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Abstract—Smartphones with Near-Field Communication
(NFC) may emulate contactless smart cards, which has resulted
in the deployment of various access control, transportation and
payment services, such as Google Pay and Apple Pay. Like
contactless cards, however, NFC-based smartphone transactions
are susceptible to relay attacks, and ambient sensing has
been suggested as a potential countermeasure. In this study,
we empirically evaluate the suitability of ambient sensors
as a proximity detection mechanism for smartphone-based
transactions under EMV constraints. We underpin our study
using sensing data collected from 17 sensors from an emulated
relay attack test-bed to assess whether they can thwart such
attacks effectively. Each sensor, where feasible, was used to
record 350-400 legitimate and relay (illegitimate) contactless
transactions at two different physical locations. Our analysis
provides an empirical foundation upon which to determine the
efficacy of ambient sensing for providing a strong anti-relay
mechanism in security-sensitive applications. We demonstrate
that no single, evaluated mobile ambient sensor is suitable for
such critical applications under realistic deployment constraints.

Index Terms—relay attacks; ambient sensing; mobile security;
contactless transactions; near-field communication (NFC);

I. INTRODUCTION

Near-Field Communication (NFC) [1] has opened smart-
phone platforms to a range of application domains, particularly
those based previously on smart cards. Through card emulation,
users may use their smartphones in a range of payment,
transport and access control applications – leading to the
deployment of services such as Google Pay and Apple Pay. The
Android platform also provides Host-based Card Emulation
(HCE) [2], which enables any application to take advantage of
card emulation mode via NFC. Deloitte estimated that 5% of
the 600-650 million NFC-enabled mobile phones were used
at least once a month to make a contactless payment globally
in 2015 [3]. In the same year, 12.7% of smartphone users
in the USA were actively using contactless mobile payments
according to Statista, while the value of such transactions is
projected to grow to $114 billion (USD) by 20181. Similar
trends are being observed in other domains where mobiles are
used to deliver smart card-type services, like transportation
and access control [4].

1Statista: http://www.statista.com/statistics/244475/proximity-mobile-
payment-transaction-value-in-the-united-states/

Contactless transactions, however, are vulnerable to relay
attacks – a passive man-in-the-middle attack in which an
attacker extends the distance between a genuine payment
terminal (point-of-service) and contactless smart card or NFC-
enabled mobile device. This attack enables a malicious user
to access services for which the genuine user is eligible,
e.g. accessing a building with physical access controls and
purchasing goods. Such attacks on contactless smart cards have
been extensively studied in related literature [5]–[8], and were
quickly shown to be applicable to NFC-enabled smart phones
in [9]–[11]. In a range of past proposals, the sensors found in
smartphones have been suggested as a strong countermeasure
against relay attacks [12]–[17].

In this work, we present an empirical study that evaluates
smartphone sensors as a relay attack detection mechanism under
the practical time constraints stipulated by EMV. Legitimate
data was collected from two devices that were in close
proximity (<3cm) to each other, while two devices, placed 1.5m
apart, assisted in the collection of illegitimate data. We then
conducted a two-fold evaluation based, firstly, on similarity-
based threshold analysis and, secondly, machine learning. The
primary contributions of this paper are:
• Evaluation Test-bed: We established a reproducible2 test-

bed environment that was used to collect field data
for legitimate and illegitimate transactions concurrently.
Section IV describes the theoretical model and practical
implementation of the test-bed.

• Anti-Relay Attack Analysis: The effectiveness of an ambi-
ent sensor in countering a relay attack was studied using
the illegitimate transaction data. An effective sensor should
be able to reject sensor values that were recorded on distant
devices, while still accepting legitimate transactions. In
our experiments, we selected a distance of 5ft (1.5m)
between the devices to emulate a close-range relay attack.

II. AMBIENT SENSING AND NFC TRANSACTIONS

In this section, we briefly discuss NFC-based smartphone
transactions, how relay attacks are conducted, and the deploy-
ment of ambient sensing as a countermeasure.

2Source code and collected data available at https://github.com/
AmbientSensorsEvaluation/Ambient-Sensors-Relay-Attack-Evaluation

1



A. Relay Attacks on Contactless Transactions

In NFC-based mobile contactless transactions, a mobile
handset is brought into the radio range (<3cm) of a payment
terminal and a dialogue is initiated. During this transaction,
physical contact is not necessary and, in many cases, a
second factor of authentication, e.g. biometrics or Personal
Identification Number (PIN), is not required [18]. This makes
it difficult to ascertain whether the device is genuinely in close
proximity to the terminal. (Note that the use of a PIN or
biometric may not counter a relay attack effectively – see the
Mafia fraud attack [19]).

