newly defined accuracy threshold
(38%), experiencing a collision (33%), or terminating the episode without
reaching the goal-point or facing collision (29%). On average, the outcomes
took 63, 15, and 150 timesteps, respectively.

1) BOAC for Optimization: The algorithmic flow of this
scheme is introduced in the Algorithm 1. A Gaussian process
[63] based student policy was trained using the data in the
buffer D. The buffer initially has N trajectories sampled from
dπθ . The value of N may be considered as a hyperparameter
here because having an insufficient number of these trajec-
tories may mean that the underlying behavior of the oracle
is not elicited, and too many may cause an increase in the
training time. The value can, in any case, be decided by the
hit-and-trial method. In our case, we chose seven trajectories
(N = 7) with high return to train the initial version of the
student policy (π0).

Figs. 9a and 9b show the results with this scheme
for the desired goal-point [−30.0,−120.0,−620.0], obsta-
cle position x ∈ [−60.0, 60.0], y ∈ [−50.0,−55.0] and
z ∈ [−700.0,−570.0] and boundary for the robot opera-
tion restricted to dimension with x ∈ [−130.0, 90.0], y ∈
[−150.0, 50.0] and z ∈ [−700.0,−570.0]. We executed eight
optimization trials dedicated to three subsequent coaching
profiles (for 15 mm, 10 mm and 5 mm, respectively).
We recorded the results for various different goal-points to
evaluate the effectiveness of this controller in the training-to-
reality gap. The compilation is shown in Table II under BOAC
for S0.

2) GPRCA for Optimization: The algorithmic flow of this
scheme is illustrated in the Algorithm 2. We set the episode
duration to 100 timesteps for this scenario. We tested it with
the same goal as in Sect. V-C1 i.e., [−30.0,−120.0,−620.0],
the position and dimension of the obstacle were also kept
the same. However, given the stochastic nature of the policy,
the boundaries for robot operation were relaxed to x ∈
[−170.0, 80.0], y ∈ [−170.0, 50.0] and z ∈ [−700.0,−570.0].
To draw a conclusion on the comparison of Algorithm 1 and 2,
we also executed this scheme for eight iterations of the online
optimization. The results with this scheme are as shown in
Fig. 10a, and 10b. We were able to achieve the goal-point in
the third trial. In the first two trials, the scheme ran for the
complete episode length without collision. The results for more
goal-points for this scenario are reported in Table II under
GPRCA for S0.

D. Online Optimization for the Damage Recovery

So far, the results for overcoming the training-to-reality
gap have been presented using Algorithm 1 and 2. The
following trials were aimed at evaluating the performance of
the proposed algorithms for scenarios 1 to 4. The RL-trained
policy (πθ) was not re-trained for any damage incident to the
soft arm. However, for each new task setting (i.e., different
goal-point, obstacle location or the search boundary), a new
RL-policy was trained.

1) BOAC for Task Recovery: BOAC was executed for dam-
age scenario 1 while keeping the obstacle position, exploration
boundary, and goal-point the same as in Sect. V-C1. The
results achieved after 15 optimization trials are shown in Figs.
9c, and 9d. We discuss the response of BOAC in Sect. VI,
and the results with more goal-points and damage scenarios
are reported in Table II.

2) GPRCA for Task Recovery: The training environment
with the dynamics model of the soft arm is kept the same, but
the soft arm undergoes various changes due to the damage
scenarios. The compensator was trained in real time with
each different scenario to elicit adaptation to the new soft
arm behavior by learning the modal-mismatch from the initial
training environment to the current behavior of the soft arm.
The experimental set-up remained the same, including obsta-
cle position, exploration/boundary restriction, goal-point, and
desired accuracy.

To adapt to damage scenario 1, GPRCA was executed with
the same number of time-steps as in S0 (100 timesteps per
optimization trial) and the results are shown in Figs. 10c, and
10d. For damage scenarios 2, 3, and 4, the soft arm undergoes
substantial changes not only in terms of reduced workspace
access but also the strength diminishes as the robot starts
to throb (see Sect. VI). Consequently, to adapt to damage
scenarios 2, 3, and 4, we executed the online training of
the compensator for 150 time-steps (as done originally in
the offline training environment). The results achieved for
scenarios 2, 3 and 4 are shown in Fig. 11. The results with
this scheme for different goal-points and damage scenarios are
reported in Table II.

