
Secure FPGA as a Service - Towards Secure Data
Processing by Physicalizing the Cloud

Mark A. Will
Cyber Security Lab

The University of Waikato
Hamilton, New Zealand

Email: mark.will@waikato.ac.nz

Ryan K. L. Ko
Cyber Security Lab

The University of Waikato
Hamilton, New Zealand

Email: ryan.ko@waikato.ac.nz

Abstract—Securely processing data in the cloud is still a
difficult problem, even with homomorphic encryption and other
privacy preserving schemes. Hardware solutions provide addi-
tional layers of security and greater performance over their
software alternatives. However by definition the cloud should be
flexible and adaptive, often viewed as abstracting services from
products. By creating services reliant on custom hardware, the
core essence of the cloud is lost. FPGAs bridge this gap between
software and hardware with programmable logic, allowing the
cloud to remain abstract. FPGA as a Service (FaaS) has been
proposed for a greener cloud, but not for secure data processing.
This paper explores the possibility of Secure FaaS in the cloud
for privacy preserving data processing, describes the technologies
required, identifies use cases, and highlights potential challenges.

Index Terms—Secure Processing; Privacy Preserving Data Pro-
cessing; FPGA as a Service; Homomorphic Encryption; Green
Computing; Secure Multi-Party Computation;

I. INTRODUCTION

The holy grail of cryptography, fully homomorphic en-
cryption, is too slow for computing a single operation [1].
Therefore users and businesses storing data in the cloud need
to choose between functionality and security when selecting a
cloud service. Most pick functionality, because they trust the
service to protect their data. However, in reality the only entity
that can be truly trusted is the user themselves. A physical
approach to privacy preserving data processing is with Field-
Programmable Gate Arrays (FPGAs) and custom hardware,
which bestow greater security and privacy over their software
alternatives [2][3]. We propose Secure FPGA as a Service
(SFaaS) to leverage these security properties of FPGAs to
harden the cloud against both insider and outsider threats.

The terminology FPGA as a Service (FaaS) has been pro-
posed for a cleaner and greener cloud environment [4][5][6],
because of greater performance per unit of power. FPGAs are
already used in cloud architectures such as Microsoft for per-
formance and configurability [7][8]. Google also uses custom
hardware to accelerate machine learning tasks in the cloud, but
are not configurable [8]. Until recently, customers did not have
access to FPGAs in the cloud for their own designs. Amazon
are aiming to change this with their EC2 F1 Instances [9],
and are now publicly available to preview. However initially
this service is targeted at massively parallel and computational
intensive tasks. The feasibility of low latency applications is
currently unclear as the FPGA would ideally need direct access

to a networking interface. However the limitation for EC2 F1
Instances to support SFaaS is encrypting the FPGA definition
such that only the FPGAs themselves can decrypt it.

A FPGA bridges the gap between hardware and software,
by providing performance closer to that of an Application-
Specific Integrated Circuit (ASIC), while having the reconfig-
urability of a microprocessor. They contain a finite amount
of programmable logic, also known as reconfigurable logic,
that can be used to implement digital circuits by applying a
bitstream file to the device. This bitstream file is analogous to
a compiled program in software, but where programs contain
machine instructions, a bitstream file contains a sequence
of bits which configure circuits and logical functions. For
secure processing this bitstream file must be protected from
all entities other than the customer and FGPA device, and is
discussed in Section II where the proposed service is given.
This section also discuses task switching, encryption schemes
for data entering and leaving the FPGA, and attack vectors.

Processing data in parallel can give better performance,
however it is usually achieved by computing the same function
over chucks of data at the same time. FPGAs offer a slightly
different form of parallel processing by pipelining a design.
This allows different stages of a function to be processed in
parallel such that the data flows through the function. This
parallelisation allows proposed use cases in Sections III and IV
to have greater performance as well as security.

This paper proposes a simple service model, and provides a
survey of previous work for the use of FPGAs, concluding
with some benefits and challenges of providing SFaaS in
Sections V and VI. As discussed in Section III-A, SFaaS offers
greater protection to plaintext data processing in the cloud,
over traditional software approaches. Finally, even greater
security can be achieved by combining SFaaS with other
privacy preserving schemes.

II. PROPOSED SERVICE

Figure 1 shows the general model for the cloud service,
where each virtual machine has access to a FPGA – this is
the current approach by Amazon. In this section the idea of
FaaS is first given, before how it can extended to SFaaS for
greater security and privacy in the cloud.



FPGA

VM

FPGA

VM

FPGA

VM

FPGA

VM

FPGA

VM

FPGA

VM

Fig. 1. Virtual Machines having access to FPGAs in the cloud.

A. Booking Method

There are many possible options for booking methods,
which can be categorised into 3 groups: 24/7 use, fixed
time, or shared. The 24/7 option would be like renting server
hardware for an undetermined length of time, and is the easiest
to be implemented. This is the current offering from Amazon.
Booking a FPGA for a fixed time, for example 1 hour, is
similar in terms of complexity as the 24/7 option, but requires
more management. Finally, the shared option would be the
most complex to implement as task switching is required.
Which model would be cheapest for the customer is unknown
due to the complexity of the shared option.

