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Fast and Accurate Deep Loop Closing and
Relocalization for Reliable LiDAR SLAM

Chenghao Shi∗, Xieyuanli Chen∗, Junhao Xiao†, Bin Dai, Huimin Lu†

Abstract—Loop closing and relocalization are crucial tech-
niques to establish reliable and robust long-term SLAM by
addressing pose estimation drift and degeneration. This article
begins by formulating loop closing and relocalization within
a unified framework. Then, we propose a novel multi-head
network LCR-Net to tackle both tasks effectively. It exploits
novel feature extraction and pose-aware attention mechanism
to precisely estimate similarities and 6-DoF poses between pairs
of LiDAR scans. In the end, we integrate our LCR-Net into a
SLAM system and achieve robust and accurate online LiDAR
SLAM in outdoor driving environments. We thoroughly evaluate
our LCR-Net through three setups derived from loop closing and
relocalization, including candidate retrieval, closed-loop point
cloud registration, and continuous relocalization using multiple
datasets. The results demonstrate that LCR-Net excels in all
three tasks, surpassing the state-of-the-art methods and exhibit-
ing a remarkable generalization ability. Notably, our LCR-Net
outperforms baseline methods without using a time-consuming
robust pose estimator, rendering it suitable for online SLAM
applications. To our best knowledge, the integration of LCR-Net
yields the first LiDAR SLAM with the capability of deep loop
closing and relocalization. The implementation of our methods
will be made open-source.

Index Terms—Autonomous Driving, 3D Registration, Deep
Learning, Loop Closing, Relocalization

I. INTRODUCTION

S IMULTANEOUS localization and mapping, also known as
SLAM, plays a fundamental role across domains such as

autonomous driving, robotics, and computer vision. Ensuring
the reliability and stability of a SLAM system is crucial
for practical applications. External sensors like GPS and
IMU are commonly employed to enhance SLAM in real-
world scenarios, but challenges arise when they are inac-
cessible or unreliable. Hence, attaining enduring reliability
in LiDAR-only SLAM becomes important yet challenging.
Relocalization and loop closing are pivotal techniques within
this context. Relocalization refers to recovering the global
pose in local tracking failure, whereas loop closing involves
identifying previously visited locations to correct the drift in
pose estimation. Despite different objectives, both techniques
share similar underlying concepts. They both first coarsely
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Fig. 1: Our proposed LCR-Net for loop closing and relocalization.
LCR-Net solves both tasks by first retrieving the most similar frame
from the map and then estimating the 6-DoF pose.

locate the most similar candidate in the map relative to the
current scan, followed by a fine relative pose estimation.

More specifically, current LiDAR loop closing usually first
project point clouds into image-like formats to generate global
descriptors and estimate 1 degrees of freedom (DoF) [1] or
3-DoF poses [2]–[4]. To achieve full 6-DoF LiDAR loop
closing, multiple existing methods [5]–[7] using bag-of-words
(BoW) [8]. Such methods extract local features to construct
BoW models and utilize such models for loop closure detec-
tion and feature matching. The final poses are then obtained by
registering the matched features. Since deep neural networks
have shown great advances in perception tasks, recent studies
have also employed deep learning approaches [9]–[11] for
LiDAR loop closing. However, they still follow a similar struc-
ture as BoW, albeit using learning-based approaches instead of
hand-crafted local features extraction and BoW model. These
techniques face a dilemma: obtaining a comprehensive rep-
resentation of environmental features often requires a deeper
encoder. However, a deeper encoder diminishes the count of
local features, potentially hindering accurate localization. Ad-
ditionally, improving registration performance often involves
integrating more complex designs into local feature extraction,
thereby substantially reducing global description efficiency.

Therefore, despite loop closing and relocalization sharing
similar underlying techniques, few works have specifically
been proposed for LiDAR relocalization. When local pose
tracking degenerates, some point-based SLAM [12] incor-
porates additional sensors and switches to camera [13] or
IMU [14] odometry mode, while some surfel-based meth-
ods [15], [16] fall back from frame-to-map to frame-to-frame
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pose estimation to avoid errors caused by distorted maps. To
our best knowledge, no prior research has addressed both
LiDAR loop closing and relocalization simultaneously. In this
article, we aim to tackle LiDAR loop closing and relocalization
using a joint framework with a novel multi-head network,
named LCR-Net, offering four main contributions as follows:

Firstly, we revisit the challenges of addressing LiDAR loop
closing and relocalization separately. We identify limitations
within the current paradigm and propose a new framework
for solving loop closing and relocalization simultaneously
(Sec. III). Our framework leverages the shared techniques
underlying these two tasks, integrating them within a coherent
coarse-to-fine framework. This framework concurrently ad-
dresses both tasks, beginning with generating global descrip-
tors for an initial coarse global candidate search. Subsequently,
the framework generates dense local features to facilitate
precise 6-DoF pose estimation. Through such a framework, we
circumvent dilemmas arising from the requirements of these
two tasks, providing a solid foundation for improved candidate
retrieval and registration performance.

Following our framework, we then introduce a novel multi-
head network LCR-Net (Sec. IV). It employs a shared
encoder backbone to downsample and encode the point cloud
into three types of sparse features. These features are then
processed separately in two distinct heads. One head generates
lightweight global descriptors for each scan, enabling fast
candidate retrieving. The other head establishes initial sparse
matches and then extends them to dense ones for accurate reg-
istration. Unlike existing methods using only sparse features,
our approach exploits fast dense feature matching based on the
neighborhood consistency, achieving accurate and fast pose
estimation for online applications without requiring costly
robust estimator or iterative pose refinements. To effectively
train the multi-head network, we also introduce novel losses
with a specific training strategy, which leads to state-of-the-
art (SOTA) performance compared to all existing baselines.

To enhance the performance on both tasks, we present
the third contribution as the novel keypoint detection mod-
ule (Sec. IV-A) comprising two novel sub-modules, 3D-
RoFormer++ enabling geometric and contextual informa-
tion aggregation, and VoteEncoder for reliable keypoint
detection and encoding. Keypoint detection module offers
three types of features, enabling fast global descriptor genera-
tion and dense reliable match establishing. Initially, it rapidly
samples and encodes uniform features across the point cloud
for overall representation of the environment. Subsequently, to
enhance the features and make them salient and discriminative
for improving registration, we introduce 3D-RoFormer++ and
VoteEncoder. 3D-RoFormer++ enhances the representation
capability of local features with contextual and structural
information by enabling the information exchange between the
two point clouds. The other module, VoteEncoder effectively
downsamples the points while identifying keypoints lying on
geometrically significant regions and subsequently aggregating
the features from their neighbors. The VoteEncdoer can sig-
nificantly enhance registration robustness and accuracy by im-
proving the coverage of matching points over the overlapping
area of point clouds. The superior improvement brought by

VoteEncoder highlights the importance of the match distribu-
tion OVER inilier ratio, offering valuable insights (Sec. VI-H)
for future research on point cloud registration.

The fourth contribution is the first LiDAR SLAM system
with the capability of deep learning-based loop closing and
relocalization (Sec. V). We build a full LiDAR SLAM system
based on our proposed deep loop closing and relocalization
method. The system effectively tackles the local pose tracking,
loop closing, and relocalization in parallel. Enormous test
of our SLAM system in diverse environments and situations
showcase the effectiveness and robustness after integrating our
proposed LCR-Net.

We extensively evaluate our approach on three setups
derived from loop closing and relocalization: candidate re-
trieval, closed-loop point cloud registration, and continuous
relocalization. The results demonstrate that i) our approach
outperforms respective baselines and dominates the SOTA in
all three tasks, in particular, ii) our approach achieves the
best candidate retrieval performance with a simple architecture
benefiting from the feature representation capability of the
backbone, iii) our approach boosts the baseline by a large
margin in registration tasks, even outperforms the baseline
method refined by ICP [17], iv) the SOTA registration per-
formance can be achieved efficiently without requiring for a
costly RANSAC estimator. We also conduct tests on multiple
sequences to assess the performance of our SLAM system.
The results depict that integrating our proposed LCR-Net,
our SLAM system is capable of addressing the relocalization
and loop closing challenges. In the loop closing task, our
approach outperforms the most commonly employed loop
closing approach, Scan Context [18] combined with ICP. In
addition, we provide detailed ablation studies to demonstrate
the effectiveness of our design.

II. RELATED WORK

While various studies have been conducted for the founda-
tional techniques underlying loop closing and relocalization,
including candidate retrieval and point cloud registration, few
work can simultaneously address both tasks. Therefore, we
first introduce the underlying techniques and then explore the
recent advancements in loop closing and relocalization.
Candidate retrieval, also known as place recognition or loop
closure detection, compares the current sensor observation
with pre-built maps to determine the approximate location
of the robot within the map. LiDAR-based loop closure
detection approach can be categorized into global descriptor-
based methods and local descriptor-based methods.

Global descriptor-based methods, such as Scan Con-
text [18], represent point clouds as overhead views and encode
different segmented spaces to construct global descriptors.
Wang et al. [19] extract descriptors using LoG-Gabor threshold
filtering and measure similarity using Hamming distance.
These methods require additional functions to evaluate the
similarity of places, which significantly reduces computa-
tional efficiency when the map size increases. Recent works
exploited advanced deep learning techniques and generated
global descriptors for more robust loop closure detection.
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For example, PointNetVLAD [20] first extracts local features
and then aggregates them into global descriptors. Different
from methods that directly operate on raw point clouds, Zhou
et al. [21] transform point clouds into NDT and combine
them with Transformer [22] to generate descriptors. Over-
lapNet [1] introduces a deep learning-based method, which
estimates the overlap and relative yaw angles of a set of
point clouds for place recognition and initial pose estimation.
Ma et al. [23]–[25] combine OverlapNet with Transformer to
propose a rotation-invariant global descriptor. While the global
descriptor-based methods can identify loop closures, they lack
the ability to accurately estimate the 6-DoF pose between the
current scan and the loop candidate.

On the other hand, local feature-based methods typically
extract local sparse features from point clouds [26], [27]
and organize them using a bag-of-words model for place
recognition [6], [7]. These methods are capable for 6-DoF pose
estimation based on local feature correspondences. However,
extracting stable and reliable local features from 3D LiDAR
scan is a challenging task, which limits the performance of
such methods. Recently, LCDNet [9] employs a deep learning-
based method PVRCNN [28] for robust feature extraction and
then utilizes NetVLAD [29] for global descriptor generation.
FinderNet [4] circumvents the challenge of feature extraction
from point clouds by converting them into Digital Elevation
Maps (DEMs) and leveraging a CNN network to extract
local features and global descriptors. However, converting
point clouds to DEM makes it challenging to estimate 6-
DoF poses. In contrast, our method operates directly on point
clouds, bypassing the challenge of estimating pose on sparse
correspondences while possessing both loop closure detection
and accurate 6-DoF pose estimation capability.

Point cloud registration refers to the process of determining
the relative spatial transformation that aligns two point clouds.
Extracting accurate correspondence is the most challenging
aspect. Once correspondences are established, the transforma-
tion can be solved using either a direct solver or a robust
estimator [30]. The iterative closest point (ICP) algorithm [17]
and its various variants [31], [32] are known and applied
methods. These methods establish correspondences iteratively
using nearest neighbor search or other heuristics. However,
the common drawback among ICP-like methods is that they
heavily rely on good initial estimates for the transformation.