Fig. 1. Overview of a Relay Attack

In a relay attack [9]–[11], as shown in Figure 1, an attacker
presents a malicious payment terminal to a genuine user and a
masquerading payment instrument (mobile phone) to a genuine
payment terminal. The goal of the malicious actor is to extend
the physical distance of the communication channel between
the victim’s mobile phone and the payment terminal – relaying
each message across this extended distance. The attacker has
the potential to gain access to services using the victim’s
account if it successfully relays messages without detection.

B. Ambient Sensors in Conventional Transactions

A substantial portion of work surrounding relay-attack
countermeasures for contactless smart cards relates to distance
bounding protocols [5], [6], [19]–[22]. However, these may not
be feasible for NFC-enabled phones – at the current state of the
art – due to their requirement of high time-delay sensitivity and
specialised hardware [1], [12]. As such, alternative methods
have been proposed to provide proximity detection, most of
which use environmental and motion sensors present on modern
mobile handsets. In Section III, we discuss how ambient sensors
have been proposed to counter relay attacks in NFC-based
mobile contactless transactions.

An ambient sensor measures a particular physical/envi-
ronmental property of its immediate surroundings, such as
temperature, light or sound; modern smartphones and tablets
are equipped with such sensors. The physical environment
surrounding a smartphone or payment terminal can potentially
provide a rich set of features that are reasonably unique to
that location – the sound in a library, for example – which
could be leveraged for proximity detection. We illustrate a
generic approach for deploying ambient sensing as a proximity
detection mechanism for mobile payments in Figure 2, with
the following variations:

Fig. 2. Generic Deployment of Mobile Sensing for Proximity Detection

1) Independent Reporting. In this scenario, depicted as
solid lines in Figure 2, both the smartphone and payment
terminal collect sensor measurements independently of
each other and transmit these to a trusted authority. This
authority compares the sensor measurements, based on
some predefined comparison algorithm with set margins
of error (threshold), and decides whether the two devices
are in proximity to one another.

2) Payment Terminal Dependent Reporting. This setup,
shown as double-dot-dash lines in Figure 2, involves
the smartphone encrypting the sensor measurements
with a shared key (between smart phone and trusted
authority) and transmitting the encrypted message to
the payment terminal. The payment terminal sends its
own measurements and the smartphone’s to the trusted
authority for comparison.

3) Payment Terminal (Localised) Evaluation. The smart-
phone transmits its measurement to the payment terminal,
which compares it with its own measurements locally; the
payment terminal then decides whether the smartphone
is in close proximity.

Regardless of how a user interacts with the payment terminal,
e.g. touching or tapping it with their device, the overall
deployment architecture falls under one of the above scenarios.
It can be observed that there is a potential fourth scenario in
which a smartphone (payment instrument) could perform the
comparison. In this study, our sole focus is on conventional
transactions, requiring no specific interaction with the terminal,
e.g. double-tapping, a gesture, or otherwise.

III. RELATED WORK

We identify and summarise key pieces of related work that
have addressed the proximity detection problem using ambient
sensing as a strong countermeasure.

Drimer et al. [5] and Ma et al. [13] showed how location-
related data, using a GPS (Global Positioning System), can be
used to determine the proximity of two mobile phones. Ma
et al. used a ten second window with location information
collected every second, which was subsequently compared
across various devices. The authors reported a high success
rate in identifying whether the devices are in close proximity.
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Halevi et al. [12] demonstrated the suitability of using
ambient sound and light for proximity detection. Here, the
authors analysed the sensor measurements – collected for 2
and 30 seconds duration for light and audio respectively –
using a range of similarity comparison algorithms. Extensive
experiments were performed in different physical locations,
with a high success rate in detecting co-located devices.

Varshavsky et al. [17] based their proximity detection
mechanism on the shared radio environment of devices – the
presence of WiFi access points and associated signal strengths
– using the application scenario of secure device pairing. In this
work, they considered this approach to produce low error rates,
recommending it as a proximity detection mechanism. While
their paper did not focus on NFC-based mobile transactions,
their techniques and methodology may still be applicable.

Urien et al. [16] propose using ambient temperature with
an elliptic curve-based RFID/NFC authentication protocol to
determine whether two devices are co-located and to bootstrap
a secure channel. The proposal combines the timing channels
in RFID, traditionally used in distance bounding protocols, in
conjunction with ambient temperature. Their proposal, however,
was not implemented and has no experimental data to evaluate
its effectiveness.

Mehrnezhad et al. [23] propose the use of an accelerometer
to provide assurance that the mobile phone is within the vicinity
of the payment terminal. Their proposal requires the user to
tap the payment terminal twice in succession, after which
the sensor streams of the device and the payment terminal are
compared for similarity. It is difficult to deduce the total time it
took to complete one transaction in its entirety, but the authors
have provided a recording time range of 0.6–1.5 seconds.

