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Abstract—One of the major issues in Wireless Body Area their location through these information. Range basedrseke
Sensor Networks (WBASNS) is efficient localization. Therer  earn higher accuracy than range free for location tracking i
various techniques for indoor and outdoor environments to bcate various environments. However, major drawbacks conclude

a person. This study evaluating and compares performance of th inf ti ted b - d fadi d .
optimization schemes in indoor environments for optimal pace- 1€S€ Information corrupted by noise and rading and reguire

ment of wireless sensors, where patients can perform theirally — additional devices for measuring range information. In gan
activities. In indoor environments, the performance compaison free schemes, unknown nodes use relative connectivity-info
between Distance Vector-Hop algorithm, Ring Overlapping Bised  mation from anchors for location estimation. These schemes
on Comparison Received Signal Strength Indicator (ROCRSS] employ range information based on Approximation Point in

Particle filtering and Kalman filtering based location tracking . . .
techniques, in terms of localization accuracy is estimatecResults 1712ngle (APIT), Centriod and Distance Vector Hop (DV-

show that particle filtering outperforms ail. GPS and severa HoOp). Range free schemes not require additional devices
techniques based on GSM location tracking schemes are proped for measuring range information, therefore less effectgd b

for outdoor environments. Hidden Markov GSM based location  environmental changes than range based schemes.
tracking scheme efficiently performs among all, in terms of In this paper, we analytically survey different localizati

location accuracy and computational overheads. . L . L
Index Terms—Localization, WBAN, Kalman Filtering, Particle techniques. These schemes are divided into two categories:

Filtering, GSM, GPS, ROCRSSI indoor environments and outdoor environments. In indoer en
vironments, it is difficult to predict path loss due to mugip
I. INTRODUCTION and shadowing. Signal effects due to scattering, reflectiah

diffraction and also effects by changing indoor environtaen

With development of wireless devices and wireless comike motion of peoples inside building. In outdoor environ-
munication in medical industry, research on Wireless Bodyents pathloss prediction is easier, because path is mostly
Area Sensor Networks (WBANSs) attains significance attefine of sight between mobile and source. The implementation
tion. WBAN consist of large number of sensor nodes withnd performance methods in indoor and outdoor environments
wireless communication interface. Sensors provide a @veagre totally different, as shown in table.1. We discuss: DygH
and effective way to manage and care for patients sufferipggorithm, ROCSSI, particle filtering, Kalman filtering lac
from illness or in the process of rehabilitation. WBASN isjon tracking for indoor environments. GSM based Tracking
a cheaper technology with the attention of treating a humggthniques includes Cell ID based, Deterministic fingengri
as patient and providing personal network around hum@ased, Probabilistic fingerprints based, Hidden Markov &lod

body. These networks consists of low power and noninvasigg@mM) location tracking and GPS based location tracking are
wireless bio sensors implemented in human body to providggoposed for outdoor environments.

smart healthcare system. Information from sensors is geavi | rest of the paper, related work is given in section 2,
to medical server placed in hospital to treat patients by saction 3 discusses indoor location tracking schemesipgect

concerned person. 4 describes outdoor location tracking techniques.
The inherent characteristics of these sensor networks make
localization an important issue in WBASNS. Localizatioend Il. RELATED WORK

tifies position of target sensor nodes in a randomly disteitu

network. To assign measurement for location each node ha®\eed of location tracking in WBASNs is essential for

to determine its own position. patient moving in indoor and outdoor environments. In re-
Location tracking is measured through different locatiopent advancements several localization schemes are adopte

schemes. These schemes are classified into range free kegping eyes on application requirement and demand togocat

range based schemes, as shown in fig.1. Range based schémgson in body area networks.

receive location information based on Time of Arrival (TOA) GSM based on cellular signals. In GSM, each cell is

