
PROVABLE DATA POSSESSION USING SIGMA PROTOCOLS 

 

 

A Thesis 

Submitted to the Graduate Faculty 

of the 

North Dakota State University 

of Agriculture and Applied Science 

 

 

 

 

By 

 

Akshaya Mohan 

 

 

 

In Partial Fulfillment of the Requirements 

for the Degree of 

MASTER OF SCIENCE 

 

 

 

 

Major Department: 

Electrical and Computer Engineering 

 

 

 

 

March 2013 

 

 

 

 

Fargo, North Dakota



 

North Dakota State University 
Graduate School  

 

 
Title 

 

Provable Data Possession using Sigma protocols  
 

 
By 

 

Akshaya Mohan  
 

 
The Supervisory Committee certifies that this disquisition complies with North Dakota 

State University’s regulations and meets the accepted standards for the degree of 

 

 

MASTER OF SCIENCE 
 

 
SUPERVISORY COMMITTEE: 

  
Dr. Rajendra Katti 

 
Chair 

 

Dr. Sudarshan Srinivasan 
 

 

Dr. Kendall E. Nygard  
 

 

 

Approved by Department Chair: 

 

04/02/2013 
 
 

 
Dr. Rajendra Katti 

 
Date 

 
 

 
Department Chair 

 

 

 



 
 

iii 
 

ABSTRACT 

A Provable Data Possession (PDP) scheme allows a client which has stored data at an 

untrusted server to verify that the server possesses the original data that it stored without 

retrieving the entire file. In this thesis study, a new PDP scheme is built using the concept of 

sigma protocols. The client pre-processes a file and stores it on the server. At a later time, the 

client issues a challenge to the server requesting it to compute a Proof of Possession. The client 

verifies the response using its locally stored metadata. The challenge-response protocol that is 

derived from the sigma protocol, minimizes both computation and communication complexity. 

Implementation and complexity analysis of the algorithms used in the ∑-PDP scheme 

was done as a part of this thesis. 

The main goal of this research was to minimize computation and communication 

complexity of ∑-PDP scheme as compared to the existing PDP schemes. 



 
 

iv 
 

ACKNOWLEDGEMENTS 

First of all, I would like to express my sincere gratitude to my advisor, Dr. Rajendra 

Katti, for his continuous interest, patience, and guidance throughout the research and in 

preparation of this thesis. 

I wish to thank the rest of my supervisory committee: Dr. Sudarshan Srinivasan, and Dr. 

Kendall E. Nygard, for their encouragement and supervising my final exam. 

I would also like to thank my parents and brother on whose support and love I have relied 

throughout my Masters. 

Last but not the least; I would like to thank my friends for their encouragement and 

support. 

  



 
 

v 
 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................................... iii 

ACKNOWLEDGEMENTS ........................................................................................................... iv 

LIST OF TABLES ....................................................................................................................... viii 

LIST OF FIGURES ....................................................................................................................... ix 

CHAPTER 1. INTRODUCTION ................................................................................................... 1 

1.1. Background .......................................................................................................................... 1 

1.2. Motivation ............................................................................................................................ 2 

1.3. Research Objective ............................................................................................................... 3 

1.4. Thesis Outline ...................................................................................................................... 5 

CHAPTER 2. LITERATURE REVIEW ........................................................................................ 7 

2.1. Related Work........................................................................................................................ 7 

2.1.1. Comparison of PDP and POR ....................................................................................... 7 

2.1.2. Various PDP schemes .................................................................................................... 9 

2.2. Provable Data Possession (PDP) ........................................................................................ 10 

CHAPTER 3. BASIC CRYPTOGRAPHIC PRIMITIVES .......................................................... 11 

3.1. Public-key Encryption ........................................................................................................ 11 

3.2. Zero-knowledge Proofs ...................................................................................................... 11 

3.3. Proofs of Knowledge .......................................................................................................... 11 

3.4. Properties of Completeness and Soundness ....................................................................... 11 



 
 

vi 
 

3.4.1. Completeness ............................................................................................................... 12 