Truong et al. [15] evaluated four different sensors. Similarly
to previous studies, their sample rates were 10-120 seconds.
Although results were positive, the sample duration made them
unsuitable for NFC-based mobile transactions. Shrestha et
al. [14] used specialised hardware known as Sensordrone,
with a number of ambient sensors, but did not evaluate the
commodity ambient sensors available on commercial handsets,
did not provide the sample duration, and only mentioned that
data from each sensor was collected for a few seconds. This
potentially renders the technique inapplicable to NFC-based
mobile transactions.

Table I summarises past proposals, using sensor sampling
durations to determine their suitability for NFC-based mobile
phone transactions in banking and transportation. ‘Unlikely’
proposals are those whose sample duration is so large that they
may not be adequate for mobile-based services that substitute
contactless cards, while those with reasonably short sample
ranges are labelled ‘More Likely’ in Table I. However, even
schemes denoted as ‘More Likely’ may not be suitable for
certain domains, such as banking or transport applications,
where a strict upper bound is often present in which to complete
the entire transaction. In these domains, the goal is to serve
people as quickly as possible to maximise customer throughput,
so time is critical in determining whether a transaction is
successful and, indeed, permitted. An optimum transaction

TABLE I
RELATED WORK IN SENSOR-BASED ANTI-RELAY MECHANISMS

Paper Sensor(s) Used Sample Duration Contactless Suitability

Ma et al. [13] GPS 10 seconds Unlikely
Halevi et al. [12] Audio 30 seconds Unlikely

Light 2 seconds More Likely
Varshavsky et al. [17] WiFi (Radio Waves) 1 second More Likely
Urien et al. [16] Temperature N/A -
Mehrnezhad et al. [23] Accelerometer 0.6 to 1.5 Seconds More Likely
Thruong et al. [15] GPS Raw Data 120 seconds Unlikely

WiFi 30 seconds Unlikely
Ambient Audio 10 seconds Unlikely
Bluetooth 12 seconds Unlikely

Shrestha et al. [14] Temperature (T) Few seconds Unlikely
Precision Gas (G) Few seconds Unlikely
Humidity (H) Few seconds Unlikely
Altitude (A) Few seconds Unlikely
HA Few seconds Unlikely
HGA Few seconds Unlikely
THGA Few seconds Unlikely

duration is 500ms rather than seconds.
Shepherd et al. [24] questioned the effectiveness of ambient

sensing as a proximity detection mechanism under short time
frames (< 1 second) – illustrating that a variety of sensors
available via the Android platform perform poorly within an
operating distance of <3cm. Both threshold- and machine
learning-based analyses were employed using sensing data
collected from mock transactions in the field. Similar results
were also exhibited by Haken et al. [25] using sensors via the
Apple iOS platform. While our study is similar, we focus on
applying data collected from an emulated relay attack set-up
under the assumption that <3cm provides little discrimination
between measurements. A larger operating distance (>1.5m)
may, however, provide greater evidence in identifying (il-
)legitimate transactions.

Ambient sensing is also used in user-device authentication,
key generation and establishment of secure channels [26]. These
applications typically measure the environment for longer
periods of time (>1 second) and, generally speaking, their
primary goal is not proximity detection. As such, we do not
discuss them in this section.

The use of ambient sensors for proximity detection in
NFC-based mobile services is expanding, as illustrated by
the number of proposals that currently exist. In this paper
we extended the discussion to a large set of ambient sensors
and included real-world relay attack data – not only analysing
their effectiveness as proximity detection mechanism but also
as an anti-relay mechanism. Table II shows that we have
undertaken a comprehensive evaluation of ambient sensors
for proximity detection and anti-relay effectiveness. A point
to note is that in previous literature, ambient sensors were not
evaluated for their effectiveness as an anti-relay mechanism
(Table I). Without a strong ability to detect relay attacks, the
proximity detection alone does not warrant their deployment
as an effective mechanism in NFC based mobile transactions.

IV. TEST-BED FRAMEWORK: THEORETICAL MODEL

A test-bed environment was designed and developed that
captures both legitimate and illegitimate pairs of sensor
measurement under real-world conditions. A genuine pair of
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measurements is from two devices that are physically in close
proximity to each other (<3cm), while an illegitimate pair is
from two devices that are not physically in close proximity,
which we consider to be 5ft (1.5m) – emulating a reasonable
distance for pickpocketing at a busy supermarket. To achieve
this, we develop a test-bed of four devices, as per Figure 1, that
records sensor measurements on both the legitimate terminal
and device, and an emulated victim phone at distance (all three
devices measure the ambient sensor values at approximately
the same time). To avoid any discrepancies introduced because
of the dependence of ambient sensors on location and time,
we collected these pairs concurrently.