VI. DISCUSSION

Table I reports the decrease in performance when a control
solution derived in a non-data-driven [10] or data-driven [11]–
[13] model setting is tested with the soft robot. The studies,
reported in the table, recorded the performance variation
or degradation as a result of the performance gap (from
the simulation or training environment to the robot) without
presenting any solution for it. Our target here is to impose
high-precision task recovery while overcoming the training-to-
reality gap. IL, traditionally, is a sample-efficient approach but
the results are usually qualitative; However, combining IL with
RL decision-making capability can yield quantitative results,
rendering it an excellent candidate for tackling the problem in
question. BOAC takes inspiration from this approach. Another
novel approach to adaptability can be learning the performance
gap and using it as a compensatory agent, as was presented
in [9]. GPRCA employs similar strategy. Additionally, the

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2024.3381558

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON ROBOTICS, 15 JANUARY 2024 11

Module 1

Module 2

Module 3

(a)
at t=0 at t=T Minimum Average

0

20

40

60

80

100

120

140

D
is

ta
n

ce
[m

m
]

From goal

Distance at 5mm

at t=0 at t=T Minimum Average
0

10

20

30

40

50

60

70

80
From obstacle

(b)

(c)
at t=0 at t=T Minimum Average

0

20

40

60

80

100

120

140

D
is

ta
n

ce
[m

m
]

From goal

Distance at 5mm

at t=0 at t=T Minimum Average
0

10

20

30

40

50

60

70

80
From obstacle

(d)
Fig. 9. The figure presents the results of BOAC implementation for S0 and S1. The 3D trajectories in (a) and (c) represent the response of the soft arm for S0
and S1, across 8 and 15 trials, respectively. These figures also include a zoomed-in 2D top view of the desired goal point with a 5 mm radius circle around
it. The zoomed-in image only shows the coordinates along the x and y axes reached at the end of each trial and the colorbar shows their z-coordinates. The
boxplots in (b) and (d) highlight the distance of the tip from the goal and the obstacle (left and right sub-figure, respectively) for scenarios 0 and 1, after 8
and 15 trials, respectively. Each trial in both scenarios is 30 timesteps (3 sec) long.

practicality of such adaptive approaches for soft robots require
sample efficiency. Therefore, BO was employed in BOAC and
GPRCA. The resultant time and accuracy of our approaches
have been compared with similar studies found in the literature
(refer to Sect. II-C).

Table III reports the average time (offline and online training
time) and accuracy for RL, BOAC and GPRCA across all the
conducted trials where the goal was reached (with or without
damage) for all the goal-points and obstacle positions. On
average, GPRCA takes longer in online training compared
to BOAC, but both manage to get the sufficient accuracy.
Although the online training time seems longer for GPRCA,
it actually took fewer episodes than BOAC. This is because
BOAC exploits on the coach-proposed trajectories, which are
always of the same length (30 timesteps as in Fig. 9, 21 for
G1 as in Table II, and so on). GPRCA, on the other hand, is
executed freely with chosen timesteps per episode. In many
cases, restarting the episode more often is considered less
favorable than letting an optimization run for longer timesteps.
So, BOAC performs effectively if a smoother performance
is required as shown in the Fig. 9 but the user may have
to restart the optimization episode more often. GPRCA per-
forms effectively in the other situation (when restarting the
optimization episode more often is less favorable Figs. 10
and 11). Additionally, executing GPRCA for higher timesteps

results in the compensator learning the gap better. In the
trials shown in Figs. 10 and 11, by continuing to execute
GPRCA after the goal-point has been reached with the desired
accuracy, the compensator continues to learn effectively from
the modal-mismatch and manages to reach the goal faster in
the subsequent trials.