3.4.2. Soundness .................................................................................................................... 12 

3.5. Sigma Protocol [15] ........................................................................................................... 12 

3.6. Okamoto Protocol .............................................................................................................. 16 

3.6.1. Properties of witness-indistinguishability and witness-hiding .................................... 17 

3.7. One-time Signature Scheme ............................................................................................... 18 

3.8. Pseudorandom Function (PRF) .......................................................................................... 20 

3.9. Pseudorandom Permutation (PRP) ..................................................................................... 20 

3.10. Pseudorandom-Generator ................................................................................................. 21 

CHAPTER 4. ∑-PROVABLE DATA POSSESSION ................................................................. 22 

4.1. Details of the Proposed ∑-PDP Scheme ............................................................................ 22 

4.1.1.           ................................................................................................................. 23 

4.1.2.             ............................................................................................................... 23 

4.1.3.                 
   ..................................................................................................... 24 

4.1.4.                                   ∑           
       

           
   .................. 24 

4.1.5.                                 ......................................................................... 25 

4.2. ∑-Provable Data Possession ............................................................................................... 26 

4.3. ∑-PDP Scheme ................................................................................................................... 27 

4.4. Data Possession Game ....................................................................................................... 28 

4.5. Proof of Security ................................................................................................................ 30 



 
 

vii 
 

4.6. Complexity Analysis and Comparison ............................................................................... 34 

4.6.1. Computations to generate tags/signatures at the client (offline computations) ........... 38 

4.6.2. Computations to generate proof at server (online computations) ................................ 39 

4.6.3. Computations to check proof at the client on c challenge blocks ............................... 41 

4.6.4. Comparison of ∑-PDP with previous work ................................................................. 44 

4.6.5. Computations involved in ∑-PDP as compared to POS .............................................. 44 

CHAPTER 5. IMPLEMENTATION............................................................................................ 46 

5.1. Timing Analysis for Varying Message and Challenge Lengths ........................................ 47 

CHAPTER 6. CONCLUSION AND FUTURE RESEARCH ..................................................... 49 

6.1. Main Contribution and Results .......................................................................................... 49 

6.2. Limitations and Future Research........................................................................................ 50 

BIBLIOGRAPHY ......................................................................................................................... 51 

APPENDIX A. SOURCE CODE ................................................................................................. 56 

A.1. Code to Generate Witnesses, Secret Parameters and Input Message Blocks .................... 56 

A.2. Code to Generate Signatures with Modular Exponentiation Multiplication Function ...... 58 

A.3. Code to Generate Challenge and Proof on this Challenge ................................................ 58 

A.4. Code to Check Proof ......................................................................................................... 59 

  



 
 

viii 
 

LIST OF TABLES 

Table                          Page 

1. Computations involved in S-PDP and ∑-PDP .......................................................................... 35 

2. Modular multiplications involved in ∑-PDP in comparison with S-PDP ................................ 37 

3. Multiplications to generate tags/signatures at client ................................................................. 38 

4. Multiplications to generate proof at server ............................................................................... 40 

5. Online multiplications to check proof at the client ................................................................... 41 

6. Offline multiplications to check proof at the client .................................................................. 43 

7. Time to perform computations for varying file and challenge length ...................................... 48 

  



 
 

ix 
 

LIST OF FIGURES 

Figure                        Page 

1. Protocol representation of ∑-protocol template ........................................................................ 14 

2. Protocol representation of Okamoto-protocol .......................................................................... 17 

3. ∑-PDP scheme .......................................................................................................................... 28 

4. Multiplications at client to generate tags/signatures ................................................................. 39 

5. Multiplications at the server to generate proof ......................................................................... 40 

6. Online multiplications at client to check proof ......................................................................... 42 

7. Offline computations to check proof at client ........................................................................... 43 

 



 
 

1 
 

CHAPTER 1. INTRODUCTION 

This chapter gives the introduction for this thesis study. This includes background, 

motivation and research objective of this thesis study. 