Transaction 
Instrument (TI’)

Transaction 
Terminal (TT)

Trusted Authority

TI’ Sensor Measurement

TT Sensor Measurement

Transaction 
Instrument (TI)

TI Sensor Measurement

Transaction 
Terminal (TT’)

Fig. 3. Overview of Test-bed – Trial Data Collection Platform

Figure 3 shows our data collection setup. The Transaction
Terminal (TT) is a static device, and we use this as a reference
point for our two pairs. The Transaction Instrument (TI′) is
a mobile phone in close proximity to the TT. The ambient
sensor measurement pair TT–TI′ is referred to as the genuine
pair. Another mobile phone, at a 5ft (1.5m) distance from the
TT, is referred to as the Transaction Instrument (TI), and is
co-located with the Transaction Terminal (TT′). The ambient
sensor measurement pair TT–TI is referred to as the illegitimate
pair. The rationale for setting up the test environment in this
manner is to collect ambient sensor values from proximate
and distant devices almost simultaneously. If, for a transaction
‘Ti’, the genuine pair is uniquely identified (and accepted) then
the ambient sensor is considered effective. However, if the
illegitimate pair is accepted (whether uniquely or along with
the genuine pair) then the relay attack on that ‘Ti’ is successful.
The reasoning is that if two devices at 5ft (1.5m) apart measure
ambient sensors independently, and the illegitimate pair is
indistinguishable from a genuine pair, then the attacker can
successfully relay messages between these two devices without
being detected.

At a point in time a user taps TI′ to TT; at approximately this
point, TI is also tapped against TT′ and initiates the ambient
sensor measurements. Thus, at approximately the same time, we
have three separate ambient sensor measurements for the three
devices (TT′ does not record any sensor values). Overall, for an
ambient sensor to be effective, the Trusted Authority should be
able to distinguish the genuine pair from the illegitimate pair.
To evaluate each ambient sensor’s effectiveness for proximity

Fig. 4. Test-bed Scenarios

detection and to detect relay attacks, we analysed the collected
data using threshold and machine learning based analyses.

A. Test-bed Architecture, Data Collection Implementation
Platform, and Specifications

As mentioned in Section IV, four devices were used in
the data collection phase, TT, TI′, TT′, and TI. During the
experimental phase, the devices TT and TI′ were placed at
a distance of 5ft from the devices TT′ and TI. When TI′

was brought in close proximity to TT, an NFC connection
between the two devices would be established, initiated by
TT, indicating the beginning of a transaction. According to the
EMV standard, TT and TI′ should be in proximity, less than
3cm apart [18]. During the analysis process the pair TT–TI′

represented the genuine devices, where no relay attack was
involved. The pair TT–TI represented the genuine devices,
where a relay attack was active. So, device TI′ had a double
role, acting as both a genuine, and a relay device. Figure 4
depicts the experimental setup.

Three Samsung Galaxy S4 (GT-I9500) Android devices
running Android 5.0.1 were used in the experimental phase for
data collection.This specific device was found to include a large
variety of sensors, covering the majority of sensors supported
by the Android platform [27], excluding the Geomagnetic
Rotation Vector. A Nexus 5 Android device was used as TT′,
which was not collecting sensor data. Table II lists the available
sensors on the Samsung Galaxy S4 device, the ones used in
our experiments and the rational behind excluding some. For
the majority of excluded sensors, no values could be captured
in the 500ms timeframe in our initial tests. Based on these
initial tests, for less than 5% of the 500ms transactions any data
is being returned by the Bluetooth, GPS, Network Location
and WiFi sensors. Furthermore, during the initial evaluations
of Ambient Temperature and Relative Humidity sensors, we
discovered insufficient data was returned by the sensors during
500ms for any meaningful proximity analysis. The proximity
sensor on Samsung Galaxy S4 returns only a true or false
value when the sensor, located in the front of the device, is
covered or uncovered, hence it could not be used effectively
in the experimental phase. Lastly, the sound sensor, i.e. the
microphone, of the specific device was tested; we found that
this could not initiate and record values within 500ms. Finally,
after our initial analysis we selected seven sensors and discarded
the others.

An overview of the measurement recording process across
the four devices is presented in Figure 5. Three Android
applications were developed. Devices TI′ and TI were run-
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TABLE II
SENSOR AVAILABILITY FOR SAMSUNG GALAXY S4

Sensor Supported Used Reason

Accelerometer 3 3 -
Gravity 3 3 -
Gyroscope 3 3 -
Light 3 3 -
Linear Acceleration 3 3 -
Magnetic Field 3 3 -
Rotation Vector 3 3 -
Ambient Temperature 3 7 Insufficient values in timeframe.
Bluetooth 3 7 Insufficient values in timeframe.
GPS 3 7 Insufficient values in timeframe.
Relative Humidity 3 7 Insufficient values in timeframe.
Network Location 3 7 Insufficient values in timeframe.
Pressure 3 7 Insufficient for data collection.
Proximity 3 7 Insufficient values in timeframe.
Sound 3 7 Insufficient values in timeframe.
WiFi 3 7 Insufficient values in timeframe.
GRV† 7 7 Not present. Used Rotation Vector instead.