Received Signal Strength Indication (RSSI), Time Differen distinguished by unique cell identifier (ID) and allocated t

of Arrival (TDOA) and Angle of Arrival (AOA). After de- one or more up/down link frequency pairs. Base Transceiver

termining range information between nodes then estimati®gation (BTS) acts as an anchor node and mobile node is
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Fig. 1. Hierarchy of Location Tracking Techniques
Table.1.Comparison of Indoor and Outdoor Location Tragkin
Features Outdoor Indoor
Path loss model Linear Affected by Multipath and Shadowing
Accuracy Easy to achieve but not necessary Difficult to achieve but important
Space Wide and not limited Small and mostly Rectangular
Deployment Random and Ad-Hoc Can be Planned
Maps Global Local

moving within range of these anchors. Position is deterchinenarkov model are proposed in [12] [13] [14] .
by taking average of received anchor positions [1]. In indoor localization techniques, we compare results in
RSSI based algorithm is used to track location of a persdgrms of localization accuracy. For nonlinear systems lresu
Spatial Diversity is used to combat fading effects, a ring Bhows, particle filtering technique outperforms all. Fotcmaor
generated when target node is between two anchor no@g&yironments, we compare results in terms of localization
(Beacon Nodes). After generating a series of rings, we cowiicuracy and computational overheads. We suggests math-
number of times area is covered. Gravity is calculated areenematical equations for Deterministic fingerprinting ldoat
of area to find accurate location [2]. tracking scheme and HMM location tracking scheme.
Part_icle filterir_lg based _I_ogalizgtiqn _algorithm is _used I1. | NDOOR LOCATION TRACKING TECHNIQUES
Bayesian Posterior probabilistic distribution method &ti-e
mate unknown node location. Time series location inforomati
is expressed by evaluation of particles. In weighting phase
particle filtering is evaluated by likelihood of the parésl

In indoor environments, it is difficult to predict path loss.
This is because of multipath and shadowing. Signals are
effected due to scattering, reflection, diffraction and bgrige
Message overheads are reduced by piggybacking power Ie\}glgnvwonm_ent, like motion (?f people; inside bun(.jmg.. hist

: paper, we discuss four algorithms for indoor location tragk
with control messages [3]. . . o

: ) . . DV-Hop Algorithm, ROCSSI, particle filtering and Kalman

In GPS location tracking technique, mobile nodes move mtering
3D space and periodically broadcast their position inferma '
tion through beacon messages. Static nodes receive beago®V hop Algorithm

messages, when they are in communication range of mobilepy.Hop algorithm is based on distance vector. Location
nodes. The static nodes calculate their position usingt@mua of ynknown nodes is estimated by calculating distance from
of Sphere [4]. anchors, regardless of nodes, which do not have ability to

A range free, DV-Hop algorithm scheme is used to tradkeasure the range information. In DV-hop scheme, anchor
location. Where, anchor nodes broadcast their locatioorinf nodes broadcast their location information in entire nekwo
mation in entire network. An anchor mode receives locatidrocation information and minimum hop count obtained by
information and minimum hop count from other anchorsinchor from other anchors, whereas, average hop size can be
average hop size can be determine for a single hop. Relatiigtermined for a single hop. Relative distance is estimaged
distance is estimated by unknown nodes using hop size al unknown node using hop size and minimum hop count
minimum hop count [11]. from them.

Several localization tracking methods for GSM location All simulations are performed in MATLAB. The network
tracking technique are Cell ID based, deterministic fingearea is10 x 10 square meter, radio nodes having transmission
printing based, probabilistic fingerprinting based anddegid range of 2m. we can roughly estimate the positioning error



area = 10*10 msq error = 3.9604

10 - T 9 — S —5
9t 4 sf ® @ P ]
@
8r T Fan o (0} ® ® it P 4
7F g PP o> P >
6 ) R & o 4
6 g % o 9l & F oo PP T &l T &
o) £ 5 o) 5 0 4
3 5 b 3
2 * g al |o o“ olb| P .:.'. b R .:‘nr P4
ar q = o P & ©
* w S %) %
3+ (0] OE &l & JD 4
3+ b © o © D) P
2+ 4 2r ° S b ©
1+ 4 1k o @ o 4
. (O]
o ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘
o] 2 4 6 8 10 o 20 40 60 80 100
meter number of nodes
(@) Number of Anchor Nodes = 3 , Number of Unknown Nodes = 50 (b) Error Estimation in Fig.a
area = 10*10 msq error = 3.6039
10 T T - T o 7 : :
>*
or * 4
E v * *
st * g
* *
7+ . ol
6l £ ox * * * ] s
_ . * * * E
2 s * . * * B =
£ ) * * g
a4t * 7 i}
*
3r * 4
o e * > - * % i
*
1" w7
« * * *
o ‘ L. ‘ - ° ‘ ‘ ‘ ‘
o] 2 4 6 8 10 o] 10 20 30 40 50
meter number of nodes
(c) Number of Anchor Nodes = 25 , Number of Unknown Nodes = 50 (d) Error Estimation in Fig.c