To release the requirement of initial estimates, other meth-
ods opt to establish correspondences on local features [27],
[33] to achieve global registration. Due to the powerful feature
representation capabilities exhibited by deep learning, mas-
sive learning-based methods for feature extraction have been
proposed. Deng et al. [34], [35] propose PPFNet and PPF-
FoldNet, which combine point pair features (PPF) with Point-
Net [36] to generate local patch representations for match-
ing. In contrast to PPFNet and PPF-FoldNet, which estab-
lish correspondences on uniformly sampled points, keypoint-
based techniques sample points based on pre-defined [27]
or learned saliency [37]–[40] to achieve better repeatability.
Due to the inherent errors introduced by individual matches,
more matches usually lead to higher registration accuracy.

However, the aforementioned methods establish matches on
sparse keypoints generated through uniform sampling [34],
[35] or keypoint detection [37]–[40], which limits their reg-
istration accuracy. Recently, some studies [41]–[43] employ a
coarse-to-fine mechanism that initially seeks correspondences
on sparse keypoints and then extends them to dense ones,
showing potential in registration. To enhance the reliability of
sparse keypoint correspondences, CoFiNet [41] exploits trans-
former for contextual information aggregation and GeoTrans-
former [42] introduces geometric transformer to incorporate
relative geometric information. RDMNet [43] introduces 3D-
RoFormer for fast and lightweight relative geometric informa-
tion encoding and the voting scheme for keypoint detection.
HRegNet [44] extracts multi-level features and refines the
transformation hierarchically. Despite the rapid advancements
in global registration methods, these studies have remained
disconnected from the challenges of loop closing and relocal-
ization, lacking the ability of similarity evaluation.

Loop Closing and Relocalization both need to first find a
coarse location and then estimate the fine 6-DoF pose. Though
the individual techniques are widely explored, as discussed
in the previous review, few work can address both tasks
simultaneously. OverlapNet [3] and FinderNet [4] are capable
of estimating 1-DoF or 3-DoF poses while implementing loop
closure detection. These methods have also shown success in
achieving 6-DoF loop correction when combined with other
local registration techniques. However, in more challenging
scenarios involving large pose drift or relocalization, non-6-
DoF pose estimation is insufficient. BoW3D [7] and LCD-
Net [9] achieve loop closure detection and 6-DoF pose estima-
tion by extracting local features. Nevertheless, the accuracy of
sparse local feature-based registration is constrained, requiring
additional refinement through local registration techniques
such as ICP. Therefore, these methods are evidently unsuitable
for relocalization tasks where local registration have already
failed and rapid online pose recovery are required.

To address system degeneration, most approaches integrate
additional sensors such as camera [13], IMU [14], or ultra-
wideband (UWB) [45], and switch between different tracking
modalities. However, to the best of our knowledge, no piror
LiDAR-only method has been proposed to achieve relocal-
ization handling system degeneracy. This can be attributed
to the challenge in achieving accurate LiDAR-based global
registration when local pose tracking has already failed.

In the field of visual SLAM, however, due to the success in
visual feature extraction, loop closing and relocalization have
been well-explored. ORB-SLAM [46] extracts ORB features
to form a BoW model for loop closing. When local tracking
fails, ORB-SLAM switches from frame-to-frame alignment
to frame-to-map alignment to find more potential landmark
matches for relocalization. OA-SLAM [47] achieves more
robust relocalization by relocalizing with reconstructed objects
instead of local landmarks. Our approach, however, seeks to
generate global descriptors to achieve rapid similarity evalua-
tion for candidate detection in loop closing and relocalization.
Additionally, a robust and accurate enough global registration
method is employed to achieve 6-DoF pose estimation.
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(a) Common framework (b) Our framework

Fig. 2: Comparison of common framework and our framework. Our
framework introduces decoder with skip connections for denser local
feature generation.

III. PROBLEM DEFINITION

We aim to address the challenges of loop closing and
relocalization for LiDAR-based SLAM in outdoor driving
environments. The underlying techniques of relocalization and
loop closing are similar: both tasks involve the identification
of the most similar candidate scan from the existing map and
subsequently determining the 6-DoF pose. This commonality
provides a foundation for addressing both tasks within a
unified framework. However, the technical focus of the two
tasks is quite different. Firstly, in the case of loop closing, the
main challenge lies in rapidly and accurately identifying loop
closures within a large database. In most cases, loop closures
are identified when there is a substantial overlap between
the current and candidate scans, simplifying the subsequent
registration process once the loop closure has been correctly
identified. Conversely, selecting the candidate scan for relo-
calization is relatively straightforward. In many autonomous
driving situations, simply opting for the most recent scans can
be sufficient. Instead, the primary challenge of relocalization
lies in achieving precise and rapid global registration, as local
pose tracking even with the aid of prior information has
failed in such situations. This typically occurs in challenging
scenarios that involve low overlap, extensive occlusions, or
degraded scene features, posing significant challenges for point
cloud registration. Secondly, loop closing can be executed at
a relatively low frequency as a few correctly closed loops are
sufficient to eliminate accumulated error. However, relocaliza-
tion needs to be fast as it directly affects online localization.
A longer relocalization process results in reduced overlap
between the current scan and the map, decreasing the success
rate of relocalization. While numerous works have focused
on loop closing, the demanding requirements of robustness,
accuracy, and speed in registration could be the primary reason
for the limited attention to relocalization. To address this
issue, we aim to initially study the framework to support the
requirements of both tasks.

A commonly employed framework for simultaneously sim-
ilarity evaluation and registration is shown in Fig. 2a. For
an incoming LiDAR scan P = {pi ∈ R3}Ni=1, it initially
downsamples and encodes the point cloud into local features
[P̂|F̂] = fEncoder(P) and then generate a global descriptor
V = fEncoder2(P̂, F̂) based on these local features. The
global descriptor V is exploited to exhibit similarity for
candidate frame retrieving and the local features [P̂|F̂] are
matched for pose estimation. Such a framework encounters a
dilemma: A deeper encoder is often required to obtain reliable
global feature representations. Nevertheless, a deeper encoder

tends to yield a reduced number of local features, potentially
undermine registration performance. Conversely, enhancing
registration performance often entails the incorporation of
more complex designs into the encoder, consequently reducing
global description efficiency. This is a crucial consideration in
candidate retrieval tasks. Based on this insight, we propose
the framework shown in Fig. 2b. We leave the workflow
of global descriptor generation untouched but incorporate
a decoder with skip connections for denser local feature
generation F = fDecoder(P̂|F̂). Though simple, this resolves
the conflict between the requirements of the two tasks. The
incorporation of dense local features has the potential to
enhance registration performance by establishing more correct
matches, while ensuring the efficient generation of global
descriptors. However, maintaining the match quality in an
increased search space can be difficult and time-consuming.
We thereby have implemented a sparse-to-dense matching
approach to improve the matching process for reliable and
fast registration. By exploiting different types of features and
a multi-head network, we concurrently address the disparities
between loop closing and relocalization tasks while leveraging
their shared characteristics to unify them within a single
framework. More detailed description of the proposed network
following our framework are introduced in the next section.

IV. LCR-NET: LOOP CLOSING AND RELOCALIZATION
NETWORK

To realize our proposed framework, we design a novel
multi-head network, named LCR-Net. As shown in Fig. 3,
it consists of a keypoint detection module (Sec. IV-A) to
extract keypoints from the raw point cloud, a global descrip-
tion head (Sec. IV-B) for global descriptor generation and
a dense point matching head (Sec. IV-C) for local feature
generation and matching. The devised loss function and the
training strategy of our approach are detailed in Sec. IV-D
and Sec. IV-E respectively.

A. Keypoint detection module

The keypoint detection module aims to downsample the
point cloud into sparse keypoints for further processing in two
heads. In this work, we utilize KPEncoder [48] as the starting
point for extracting the features. KPEncoder comprises a series
of downsampling and kernal point-based convolution (KP-
Conv) blocks, enabling hierarchical encoding of the point
cloud into the uniformly distributed keypoints with descriptors
[P̂|F̂]. These features provide sufficient information about the
overall structure of the point cloud and are well-suited for
input into the global description head. However, the uniformly
sampled keypoints can not satisfy the demand for accurate
registration due to their limited repeatability and saliency. They
suffer from a lack of information exchange between two scans.
To address these limitations and enhance feature matching,
we introduce the 3D-RoFormer++ to reason about contextual
information in both point clouds. In addition, we propose a
new VoteEncoder that shifts the keypoints to nearby significant
regions based on enhanced features and generates the final
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Fig. 3: Pipeline overview. LCR-Net consists of three main components: a keypoint detection module, a global description head, and a
dense point matching head. The keypoint detection module extracts three types of features for further processing in two heads. The global
description head generates a global descriptor for fast candidate retrieval. The dense point matching head exploits a sparse-to-fine approach
to establish dense point matching for 6-DoF pose estimation.

keypoints by predicting the center points. We provide detailed
descriptions of each component below.

3D-RoFormer++. In our previous work, the 3D-
RoFormer [43] is introduced for lightweight relative
pose-aware contextual aggregation. In this article, we have
brought 3D-RoFormer to maturity and present the 3D-
RoFormer++ by providing valuable translational invariance
and enhanced feature representation performance. The 3D-
RoFormer is built upon the vanilla transformer [22]. For a
point pQ

i with its feature hQ
i in the query point cloud Q and

all the points in the source point cloud S, the transformer
computes the query qi, key kj , and value vj feature maps
with linear projections:

qi = W 1 f
Q
i + b1,

kj = W 2 f
S
j + b2, (1)

vj = W 3 f
S
j + b3.

If Q,S represent the same point cloud, Eq. (1) generates
the feature maps for self-attention operation, otherwise cross-
attention. In addition to the contextual features, 3D-RoFormer
encodes the position p̂i ∈ R3 into the rotary embedding

Θi = [θ1, θ2, · · · , θd/2] ∈ R d
2 :

Θi = frot(p̂i)) (2)
= 2π · sigmoid(MLP(p̂i)). (3)

By treating each element in Θi as a rotation in a 2D
plane, it can be converted to a rotation matrix formulation
RΘi ∈ Rd×d:

RΘi =


cos θ1 − sin θ1 · · · 0 0
sin θ1 cos θ1 · · · 0 0

...
...

. . .
...

...
0 0 · · · cos θ d

2
− sin θ d

2

0 0 · · · sin θ d
2

cos θ d
2

 . (4)

Applying RΘi and RΘj to query qi and key kj respectively
in self-attention operation, the rotary self-attention in 3D-
RoFormer can be written as:

α′′
ij = softmaxj((RΘi

qi)
TRΘj

kj), (5)

f̃ i =

|P̂|∑
j=1

α′′
ijvj . (6)
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[P̂, F̃]
S Ŝ

[Ŝ,H]

[P̂, F̃]

Fig. 4: The VoteEncoder takes sparse features as input, and generates
offset from each keypoint to its nearest significant region. The final
keypoints are estimated using centroid prediction algorithm, and their
features are aggregated by KPConv. The ground points are removed
from the visualization for clarity.