†Geomagnetic Rotation Vector

ning the same application, and Host-based Card Emulation
(HCE) [28] was used to achieve NFC communication with
TT and TT′. The application for device TT included two
connection interfaces. For the first interface – used for the
NFC connection with the device TI′ – device TT was set to
NFC reader mode, allowing it to interact with discovered NFC
tags. The second – used for connection with the device TT′

over WiFi – device TT would broadcast a UDP packet in
the local network. In both, the message transmitted on the
NFC or wireless channel included the sensor to be measured
in that transaction, and a random 7-byte transaction ID. The
transaction ID was generated by device TT and used in the
analysis phase in order to uniquely identify each transaction
across the devices. In real-world scenarios, device TI′ would
act as the device communicating with TT′. However, since
the scope of this paper is to evaluate the effectiveness of the
ambient environment as an anti-relay mechanism, device TT
was responsible for sending the information across the WiFi
channel for greater transaction synchronisation. The final results
were not influenced by this.

Lastly, the application running on device TT′ featured a
broadcast listener for UDP packets from TT. Devices TT and
TT′ were connected to the same wireless hotspot, created for the
requirements of the experiment. Upon receiving a packet from
device TT, device TT′ would be able to initiate a transaction
with device TI, upon tapping the latter to the former. After the
initiation of a transaction, devices TT, TI′, and TI would start
recording data using some predefined sensor, for 500ms. On the
Android operating system, data captured by a sensor is returned
to an application in time intervals set by the application. The
rate at which data was polled from the sensors was set at the
highest available that was the same across all three devices.

Following the recording time period, devices TI′ and TI
would send a response message, containing the transaction ID
and sensor used to TT and TT′, respectively. Device TT would
then validate the received data. In case of inconsistencies,
data would not be stored for the specific transaction. The
three devices would store the recorded data in a local SQLite
database, along with the transaction ID, sequence number,

TT TI′ TT′ TI

NFC: 1) sensor|transaction ID

WiFi: sensor|transaction ID

NFC: 1) sensor|transaction ID

recordSensor()

NFC: 2) sensor|transaction ID

recordSensor() recordSensor()

NFC: 2) sensor|transaction ID

saveMeasurement() saveMeasurement()validateReceivedData()

saveMeasurement()

Fig. 5. Measurement Recording Overview

timestamp and the pre-defined location in which the recording
took place. Separate database tables were used for each sensor.
The recorded data was stored in XML format. During the
data analysis phase, only transactions that existed in all three
databases, based on their transaction ID, were considered.
A total of 400 transactions were collected for each sensor,
distributed in 2 distinct locations on the university campus.

V. TRANSACTION DATA ANALYSIS

In line with the framework discussed previously, we con-
ducted a two-fold evaluation using the sensor data collected
during field trials.

A. Evaluation 1: Threshold-based Analysis

We employed similarity metrics from related work to
compute the similarity of the legitimate and illegitimate
transaction pairs. This analysis – used prevalently in past
work and other binary classification tasks, like biometrics –
assumes some threshold, t, is able to separate both illegitimate
and legitimate attempts. The computed similarities provide a
range of thresholds to test for each metric, before calculating
the Equal Error Rate (EER) for each sensor – defined as
the intercept of the False Acceptance Rate (FAR) and False
Rejection Rate (FRR). This threshold would subsequently be
used by decision authorities, e.g. the Trusted Authority in
Figure 3, to determine whether the transaction devices are
proximate. This way, the success/failure rate of a relay attack
being conducted successfully can be determined in the presence
of ambient sensing.

B. Evaluation 2: Machine Learning

Simple distance functions give equal weight to each measure-
ment obtained from the sensors. To address this, we consider
machine learning to perform the discrimination between
legitimate and illegitimate transactions more effectively through
modelling non-linear interactions between measurements. The
experiments we conduct apply the same evaluation strategy as
the first method, but the threshold is based on the probability
estimate output by the learned classification model, i.e. the
estimated probability that a transaction is legitimate. Moreover,
to avoid optimistic bias in the error estimate when applying
machine learning, it is necessary to perform a train-test
experiment. More specifically, the full set of transaction pairs
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is split into a training set and a test set. The machine learning
algorithm is applied to the training set to build a classification
model that can output class probability estimates. Once the
model has been been built, it is applied to obtain probability
estimates for the test set. When we split the data into training
and test sets, we ensure that two transactions with the same ID
(i.e., a legitimate and a fraudulent transaction that were recorded
simultaneously) are either both in the training set or both in the
test set, to avoid potential bias. Moreover, instead of using a
single train-test split, we use 10-fold cross-validation repeated
10 times, a standard estimation technique from machine learning
that generates 100 different train-test splits based on shuffled
versions of the data. The learning algorithm is run 100 times on
the 100 training sets, to build 100 models, and these 100 models
are evaluated on the corresponding test sets. Performance
estimates from the 100 test sets are averaged to obtain a final
performance estimate.