B. Task Switching

In order for the FPGA pool to be shared, task switching is
necessary to stop resources being blocked. Central Processing
Units (CPUs) can switch tasks hundreds a time a second,
however a FPGA cannot match this because of the recon-
figuration time. Average times are low milliseconds, which
will be made worse with bitstream file encryption. This is not
including swapping out data, which will require encryption
before leaving the FPGA.

Each cloud service needs to define the input and output
wires for every FPGA design to meet to order to be compatible
with their service. Naturally there are the data input and
outputs for receiving data from the virtual machine. However
the interface for task switching is important as well. There are
two approaches which could be offered: (1) when the task is
being switched, all working data is lost, and (2) a few register
like variables are encrypted before being saved. The encryption
key could be seperate to the input and output data, but would
need to be specified in the bitstream file.

After the input wire signalling the task is to be swapped
goes high, a predefined number of clock signals would pass
before the task actually replaced. This allows the task to clear
any data that is sensitive to prevent the next task possibly being
able to see it, encrypt and output any data, and making use
of the saved registers (by outputting encrypted data for later
use). Other options for task switching where the FPGA is only
used for a short period of time, is each design specifies how
long it will require the FPGA, or the design can signal when
to be switched. For example if a few encrypted values need
to be averaged, then once the computation is finished it can
signal to be switched. Thus saving the customer money and
freeing resources for the service to sell to others.

C. Attack Vectors

In Figure 1 each virtual machine has its own FPGA. In this
case each virtual machine could store an encrypted bitstream
file that only its FPGA could decrypt. However in most cases
this would not be guaranteed, as FPGAs would be shared.
Given a pool of FPGAs, the client could upload an encrypted
bitstream file for each FPGA. It is essential each FGPA has a
different key so that in the event of one being compromised,
it can be removed easily from the pool. Another challenge
with this approach is stopping a malicious user from copying
the encrypted bitstream file and manually running it on the
intended FPGA. However the design should always encrypt
data leaving the FPGA, mitigating this attack.

The primary attack is physically stealing the bitstream file
decryption keys from within the FGPAs. If the functionality
accessible from the cloud environment is limited to bitstream
file loading, data in/out and a few control signals, then a
remote attacker cannot gain access to the keys. For the most
part an employee of a cloud service should be trusted to protect
customers data. However a Google administrator was fired in
2010 for abusing his rights to access teenage girls data in order
to stalk them [10]. One could argue that physical attacks would
defer and be too difficult for many employees, certainly more
so than current software solutions. Combined with limiting
access to data-centres, video surveillance, and locked chassis
(especially the FGPA housing) adds to the difficulty.

Apart from black box attacks, all other attack vectors re-
quire physical access, including readback attacks, side-channel
attacks and reverse engineering the bitstream [11].

1) Black Box Attacks: A common attack for systems where
all possible input combinations are tried, with the output
revealing the inner design [11]. This attack is not feasible given
that the input and output data must be encrypted, where the
public key may not even be known. The design should however
handle incorrect input, for example a value not encrypted with
the correct public key.

2) Readback Attacks: For debugging, FPGAs often have a
readback feature to allow values to be read from the FPGA,
for example the decryption keys through a special interface.
Methods off disabling this functionality exist [11], however
for a production FPGA deployed in a cloud service, this
functionality should not exist or be physically disabled in the
chip once the chip has passed production tests.

3) Side-Channel Attacks: These attack vectors are viable,
and involve analysing physical properties of the FPGA while
in operation, for example power consumption [12] or electro-
magnetic radiation [13].

4) Reverse Engineering the Bitstream: With enough time
and effort, the design of a bitstream file (once decrypted) can
be reverse engineered [11]. However an attacker only need
focus of finding the decryption key for the input data, which
could be easier depending on how obfuscated the design is.

D. Securing the Bitstream File

Because the service needs to be able to reconfigure the FP-
GAs, secure FPGA switch types cannot be used, for example



Antifuse [14]. Therefore SRAM is required which needs a
bitstream file to define the connections. A major challenge in
the proposed system is keeping the bitstream file protected
such that it is only exposed on the FPGA. This is a similar
to the protection of intellectual property for designs [15].
Mechanisms exist to encrypt bitstream files [16][17], but often
suffer limitations: (1) symmetrical encryption key, (2) battery
needed for key and (3) each FPGA using the same key.
For SFaaS, asymmetric encryption should be used so that
any customer can encrypt their design without being able to
decrypt others [18].

Each FPGA should have a seperate key pair as discussed in
Section II-C, where no entity has knowledge of the private key.
In order to create a key pair where no entity has knowledge of
the decryption key is a current open challenge. One technique
is that the FPGAs are hardcoded with a private key which is
generated automatically, and the public key is printed on the
chip or included in the box. The keys should never be saved,
and only visible for a brief moment during manufacturing.
The manufacturer could also sign all public keys, allowing
customers to verify the key was generated by the manufacturer,
not by a malicious entity. However the private key is visible
at some point in time, so is not the ideal solution.