The Eq. (5) can be further written as:

α′′
ij = softmaxj(qT

i RT
Θi

RΘj
kj),

= softmaxj(qT
i RΘj−Θi

kj). (7)

The important advantage of 3D-RoFormer is that it explic-
itly encodes the relative geometric information neatly without
requiring extra-large storage memory for relative position
embedding. As in Eq. (7), relative “rotation” Θj − Θi is
naturally incorporated into the calculation and then fused with
the output feature f̃ i in Eq. (6). Furthermore, if the mapping
function frot is linear, we can further derive:

Θj −Θi = frot(p̂j − p̂i). (8)

This leads to a very important property for keypoint de-
tection which is translation-invariance. However, designing
a frot that provides good rotary feature representation while
maintaining linearity is challenging. To ensure the ability of
rotary representation, the rotary embedding in the original 3D-
RoFormer, as shown in Eq. (3), sacrifices linearity for rotary
representation, leading to reduced generalization performance.

Based on this insight, we improve our 3D-RoFormer by
adopting a learning-based linear mapping function:

Θi = Linear(p̂i), (9)

with a boundary penalty loss (Sec. IV-D) as an auxiliary
loss to supervise the network actively learning effective rotary
representations. With this modification, our 3D-RoFormer++
significantly enhances the final output features F̃A and F̃B for
point matching by interleaving the rotary self-attention and
cross-attention for l times.

The enhanced features F̃ possess geometric and contex-
tual information between two point clouds, which is then
extended to dense features for further processing in dense
point matching head, as detailed in Sec. IV-C. Nevertheless,
the uniform sampling nature makes these features less salient
and discriminative. We therefore propose the VoteEncoder.
VoteEnoder. To steer the evenly sampled features [P̂|F̃]
towards nearby salient areas and obtain more meaningful
features conducive to registration tasks, we introduce the
VoteEncoder for additional feature encoding.

We use a voting module [43], [49] to estimate the geometric
offset from the uniformly sampled keypoints to the proposal

Algorithm 1 Centroid prediction

Input: proposal set S, nearest neighbour search range d
Output: center point set Ŝ
1: for all si ∈ S do
2: if ISLABELED(si) is False then
3: Ni ← NEARESTNEIGHBOUR(si,S, d)
4: ŝi ← MEAN(Ni) ▷ Get centroid point
5: Ŝ.APPEND(ŝi)
6: for all sj ∈ Ni do
7: ISLABELED(sj)← True
8: return Ŝ

keypoints S, i.e., ∆P = Vote(F̃), S = P̂ + ∆P. The voting
module comprises a collection of Multi-Layer Perceptrons
(MLPs). Despite its simplicity, this module produces mean-
ingful offsets (see Fig. 4), utilizing the features from our 3D-
RoFormer++. These generated proposals subsequently forecast
multiple central points, serving as the final keypoints. The
process of predicting centroids is straightforward yet efficient,
without the need for additional sampling strategies. It clusters
all the proposals into various patches and predicts the centers,
detailed in Alg. 1. To aggregate the descriptors H for each
center point Ŝ, we employ a KPConv module that performs
kernel-based convolution after finding nearest neighbors of Ŝ
in [P̂|F̃]. We use a larger search range than that used in Alg. 1
to incorporate more related context near the keypoints.

Unlike the object detection [49], [50], where the object
center can serve as a well-defined reference for supervising
point shifts, our case lacks a readily available ground truth
center for the significant areas, primarily due to the challenge
in precisely defining the significance. Therefore, we train the
matched keypoints to move closer to each other instead, which
indirectly accomplishes our objective. In practice, the offset
∆P is limited to a certain range to maintain an even distri-
bution of keypoints throughout the point cloud. This prevents
the keypoints from being only concentrated in significant areas
while also avoiding potential degeneracy.

In sum, our keypoint detection module offers various op-
tions for the sparse features, including uniformly sampled fea-
tures F̂ from KPEncoder [48], enhanced features F̃ from 3D-
RoFormer++ and voted features H from VoteEncoder. Uni-
formly sampled features F̂ are distributed evenly throughout
the entire point cloud, enabling fast extraction and the capacity
to represent the entire point cloud comprehensively. These
features are utilized for the global description head, as detailed
in Sec. IV-B. On the other hand, enhanced features F̃, built
upon the uniformly sampled features F̂, incorporate geometric
information and the correlation between two scans. These
features will be decoded into dense features, propagating the
aforementioned advantages to them. Finally, voted features H
exhibit sensitivity and expressive capability for local salient
regions while maintaining good coverage. These features will
be employed for initial sparse matching, which will then be
extended to dense matching for accurate registration. Both
enhanced features and voted features will be employed for
the dense point matching head detailed in Sec. IV-C.
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B. Global Description Head

The objective of the global description head is to condense
sparse features into a single global feature for fast candidate
retrieval. We adopt the features derived from the KPEncoder
as the input to our global description head.

When creating the global description head, we choose a
widely applied simple method NetVLAD [29] to compress
the features, and a context gating module [9] to enhance these
features for retrieval. NetVLAD uses k-means clustering and
defines K learnable cluster centers {c1, · · · , cK}, ck ∈ Rd̂,
along with learnable weights wk and offsets bk. By weighting
each feature to each cluster center:

ak(F̂i) =
ew

T
kF̂i+bk∑K

k′=1 e
wT

k′ F̂i+bk′
, (10)

the new descriptors for K cluster centers are obtained:

FR = [FR1, · · · ,FRK ] ∈ RK×d̂, (11)

FRK =

|P̂|∑
i=1

ak(F̂i)(F̂i − ck). (12)

Finally, a simple MLP compresses FR into a single descrip-
tor X ∈ RG. Based on NetVLAD, the context gating module
re-evaluates the weights of each channel of feature X based on
the self-attention mechanism and further enhances it to obtain
the final global descriptor V ∈ RG:

V = CG(X ) = σ(WX + b)⊗ X , (13)

where σ is the sigmoid activation function, ⊗ is element-wise
multiplication, and W and b are learnable weights and offsets.

The design of the global description head is straightforward
yet remarkably effective, surpassing all baseline methods in
our experiments. Its simplicity is also particularly important
because LiDAR SLAM requires quick and accurate retrieval
for real-time canditate retrieval, which narrows down the com-
putational scope for subsequent fine 6-DoF pose estimation.

C. Dense Point Matching Head

Once identifying the candidates, we leverage the dense point
matching head to establish correspondences and subsequently
recover precise 6-DoF pose estimation. The features obtained
from our keypoint detection module [Ŝ|H] are sufficient for
ensuring dependable point cloud registration. However, there
are two factors that impact the accuracy of the final 6-
DoF pose estimation. Firstly, despite VoteEncoder improving
keypoint locations, there might still be noticeable distances
between matched sparse features. These gaps can lead to errors
that restrict the overall accuracy. Secondly, due to the sparse
characteristics of these features, there might not be adequate
feature matches to fully rectify errors arising from mismatches.
Considering these limitations, we employ a two-step matching
approach [41], [42]. Initially, we identify sparse yet depend-
able keypoint matches, and then we extend these point-to-
point matches to patch-to-patch matches. By utilizing neighbor
consistency, we enhance these patch matches into dense point
matches, ensuring more precise and reliable registration.

Sparse keypoint matching. We firstly conduct sparse key-
point matching between [ŜA|HA] and [ŜB|HB]. We compute
a matching score matrix C ∈ R|ŜA|×|ŜB | between HA and HB:

C = HA(HB)T/
√
dc, (14)

where dc refers to the feature dimension of H. To handle
non-matched points, we append a “dustbin” row and column
for C filled with a learnable parameter α ∈ R. The Sinkhorn
algorithm [51] is then used to solve the soft assignment matrix.
It iteratively performs normalization along rows and columns.
At the t iteration, the score matrix is updated by:

(t)C′
ij =

(t)Cij − log
∑
j

e
(t)Cij , (15)

(t+1)Cij =
(t)C′

ij − log
∑
i

e
(t)C′

ij . (16)

After T iterations, we use the solution as the soft assignment
matrix: Ĉ = (T )C. We choose the largest Nc entries as the
keypoint correspondences:

C = {(ŝA
xi
, ŝB

yi
)|(xi, yi) ∈ Top-kx,y(Ĉ)}. (17)

Patch grouping. To achieve dense point matches from sparse
keypoint matches, we expand correspondences between key-
points to encompass overlaps between their respective neigh-
borhood patches and subsequently leverage these patches to
identify more point matches.

For each keypoint ŝi, we construct a local patch Gi using
a point-to-node strategy [38], where each point is assigned
to its nearest keypoint. Based on the grouped point patch,
we can now extend each keypoint match (ŝA

xi
, ŝB

yi
) to its

corresponding patch match (GA
xi
,GB

yi
).

Dense point matching. We then generate more point matches
from the sparse patch matches. We leverage the KPDe-
coder [48] to recover point-level descriptors F from enhanced
keypoint features [P̂|F̃]. For each keypoint correspondence

(ŝA
xi
, ŝB

yi
), we compute a match score matrix Oi ∈ R|GA

xi
|×|GB

yi
|

of their corresponding patches GA
xi

and GB
yi

:

Oi = FA
xi
(FB

yi
)T/

√
df , (18)

where df refers to the feature dimension of F. Same with
our sparse keypoint matching module, we append a learnable
“dustbin” row and column for Oi to handle non-matched
points and use the sinkhorn algorithm to solve the soft assign-
ment matrix Zi ∈ R(|GA

xi
|+1)×(|GB

yi
|+1). Unlike works [41],

[42] that drops the dustbin and recovers the assignment by
comparing the soft assignment score with a hand-tuned thresh-
old, we directly find max entry both row-wise and column-
wise on Zi which is then recovered to assignment Mi:

Mi ={(GA
xi
(m),GB

yi(n)|(m,n) ∈ toprowm,n(Z
i
1:Mi,1:(Ni+1))}∪

{(GA
xi
(m),GB

yi(n)|(m,n) ∈ topcolumnm,n(Z
i
1:(Mi+1),1:Ni

)}.
(19)

A point is either assigned to points in the matched patch
or to the dustbin. By this, we do not need manual tuning
but require a discriminative assignment matrix, which can be
obtained by using our proposed loss function as detailed in
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Sec. IV-D. Note that a point is not strictly assigned to a
single point in our approach, as the strict one-to-one point
correspondences do not hold in practice due to the sparsity
nature of the LiDAR scans. Instead, we trust and keep the
assignment results from both sides, i.e., matches from query
to source and vice versa. This results in extensively more point
matches while maintaining a high inlier ratio, which benefits
the transformation estimation. The final correspondences are
the combination of points matches from all patches:

M =

Nc⋃
i=1

Mi. (20)

Local-to-global registration. We use local-to-global registra-
tion (LGR) proposed in [42] for fast pose estimation. It is
a hypothesize-and-verify approach specifically proposed for
matching methods following a sparse-to-dense manner. For
each matched patch, LGR solves a transformation {Ri, ti}
based on its dense point matches using weighted SVD [17]:

Ri, ti = min
R,t

∑
(pA

xj
,pB

yj
)∈Mi

ωi
j∥R · pA

xj
+ t− pB

yj
∥22, (21)

where the soft assignment value in Zi serves as the weight ωi
j .