Fig. 2. DV-Hop Algorithm for Location Tracking

of the algorithm with the length of line, longer line length
represents longer location error. Basic DV-Hop algorithen-p
forms well on the regular uniform topology. Its performaige

not efficient in non uniform topology. All simulations retsil

are taken by changing number of anchor nodes, as number
anchor nodes increases location error is minimize. However
one drawback increasing the computational overheads by
increasing number of anchor nodes. This scheme not gives
accurate results for location tracking.

Fig. 3. ROCRSSI Based Loaction Tracking

B. ROCSSI Based Location Tracking

In [2], RSSI based algorithm is used to track the location.
RSSI is the function of distance, if the value of RSSI is smalt | gcation Finding through Particle Filtering
it corresponds to higher estimation error and long distafice
achieve good accuracy due to deficient antenna coverage anih [3], particle filtering based localization algorithm ised.
multi path interference, spatial diversity is used to cottba Particle filters mostly used in nonlinear systems. This algo
fading affects. In RSSI based networks, beacon messagesrahen receives radio signal strength information from lmac
send periodically. In [7], range free algorithm is used sxkr messages from its neighbors to infer its position. It usetefin
relative position to decide the possible target region. random particles for probability density function samglin

In this process every time a ring is generated when tardggdyesian Posterior probabilistic distribution method sed
node is between two anchor nodes (Beacon Nodes). After estimate unknown node position. The inference of time
generating a series of rings, we count the number of timseries location information is expressed by the evaluation
in which area is covered. Every time a ring covers an argaarticles. In the weighting phase of particle filter, we eaaé
the counter of area is increased by 1. This scheme calculates likelihood of the particles. The most unlikely partgle
the gravity center of the area to find the accurate location. Will be replaced by most likely ones, particles coveragaifoc
[9] Rings are generated as portray in figure. 3. a point step by step. we discuss three models for location



Algorithm 1 RSSI based location tracking 2) Sensor Modelin [6], sensor model is describe in detail.

RSSI Propagation System of “N” small devices deployed over an area in an
gﬁ‘gﬁb? ﬁfngglples <N attempt to sense a signal transmitted by the target. Pladfing
o anchors can either be regular pattern or deployed in ad-hoc
broadcast beacon messages . 9= . g
if + =T then manners. The binary decision is made at each instant “t” on
take mean of sampled received from neighbors the basis of “M" samples of received signals. At a particular
ZiSSI instant “t”, each sensor can either be active or inactivehEa
end if active sensor makes a binary decision about whether, target
Broadcast RSST message present or absent.
RSSI message = Mean of RSSI + 1D Energy per sample of a targeta}, sensor in [6] is as:
RSSI Estimation process
inputs EJQ“ (dl) = E%o/dz2 3

Assume that sensor node “S*“ Wants to conclude its Location . . .
where EZ, is energy per sample of target signal at a distance

A, B ,C denotes anchor nodes of 1 unit andd; denotes distance between target;atsensor.
RSSIap RSSIac RSSIas are the received signal strength — Each sensor performs an assumption test betwieg(target
absence) and4d; (Target presence) assumption moddl,

j tR = R . . -
Ring set it = () indicates that energy received from target is negligibld an

if Das > DagandDas < Dac then

Ri(A) = Dap target is apart from the sensor. Thus undgr G is Gaussian

and Outer Radius Will equal to Vector, whose elements are independent with variamte

fd?cgf(A) = Dac Similarly A; indicates that energy is received from target is
end i

it RSSI.p > RSSIss and RSSIas > RSSIic §|gn|f|can_t and target is closer to the sensor. Under G _
with A. B. S. and C in same direction then is Gaussian Vector whose elements are independent Variance
S is in shaded area o3 + E%(d;) in [6] is as:
Generate a ring R centered at A with inner radious di

Ay = o3 4
and outer radious ds 0 N ( )
end if
end for Ay = 0% + B (di) (5)
L . _— B u
tracking in particle fllterlng. These are target model, sens Ply: Ay) = 1 T R e (©)
model and observation model. 270k + E3(d;)]
Algorithm 2 Target Model Ply: Ag) = 1 e_#%v) )
Transitional Probability < states p(T) \/2mo%;