E. Physical Unclonable Function

Recent work on Physical Unclonable Functions (PUFs) is
allowing for secrets to be derived from complex physical char-
acteristics of the silicon (a physical one-way function) rather
than storing the secrets in memory [19][20][21]. Guajardo et
al. proposed the feasibility of using PUFs for intellectual
property protection by encrypting the bitstream file using
elliptic curve cryptography [22]. PUFs are naturally noisy
which combined with varying temperatures and ageing could
affect the reliability [23]. However the key only needs to be
generated or regenerated once per power cycle. Therefore after
the FPGA is powered on and the private key has passed a test
against the known public key, any PUF issues will not be
encountered until it is reset.

F. Programmed Decryption Key

With a protected bitstream file, the decryption key for
data processing can remain protected, as it will only be
exposed within the FPGA. Three cryptography schemes will
be analysed for usage in a FPGA in terms of logic size and
performance. Note that logic size depends on the FPGA used,
and are given as an approximation.

1) AES: The Advanced Encryption Standard (AES) is
widely used in secure FPGA designs and offers very fast per-
formance (> 20Gbps) [24][25][26]. Designs can also be tai-
lored to use less logic, from thousands of slices down to a few
hundred while still achieving megabits per second [25][26].
The advantage of AES over other cryptography schemes in
terms of implementation on a FPGA is the simplicity of
the algorithm. Hence the flexible performance versus logic
required. The only main limitation of AES is that it uses a
symmetric key. Even with the key protected in the bitstream

Storage VM FPGA

Encrypted Data

Encrypted Data

Decrypt Data

Process

Encrypt Data
Encrypted Data

Encrypted Data

Fig. 2. SFaaS data flow for secure processing.

file, data sharing and multiple data sources remains an issue.
However AES could be used for data storage and processing,
while all uploaded or outgoing data could be encrypted with
a public key cryptosystem.

2) RSA: A public key encryption scheme designed on the
factoring problem, RSA computes the plain-text or cipher base
value to an exponent within a modulo [27], and can use
Montgomery modular multiplication [28][29]. RSA is more
expensive in terms of area and performance compared to
AES for FPGAs. For example a slower implementation still
requires thousands of slices, where faster implementations can
require tens of thousands [30]. Performance can vary between
megabits per second down to kilobits per second [29].

3) ECC: Also a public key cryptosystem, Elliptic Curve
Cryptography (ECC) was proposed independently by Neal
Koblitz and Victor Miller in 1985, and its cryptographic
strength comes from the elliptic curve discrete logarithm
problem being hard [31]. An early FPGA implementation
in [32] showed a ×30 speedup over software implementa-
tions, using only a few thousand slices. A recent survey in
2007 showed the varying difference between state-of-the-art
implementations [33], and in 2008 a 33.05µs solution on a
163 bit binary field was proposed [34].

III. USE CASES

A. Plaintext Processing

The state-of-the-art secure processor, AEGIS [2], was de-
signed to only reveal the data inside the processor. Therefore
any data leaving the processor is encrypted. This protects
against a range of software and physical attacks. Similarly
a recent proposal for a secure MIPS processor in a FPGA
by Songhori et al. also allows for development of secure
applications or functions in a high-level language [3]. However
instead of full processor designs, secure functions could be
implemented in an FPGA and compute over plaintext with
their input and output encrypted, similar to Figure 2. For
example a hardware secured cloud voting application [35].

AEGIS still has security vulnerabilities in the form of side-
channel-attacks [36][37]. This attack vector analyses informa-
tion “leaked” from the physical execution of a program, for
example power consumption [12] or electromagnetic radia-
tion [13]. The other limitation of a custom secure processor
was the practicality of deployment in the cloud, but with
SFaaS could be a made a reality. Even with existing attack
vectors, FPGA secure processors would have greater security
over existing cloud techniques implemented in software.



B. Homomorphic Encryption

Given that FPGAs are still vulnerable to attack (more
challenging than traditional cloud attacks), schemes can be
implemented on SFaaS to further protect data. Processing data
securely can also be achieved using homomorphic encryption,
which exists in 2 flavours: Partially Homomorphic Encryp-
tion (PHE) and Fully Homomorphic Encryption (FHE). PHE
supports a single operation, for example, addition or multi-
plication. Where FHE can support many operations computed
over encrypted data.

Cryptographic schemes supporting single homomorphic
operations have been around since RSA was proposed
in 1978 [27]. For some applications, only one opera-
tion is required, and in these cases PHE is an ideal so-
lution [38][39][40][35]. FHE was only proven plausible
by Gentry as late as 2009 [41], many years after PHE.
Wang et. al. [42] showed performance results of a revised
FHE scheme by Gentry and Halevi [43] in 2015 for the recrypt
function. CPU and GPU implementations took 17.8 seconds
and 1.32 seconds respectively, using a small dimension size
of 2048 [42]. A medium dimension size of 8192 took 96.3
seconds and 8.4 seconds for the same function [42]. The
current limitation for FHE is that implementations [1] of FHE
schemes for FPGAs cannot give practical processing times,
however a speedup is given over software implementations.
Using SFaaS, smaller keys could be used for FHE, and
protected by stronger encryption outside of the FPGA. This
would make extracting data through side-channel attacks more
difficult, as plaintext values cannot be directly discovered.