After obtaining the transformations for all matched patches,
LGR selects the transformation that has the most inliers among
all dense point matches:

R, t = max
Ri,ti

∑
(pA

xj
,pB

yj
)∈M

J∥Ri · pA
xj

+ ti − pB
yj
∥22 < τaK, (22)

where J•K is an indicator function for which the statement is
true. Finally, it solves the final transformation R, t by solving
Eq. (21) on surviving inliers for Nr times.

LGR significantly reduces the number of iterations com-
pared to RANSAC [30], achieving a substantial speed advan-
tage with about 30 times faster in our experiments. However,
the performance of LGR, particularly its robustness, can be
heavily influenced by the quality of sparse patch matching.
We significantly improve the matching quality of sparse
patches through the powerful feature aggregation module
3D-RoFormer++ and the feature detection module VoteEn-
coder, achieving performance comparable to or surpassing
RANSAC’s accuracy and robustness.

D. Loss function

To effectively guide our network in accomplishing various
tasks, we construct our loss function with five components:
the keypoint detection loss Ls, the boundary penalty loss
for keypoint detection module, the triplet loss Lt for global
description head, and the sparse match loss Lc and the dense
match loss Lf for dense point matching head.
Keypoint detection loss. The keypoint detection loss consists
of two parts Ls = Ls1 + Ls2. The first part Ls1 is designed
to guide the corresponding keypoints from two point clouds
close to each other lying within the significant region:

Ls1 =

|SA|∑
i=1

min
sB
j∈SB

∥sA
i − sB

j∥22 +
|SB |∑
i=1

min
sA
j∈SA

∥sB
i − sA

j∥22. (23)

Supervised by Ls1, we find that the keypoints tend to move
to their nearest significant regions to indirectly minimize the
distance between keypoint pairs.

The second part Ls2 is designed to make the keypoints
close to the real measurement points. It minimizes the distance
between the keypoint with its closest point:

Ls2 =

|SA|∑
i=1

min
pA
j∈PA

∥sA
i − pA

j∥22 +
|SB |∑
i=1

min
pB
j∈PB

∥sB
i − pB

j∥22. (24)

Boundary penalty loss. To guide the 3D-RoFormer++ learn-
ing a general rotary embedding representation, we add a
boundary penalty loss to force the value of rotary embedding
Θ lies between [−π, π]:

Li
p =

1

Mi

Mi∑
m=1

[abs(Θ)− π]+. (25)

Triplet loss. We use the triplet loss to train the global
description head. For each scan, we define the scans with an
overlap greater than 30% as positive, otherwise negative. For
each triplet, we use one query scan, Np positive scans and Nn

negative scans. The triplet loss is calculated as:

Lt(V q, {V p}, {Vn}) = (26)

Np(α+max
p

(d(V q,V p))−
1

Nn

∑
Nn

(d(V q,Vn))).

Sparse match loss. We utilize a gap loss [40] to learn
a discriminative soft assignment matrix C for sparse key-
point matching. The ground truth of assignment matrix
P ∈ {0, 1}(M+1)×(N+1) is generated based on the overlap
ratio between the patches, where M = |ŜA| and N = |ŜB|
are the keypoints number. Two patches are matched when
they share at least 10% overlap. A patch is assigned to the
dustbin when it has no match pair. We also generate a negative
assignment matrix P̄ ∈ {− inf, 1}(M+1)×(N+1), where 1
represents two patches are not overlapped and inf represents
the value will not involve in the calculation of loss. Then the
gap loss is calculated as:

Lc =
1

M

M∑
m=1

log(

N+1∑
n=1

(−rm +Cm,nP̄m,n + η)+ + 1)

+
1

N

N∑
n=1

log(

M+1∑
m=1

(−cn +Cm,nP̄m,n + η)+ + 1), (27)

where

rm = max
m

(Cm,nPm,n), cn = max
n

(Cm,nPm,n), (28)

refer to the soft assignment value for the hardest true match
of m-th keypoint in ŜA and n-th keypoint in ŜB respectively,
and (•)+ = max(•, 0).
Dense match loss. The dense match loss is calculated
over all the matched patches. For each matched patch pair
{GA

xi
,GB

yi
}, we generate its ground truth positive correspon-

dences matrix Mi ∈ {0, 1}(Mi+1)×(Ni+1) and negative matrix
M̄i ∈ {1012, 1}(Mi+1)×(Ni+1) with a distance threshold τ ,
where Mi = |GA

xi
|, Ni = |GB

xi
|. A point pair is positive when
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the distance is below τ and is negative when it exceeds 2τ . To
learn a discriminative soft assignment matrix, we also calculate
a gap loss Li

f for patch correspondence’s soft assignment
matrix Zi. The final fine match loss is the average over all
the matched patch pairs: Lf =

1
2|M|

∑|M|
i=1 Li

f .

E. Training Strategy

We seek a training strategy to stimulate the potential of each
head with limited computing resources. As a result, a two-
stage training strategy is employed. We first train the keypoint
detection module and the dense point matching head for
registration. Then, we exclusively train the global description
head for the candidate retrieval for the following reasons:

Firstly, the input for the training of two heads differs.
The training of the global description head requires at least
three scans: an anchor, a positive, and a negative. Conversely,
training the dense point matching head only requires two
overlapped scans. Including additional input does not benefit
the training of the dense point-matching head but consumes a
significant amount of memory. Secondly, for tasks of candidate
retrieval, a higher batch size typically results in better perfor-
mance. By freezing the keypoint detection module and dense
point matching head, we can use the pre-extracted features for
input, thereby preserving substantial memory for expanding
the batch size.

However, using pre-extracted features prevents the imple-
mentation of data augmentation techniques, thereby limiting
performance. To address this problem, we utilize a training
strategy, which we refer to as semi-online. In this approach,
we utilize offline pre-extracted features for both positive and
negative samples while generating features for the anchor
online. This allows for applying data augmentation on the
anchor. Since the anchor participates in loss calculations with
all positive and negative samples, this can be the most efficient
way to implement data augmentation.

In sum, our two-stage training strategy first trains the
network in the registration task and then exclusively trains
the global description head semi-online for the candidate
retrieval task. This strategy offers several advantages. Firstly,
it allows us to utilize larger batch sizes and sample quantities
during training for the candidate retrieval task, leading to
improved results. Secondly, the semi-online approach enables
the application of data augmentation techniques. Lastly, this
strategy provides great convenience in training as we only
need to select the pre-trained network that performs best in
registration for the second-stage training, followed by selecting
the network that performs best in the candidate retrieval
task. These advantages contribute to this training strategy’s
enhanced performance compared to fine-tuning on a pre-
trained model and end-to-end training, as demonstrated in our
experiments.

We implement and train our LCR-Net on 4 NVIDIA
RTX 3090 GPUs. The network is trained using the Adam
optimizer [52] with an initial learning rate as 10−4, which
undergoes exponential decay by 0.05 every 4 epochs. When
training the dense point matching head, we use a batch size
of 1. On the other hand, when training the global description

Fig. 5: Overview of the laser SLAM system integrated with LCR-Net,
showing key steps executed by the tracking, relocalization and loop
closing threads. LCR-Net serves for relocalization and loop closing.

head, we set the batch size to 6, utilizing Na = 1 anchor
scan, Np = 6 positive scans, and Nn = 6 negative scans.
Additionally, we apply the same data augmentation techniques
as in [9].

V. ROBUST LOOP CLOSING AND RELOCALIZATION BASED
LIDAR SLAM SYSTEM

We integrate our LCR-Net into a SLAM system for relo-
calization and loop closing. We use an Incremental Smooth-
ing and Mapping (iSAM2) [53] based pose-graph optimiza-
tion (PGO) 1 framework to manage and optimize the global
pose graph. The system comprises three threads that run in
parallel: tracking, relocalization, and loop closing.

A. Tracking

The tracking thread is responsible for tracking the LiDAR
pose of every scan, i.e., odometry. It also decides whether the
current odometry estimation is degenerated and when to insert
a new keyframe. The process of odometry can be formulated
as a state estimation problem:

argmin
x

f2(x), (29)

where x = [R, t] is the state vector. Given an initial guess of
x, most nonlinear optimization methods solve the function by
computing the Jacobian matrix of f w.r.t x:

J = δf(x)/δx, (30)

and iteratively adjust x by utilizing J until convergence.
The tracking thread can be implemented through LiDAR
odometry, such as LOAM [12]. For degeneracy evaluation,
we adopt the criterion proposed in [13], which considers
the problem degenerate if the smallest eigenvalue of matrix
JTJ falls below a certain threshold. In practice, the threshold
is conservatively set to ensure that all degeneracy can be

1https://github.com/gisbi-kim/SC-A-LOAM.
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detected. Though this leads to more frequent relocalization
and increased computational load, it is necessary since even
a single instance of severe degeneracy could inflict significant
damage on the system.

LiDAR scans are keyframes if the robot has moved beyond
a predefined threshold from the last saved keyframe. However,
when odometry performance deteriorates, relying solely on
the previous travel distance to establish keyframes becomes
unreliable. To address this, we introduce additional scans as
keyframes based on specific conditions as follows: i) The
first degenerated scan follows nondegenerated scans. ii) The
first nondegenerated scan follows a degenerated scan, provided
the degenerated scan is not chosen as a keyframe. iii) Every
t-second scan within a continuous sequence of degenerated
scans. The keyframes selected according to these conditions
are categorized as “degenerated”, as poses estimated between
these keyframes may include degenerated ones. Finally, for
each keyframe, we use LCR-Net to generate a global descrip-
tor. The similarity between our generated global descriptors
is evaluated based on the Euclidean distance in the feature
space. For fast retrieving, we utilize the FAISS library [54]
for descriptor database management and search.

B. Relocalization

The relocalization processes every “degenerated” keyframe,
generating more accurate pose estimation to replace the un-
reliable odometry output. We select the most recent “nonde-
generated” keyframe for each degenerated keyframe as the
candidate and match it with the current keyframe using LCR-
Net. For real-time efficiency, we utilize the rapid estimator
LGR for pose estimation. Our experimental results show that
employing LCR-Net with LGR produces comparable accuracy
and robustness in registration compared to LCR-Net with
RANSAC while offering a significantly faster processing speed
of nearly 30 times. To assess whether the relocalization is
successful, we calculate a current pose estimation reliability
score by averaging the assignment score of all the found
correspondences. The relocalization succeeds if the reliability
score surpasses a threshold ρr. Once the calculated pose is
included in the graph optimization, the label assigned to the
current keyframe is updated to “nondegenerated”. In most
cases, this allows for recovery of the pose tracking. Other-
wise, we retrieve the most similar candidate with descriptor
distance below a threshold ρs from the database and attempt
relocalization.

C. Loop closing

The loop closing thread functions by searching the loop
candidate and subsequently estimating pose as a new node
added to the pose graph. Specifically, we retrieve the candidate
keyframe from the database that has the most similar descrip-
tor for each new keyframe while excluding the 100 most recent
keyframes. If the distance is below a threshold ρs, we set the
retrieved keyframe as the loop and estimate the relative 6-DoF
pose using LCR-Net with the LGR solver. Finally, the iSAM2-
based pose graph optimization is performed to achieve global
consistency.