Probability at any instant < states p(t)

it p_1) = 0 andp(t) — 1 then We propose conditional probability that evet§ occurs:

Py =1 . .
P(int) = 1 means target is present P(y; A0|y; Al) — P(y’Al—Xy’AO) (8)
end if P(y: Ay)
if Pe—1) =1andpy =1 then Applying conditional probability that evemt; occurs:
Pint) = 0 andp<out) =1
means target is absent Py; Ag x y; A
end f P(y; Avly; Ao) = % )

1) Target Model: The target in the data is modeled a 3) Observation Model:The number of active sensors de-
Binar l\g/lgarkov Pr(.)cess Tﬁe target presence variable ?ermines the size of observation vector. Vecfr contains
Y : get p ' binary observations from each active sensor at a given time

can take on wo values, normallf; = 0 indicating the If target is not detects, corresponding elementobecomes
absence of targef?, = 1, indicates presence of target. At any 9 ' P 9 P

instant target can present at any point Disappearancegna‘ttazem’ otherwise one.
means that intensity of target signal strength goes dowawbel Probability distribution of single node in [6] is modeled as

Threshold level ). We propose transitional probabilities

of target initialization and target outage probabiliy,, is p(z(i)|zr) = [Pp(di)]** D1 — Pp(di)]*~*@  (10)
modeled as follows: The probability distribution of vectoty, in [6] is:

Pt =P.(P,=1P,—1=0) (1)

Four = B (P = 0[P —1=1) @ i) = [[IPD@*O[1 — PD(d)]' O (11)

Pi: = 1 will occur whenP,. > p. i=1



Algorithm 3 Sensor model If observation and process noise are assumed to be Gaussian
N = number of devices deployed in regular or adhoc manners then general filtering reduces to a Kalman filter.

¢ stales < tume instant , 4) Kalman filter: Kalman filters measurement equations in
distates < distance between target and i, sensor .
[11] are as follows:

M states <— Samples of received signals
FEnergy per sample of transmitted signal < Efo

. . I2H
Energy received per sample of target at ith sesd3gd;) = dtfo T = frwp_1 + wg, wr ~ N(0,Q), X (0) ~ N(X(0),V(0))
target absence <— states(Ao) (17)
target presence < states (A1)
if Ay =o% + E%(d;) then Zr = Hpwg + vg, vp ~ N(0, R) (18)
means target is present ) . .
else{4, =o% } The measurement and process noise are defined covariance
target is absent matrix Q and R and assumed to be independent
end if o . The prediction and update stage of Kalman filter is given by
Applying condition probability following equations from [11] is.
Py doly; Ar) = =050 5) Predict stage for Kalman filter:
where Y 9 )
. _ 1 T 2002)+E2 (d;) A
P = e Zi = F; (19)
and
1 T 2(02) _
Ply: o) = e 778 Zy = Fp  FT +Q, (20)
_ P(yiAg*yiA1) .
P(y; Aaly; Ao) = =707 6) Update stage for Kalman filter:
P(y; A1]y; Ao) < states probabzlzty of A1 occurance
ky =py H'(HP; HT + R)"1 (21)
D. Kalman Filterin _
g P = ay + Ki(Z — Hy—) (22)

Kalman filters are mostly used in linear systems, however
these systems are very few in numbers in world. priori and
posterior probability distribution of Kalman filter is Gesian. P, = (1—-FkH)p, (23)
Bayesian probability distribution process helps to modiel t
kalman filter. This probability distribution function is sdi
cussed below:

Initially current location is predict using previous loicat.
The estimations are updated using weighted observations by

1) General Bayesian Tracking Modekotion of a person the Kalman gain k). If the variance is high, process noise

modeled using general bayesian tracking model in [11] ¥&fiance matrixR will be large, thus decreases Kalman
follows: gain and effects observation. Kalman gain becomes small, if

posteriori error variance,, is low, it gives more significance

2k = fr(Tr_1, Ue1,Wk) (12) to the prediction.