C. Privacy Preserving Processing with MPC

An alternative privacy processing technique is secure Multi-
Party Computation (MPC) [44]. An example scheme is FRIBs
(FRagmenting Individual Bits) proposed in [45], where data
is fragmented across different service providers such that the
data can only be visible once the fragments are joined together.
Arbitrary processing can still occur using NAND operations
on the fragments. Proof-of-concept results show a massive
performance gain over fully homomorphic encryption, closer
to that of partially homomorphic encryption.

Figure 3 shows a system model, where each server could be
implemented in an FPGA. The security of FRIBs is achieved
through distribution where each fragment server is hosted
on different providers, reducing the risks of zero-day and
insider attacks. Therefore implementing FRIBs on FPGAs
would further enhance its security and reduce these risks (as
discussed in Section V-B), by making it harder to gain access
to the fragments, and to learn patterns on reduction requests.
Then by using SFaaS, the fragments are encrypted outside of
the FPGA, reducing the risks even more. The FPGAs could
have access to their own network interface, or pass requests
through the virtual machine.

An example FPGA module is given in Figure 4, which
takes two encrypted sets of fragments (A and B) and an
instruction (for example add). The module decrypts A and B
using AES, and begins computing the addition operation. More

F0 F1 F2

Bob

Hash(F1) Hash(F2)Hash(F0)

Lookup
Table

Fragment
Servers

Reduction
Server

Fig. 3. An example of FRIBs with 3 Fragment Servers and 1 Reduction
Server [45].

FRIBs
Fragment
Module

clk
rst
E(A)[0:x]
E(B)[0:x]
ins[0:3]
E(R)[0:x]

rin

Fin
E(C)[0:x]

E(R)[0:x]
red

Reduction Process

Fig. 4. Example of the interface for a fragment module for FRIBs in a FPGA.

details on how the addition is achieved with FRIBs is given
in [45]. Implementing a half-adder in FRIBs on a FPGA would
take a few clock cycles to combine and get the obfuscated
lookup value for all 32-bits, where with a CPU this process
needs to be repeated 32 times. The module encrypts the
reduction request to be sent, and upon receiving the encrypted
response, continues processing. The main challenge for a MPC
implementation with SFaaS is that the booking time needs
to be the same for each service, as each server needs to be
running at the same time.

D. Random Number Generator

Many security protocols depend on either real or pseudo
random number generators. Real random number generation
requires some form of entropy. With virtual machines in the
cloud, the guest operating system can request the entropy from
the physical machine. This request can be slow, and can result
in an entropy pool being reused. Kohlbrenner et al. proposed a
true random number generator for a FPGA which achieved an
output of 0.5Mbits per second [46]. This design used two ring
oscillators, and a sampler circuit to extract the jitter contained
in the signals. Tsoi et al. proposed FPGA implementations
for a true and pseudo random number generator in [47]. Both
designs used less than a few hundred slices, and passed tests
for random number generation [48].

Connected to a virtual machine would give enough random
bits for most security applications. With SFaaS the connection
between the FPGA and virtual machine would remain secure.
They also have the ability of being joined with another design
in the FPGA. For example some encryption algorithms need
random numbers. Potential issues are with multiple FPGAs
from the same wafer, in a bank near each other, and exposed
to the same heat and electronic radiation, whether they remain
truely random when compared to each other. Another is
sharing of FPGA resources, and whether this exposes any
weaknesses.



E. Low Latency

Fast performance allows the develop of low latency ap-
plications and services. However if the FPGA has access
to a network interface, low latency network requests and
responses can be achieved. For example financial exchanges
provide updates instantly, requiring processing in the sub-
millisecond latency range [49], leading to high frequency
trading [50] – latency is proportional to profit. In terms of
security, low latency is critical for firewalls with deep packet
inspection [51][52]. FPGAs allow hardware rules to updated
easily when compared to dedicated appliances. The ability to
deploy a custom packet inspector in the cloud within a FPGA
will also give performance advantages over software alterna-
tives. Better performance allows for sophisticated inspection,
and gives customers more control over their security. Therefore
keeping their cloud applications responsive, even with high
traffic volumes flowing through the deep packet inspector.

IV. OTHER USE CASES

In this section use cases are given where FaaS would
provide a benefit in the cloud. SFaaS could also improve many
of these use cases for greater security and privacy.

A. Big Data Processing and Deep Learning

In a survey on big data platforms by Singh et al. FPGAs
scored highly for data throughput, but low for the size of
data supported when compared to other technologies [53].
Therefore there is a balance between throughput and data size,
because even if a FPGA can process small data really quickly,
if it cannot hold enough in the chip, some big data analytics
may be difficult. Another aspect of big data processing in
FPGAs is deep learning [54]. Farabet et al. implemented
a convolutional neural network [55] in a CPU, GPU, and
two FPGAs [56]. The FPGAs split the performance of the
GPU, with the CPU the slowest. Similar results were achieved
in [57] where a FPGA out performed a CPU both in terms of
execution time, and power consumed. Deep learning could also
have data encrypted outside of the FPGA, resulting in secure
searching for tasks like object recognition.

B. FFT

The fast Fourier transform (FFT) is used for a range of
applications, from computer science to geology. FPGAs offer
a faster alternative to software for computing the FFT [58][59],
including low powered devices [60]. Therefore having faster
computation for FFTs would improve the performance and
possibly the overall power consumed for many cloud applica-
tions.