Fig. 6 highlights that the performance gap increases with
each successive scenario. In addition, the soft arm also un-
dergoes workspace reduction as the pressure supply to the
pneumatic control chambers is interrupted. In the subsequent
goal-points and scenarios, the optimization process in BOAC
has slowed down, as can be seen in Table II. As a result,
it is also possible that the goal may not be reached as the
student policy may saturate or simply start diverging due
to error compilation after a significant number of trials, as
observed in S2 of G1, G2 and S0 of G3 (error percentage
is ≥ 1%.). Since GPRCA trains the compensator (Gπθ ) from
scratch based on the modal-mismatch at that point, the soft
arm is able to reach the goal-points, even in later goal-points
and scenarios. However, the number of optimization trials
increases, as shown in Table II. For the goal-point G3 in S3
and S4, the error percentage is ≥ 1% even with a significant
number of iterations. This could be attributed to either the
soft arm’s current damage, making the goal unreachable, or
the significant divergence between the policy generated in the
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(a) (b)

(c) (d)

Fig. 10. The figure shows the results of algorithm 2 implementation, using episode length of 100 timesteps, for S0 and S1 for a total of 8 and 5 trials,
respectively. The points reached at t = T for all the trials are shown in (a) and (c) for S0 and S1, respectively. Same as before, the boxplots in (b) and (d)
represent the distribution of the dataset resulted from the GPRCA trials for S0 and S1. On average, S0 and S1 reached the goal-point in 73 and 77 timesteps
after 2 and 3 trials, respectively.

initial training environment and the one needed for the robot’s
current setting.

We conducted an additional set of experiments (included in
the supplementary material of this study) with a two-module
soft arm for trajectory tracking problem, with and without
external loads attached to the tip of both modules. The policy
was trained using an RL algorithm with a data-driven model
with no knowledge of the external loading. Consequently, the
policy performance degraded with the new soft arm setting
due to an increase in the stochasticity and a decrease in the
workspace of the two-module soft arm, as it was also seen
when we deliberately damaged the three-module soft arm.
BOAC and GPRCA managed to improve accuracy in trajectory
tracking, with external loading, reducing the Mean Absolute
Error (MAE), on average, by 84% and 93%, respectively,
without retraining the RL-policy with the new soft arm setting.

We listed imbalanced morphology due to manufacturing
inaccuracies, varying material properties, and incomplete de-
pletion of the pneumatic chambers as the factors responsible
for the soft robot’s stochasticity. This variability combined
with the drift and error-accumulation over finite horizon by
the dynamics model are the root causes for the training-to-
reality gap. However, there are other factors responsible for
the task performance degradation. For instance, the ability of
a control solution is greatly affected due to the task execution
speed as reported in [24] where the gap for kinematic control

to dynamic control solution exhibited almost 50% increase in
error (MAE changed from 12−27 mm to 22−44 mm). while
our approaches bridge the gap, they do not present solution
for the setting where the task constraints have changed, such
as different goal-point, obstacle location or task domain (e.g.,
kinematics or dynamics). To tackle new task settings, a more
generic policy (e.g., meta or multi-task policy) or an additional
state- or action-exploration-based policy search algorithm may
be required.

VII. CONCLUSIONS

We have highlighted the challenges in controlling soft robots
arising from their inherent stochastic behavior, which is influ-
enced by different elements such as elastic material properties,
flexible shape, variable initial conditions and manufacturing
inaccuracies. RL-based algorithms enable training intrinsically
stable control policies, making them a strong candidate for
soft robots’ control problem. However, despite their adaptive
nature, stochasticity hinders their direct application to soft
robots, reducing the task-precision achievable in deploying
them. This issue is exacerbated in applications that require
high precision. We thus developed two strategies, built on top
of the trained RL-policy, that leverage the data-efficient nature
of the BO and critical problem-solving capability of the PPO
algorithm. We successfully demonstrated that our schemes
achieve the desired accuracy while bridging the training-to-

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2024.3381558

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON ROBOTICS, 15 JANUARY 2024 13

(a) (b)

(c) (d)

(e) (f)