VI. EXPERIMENTAL EVALUATION

We conduct experiments to demonstrate the efficacy of
our proposed LCR-Net in addressing loop closing and relo-
calization for online LiDAR SLAM. We derive three setups
from these challenges: candidate retrieval, closed-loop point
cloud registration, and continuous relocalization. In candidate
retrieval experiments (Sec. VI-B), we examine the capability
of LCR-Net in accurately retrieving the appropriate candi-
dates from the previous map. In closed-loop point cloud
registration (Sec. VI-C) and continuous relocalization experi-
ments (Sec. VI-D), we assess the ability of LCR-Net in suc-
cessfully registering point clouds during loop situations as well
as continuous scenarios with low overlap. We also evaluate
the runtime of our approach for candidate retrieving and point
cloud registration (Sec. VI-E). We then evaluate our LCR-Net
enhanced SLAM in multiple real-world scenes. Finally, we
conduct ablation studies on the network design (Sec. VI-G)
and provide valuable insights (Sec. VI-H).

A. Experimental Setup

We evaluate LCR-Net and compare it with the SOTA
methods on multiple publicly available datasets, including
KITTI odometry [55], KITTI-360 [56], Apollo-SouthBay [57],
Ford Campus [58] and Mulran [59] datasets. These datasets
provide LiDAR scans collected in various environments in
multiple countries with the corresponding ground truth poses.

In particular, we divide the KITTI odometry dataset into
the following: sequences 01 and 03-07 for training, sequence
02 for validation, and sequences 00, 08-10 for testing. The
other datasets are all used to test the models’ generalization
capabilities. We use the two-stage training strategy described
in Sec. IV-E: pre-train the network with dense point matching
head in the registration task and then linear probe the global
description head for training in the candidate retrieval task.
For the registration task training, we select point cloud pairs
with a mix of continuous point cloud pairs with the distance
varying from 0-10 m and close-loop point cloud pairs with
an overlap ratio exceeding 0.3 [1]. In the candidate retrieval
task training, we use all point cloud pairs with an overlap
ratio exceeding 0.3. We denote the model trained following
the above setup as LCR-Net and evaluate its performance on
all subsequent tasks. This model is also utilized for integration
with our SLAM system for evaluation.

In addition, to eliminate the impact of different training sets
and ensure equitable comparisons with existing baselines, we
also train two other models, denoted as LCR-Net† and LCR-
Net⋄, using different dataset splittings that follow the baselines
for specific tasks: LCR-Net† is pre-trained on close-loop point
cloud pairs, while LCR-Net⋄ is pre-trained on continuous point
cloud pairs. Both models are then trained in the candidate
retrieval task. The subsequent experiments will delve into the
specific training details for these two models.

B. Candidate Retrieval Performance

To validate the candidate retrieval performance, we follow
Chen et al. [1], [23] and test our approach on the KITTI
odometry and Ford Campus dataset. For a fair comparison, we



11

TABLE I: Candidate Retrieval Results on KITTI and Ford Campus.

Dataset Method AUC F1max Recall Recall
@1 @1%

KITTI

Histogram [60] 0.826 0.825 0.738 0.871
Scan Context [18] 0.836 0.835 0.820 0.869
LiDAR-Iris [19] 0.843 0.848 0.835 0.877
PointNetVLAD [20] 0.856 0.846 0.776 0.845
OverlapNet [1] 0.867 0.865 0.816 0.908
NDT-Transformer-P [21] 0.855 0.856 0.802 0.869
MinkLoc3D [61] 0.894 0.869 0.876 0.920
OverlapTransformer [23] 0.907 0.877 0.906 0.964
LCDNet 0.933 0.883 0.915 0.974
LCR-Net† 0.945 0.907 0.926 0.980
LCR-Net 0.958 0.922 0.937 0.993

Ford
Campus

Histogram [60] 0.841 0.800 0.812 0.897
Scan Context [18] 0.903 0.842 0.878 0.958
LiDAR-Iris [19] 0.907 0.842 0.849 0.937
PointNetVLAD [20] 0.872 0.830 0.862 0.938
OverlapNet [1] 0.854 0.843 0.857 0.932
NDT-Transformer-P [21] 0.835 0.850 0.900 0.927
MinkLoc3D [61] 0.871 0.851 0.878 0.942
OverlapTransformer [23] 0.923 0.856 0.914 0.954
LCDNet 0.961 0.908 0.949 0.984
LCR-Net† 0.974 0.929 0.951 0.985
LCR-Net 0.972 0.920 0.932 0.987

The best results are highlighted in bold, and the second best in underlines.

follow the setup of Chen et al. [1], [23] and train LCR-Net†

on KITTI odomtery sequences 03-10 and validate it on KITTI
odomtery sequence 02. Two scans are chosen as a candidate
if their overlap value is larger than 0.3.
Metrics : We use four metrics to evaluate the performance
of candidate retrieval: i) the area enclosed by the Receiver
Operating Characteristic (ROC) curve and the coordinate axes;
ii) Maximum F1 score (F1max), which is the highest F1 score
at different threshold values. ; iii) Recall@1, which measures
the recall when only the most similar candidate frame is
selected; iv) Recall@1%, which measures the recall when the
top 1% of the most similar candidate frames are selected.
Results : The baseline methods used in this experiment
are SOTA place recognition methods. For Histogram [60],
Scan Context [18], LiDAR-Iris [19], OverlapNet [1], Point-
NetVLAD [20], NDT-Transformer-P [21], MinkLoc3D [61],
and OverlapTranformer [23], we use the results reported
in [23]. For LCDNet [9], we utilize its official implementation.
As shown in Tab. I, LCR-Net and LCDNet achieve cutting-
edge performance compared to current advanced methods.
However, our method further boosts the baseline by a signifi-
cant margin for the F1max metric while maintaining a leading
position in Recall@1, Recall@1%, and AUC. It is worth not-
ing that our global description head does not employ complex
designs. The exceptional performance can be attributed to our
backbone’s outstanding feature representation capabilities and
our training strategy, which permits larger batch sizes and
more input samples.

C. Closed-Loop Point Cloud Registration Performance

We validate the registration performance of our method for
closing the loop. We follow Cattaneo et al. [9] and test our
method on sequences 00 and 08 of the KITTI odometry dataset
and sequences 02 and 09 of the KITTI-360 dataset. For a fair
comparison, we follow Cattaneo et al. to train the LCR-Net†

on the KITTI sequence 05-07 and 09, validating it on KITTI
sequence 02. The point cloud pairs with ground truth pose
distances less than 4m and time intervals greater than 50 s are
chosen as loop closure samples.

Metrics : In line with [9], we employ three metrics to evaluate
the registration performance at loop closure: i) Relative Trans-
lation Error (RTE), which measures the Euclidean distance
between estimated and ground truth translation vectors, ii)
Relative Yaw Error (RYE), which is the average difference
between estimated and ground truth yaw angle, and iii) Reg-
istration Recall (RR), representing the fraction of scan pairs
with RYE and RTE below certain thresholds, e.g., 5◦ and 2 m.

Results : The baseline methods in this experiment include
advanced traditional registration methods such as ICP [17]
and RANSAC [30] with FPFH features [33]. Besides tra-
ditional methods, SOTA deep learning approaches are also
included, such as RPMNet [65], FCGF [62], DGR [64], Preda-
tor [63], CofiNet [41], Geotransformer [42], RDMNet [43]
and LCDNet [9]. Furthermore, we also include results from
advanced place recognition methods that can output yaw
angles, including Scan Context [18], LiDAR-Iris [19], and
OverlapNet [1]. For the hand-crafted method, we use the
results reported in [9]. For all DNN-based approaches, we
use its official implementation along with open-source models
trained on KITTI odometry datasets. We also report the results
of Geotransformer and RDMNet using LGR. LCDNet also
provides a fast version using weighted SVD. We denote it as
LCDNet (fast) and report the results.

Tab. II shows the results on sequences 00 and 08 of
the KITTI odometry dataset. As can be seen, our LCR-Net
achieves the best performance across both sequences. LCR-
Net is superior in pose estimation, benefiting from dense,
reliable matching. We highlight that its pose estimation ac-
curacy exceeds baselines by a large margin and is comparable
to LCDNet refined by ICP. As illustrated in Tab. II, the
registration recall (RR) for several baselines has reached
saturation, reaching 100% in the dataset of the closed loop
distance below 4m. To better showcase the superiority of our
approach, we have constructed a new test set comprising point
cloud pairs with an overlap ratio exceeding 0.3. The overlap
ratio is computed following [1]. These test sets are more
challenging, including point cloud pairs with a distance of up
to 15 m. We present the results of several advanced baselines in
former tests. As can be seen, our LCR-Net further amplifies its
advantages over other competing approaches. Only LCR-Net
maintains 100% RR and a similar pose estimation accuracy,
while others have all declined.

We highlight that the pose estimation accuracy of LCR-Net
surpasses even LCDNet refined by ICP. Especially regarding
translation estimation, LCR-Net reduces the error by 64% on
seq. 00 and by 16% on seq. 08. This result is encouraging,
as current global registration methods typically exhibit infe-
rior registration accuracy compared to geometry-based local
registration approaches based on a fine initial guess. As a
result, they are commonly employed as initial estimations
for methods like the ICP algorithm in practical applications.
In this experiment, LCR-Net demonstrates a noteworthy ad-
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TABLE II: Point Cloud Registration Results on Closed Loop of KITTI Odometry Dataset.

Closed loop with distance below 4 m

Seq. 00 Seq. 08
RR(%) RTE(m)[succ./all] RYE(◦)[succ./all] RR RTE(m)[succ./all] RYE(◦)[succ./all]

R
A

N
SA

C
-b

as
ed

RANSAC [30] 33.95 0.98/2.75 1.37/12.01 15.61 1.33/4.57 1.79/37.31
FCGF [62] 47.31 1.05/2.07 0.60/1.88 27.80 1.28/2.42 2.38/159.48
Predator [63] 98.93 0.07/0.13 0.11/0.45 99.70 0.10/0.11 0.34/0.53
CofiNet [41] 100 0.07/0.07 0.10/0.10 100 0.10/0.10 0.33/0.33
Geotransformer [42] 98.11 0.09/0.28 0.11/0.13 99.12 0.11/0.18 0.35/1.76
RDMNet [43] 98.36 0.07/0.27 0.11/0.28 99.80 0.10/0.14 0.34/0.49
LCDNet [9] 100 0.11/0.11 0.12/0.12 100 0.15/0.15 0.34/0.34
LCR-Net† 100 0.04/0.04 0.09/0.09 100 0.08/0.08 0.33/0.33
LCR-Net 100 0.04/0.04 0.09/0.09 100 0.08/0.08 0.33/0.33