C. Data Analysis Workflow

In this section, we describe the details of both evaluations
in further detail, including any pre-processing, the evaluation
metrics, and the results.

1) Sensor Measurement Similarity: We employed two simi-
larity metrics used in related work to determine whether the
measurements of TI′i and TIi were in proximity with TTi,
i.e. between (TI′i,TTi) and (TIi,TTi). Specifically, we used
the Mean Absolute Error (MAE) and Pearson’s Correlation
Coefficient, as used in [23] to evaluate proximity detection
mechanism proposed for NFC based mobile transactions, which
are given in Eqs. 1 and 2 respectively.

MAE(Ai, Bi) =
1

N

N∑
j=1

|Ai,j −Bi,j | (1)

Where N refers to the number of datapoints in a sensor
measurement, and Ai,j refers to the jth datapoint of the ith

sensor measurement on device A.

corr(Ai, Bi) =
cov(Ai, Bi)

σAi · σBi

(2)

Where σAi
denotes the standard deviation of the sensor

measurements of Ai, and cov represents the covariance, given
below in Eq. 3, with µAi denoting the mean of Ai.

cov(Ai, Bi) =
1

N

N∑
j=1

(Ai,j − µAi
)(Bi,j − µBi

) (3)

M =
√
x2 + y2 + z2 (4)

2) Pre-processing: All sensors except those for light produce
a vector of values consisting of x, y and z components. For
these sensors, the vector magnitude (Eq. 4) was used as a
general-purpose method for producing a single, combined value
prior to computing the MAE and correlation coefficient. In the
event that the sensor values exceeded the maximum permitted
transaction time (500ms), such values were discarded prior to
computing the similarity. Moreover, any sensor values on device

0 25 50 75 100 125 150 175
Threshold (lux)

0.0

0.2

0.4

0.6

0.8

1.0

Ra
te

Fig. 6. Light sensor FAR-FRR curves with MAE.

A that were recorded after the maximum time recorded by
device B were also discarded. This was to prevent undefined
results when computing MAE; calculating |Ai,j − Bi,j | is
undefined when Ai,j has no corresponding datapoint on device
B, i.e. Bi,j .

D. Calculating FAR, FRR and EER

We computed Equal Error Rates (EERs) to determine optimal
similarities/thresholds where the rate of false acceptances (FAR)
is equal to the rate of false rejections (FRR) for each tested
sensor. The following notions of true accepts (TAs) and rejects
(TRs), false accepts (FAs) and rejects (FRs) are defined for
each evaluation:

Evaluation 1. TA: the legitimate pair, transaction instrument-
terminal (TI′i,TTi) is accepted correctly. TR: the distant
instrument-terminal pair, (TIi,TTi), is rejected correctly. FA:
the distant-terminal pair is wrongly accepted as a legitimate
transaction. FR: the legitimate transaction instrument-terminal
pair is rejected incorrectly.

Evaluation 2. For the machine learning experiments, we use
the same definitions as in Evaluation 1. As already indicated
above, the estimated probability of being legitimate is used
instead of a similarity score when the threshold for EERs is
determined. When training and testing each machine learning
model, we use the individual differences |Ai,j − Bi,j | as
attributes (also called features or independent variables) that
describe each pair of transactions. Each example for training
and testing the machine learning model thus has 49 numeric
features (corresponding to 490ms sampled at 10ms intervals).
An example is labelled as positive if it corresponds to a
legitimate transaction and as negative otherwise.

To determine an optimal similarity threshold that broadly
balances the security and usability of each sensor, 250
thresholds – between the minimum and maximum observed
distances for MAE and [−1, 1] for correlation – were tested
for each similarity metric using EERs. The FPR and FNR
were measured at each threshold using Eqs. 5 and 6. Here, a
threshold is the maximum permitted difference in similarity
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before a transaction is rejected; conversely, a transaction is
accepted if the similarity between sensor measurements is
within this threshold. Ideally, a chosen threshold should reject
all illegitimate transactions, namely those between the distant
instrument and the terminal, while accepting all legitimate
transactions between the transaction instrument and terminal.
The EERs and associated thresholds for each sensor are
calculated for both of the similarity metrics described in
Section V-C. Figure 6 shows the FAR/FRR graph produced for
100 different thresholds using the Gyroscope with Pearson’s
Correlation Coefficient. By inspection, the point at which FRR
and FAR intersect (FAR=FRR) has a corresponding EER of
approximately 42% for this sensor and metric.