Fig. 11. The figure shows the results of algorithm 2 implementation, using episode length of 150 timesteps, for S2, S3 and S4 for a total of 8, 10, and 11
trials, respectively. The points reached at t = T for all the trials are shown in (a), (c), and (d) for S2, S3, and S4, respectively. The goal for S2 is reached in
the sixth trial, for S3 in the ninth, and for S4 in the tenth, with an average of 97, 120 and 106 timesteps, respectively.

reality gap. Notably, they effectively overcome stochasticity
despite encountering a range of behavior-altering situations
unaccounted for during policy training, including intentional
damage incidents and external loads, all without needing to
retrain the RL-policy from scratch. The results were compiled
for additional goal-points in the 3D space against all damage
scenarios. We plan to expand this work to adapt to changes
in the soft robot’s behavior caused by temporally dependent
material properties (wear and tear, aging, etc.) and various
external conditions (temperature, pressure, humidity, etc.).
We believe that this research will help contribute to making
the field of soft robotics more approachable, reliable, and

adaptable.

ACKNOWLEDGMENTS

This work was carried out in the BRain-Inspired Robotics
Lab (BRAIR Lab), The BioRobotics Institute, Scuola Su-
periore Sant’Anna in collaboration with the Soft Robotics
Lab, National University of Singapore. It is funded by the
European Union’s Horizon 2020 Research and Innovation
Programme within the framework of the project SMART (Soft,
Self-responsive Smart Materials for Robots) under Marie
Skłodowska-Curie Actions (MSCA), Innovative Training Net-
work (ITN) with grant agreement no. 860108 and the project
PROBOSCIS with grant agreement no. 863212.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2024.3381558

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON ROBOTICS, 15 JANUARY 2024 14

TABLE II
RESULTS FOR ADDITIONAL GOAL-POINTS AND OBSTACLE LOCATIONS WITH ALL DAMAGE SCENARIOS

Goals G1: [+50.0,−100.0,−620.0] G2: [−50.0,−100.0,−625.0] G3: [−45.0,−100.0,−645.0]
Obstacle pos z = [−700.0,−610.0] z = [−700.0,−610.0] z = [−700.0,−570.0]
Parameters
Definition

P1: Total no. of trials P2: Timesteps per trial P3: Goal Flag P4: Total Collisions
P5: Final distance from goal at the end of trials in [mm]

Algorithm: Bayesian Optimization Assisted Coaching (BOAC)

Params

P1
P2
P3
P4
P5

S0 S1 S2 S3 S4

8 9 14 − −
21 21 21 − −

True True False − −
0 0 0 − −

4.39 4.93 7.1 − −

S0 S1 S2 S3 S4

8 14 18 − −
24 24 24 − −

True True False − −
0 0 0 − −
5.2 6.1 9.0 - -

S0 S1 S2 S3 S4

18 − − − −
27 − − − −

False − − − −
5 − − − −

11.1 − − − −
Algorithm: Gaussian Process-based Recurrent Cerebellar Architecture (GPRCA)

Params

P1
P2
P3
P4
P5

S0 S1 S2 S3 S4

3 3 5 6 9
86 92 89 94 75

True True True True True
0 0 0 0 3
5.4 4.7 3.5 5.5 4.4

S0 S1 S2 S3 S4

3 4 6 8 13
80 74 87 87 89

True True True True True
0 1 1 2 4
4.2 4.1 4.8 5.4 5.2

S0 S1 S2 S3 S4

4 5 7 14 −
82 89 83 98 −

True True True False −
0 0 2 5 −

2.55 4.68 5.53 10.38 −

TABLE III
AVERAGE TIME AND ACCURACY ACROSS ALL THE EXPERIMENTS

(INCLUDING DIFFERENT GOAL-POINTS AND SCENARIOS) WITH THE
THREE-MODULE SOFT ARM

Parameter Vs.
Approach

RL BOAC GPRCA

Offline Training
Time [hrs]

Approx. 3 - -

Online Training
Time [sec]

- 30.9± 23.3 57.85± 34.4

Final Accuracy
[mm]

42.6± 25.3 6.56± 10.5 4.41± 1.84
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