R
A

N
SA

C
-f

re
e

Scan Context* [18] 97.66 -/- 1.34/1.92 98.21 -/- 1.71/3.11
LiDAR-Iris* [19] 98.83 -/- 0.65/1.69 99.29 -/- 0.93/1.84
OverlapNet* [1] 83.86 -/- 1.28/3.89 0.10 -/- 2.03/65.45
ICP [17] 35.57 0.97/2.08 1.36/8.98 0 -/2.43 -/160.46
DGR [64] 95.11 0.57/0.74 0.41/2.70 2.42 1.13/7.72 3.13/135.53
RPMNet [65] 47.31 1.05/2.07 0.60/1.88 27.80 1.28/2.42 1.77/13.13
LCDNet (fast) [9] 93.03 0.65/0.77 0.86/1.07 60.71 1.02/1.62 1.65/3.13
Geotransformer (LGR) [42] 96.72 0.10/0.41 0.12/0.99 97.06 0.16/0.35 0.46/2.85
RDMNet (LGR) [43] 97.57 0.06/0.37 0.12/0.64 99.36 0.10/0.22 0.34/0.59
LCR-Net† (LGR) 100 0.04/0.04 0.09/0.09 100 0.08/0.08 0.33/0.33
LCR-Net (LGR) 100 0.04/0.04 0.09/0.09 100 0.07/0.07 0.33/0.33

LCDNet+ICP [9] 100 0.04/0.04 0.09/0.09 100 0.09/0.09 0.33/0.33

Closed loop with overlap beyond 0.3

Seq. 00 Seq. 08
RR(%) RTE(m)[succ./all] RYE(◦)[succ./all] RR RTE(m)[succ./all] RYE(◦)[succ./all]

R
A

N
SA

C
-b

as
ed

Predator [63] 80.52 0.10/2.13 0.14/13.29 81.98 0.15/1.93 0.37/23.05
CofiNet [41] 98.21 0.09/0.29 0.13/1.13 99.05 0.13/0.24 0.35/1.49
Geotransformer [42] 82.07 0.10/3.04 0.13/4.53 92.69 0.15/0.97 0.41/10.29
RDMNet [43] 71.36 0.13/4.53 0.23/7.81 92.94 0.16/1.37 0.46/6.09
LCDNet [9] 94.86 0.23/0.89 0.24/3.93 96.87 0.31/0.62 0.51/1.74
LCR-Net† 100 0.05/0.05 0.10/0.10 100 0.08/0.08 0.34/0.34
LCR-Net 100 0.05/0.05 0.10/0.10 100 0.08/0.08 0.34/0.34

R
A

N
SA

C
-f

re
e LCDNet (fast) [9] 66.82 0.56/2.02 0.68/6.12 47.29 0.88/3.00 1.06/5.28

Geotransformer (LGR) [42] 80.43 0.11/3.33 0.16/7.91 87.85 0.20/1.47 0.56/12.78
RDMNet (LGR) [43] 70.19 0.13/5.06 0.23/11.14 91.62 0.15/1.98 0.48/7.16
LCR-Net† (LGR) 100 0.04/0.04 0.10/0.10 100 0.08/0.08 0.33/0.33
LCR-Net (LGR) 100 0.04/0.04 0.10/0.10 100 0.08/0.08 0.34/0.34

LCDNet+ICP [9] 94.98 0.11/0.77 0.14/3.84 96.98 0.18/0.48 0.43/1.68

Superscript * means the approaches only estimate yaw angle. The best results are highlighted in bold, and the second best in underlines.

TABLE III: Point Cloud Registration Results on Closed Loop of KITTI360.

Seq. 02 Seq. 09
RR(%) RTE(m)[succ./all] RYE(◦)[succ./all] RR RTE(m)[succ./all] RYE(◦)[succ./all]

R
A

N
SA

C
-b

as
ed

RANSAC [30] 24.78 1.24/3.67 1.83/32.22 29.69 1.12/3.14 1.48/23.42
FCGF [62] 12.43 0.56/11.32 0.62/146.77 62.40 0.47/5.06 0.44/60.64
Predator [63] 97.56 0.22/0.34 0.28/1.19 98.44 0.14/0.22 0.18/0.66
CofiNet [41] 98.56 0.25/0.30 0.30/0.35 100 0.15/0.15 0.19/0.19
Geotransformer [42] 92.32 0.26/0.84 0.49/9.71 96.24 0.16/0.50 0.25/1.84
RDMNet [43] 94.98 0.23/0.66 0.38/0.97 83.27 0.19/2.24 0.31/3.04
LCDNet [9] 98.62 0.28/0.32 0.32/0.35 100 0.18/0.18 0.20/0.20
LCR-Net† 98.63 0.21/0.26 0.27/0.30 100 0.11/0.11 0.16/0.16
LCR-Net 98.64 0.21/0.26 0.27/0.30 100 0.11/0.11 0.16/0.16

R
A

N
SA

C
-f

re
e

Scan Context* [18] 92.31 -/- 1.60/5.49 95.29 -/- 1.40/6.80
LiDAR-Iris* [19] 96.54 -/- 1.71/3.44 86.26 -/- 1.51/7.08
OverlapNet* [1] 11.42 -/- 1.79/76.74 54.33 -/- 1.38/33.62
ICP [17] 4.19 1.10/2.26 1.74/149.76 21.24 1.06/2.22 1.34/66.34
DGR [64] 14.26 0.66/6.68 0.72/126.81 63.51 0.50/3.14 0.38/53.83
RPMNet [65] 37.99 1.18/2.26 1.30/5.97 41.42 1.13/2.21 1.02/3.95
LCDNet (fast) [9] 82.92 0.84/1.10 1.28/1.67 89.49 0.76/0.94 0.99/1.19
Geotransformer (LGR) [42] 91.24 0.25/1.01 0.61/7.90 94.23 0.17/0.70 0.29/2.70
RDMNet (LGR) [43] 94.44 0.19/0.72 0.36/1.43 80.36 0.18/2.82 0.31/5.64
LCR-Net† (LGR) 98.63 0.16/0.21 0.24/0.27 100 0.10/0.10 0.14/0.14
LCR-Net (LGR) 98.59 0.16/0.21 0.23/0.26 100 0.09/0.09 0.14/0.14

LCDNet+ICP [9] 98.51 0.20/0.25 0.24/0.27 100 0.10/0.10 0.15/0.15

Superscript * means the approaches only estimate yaw angle. The best results are highlighted in bold, and the second best in underlines.
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vancement in registration accuracy compared to the SOTA
global registration methods refined by ICP. This significant
outcome profoundly underscores the practical advantage of our
proposed method in real-world applications.

Tab. III presents the results on KITTI-360 datasets. As can
be seen, the advantages of our method over other baselines are
still maintained on KITTI-360 datasets. Two baselines, i.e.,
CofiNet and LCDNet, demonstrate comparable registration
recall to LCR-Net. However, both methods fall short compared
to LCR-Net regarding registration accuracy. Additionally, both
LCDNet and CofiNet require RANSAC for pose estimation,
and LCDNet requires additional ground point filtering.

From the tests, we have observed that RANSAC-based
methods generally outperform RANSAC-free methods. How-
ever, RANSAC is computationally intensive and can account
for more than half of the entire registration process, as evident
from our runtime experiments as in Sec. VI-E. Nevertheless,
our proposed method attains the best performance without
relying on RANSAC. By employing a fast solver, LGR, LCR-
Net attains comparable registration performance to that of
RANSAC and even surpasses it in terms of translation estima-
tion accuracy. This characteristic offers a significant advantage
for integrating our approach within real-time systems.

In sum, our LCR-Net achieves SOTA performance in
closed-loop point cloud registration. It exhibits significant
advantages over the baseline methods, offering: i) The highest
level of registration robustness; ii) Exceptional registration
accuracy compared to baseline methods, surpassing even the
results obtained by baseline with ICP refinement; iii) The abil-
ity to achieve best performance without relying on RANSAC.

D. Continuous Relocalization Performance

To evaluate the relocalization performance, we use LiDAR
pairs at most 10m apart as samples, which may cause odome-
try degeneration. We test our approach on sequences 08-10 of
KITTI odometry, KITTI-360, Apollo-SouthBay, Ford Campus,
and Mulran datasets. For a fair comparison, we follow the
setup of prior work [42], [63], [66] and train the model
LCR-Net⋄ on KITTI odometry sequence 00-05 and validate
it on KITTI odometry sequence 06-07. Notably, the sensors,
environments, and platform setups differ between the KITTI
odometry dataset and other datasets, thoroughly testing the
approaches’ generalization abilities.
Metrics : We use three metrics to evaluate the registration per-
formance: i) Relative Translation Error (RTE), which measures
the Euclidean distance between estimated and ground truth
translation vectors, ii) Relative Rotation Error (RRE), which
measures the geodesic distance between estimated and ground
truth rotation matrices, and iii) Registration Recall (RR),
which represents the fraction of scan pairs with RRE and RTE
below certain thresholds, e.g., 5◦ and 2 m.
Results : We compare the results of our method with the recent
RANSAC-based SOTA methods: Predator [63], CofiNet [41],
NgeNet [66], Geotransformer [42], and RDMNet [43]. We
also compare our method using Local-to-Global Registra-
tion (LGR) [42] with SOTA RANSAC-free methods: HReg-
Net [44], Geotransformer [42] and RDMNet [43]. The results
are shown in Tab. IV.

TABLE IV: Continuous Registration Results on Multiple Datasets.
All the Models Are Only Trained on the KITTI Dataset.

KITTI KITTI-360 Apollo Ford Mulran

Registration Recall (%)

R
A

N
SA

C
-b

as
ed

Predator [63] 99.82 99.50 99.27 99.32 53.02
CofiNet [41] 99.82 99.62 100 99.32 80.79
NgeNet [66] 99.82 99.94 100 100 82.96
Geotransformer [42] 99.82 99.86 100 100 75.68
RDMNet [43] 99.82 99.89 100 100 87.09
LCR-Net⋄ 99.82 99.94 100 100 97.89
LCR-Net 99.82 99.94 100 100 98.22

R
A

N
SA

C
-f

re
e HRegNet [44] 96.76 20.39 9.39 90.48 -

Geotransformer (LGR) [42] 99.82 99.86 100 98.64 72.91
RDMNet (LGR) [43] 99.82 99.90 100 100 83.68
LCR-Net⋄ (LGR) 99.82 99.94 100 100 96.76
LCR-Net (LGR) 99.82 99.94 100 100 97.53

Relative Rotation Error (◦)

R
A

N
SA

C
-b

as
ed

Predator [63] 0.25 0.29 0.21 0.38 1.03
CofiNet [41] 0.37 0.44 0.18 0.37 0.52
NgeNet [66] 0.26 0.30 0.18 0.26 0.35
Geotransformer [42] 0.22 0.28 0.28 0.28 0.30
RDMNet [43] 0.18 0.25 0.10 0.21 0.45
LCR-Net⋄ 0.17 0.22 0.10 0.18 0.17
LCR-Net 0.19 0.24 0.09 0.16 0.17

R
A

N
SA

C
-f

re
e HRegNet [44] 1.04 2.18 2.14 0.91 -

Geotransformer (LGR) [42] 0.31 0.36 0.29 0.50 0.49
RDMNet (LGR) [43] 0.27 0.35 0.29 0.39 0.48
LCR-Net⋄ (LGR) 0.35 0.36 0.30 0.42 0.45
LCR-Net (LGR) 0.35 0.36 0.29 0.34 0.43

Relative Translation Error (cm)

R
A

N
SA

C
-b

as
ed

Predator [63] 5.8 7.2 7.8 11.7 30.04
CofiNet [41] 8.2 10.1 6.7 11.6 17.3
NgeNet [66] 6.1 7.5 5.9 7.9 9.2
Geotransformer [42] 6.7 8.1 6.1 10.6 12.0
RDMNet [43] 5.3 7.0 4.6 7.6 14.4
LCR-Net⋄ 3.9 5.7 3.6 7.1 7.5
LCR-Net 3.9 5.8 3.4 6.6 7.4

R
A

N
SA

C
-f

re
e HRegNet [44] 6.7 112.8 116.7 16.5 -

Geotransformer (LGR) [42] 5.5 6.9 5.1 12.2 9.7
RDMNet (LGR) [43] 3.9 5.9 3.5 6.1 9.3
LCR-Net⋄ (LGR) 2.7 5.0 2.5 6.1 6.2
LCR-Net (LGR) 2.8 5.4 2.5 6.5 6.2

The best results are highlighted in bold, and the second best in underlines.