TAR =
TA

TA+ FR
TRR =

TR

TR+ FA
(5)

FAR = 1− TRR FRR = 1− TAR (6)

E. Individual Sensor Results

The rate of accepted transactions using the distant instrument
– analogous to the rate of successful relay attacks – is estimated
by inspecting the EER. The FAR is equivalent to the proportion
of successful distant transactions (FAs) to the total of FAs
and correctly denied distant transactions (TRs). The rate of
potentially successful relay attacks can be estimated from
the EERs, which we present in Table III. We estimate, for
example, that using the accelerometer with MAE will result in
49.4% relayed transactions being accepted using a threshold
of 0.913ms−2.

TABLE III
THRESHOLDS AND EERS FOR THRESHOLD-BASED ANALYSIS

Sensor (units) tMAE EERMAE tcorr EERcorr

Accelerometer (ms−2) 0.913 0.494 0.526 0.480
Gyroscope (rads−1) 0.329 0.521 0.336 0.455
Magnetic Field (µT ) 153.9 0.444 0.399 0.473
Rotation Vector (N/A) 0.493 0.330 0.470 0.472
Gravity (ms−2) 0.290 0.521 0.586 0.490
Light (lux) 26.54 0.367 0.714 0.488
Linear Accel. (ms−2) 0.569 0.482 0.064 0.536

F. Machine Learning Analysis

Table IV shows the results obtained using five different
machine learning algorithm that induce different types of
classification models from data. For each dataset/sensor and
learning algorithm, the table shows the mean and standard
deviation of the 100 equal error rate estimates obtained using
10-fold cross-validation repeated 10 times. The best result for
each sensor is shown in bold.

A random forest [29] is an ensemble classifier comprising
a large number of decision trees induced in a semi-random
manner from bootstrap samples of the original dataset. In
our experiments, we used the default parameters for the
RandomForest classifier in the Weka software [30]. It generates
an ensemble of 100 decision trees from the training data.
We also evaluated (a) a simple naive Bayes classifier, which

assumes conditional independence of the attributes given the
classification, and models the data for each class using a
Gaussian distribution with a diagonal covariance matrix, (b)
logistic regression, which assumes that the log-odds of the
class probabilities are linearly related to the attributes, (c)
decision trees grown using the C4.5 decision tree learning
algorithm [31], and (d) support vector machines optimised
with the SMO algorithm [32]. For the support vector machines,
the complexity parameter C and the width of the RBF kernel
γ were tuned using a grid search by optimising AUROC as
estimated using internal cross-validation on the training data.

Table IV shows that the random forest method produces the
lowest equal error rate for most sensors but classification is
far from perfect. The lowest equal error rate across sensors,
17.9%, is achieved for the gyroscope sensor. On the data from
the light sensor, the nominal result for a single decision tree
is better than that for a random forest but the estimated equal
error rate for the decision tree learner exhibits high standard
deviation. When performing a corrected resampled paired t-
test, the observed difference is not statistically significant at
the 5% significance level. On the other hand, random forests
perform statistically significantly better than all other learning
algorithms on the accelerometer data, the gyroscope data, and
the linear acceleration data.

Although accuracy is far from perfect, the results from
the machine learning experiments indicate that all sensors
apart from the gravity sensor provide useful information for
the discrimination between legitimate and distant transactions.
Ranking the sensors based on discriminative power (i.e.,
equal error rate) when evaluated in conjunction with random
forest classifiers yields the following ranking (best to worst):
gyroscope, accelerometer, rotation vector, linear acceleration,
light, magnetic field, and gravity. Interestingly, very few
measurements from the gyroscope sensor are required to
achieve the observed classification performance for random
forests. Using just the first 10 measurements (obtained at 10ms,
20ms, . . . , 100ms), the random forest classifier achieves an
error rate of 17.8% already. The best observed equal error
rate is obtained when using all measurements in the range
10ms-200ms: 16.6%. However, this improvement on the result
obtained on the full set of measurements is not statistically
significant. Note that, excluding the gravity sensor, which never
produces useful results, the gyroscope is the only sensor for
which the number of measurements can be reduced without
affecting accuracy. All other sensors yield an immediate drop
in accuracy when the number of measurements is reduced.