C. Image Processing

There is a shift between FPGAs and graphics processing
units (GPUs) in which one gives better performance and
energy efficiency for image processing [61], including com-
puting the FFT [62]. However SFaaS can offer private image
processing, while FPGAs are more universal than GPUs for
many applications and functions.

V. BENEFITS AND CHALLENGES

A. Power Consumption

FaaS and FPGAs in the cloud were primarily proposed
for greener computing [4][5][6]. For example with an imple-
mented convolutional neural network, Zhang et al. showed
an FPGA used much less energy compared to a software
implementation [57]. This has positives for both customer
and service provider, as less energy results in lower operating
costs while reducing infrastructure investment for green energy
sources.

B. Security

FPGAs and hardware implementations in general suffer
from weaknesses and have many attack vectors, some of
which are discussed in Section II-C. However many require
physical access to the device, where many threats for a cloud
environment come from outside attacks. If physical access
is required to try and uncover the decryption keys to cipher
data of some user, then outside attacks become more limited
when compared to software implementations. However some
challenges are how reliable the PUFs would be, as they are
needed to protect the bitstream file, and transferring public
keys to customers.

Insider attacks from cloud employees and administra-
tors [63] are a threat, and arguably the bigger thread to
customer data [64][65][66]. A survey by Kaspersky and B2B
International revealed that 73% of companies have had internal
information security incidents, and state that the single largest
cause of confidential data loss is by insiders (42%) [66].
Physically discovering decryption keys from a hardware device
requires advanced skills and tools than software implementa-
tions, and is more physically noticeable through swipe card
access to datacenters, security cameras, and security guards.
Therefore reducing the risk of insider attacks.

C. Development

Designs for FPGAs requires using a hardware description
language (HDL), for example Verilog or VHDL. These are
similar to software programming languages, such as defining
functions with inputs and outputs. However the key difference
between software and hardware design is that software is
sequential, where one operation is performed before another.
However in a FPGA many operations happen in parallel for
each clock cycle, for example when setting a register, this
should not be read until the next clock cycle. So defining
hardware requires a different developer mindset than software,
as the clock and the amount of parallelism of offer needs to
be considered.

Development time is something that might also be an
issue, with simulation, testing and debugging more difficult on
FPGAs than with software. However recent advancements in
development tools are making the process easier. Current ap-
plication development in the cloud is primarily software based,
therefore the ratio between software and hardware designers
would be relatively high in this domain. With the introduction
of FaaS this could change, as more hardware designer could



be required for cloud development. However there are tools
emerging for software developers to create designs for FPGAs
without requiring extensive knowledge [67][68].

D. Copying Data

Even though FPGAs can process data very quickly, trans-
ferring data to and from an external processor can expen-
sive [59][60][69]. With encrypted data flowing in and out
of the device, the amount of data will be greater for many
cryptography schemes than plaintext. However if encryp-
tion/decryption can occur at line-rate, for secure data process-
ing this added latency will not be problematic. Only in low
latency designs will the transfer latency be felt.

VI. CONCLUDING REMARKS

Amazon’s EC2 F1 Instances have proven the possibility of
FaaS, and only once it is fully available will its true capabilities
be realised. For SFaaS to become reality, further features
will be needed, especially for bitstream file encryption. If the
FPGA is used only for one customer, then encryption such that
only the FPGA has the decryption key is not as critical, if the
customer trusts Amazon and their staff 100%. In this case the
bitstream file would never be saved in the cloud. However
for near true secure processing, the bitstream file will need to
be secured through to the FPGA. The option to task switch
is something currently not offered by Amazon, and results in
customers only paying for the time they actually use.

There are many other related works and applications where
SFaaS could provide extra performance and additional layers
of security. FaaS can offer security through deep packet
inspection if a network interface is directly accessible, but
SFaaS offers much more as all data outside of the FPGA
is encrypted. Even though data processing in a FPGA is not
guaranteed to be fully secure, it improves upon existing cloud
techniques by making both insider and outsider attacks more
difficult. Combined with a weak fully homomorphic scheme,
or the distributed approach of MPC, gives even greater levels
of data privacy.

With secure FPGA as a service, users would gain greater
privacy and security when using third-party cloud services,
enabling them to have more control over their data.

ACKNOWLEDGEMENTS

This research is supported by STRATUS (Security Tech-
nologies Returning Accountability, Trust and User-Centric
Services in the Cloud) (https://stratus.org.nz), a science invest-
ment project funded by the New Zealand Ministry of Business,
Innovation and Employment (MBIE).

REFERENCES

[1] X. Cao, C. Moore, M. O’Neill, N. Hanley, and E. O’Sullivan, “High-
speed fully homomorphic encryption over the integers,” in Financial
Cryptography and Data Security, pp. 169–180, Springer, 2014.

[2] G. E. Suh, C. W. O’Donnell, and S. Devadas, “AEGIS: A single-chip
secure processor,” Information Security Technical Report, vol. 10, no. 2,
pp. 63–73, 2005.