As can be seen, when using RANSAC, our LCR-Net
outperforms all the baselines on all the datasets. Especially on
the Mulran dataset, RDMNet shows remarkable performance
by boosting baselines with a large margin for all three metrics,
i.e., increasing registration recall by 10%, reducing rotation
error by 43%, and reducing translation error by 20%. The Mul-
ran dataset poses significant challenges for generalization, as it
loses approximately 70◦ FOV. The outstanding performance of
our proposed method on the Mulran dataset demonstrates its
exceptional generalization capability. When using LGR, our
method attains remarkable results for translation estimation
and achieves an average reduction of 35% in translation error
compared to the best results attained through RANSAC-based
methods across all datasets.

We conduct a qualitative comparison of registration using
LCR-Net and LCDNet shown in Fig. 6. We also present
ICP alignment by using the LCDNet prediction as an initial
guess to demonstrate the accuracy of LCR-Net. The first two
columns depict the successful cases of both methods. Our
LCR-Net achieves better alignment than LCDNet and LCDNet
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Fig. 6: Qualitative comparison of registration using LCDNet and ICP with using LCDNet as initial guess and LCR-Net. The first two columns
depict the successful cases of both methods, where LCR-Net achieves better alignment. The last two columns show the failure cases of
LCDNet, yet LCR-Net still perfectly aligns the two point clouds.

Fig. 7: We visualize the correspondent points founded by LCR-Net. For better visualization, we align the input point clouds and the founded
correspondent points using LCR-Net based on LGR. For each cases, we zoom in on three representative regions for closer examination. Our
LCR-Net effectively finds correspondences covering overall overlapping region and focuses on geometrically significant region.
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TABLE V: Comparison of Inference Time.
(a) Inference time for point cloud registration.

Model Descriptor Pairwise Total (ms)Extraction (ms) Reg. (ms)
H

an
d RANSAC 135 156 291

FGR 135 246 381

D
N

N
-b

as
ed

Predator 173 244 417
CofiNet 377 257 634
LCDNet 235 431 666
LCDNet+ICP 235 566 801
LCR-Net 293 390 683
LCR-Net (LGR) 293 13 306

(b) Inference time for candidate retrieval.

Model Descriptor Pairwise Map
Extraction (ms) Comp. (ms) querying (ms)

H
an

d Scan Context 1 0.09 6
LiDAR-Iris 10 9 42037

D
N

N OverlapNet 15 6 26634
LCDNet 182 0.01 5
LCR-Net 50 0.01 5

refined by ICP. The last two columns show the failure cases
of LCDNet, while LCR-Net keeps achieving good alignment.

To provide more insights into the proposed LCR-Net, we
visualize the correspondent points founded by LCR-Net as
in Fig. 7. The points are aligned using LCR-Net based on
LGR. We observe that there are four characteristics of the
regions that the LCR-Net focuses on: i) It effectively captures
overlapping regions of two point clouds. ii) It finds matches
over all overlapping regions of two point clouds rather than
being limited to a relatively small range, allowing for a wider
baseline important for accurate registration. iii) It neglects the
majority of ground points. iv) It focuses more on isolated
landmarks like tree trunks, signage, vehicles, etc. v) It prior-
itizes important geometric structures like corners and sloping
surfaces.

E. Study on Runtime

We report the runtime of LCR-Net compared to existing
SOTA baselines on a system with an Intel i9-10920X CPU and
an NVIDIA GTX 3090 GPU. All the methods are evaluated
on KITTI sequence 00 with the official implementation. We
present the runtime of point cloud registration in Tab. Va
in which the descriptor extraction time also includes the
preprocessing required by the respective method. Pairwise
Reg. refers to pair registration and uses RANSAC as default.
As depicted, our LCR-Net using LGR is the fastest method
among DNN-based approaches. More commendably, it is also
the most robust and accurate one, as shown in Sec. VI-D and
Sec. VI-C.

In Tab. Vb, the runtime of loop detection is evaluated.
We emphasize that LCR-Net exhibits significantly higher
efficiency in descriptor extraction when inferring loop de-
tection compared to descriptor extraction during point cloud
registration. This efficiency is achieved due to our framework,
which only activates the KPEncoder and the global description
head during inference, eliminating the need for complex point-
level descriptor generation. In contrast, methods that rely on
point-wise descriptors, like LCDNet, have no such substantial
runtime reductions for global descriptor extraction. Regarding

map querying, we report the runtime for searching a descriptor
in all its previous scans. For the pairwise comparison, both
LiDAR-Iris and OverlapNet employ an ad-hoc comparison
function that is hard to optimize in runtime, while LCR-Net
and LCDNet use the Euclidean distance. Therefore, we can
use the FAISS library [54] for fast searching in LCR-Net and
LCDNet. We report the querying time of Scan Context using
the ring key descriptor for fast searching. As depicted, our
LCR-Net demonstrates exceptional efficiency in loop retrieval
with the support of Faiss.

In summary, LCR-Net exhibits high efficiency in both
registration and candidate retrieval tasks, rendering it well-
suited for online SLAM applications.

F. Evaluation of Complete SLAM System

In the previous experiments, we have demonstrated the
superior performance and high efficiency of the proposed
LCR-Net in specific subtasks of loop closing and relocaliza-
tion. We have also verified that the model trained on our
dataset splittings, LCR-Net, can achieve comparable SOTA
performance with the models specifically trained for each task,
LCR-Net† and LCR-Net⋄. In this section, we will evaluate the
performance of our network in solving loop closing and relo-
calization challenges when integrated with a SLAM system.
We use the SLAM system with A-LOAM as the front-end
odometry. We demonstrate the gradual improvement of SLAM
results by integrating our LCR-Net using the LGR estimator
for relocalization and loop closing, as depicted in Fig. 8. The
relocalization operates at a frequency of 2.5 Hz, while loop
closing is configured to operate at a frequency of 1 Hz.

The top row of Fig. 8a shows the original results of A-
LOAM. As seen, A-LOAM suffers severe degeneration and
fails to provide satisfactory results. We determine a keyframe’s
ground truth degeneration flag by comparing the relative pose
estimation error to a pre-defined threshold. When the pose
error exceeds 1m, the current keyframe is considered degen-
erated. The bottom row of Fig. 8a highlights the degenerated
keyframes on the ground truth trajectory in red.

The bottom row of Fig. 8b shows the degenerated keyframes
detected by our approach. Our approach effectively detects
all the degenerations. While this introduces false positives, it
avoids missing degeneration detections, which is paramount
in practical applications. The SLAM results are significantly
improved by enabling the relocalization module, as in the top
row of Fig. 8b. The trajectory is colored with the distance
error between our estimations and ground truth poses.

The bottom row of Fig. 8c shows the loop detected and
closed by our approach. As in the top row of Fig. 8c, by
enabling both relocalization and loop closing module, the
results are further refined compared to Fig. 8b.

As the code of LCDNet with SLAM is currently un-
available, we compare the results with the most commonly
employed loop closing approach, which exploits Scan Context
for loop detection and ICP for registration, as in Fig. 8d. The
bottom row of Fig. 8d shows the loop detected and closed by
Scan Context. As depicted, it introduces several false positives,
whereas our approach successfully avoids such occurrences.
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(a) (b) (c) (d)

Fig. 8: Performance of A-LOAM with integrating our approach compared to integrating Scan Context on KITTI sequence 02. We present the
results of (a) original A-LOAM (top) and degenerated keyframes colored in red (bottom), (b) A-LOAM with enabling relocalization using
our approach (top) and the detected degenerated keyframes (bottom, green crosses × are true positive and red crosses × are false positive
detections), (c) A-LOAM with enabling relocalization and loop closing using our approach (top) and the detected loop closures (bottom,
green dots • are true positive detections), (d) A-LOAM with enabling relocalization using our approach and loop closing using Scan Context
and ICP (top) and the detected loop closures (bottom, green dots • are true positive detections and red dots • are false positive).

(a) Front end: A-LOAM (b) Front end: F-LOAM

Fig. 9: Comparison of SLAM systems with different front-end
odometry approaches on different sequences.

We assess different systems’ Absolute Position Error (APE)
on KITTI odometry sequences 00 and 08. The results of our
system and the system employing Scan Context and ICP as the
loop closing pipeline are presented in Fig. 9. By leveraging the
flexible structure of the PGO framework, we also substitute the
front-end odometry with F-LOAM [67], thereby demonstrating
the capability of our method to integrate diverse odometry
systems. As depicted in Fig. 9, regardless of the chosen
odometry front-end, our approach consistently yields more
precise localization results than systems utilizing Scan Context
and ICP. Moreover, our approach exhibits smaller minimum
and maximum errors and enhanced stability.

G. Ablation Study

We conduct ablation studies to better understand the ef-
fectiveness of each module in our proposed LCR-Net, as in
Tab. VI. Tab. VIa and Tab. VIb study specific designs of
3D-RoFormer++ and VoteEncoder in continuous registration
tasks using Mulran dataset and closed-loop registration task
using KITTI dataset (loop with distance below 4 m). Tab. VIc
and Tab. VId study overall structure and training strategy in
registration task and candidate retrieval task using KITTI and
Ford Campus datasets. We use the model trained on our dataset
splittings, LCR-Net, as the default model. The registration
performance is evaluated using the RANSAC estimator.
Rotary embedding. Tab. VIa studies the influence of different
rotary position embedding used in 3D-RoFormer++, where i)
nonlinear refers to the embedding using Eq. (3), ii) linear
w/o penalty refers to the embedding using Eq. (9) but trained
without penalty loss. Using a linear rotary position embedding
improves registration robustness and accuracy. The reason
could be attributed to the network’s ability to consistently
represent relative positions through a linear embedding, thus
enhancing the registration performance. Using the penalty loss
can further help the position embedding learning.
VoteEncoder. Tab. VIb studies the designs of VoteEncoder.
Leveraging the central prediction algorithm, VoteEncoder ac-
quires a more robust estimation for the center of the interested
region, thus enhancing registration accuracy. The incorporation
of feature aggregation capability via KPConv improves both
robustness and accuracy.
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TABLE VI: Ablation Studies of Individual Modules.