G. Analysis Equipment

The first analysis was conducted on a Fedora machine with
a quad-core Intel i5 4690k (3.7 GHz) and 16GB of RAM.
The analysis application was developed in Python, using the
Pandas [33] and NumPy [34] libraries for data loading and
numerical computation. The Weka machine learning software,
implemented in Java, was used to run the machine learning
experiments on a cluster of 10 Ubuntu Linux computers with
Intel Core i7-2600 CPUs and 16 GB of RAM. Multi-threading
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TABLE IV
ESTIMATED EER FOR MACHINE LEARNING ALGORITHMS, OBTAINED BY REPEATING 10-FOLD CROSS-VALIDATION 10 TIMES

Sensor Random Forest Naive Bayes Decision Tree Logistic Support Vector
Regression Machine

Accelerometer 0.277±0.052 0.474±0.047 0.358±0.059 0.483±0.050 0.454±0.126
Gyroscope 0.179±0.041 0.354±0.059 0.228±0.049 0.356±0.055 0.288±0.045
Magnetic Field 0.361±0.055 0.400±0.053 0.389±0.063 0.421±0.061 0.385±0.053
Rotation Vector 0.285±0.052 0.327±0.055 0.317±0.073 0.353±0.050 0.325±0.050
Gravity 0.499±0.046 0.488±0.043 0.494±0.057 0.484±0.043 0.486±0.156
Light 0.361±0.059 0.369±0.058 0.293±0.149 0.407±0.054 0.351±0.054
Linear Acceleration 0.307±0.050 0.484±0.048 0.392±0.057 0.502±0.049 0.397±0.058

was used for training random forests and performing parameter
optimisation for support vector machines. Generating all
performance estimates using 10-times 10-fold cross-validation
took less than two hours. The vast majority of this time was
used to obtain performance estimates for the support vector
machines.

VI. OUTCOME AND FUTURE DIRECTIONS

The presented results provide a basis for quantifying the
effectiveness of various mobile sensors as an anti-relay mecha-
nism in NFC-based mobile transactions. In both evaluations,
investigated the success rate of a potential relay attack by
considering readings between the terminal–distant instrument
and the terminal–transaction instrument. The results of the
first evaluation are shown in Table III. The Rotation Vector
sensor performs relatively better with an EER of 0.330, while
the Accelerometer has a 49.4% possibility of a success – one
of the highest in our analysis. Not only does the EER imply
the potential success of the attack, but also the potential of a
legitimate transaction being denied. The Rotation Vector EER
indicates that 33% of relay attacks would be accepted and
33% legitimate transactions would be denied. Denying 1-in-
3 legitimate transactions would invariably cause annoyance
issues for users in practice. From this analysis, it is difficult to
recommend any of the sensors for a single-sensor deployment
for high security applications, such as banking. Such sensors
might be appropriate for low-security access control, but we
recommend that a thorough analysis of the sensors and their
performance in the chosen domain is performed prior to
deployment.

The next evaluation applied machine learning classifiers (see
Table IV). The Gyroscope sensor with Random Forest performs
significantly better, with an estimated EER of 0.179; in this
analysis, the gyroscope was the best sensor, but all sensors apart
from the gravity sensor provided some discriminative power.
This illustrates that ambient sensors may have potential as
an anti-relay mechanism, but the detection accuracy is not
high enough to provide sufficient security in a real-world
deployment.

One reason that past work achieved different results could
be due to the significantly larger sampling durations (see
Section III). The sampling duration imposed in our experiments
was in line with the performance requirements of an EMV
application, i.e. 500 milliseconds. Transportation is another

major application for contactless smart cards; in this domain,
the recommended transaction duration is far lower, between 300-
500 milliseconds. The 500 millisecond limit in our experiment
was thus an upper bound of the recommendations of two
significant application areas where contactless mobile phones
may be utilised.

VII. CONCLUSION

This investigation aimed to analyse and evaluate a range of
sensors present in modern off-the-shelf mobile devices, and to
determine which sensors, if any, would be suitable as a anti-
relay mechanism for NFC-based smartphone transactions. We
shortlisted 17 sensors accessible through the Google Android
platform, before limiting the investigation to those which are
widely-available and displayed promise in our initial trails.
In existing literature, only 12 sensors have been suggested
as an effective proximity detection mechanisms, as listed in
Table I. Some sensors are only available in specialised ambient
sensor hardware and, in almost all instances, no relay attack
data was collected to determine their effectiveness against such
attacks. In this study, we implemented and evaluated 7 sensors
and collected data representing a genuine transaction and a
malicious transaction (from actual relay attacks). The objective
of collecting these two separate sets of data at the same time
was to empirical evaluate the implemented sensors with a
high degree of objectivity. As part of our ongoing research,
we are experimenting with simultaneously measuring multiple
sensors within the transaction time duration. This is to evaluate
whether this would reduce the risk associated with these sensors
individually.
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