[3] E. M. Songhori, S. Zeitouni, G. Dessouky, T. Schneider, A.-R. Sadeghi,
and F. Koushanfar, “Garbledcpu: a mips processor for secure computa-
tion in hardware,” in Proceedings of the 53rd Annual Design Automation
Conference, p. 73, ACM, 2016.

[4] O. Yanovskaya, M. Yanovsky, and V. Kharchenko, “The concept of
green cloud infrastructure based on distributed computing and hardware
accelerator within fpga as a service,” in Proceedings of IEEE East-West
Design Test Symposium (EWDTS 2014), pp. 1–4, Sept 2014.

[5] S. A. Fahmy and K. Vipin, “A case for FPGA accelerators in the cloud,”
ACM SoCC (Poster), 2014.

[6] Altera Corporation, “Altera FPGAs Achieve Compelling Performance-
per-Watt in Cloud Data Center Acceleration Using CNN Algorithms.”
Online http://www.prnewswire.com/news-releases/altera-fpgas-achieve-
compelling-performance-per-watt-in-cloud-data-center-acceleration-
using-cnn-algorithms-300039440.html (Accessed 12/03/17), February
2015.

[7] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, et al., “A
reconfigurable fabric for accelerating large-scale datacenter services,”
in Computer Architecture (ISCA), 2014 ACM/IEEE 41st International
Symposium on, pp. 13–24, IEEE, 2014.

[8] B. H. Frank, “Microsoft Azure networking is speeding up, thanks to
custom hardware.” Online http://www.pcworld.com/article/3124927/
microsoft-azure-networking-is-speeding-up-thanks-to-custom-
hardware.html (Accessed 13/03/17), September 2016.

[9] Amazon Web Services, Inc, “Amazon EC2 F1 Instances (Preview).” On-
line https://aws.amazon.com/ec2/instance-types/f1/ (Accessed 15/03/17).

[10] A. Chen, “GCreep: Google Engineer Stalked Teens, Spied on Chats.”
Online. http://gawker.com/5637234/gcreep-google-engineer-stalked-
teens-spied-on-chats (Accessed 16/01/17), September 2010.

[11] T. Wollinger and C. Paar, How Secure Are FPGAs in Cryptographic Ap-
plications?, pp. 91–100. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003.

[12] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances
in Cryptology—CRYPTO’99, pp. 388–397, Springer, 1999.

[13] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis:
Concrete results,” in Cryptographic Hardware and Embedded Systems—
CHES 2001, pp. 251–261, Springer, 2001.

[14] S. Brown and J. Rose, “FPGA and CPLD architectures: A tutorial,”
IEEE design & test of computers, vol. 13, no. 2, pp. 42–57, 1996.

[15] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “Robust FPGA
intellectual property protection through multiple small watermarks,” in
Design Automation Conference, 1999. Proceedings. 36th, pp. 831–836,
IEEE, 1999.

[16] T. Kean, “Secure configuration of field programmable gate arrays,” in In-
ternational Conference on Field Programmable Logic and Applications,
pp. 142–151, Springer, 2001.

[17] L. Bossuet, G. Gogniat, and W. Burleson, “Dynamically configurable
security for sram fpga bitstreams,” International Journal of Embedded
Systems, vol. 2, no. 1-2, pp. 73–85, 2006.

[18] S. Malipatlolla and S. A. Huss, “A novel method for secure intellectual
property deployment in embedded systems,” in Programmable Logic
(SPL), 2011 VII Southern Conference on, pp. 203–208, IEEE, 2011.

[19] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Silicon physical
random functions,” in Proceedings of the 9th ACM conference on
Computer and communications security, pp. 148–160, ACM, 2002.

[20] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in Proceedings of the 44th
annual Design Automation Conference, pp. 9–14, ACM, 2007.

[21] M.-D. M. Yu and S. Devadas, “Secure and robust error correction for
physical unclonable functions,” IEEE Design & Test of Computers,
vol. 27, no. 1, pp. 48–65, 2010.

[22] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “Physical unclon-
able functions and public-key crypto for FPGA IP protection,” in Field
Programmable Logic and Applications, 2007. FPL 2007. International
Conference on, pp. 189–195, IEEE, 2007.

[23] A. Maiti, L. McDougall, and P. Schaumont, “The Impact of Aging on
an FPGA-based Physical Unclonable Function,” in Field Programmable
Logic and Applications (FPL), 2011 International Conference on,
pp. 151–156, IEEE, 2011.

[24] A. Hodjat and I. Verbauwhede, “A 21.54 gbits/s fully pipelined aes pro-
cessor on fpga,” in Field-Programmable Custom Computing Machines,
2004. FCCM 2004. 12th Annual IEEE Symposium on, pp. 308–309,
IEEE, 2004.

https://stratus.org.nz
http://www.prnewswire.com/news-releases/altera-fpgas-achieve-compelling-performance-per-watt-in-cloud-data-center-acceleration-using-cnn-algorithms-300039440.html
http://www.prnewswire.com/news-releases/altera-fpgas-achieve-compelling-performance-per-watt-in-cloud-data-center-acceleration-using-cnn-algorithms-300039440.html
http://www.prnewswire.com/news-releases/altera-fpgas-achieve-compelling-performance-per-watt-in-cloud-data-center-acceleration-using-cnn-algorithms-300039440.html
http://www.pcworld.com/article/3124927/microsoft-azure-networking-is-speeding-up-thanks-to-custom-hardware.html
http://www.pcworld.com/article/3124927/microsoft-azure-networking-is-speeding-up-thanks-to-custom-hardware.html
http://www.pcworld.com/article/3124927/microsoft-azure-networking-is-speeding-up-thanks-to-custom-hardware.html
https://aws.amazon.com/ec2/instance-types/f1/
http://gawker.com/5637234/gcreep-google-engineer-stalked-teens-spied-on-chats
http://gawker.com/5637234/gcreep-google-engineer-stalked-teens-spied-on-chats