(a) Rotary embedding in 3D-RoFormer++. Linear embedding is effective.

case Mulran KITTI-loop
RR(%) RRE(◦) RTE(cm) RR(%) RRE(◦) RTE(cm)

nonlinear 94.97 0.18 8.1 99.86 0.29 5.9
linear 98.22 0.17 7.4 100 0.21 4.3
linear w/o penalty 94.29 0.18 7.5 100 0.23 4.3

(b) VoteEncoder. The full VoteEncoder performs the best.

case Mulran KITTI-loop
RR(%) RRE(◦) RTE(cm) RR(%) RRE(◦) RTE(cm)

full 98.22 0.17 7.4 100 0.21 4.3
KPConv w/o 93.40 0.18 8.0 99.97 0.26 5.0
central prediction w/o 92.80 0.19 8.0 99.99 0.24 4.5

(c) Overall structure. Both VoteEncoder and 3D-RoFormer++ contributes to enhance the registration robustness and accuracy.

case
Registration Candidate retrieval

Mulran KITTI-loop KITTI Campus
RR(%) RRE(◦) RTE(cm) RR(%) RRE(◦) RTE (cm) AUC F1max Recall@1 Recall@1% AUC F1max Recall@1 Recall@1%

full 98.22 0.17 7.4 100 0.21 4.3 0.958 0.922 0.937 0.993 0.972 0.920 0.932 0.987
VoteEncoder w/o 85.46 0.41 20.1 99.99 0.24 6.6 0.975 0.940 0.948 0.990 0.973 0.917 0.927 0.981
3D-RoFormer++ w/o 93.67 0.22 10.1 100 0.26 4.8 0.950 0.919 0.920 0.962 0.951 0.871 0.939 0.994

(d) Training strategy. Linear probe ensures the best registration performance while allowing for enhanced candidate retrieval performance.

case b p n
Registration Candidate retrieval

Mulran KITTI-loop KITTI Campus
RR(%) RRE(◦) RTE(cm) RR(%) RRE(◦) RTE (cm) AUC F1max Recall@1 Recall@1% AUC F1max Recall@1 Recall@1%

linear probe 6 6 6 98.22 0.17 7.4 100 0.21 4.3 0.958 0.922 0.937 0.993 0.972 0.920 0.932 0.987
fine-tune 1 1 1 90.13 0.18 8.1 100 0.21 4.5 0.900 0.834 0.911 0.975 0.883 0.818 0.877 0.971
end-to-end 1 1 1 85.70 0.21 9.6 100 0.22 4.7 0.868 0.808 0.872 0.966 0.834 0.782 0.871 0.979

Default structure are marked in gray and the best results are highlighted in bold.

Overall structure. Tab. VIc studies the impact of our Vo-
teEncoder and 3D-RoFormer++. As can be seen, VoteEncoder
significantly enhances the registration performance. The un-
derlying factors contributing to this noteworthy improvement
are examined in Sec. VI-H. We study the 3D-RoFormer++
by replacing it with a vanilla Transformer using an absolute
position encoder [40]. As depicted, 3D-RoFormer++ exhibits
superior advantages in registration compared to the vanilla
Transformer.

Though neither 3D-RoFormer++ nor VoteEncoder directly
contribute to global descriptor generation, they still impact
performance. As illustrated, 3D-RoFormer++ is beneficial in
enhancing the capacity of the global descriptor, which sug-
gests that 3D-RoFormer++, compared to vanilla Transformer,
is more effective in improving the feature learning of the
backbone. On the other hand, using the VoteEncoder does
not have a significant impact. The performance trade-off is
justified by the substantial improvement in registration brought
about by VoteEncoder.
Training strategy. In Tab. VId, we study the influence of
training strategy. We compare the training strategy used in
this article, linear probe, with two alternative strategies. The
first strategy is fine-tuning, where we also pre-train the model
in the registration task and subsequently fine-tune the model
along with the global descriptor head in the candidate retrieval
task. The second strategy is end-to-end, which starts training
the whole network from scratch. We are constrained to smaller
batch sizes and fewer positive/negative scans than the linear
probe strategy in these two strategies. With the principle of
maximizing computational resource utilization, we have set
the batch size (b) to 1, with Np = 1 positive scan (p) and
Nn = 1 negative scan (n) for both strategies. As can be seen,
the batch size, positive scans, and negative scans used in these
two strategies are significantly less than that used in linear
probes, which largely constrains the performance in candidate
retrieval. Note that the linear probe also uses the same batch

size as 1 when trained on registration, yet it still achieves the
best registration performance. This can be attributed to the
linear probe strategy not facing the trade-off between global
descriptor capacity and registration capability during training.

H. Insights on How VoteEncoder Contributes to Registration

In our ablation study, we observed significant performance
enhancement brought about by our VoteEncoder in registration
tasks. To provide a comprehensive understanding of the ben-
efits of VoteEncoder for registration, we further conducted in-
sight experiments on six additional metrics: i) Inlier Ratio (IR),
the ratio of correct correspondences with residuals below a
certain threshold, e.g., 0.6 m, after applying the ground truth
transformation. ii) Match Recall (MR), the ratio of true point
matches found among all the true matches. iii) Hit Ratio (HR),
the fraction of true points that have matches among all points
that have matches. iv) Patch Inlier Ratio (PIR), v) Patch
Match Recall (PMR), and vi) Patch Hit Ratio (PHR) are with
the same meaning as IR, MR, and HR, respectively, but at
sparse matching levels. The true patch match represents that
patch pairs exhibit actual overlap. MR and PMR evaluate the
coverage ratio of found matches among all true matches, while
HR and PHR better assess the match distribution over the
overlapping region since a point/patch may possess multiple
matches.

We present the result of LCR-Net and LCR-Net without
VoteEncoder in Tab. VII. To evaluate the efficacy of the
VoteEncoder in contrast to an alternative downsampling and
aggregation approach, we also present a variant, denoted as
5KPEncoder, that replaces VoteEncoder with another KPEn-
coder, comprising 5 layers of KPEncoder. As can be seen,
using VoteEncoder has shown a decrease in IR and PIR but
has notably increased PMR and HR. The rationale behind this
can be explained as follows: the VoteEncoder can be seen as a
downsampler that filters redundant points and aggregates them
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TABLE VII: A Comprehensive Evaluation of VoteEncoder on Con-
tinuous Registration Task Using the KITTI Dataset.

Model Direct metrics Indirect metrics
RR(%) RRE(◦) RTE(cm) IR MR HR PIR PMR PHR

full 99.82 0.17 3.9 78.2 9.2 69.2 80.9 62.8 86.3
VoteEncoder w/o 99.82 0.22 6.4 84.5 3.7 35.1 97.0 15.7 43.2
5KPEncoder 99.82 0.20 4.6 81.2 6.3 51.0 88.6 39.4 77.5

The best results are highlighted in bold.

(a) Input point clouds.

(b) Matching points found by LCR-Net ablating VoteEncoder.

(c) Matching points found by LCR-Net.

Fig. 10: We visualize the matching points identified by LCR-Net
to demonstrate the focus of our LCR-Net. The matching points
obtained by LCR-Net after ablating VoteEncoder is also visualized for
comparison. For better visualization, we align the points in two scans
using the pose estimated by LCR-Net based on LGR. In each case,
we zoom in on three representative regions for closer examination.

into new keypoints. After filtering massive points with similar
neighbors, it becomes more difficult to find true matches
in sparser candidates (as observed by the decrease in PIR).
However, this also allows LCR-Net to focus on searching
different geometrically salient regions over the point cloud
rather than repeatedly sampling the same salient region (as
observed by the increase in PMR and HR). Moreover, this
also leads to a more reasonable point patch grouping, making
it easier to match an object as a whole and simplifying
the subsequent dense matching process (as observed by a
decrease in PIR by 17.9%, while IR only decreases by 6.3%).
As depicted, the significant improvement in PMR and HR
brought by VoteEncoder, allowing for wider baselines and
more dimensional constraints in registration, greatly reduces
registration errors (as observed by a decrease in RRE by
23% and RTE by 39%). Comparison between 5KPEncoder
and full LCR-Net demonstrates that the VoteEncoder achieves
more effective downsampling and better registration than a
KPEncoder.

We provide qualitative comparisons of matching points as in
Fig. 10. As depicted, matching points obtained by full LCR-
Net offers enhanced coverage of overlapping regions within
the point clouds. We zoom in and examine four specific local
areas: car, tree, signage, and shrub within both scenes. It is
evident that the full LCR-Net effectively groups and matches
points of local areas.
Insights. The above results lead us to rethink which indirect
metrics are more important in point cloud registration. Apart
from the final performance evaluated by direct metrics of
Registration Recall (RR), Relative Rotation Error (RRE), and
Relative Translation Error (RTE), most prior work [34], [35],
[37]–[39], [41]–[43], [62], [63], [66] focuses only on the
keypoint salience evaluated by indirect metric Inlier Ratio (IR),
also referred to as precision. However, higher IR does not guar-
antee higher robustness or accuracy, as observed in Tab. VII.
Conversely, the coverage ratio of found matches among all
true matches, as evaluated by metrics MR and HR, should be
a crucial factor to consider. These metrics provide insights
into the distribution of matching points and can guide the
design of new keypoint detection methods by considering this
distribution. It is important to note that the coverage ratio is
just one minor aspect within the broader research context of
distribution, and there are still numerous other factors, such
as divergence and distribution across dimensions, waiting to
be explored in this field.

Indeed, numerous existing keypoint detection and matching
methods [38], [39] have proposed to prevent keypoints from
being excessively concentrated in local areas. Earlier work
for LiDAR odometry, LOAM [12] and its variants [67], [68]
propose to extract keypoints uniformly from all LiDAR scan
lines. However, they have not provided a clear explanation
for the underlying reasons. We are the first to specifically
propose this insight and validate it through experimental cases
by providing quantitative metrics.

VII. CONCLUSION

This article analyzes the challenges and commonalities in
loop closing and relocalization tasks and proposes a unified
framework to address both tasks. Based on this framework,
we present LCR-Net, a novel multi-head network for can-
didate retrieving and point cloud registration. LCR-Net in-
corporates a novel keypoint detection module, offering three
types of features to meet different requirements for distinct
post-processing. Two novel sub-modules, 3D-RoFormer++
and VoteEncoder, are proposed for feature generation. 3D-
RoFormer++ learns contextual information between two point
clouds and leverages a novel transformation-invariant rotary
position embedding for geometric information aggregation.
VoteEncoder, on the other hand, learns to detect keypoints
from distinct objects in the scene while maintaining a uniform,
non-repeating distribution. Both 3D-RoFormer++ and VoteEn-
coder significantly contribute to our network’s loop closing
and relocalization performance. Given the impressive improve-
ment in registration performance brought by VoteEncoder,
we conduct experiments and evaluation metrics to analyze
the underlying reasons and obtain an important insight that
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point matching should consider distribution rather than solely
focusing on precision. We demonstrate the SOTA performance
of our LCR-Net in three sub-tasks related to loop closing and
relocalization. It is shown that the best performance of LCR-
Net does not rely on a costly robust estimator and outperforms
the baseline method refined by ICP. Finally, we integrate our
network as the loop closing and relocalization module in a
complete SLAM system and verify its capability to address
loop closing and relocalization tasks.

REFERENCES
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