E. Simulation results for particle and kalman filters
2z = hi(wk, ug, vk (13)  All simulations are performed in the MATLAB. Reason

Current location of person modeled by a nonlinear functidffhind selection this tool is necessary matrix operatioes a
f5, which depends on the previous locatidn, is a nonlin- implemented to program Particle filter and Kalman Filter.
ear observation function. Current location of person can be/ll Simulations are performed for the case, where initial

estimated at each step recursively with update and predmt?tate is known, true state of target is provided to the filter.
stage. In our case 50 particles are used and senors are randomly

2) Prediction Stage:In [11], prediction stage is modeledd'smb“teq; Flgure: 4- ashgws_probablllty dlstr|put|m1mtt|on
as: at a specific time interval in discrete and continuous manner
for particle filter. In figure. 4-b, we estimate RMS error for
particle filter and kalman filter. Results shows estimatedrer
p(zk|z1:6-1) = /p(xk|xk_1)p(xk_1|zl:k_1)dmk71 (14) for kalman filter and particle filter at specific time step. The
estimated error for kalman filter is 0.92679 and estimateaker
3) Update Stagein [11],m update stage is modeled as: for particle filter is 0.62056. We suggest, in a random and
nonlinear systems particle filter is best suited among all of
(15) four location tracking technigues discussed for indooiiremy
ments. Particle filter is accurate location tracking teghmij

however implies greater computational overheads is major
p(xrl21:6-1) = /P(2k|$k)l?(xk|Zl:k—1)dww (16) drawback.

) = p(zk|er)p(@k|21:0-1)

Tk|21:k
p( | ! P(Zk|2’1:k71)



Kalman filter RMS error = 0.92679 ,Particle filter RMS error = 0.62056
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Fig. 4. Location Tracking Through Particle and Kalman Filte
IV. OUTDOORLOCATION TRACKING TECHNIQUES based and it is a function of distance. GSM localization tech

In outdoor, environments path loss prediction is easidpgues are further divided in Cell ID based, Deterministi fi

because path is mostly line of sight between mobile a@§rPrinting techniques, Probabilistic fingerprintingfteijue
source. GSM based tracking techniques, includes Cell #9'd HMM location tracking techniques. o
based, Deterministic fingerprints based, Probabilistigein 1) Cell 1D based Tracking:Cell ID based positioning
prints based, HMM location tracking and GPS based locatié9€S not require any upgarde of network equipments and is

tracking are proposed for Outdoor environments. simple and economic. Location accuracy depends on cell size
Accuracy of this localization scheme ranges from some raeter

to kilometers. In cell ID based localization technique BTS
covers a number of cells, each cell identified by unique cell
ID (Cq,C4, Cs) infig. 10. A mobile station (MS) continuously
select a cell, exchanges data and signaling traffic withecorr
sponding BTS. Cells are formed in shape of cluster. MS always
knows ID of current cluster, each cell in cluster is identifiey
Local Area Identifier (LAI), such techniques require datsiba
from cell towers.

2) Deterministic Fingerprinting Based Trackingn [13],
Deterministic Fingerprinting Based Location tracking htec
niques, this technique stores information about the receiv
RSSI from different based stations at different locations.

) ) ) ) ~___ This process is usually constructed in offline phase. During
Eégl;l. (5:3 Cell ID based location tracking technique.Mobilatisin is within Loca;ion _tracking phase, th_e K-Nearest Neighbors (KNN)

algorithm is used, where received RSSI at an unknown pasitio
is compared to RSSI signatures in the fingerprint. Closest
A. GSM Based Tracking Iocatior_1 i.n fingerprint returned as estimated location irmte
. ) o of Euclidian distance in RSSI spaced.

In [1], GSM technique is used for location in WBASNSyye nropnosed mathematical equation for nearest neighbor

GSM network is divided into numbers of cells and eachaihod simply calculates the Euclidean distance between

cell contains Base Tran§ceiver Station. Numbers of BTS Grrent RSSI reading in tracking phase and each reference
controlled by Base Station Controller (BSC) and also ma%int fingerprint in offline phase.

BSC's are controlled by many MSC. GSM has licensed band
of frequencies and do not suffer from interference. In this
scheme all the BTS act as an anchor node and mobile node
is moving within the range of these anchors. As soon as a
mobile node receives announcements from these anchors, it
is able to determine that it is in intersection of the circles Where Ep = Euclidean distance between current RSSI
centered at these anchors. Position is determined by takimegding in tracking phase and reference point fingerprint in
average of received anchor positions. offline phase.