[25] G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, and J.-D. Legat, “Compact
and efficient encryption/decryption module for fpga implementation of
the aes rijndael very well suited for small embedded applications,” in
Information Technology: Coding and Computing, 2004. Proceedings.
ITCC 2004. International Conference on, vol. 2, pp. 583–587, IEEE,
2004.

[26] T. Good and M. Benaissa, “Aes on fpga from the fastest to the smallest,”
in International Workshop on Cryptographic Hardware and Embedded
Systems, pp. 427–440, Springer, 2005.

[27] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, pp. 120–126, 1978.

[28] M. K. Hani, T. S. Lin, and N. Shaikh-Husin, “Fpga implementation of rsa
public-key cryptographic coprocessor,” in TENCON 2000. Proceedings,
vol. 3, pp. 6–11, IEEE, 2000.

[29] A. Daly and W. Marnane, “Efficient architectures for implementing
montgomery modular multiplication and RSA modular exponentiation
on reconfigurable logic,” in Proceedings of the 2002 ACM/SIGDA tenth
international symposium on Field-programmable gate arrays, pp. 40–49,
ACM, 2002.

[30] A. Cilardo, A. Mazzeo, L. Romano, and G. P. Saggese, “Exploring the
design-space for FPGA-based implementation of RSA,” Microproces-
sors and Microsystems, vol. 28, no. 4, pp. 183–191, 2004.

[31] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to elliptic curve
cryptography. Springer Science & Business Media, 2006.

[32] K. Leung, K. Ma, W. K. Wong, and P. H. W. Leong, “Fpga implemen-
tation of a microcoded elliptic curve cryptographic processor,” in Field-
Programmable Custom Computing Machines, 2000 IEEE Symposium
on, pp. 68–76, IEEE, 2000.

[33] G. M. de Dormale and J.-J. Quisquater, “High-speed hardware imple-
mentations of elliptic curve cryptography: A survey,” Journal of systems
architecture, vol. 53, no. 2, pp. 72–84, 2007.

[34] W. N. Chelton and M. Benaissa, “Fast elliptic curve cryptography on
fpga,” IEEE transactions on very large scale integration (VLSI) systems,
vol. 16, no. 2, pp. 198–205, 2008.

[35] M. A. Will, B. Nicholson, M. Tiehuis, and R. K. Ko, “Secure Voting in
the Cloud using Homomorphic Encryption and Mobile Agents,” in 2015
International Conference on Cloud Computing Research and Innovation
(ICCCRI), pp. 173–184, IEEE, 2015.

[36] B. Yang, K. Wu, and R. Karri, “Scan based side channel attack on
dedicated hardware implementations of data encryption standard,” in
International Test Conference, 2004. Proceedings. ITC 2004., pp. 339–
344, IEEE, 2004.

[37] B. Köpf and D. Basin, “An information-theoretic model for adaptive
side-channel attacks,” in Proceedings of the 14th ACM conference on
Computer and communications security, pp. 286–296, ACM, 2007.

[38] M. Hirt and K. Sako, “Efficient receipt-free voting based on homo-
morphic encryption,” in Advances in Cryptology—EUROCRYPT 2000,
pp. 539–556, Springer, 2000.

[39] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “Cryptdb:
protecting confidentiality with encrypted query processing,” in Pro-
ceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, pp. 85–100, ACM, 2011.

[40] D. Boneh, C. Gentry, S. Halevi, F. Wang, and D. J. Wu, “Private
database queries using somewhat homomorphic encryption,” in Applied
Cryptography and Network Security, pp. 102–118, Springer, 2013.

[41] C. Gentry et al., “Fully homomorphic encryption using ideal lattices.,”
in STOC, vol. 9, pp. 169–178, 2009.

[42] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, “Exploring
the feasibility of fully homomorphic encryption,” Computers, IEEE
Transactions on, vol. 64, no. 3, pp. 698–706, 2015.

[43] C. Gentry and S. Halevi, “Implementing gentry’s fully-homomorphic
encryption scheme,” in Advances in Cryptology–EUROCRYPT 2011,
pp. 129–148, Springer, 2011.

[44] A. C. Yao, “Protocols for secure computations,” in Foundations of Com-
puter Science, 1982. SFCS’08. 23rd Annual Symposium on, pp. 160–164,
IEEE, 1982.

[45] M. A. Will, R. K. Ko, and I. H. Witten, “Privacy Preserving Com-
putation by Fragmenting Individual Bits and Distributing Gates,” in
Trustcom/BigDataSE/ISPA, 2016 IEEE, vol. 1, pp. 900–908, IEEE, 2016.