GSM based localization is available on cell phones, whicRSSIr = RSSI receive in tracking phase.

presents “80“ to “90" percent. GSM systems are mainly RS$1SSIrp = RSSI received in off line phase.

N
Ep = | (RSSIp — RSSIpp)? (24)
=1



Deterministic fingerprinting provide higher accuracy, how Offline phase is used to construct HMM and estimates its
ever require searching a large database than cell ID Bagadtametes. Each state represents a location in the discrete
technique and constructing a fingerprint also time consgmiphysical space and observation from a state represents the
process. RSSI readings from adjacent cell towers. The parameters of

3) Probabilistic Fingerprinting Based Trackingin [13], this phase ar¢S,V, A, B, 7). These parameters are estimated
probabilistic location tracking techniques provide more ain [14] as:
curate location. However constructing a probabilistic émg S: Each state in model represents a physical gfity,”
print is more complex and challenging. To construct a signabmber of grid cells and number of states.
strength histogram for certain amount of time, we need 16: At every state, the set of observations related to several
stand at each fingerprint. This process add significant e@aerh pairs that received inside cell.
for fingerprinting construction process. Cell sense addres A: Estimate the transistion state matrix.
this challenge by using gridding. In this approach area &f: Estimate the observation probability at each state.
interest divided into number of grids, for each grid a histkmg 7: If initial state is known, it can be used as it is, if any
is constructed. This technique removes extra overheads ém@rmation is not available then steady state probabilisyri-
also helps to reduce the fingerprint size by increasing thte gbutionr,, can be used to estimate the initial state distribution.
cell size. This approach works in two phases, offphase amtis distribution estimated by transition probability mbat A
online phase. aS T A = Ty

Offline phase construct signal strength histogram for RSSIDuring online phase, user is moving in the area of interest
received at each location of fingerprint for each cell. ToidwvoRSSI information is received from the adjacent cell only.
fingerprint construction overheads, area of interest isddiy History of RSSI values from adjacent cell tower is used to
into cells. The histogram is constructed for each cell towéstimate user location. Given the sequence of observatibns
by using fingerprints locations inside the cell, rather teach lengthT', O = (Oy, ......07). To find user location at the end

fingerprint point in figure . 6. of sequence, probable sequence of s#jes= (g, ...... L qt)
gives sequence of observationg. is returned as estimated

user location.
o P We propose the steady state probability by using markov
5 > probability distribution as Prediction probability of atty state

E L e o Ll in fig . 7 is estimated as:

* P PY “ N

: A . plm) = > plmlm1)p(m 1) (26)

. o| *. e Tt1=1

- y P(rt) is probability of being at locationr at time “t".

o p(m¢|m:—1) is the probability of being at location at time

-4 . t given previous locatiom at timet — 1. This process search

o space to most likely region based on object motion.
Correction step

Fig. 6.  Cellsence approach for figerprint construction We modeled the observations corresponding to differentspai

that received inside this cell as

p(me|V) = p(V|me)p(me) N (27)
During Online phase user is standing at an unknown postion , . , , i
“I receiving signal strength vectar= (sy, ......, s,), max- P(m|v) is the probability of being at locatiomr at time

imum probability to received signal strengthy” from cell t given the R_SSI vaIueI_/, received at timet. P(V|7Tt_)
tower “i” at location“l” is in [13] is modeled as: is the probability of having RSSI valueE and p(m;) is
probability of being at that location (from prediction stel is

¢ N normalized factor. In this technique, incresing the obaton
p(s|l) = H Hp(si_j”) (25) sequence lengths add more information and increase ageurac
=1 j=1 however increase latency. HMM is more accurate location

_ technique among all of them discussed in this section.
wheres; ; represents thg!"sample from the®" stream.

4) Hidden Markov Model based TrackingiMM location B GPS Based Location Tracking
tracking technique proposed in [14]. This technique is Base Global Positioning system (GPS) is considered most well
on GSM localization using only RSSI information from assoknown location tracking technique for outdoor environment
ciated cell tower. The area of interest is divided into grals However, GPS is not available in many cell phones, consumes
shown in fig.11. HMM technique include two phases: offlina lot of energy because direct line of sight to satellite is
phase and online phase. required. Extra chips for location tracking are requirdayst
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