[46] P. Kohlbrenner and K. Gaj, “An embedded true random number
generator for fpgas,” in Proceedings of the 2004 ACM/SIGDA 12th
international symposium on Field programmable gate arrays, pp. 71–78,
ACM, 2004.

[47] K. H. Tsoi, K. Leung, and P. H. W. Leong, “Compact fpga-based true
and pseudo random number generators,” in Field-Programmable Custom
Computing Machines, 2003. FCCM 2003. 11th Annual IEEE Symposium
on, pp. 51–61, IEEE, 2003.

[48] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, “A statis-
tical test suite for random and pseudorandom number generators for
cryptographic applications,” tech. rep., DTIC Document, 2001.

[49] G. W. Morris, D. B. Thomas, and W. Luk, “Fpga accelerated low-latency
market data feed processing,” in High Performance Interconnects, 2009.
HOTI 2009. 17th IEEE Symposium on, pp. 83–89, IEEE, 2009.

[50] J. W. Lockwood, A. Gupte, N. Mehta, M. Blott, T. English, and
K. Vissers, “A low-latency library in fpga hardware for high-frequency
trading (hft),” in High-Performance Interconnects (HOTI), 2012 IEEE
20th Annual Symposium on, pp. 9–16, IEEE, 2012.

[51] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood,
“Deep packet inspection using parallel bloom filters,” in High perfor-
mance interconnects, 2003. proceedings. 11th symposium on, pp. 44–51,
IEEE, 2003.

[52] Y. H. Cho and W. H. Mangione-Smith, “Deep packet filter with ded-
icated logic and read only memories,” in Field-Programmable Custom
Computing Machines, 2004. FCCM 2004. 12th Annual IEEE Symposium
on, pp. 125–134, IEEE, 2004.

[53] D. Singh and C. K. Reddy, “A survey on platforms for big data
analytics,” Journal of Big Data, vol. 2, no. 1, p. 8, 2015.

[54] J. Zhu and P. Sutton, “Fpga implementations of neural networks–a
survey of a decade of progress,” in International Conference on Field
Programmable Logic and Applications, pp. 1062–1066, Springer, 2003.

[55] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[56] C. Farabet, Y. LeCun, K. Kavukcuoglu, and E. Culurciello, “Large-
scale fpga-based convolutional networks,” Scaling up Machine Learning:
Parallel and Distributed Approaches, pp. 399–419.

[57] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 161–170, ACM, 2015.

[58] K. S. Hemmert and K. D. Underwood, “An analysis of the double-
precision floating-point fft on fpgas,” in Field-Programmable Custom
Computing Machines, 2005. FCCM 2005. 13th Annual IEEE Symposium
on, pp. 171–180, IEEE, 2005.

[59] C. Cullinan, C. Wyant, T. Frattesi, and X. Huang, “Computing perfor-
mance benchmarks among cpu, gpu, and fpga,” 2012.

[60] M. A. Will, “Real-Time Image Processing,” Honours Thesis, The
University of Waikato, 2013.

[61] B. Cope, P. Y. Cheung, W. Luk, and S. Witt, “Have gpus made fpgas
redundant in the field of video processing?,” in Field-Programmable
Technology, 2005. Proceedings. 2005 IEEE International Conference
on, pp. 111–118, IEEE, 2005.

[62] B. Duan, W. Wang, X. Li, C. Zhang, P. Zhang, and N. Sun, “Floating-
point mixed-radix fft core generation for fpga and comparison with
gpu and cpu,” in 2011 International Conference on Field-Programmable
Technology, pp. 1–6, Dec 2011.

[63] A. Chen, “Google Engineer Stalked Teens, Spied on Chats.” Online [Ac-
cessed 26/08/14] http://gawker.com/5637234/gcreep-google-engineer-
stalked-teens-spied-on-chats, Gawker, September 2010.

[64] M. Theoharidou, S. Kokolakis, M. Karyda, and E. Kiountouzis, “The
insider threat to information systems and the effectiveness of iso17799,”
Computers & Security, vol. 24, no. 6, pp. 472–484, 2005.

[65] N. Giandomenico and J. de Groot, “Insider vs. Outsider Data Security
Threats: What’s the Greater Risk?.” Online. https://digitalguardian.com/
blog/insider-outsider-data-security-threats (Accessed 10/03/17), January
2017.

[66] Kaspersky Lab and B2B International, “Over 5,500 IT specialists were
surveyed from 26 countries around the world,” 2015.

[67] D. Pellerin and S. Thibault, Practical FPGA programming in C. Prentice
Hall Press, 2005.

[68] XILINX INC, “Vivado high-level synthesis.” Online https://www.xilinx.
com/products/design-tools/vivado/integration/esl-design.html (Accessed
12/03/17).

[69] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kindratenko, and
D. Buell, “The promise of high-performance reconfigurable computing,”
Computer, vol. 41, no. 2, 2008.

http://gawker.com/5637234/gcreep-google-engineer-stalked-teens-spied-on-chats
http://gawker.com/5637234/gcreep-google-engineer-stalked-teens-spied-on-chats
https://digitalguardian.com/blog/insider-outsider-data-security-threats
https://digitalguardian.com/blog/insider-outsider-data-security-threats
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