1.1. Background 

Cloud computing has been gaining significant momentum in recent years. [1] Advances 

in networking technology and the rapid accumulation of information have fueled a trend towards 

outsourcing data management to external service providers. As suggested by [2], cloud 

computing frees organizations from the need to buy and maintain their own hardware and 

software infrastructure. By outsourcing, organizations and individuals can concentrate on their 

core tasks rather than incurring the substantial hardware, software and personnel costs involved 

in maintaining data “in house”. The main problem is in verifying that the server continually and 

faithfully stores the entire and authentic content entrusted to it by the client. So, the server that 

stores the client’s data is not necessarily trusted. The server is untrusted in terms of both security 

and reliability: it might maliciously or accidentally erase the data or place it onto slow or offline 

storage media. This could occur for numerous reasons, including to save storage or to comply 

with external pressures. Also, the server could accidentally erase some data and choose not to 

notify the owner. Therefore, users might want to check if their data has been tampered with or 

deleted. However, as in [3] outsourcing the storage of very large files to a remote server presents 

an additional constraint: the client should not download all stored data in order to verify it since 

the bandwidth and time available may be prohibitive, especially if the client performs this check 

frequently. 

We note that traditional approaches to verify integrity, such as message authentication 

codes or digital signatures, cannot be applied since the client does not store the data. To address 



 
 

2 
 

this, a model called a Provable Data Possession (PDP) was first put forth by Ateniese [4]. A PDP 

system is a proof system based on public-key techniques that enables the server to efficiently 

prove to the client or anyone in possession of the client's public-key that it possesses the client's 

data. According to [1], PDP systems are similar to proofs of knowledge (POK) ( [5], [6], [7]) 

which are proof systems that enable a prover to convince a verifier that it knows a secret in 

“zero-knowledge”, i.e., without leaking any partial information about the secret to the verifier. 

These schemes provide probabilistic guarantees of possession, where the client checks a random 

subset of stored blocks with each challenge that it generates. 

1.2. Motivation 

While cloud computing provides many benefits, it also brings in new challenges in 

research. One of the main challenges is to achieve efficiency in communication, storage and 

computation on both client and server sides. As Whitfield Diffie [8] said, “The whole point of 

cloud computing is economy”. The PDP scheme of [4] has a large number of exponentiations 

involved in generating the proof of possession. Exponentiations can be expensive and therefore 

any such computation at the server is eliminated in the proposed model. Also, the number of 

exponentiations are fixed to 5 at the client making it independent of the size of the challenge. 

Thus, the proposed scheme is more efficient. Even though the scheme in [4] and the proposed 

method have a computational complexity of     , the proposed method has a major reduction in 

the number of exponentiations. This model was found to be useful in an application that stores a 

file from a hard drive onto a computer system. The storage-retrieval of this file can be run using 

the challenge-response protocol presented in this thesis study. The reliable storage of this file can 

be efficiently checked by challenging the computer system of the file that was stored on it. The 



 
 

3 
 

party storing the file can be convinced of storage on checking for the proof of possession that the 

computer sends it. 

The main goal of this research was to develop a provably-secure probabilistic model 

of PDP that is more efficient than previous solutions in terms of computation and communication 

complexity at both the client and the server of the PDP system. This in turn would reduce 

network communication. 

1.3. Research Objective 

In this thesis, we focus on archival network storage. Given that the file is large and is 

stored at a remote site, accessing the entire file is expensive. Therefore, to increase scalability 

and limit bandwidth, a ∑-protocol model is defined for provable data possession that allows the 

client to be able to verify that a server has stored a file without retrieving the data from the server 

and without having to access the entire file. This allows the server to access small portions of the 

file in generating a proof. A provably-secure scheme for PDP using ∑-protocols is formalized in 

this thesis study. The client stores a small amount of data (public and secret key) to verify the 

server’s proof. The scheme uses      bandwidth. Each challenge requires small, constant 

amount of communication between client and server. In order to generate the proof, the server 

accesses   blocks where   is a small constant and a subset of    where   is the input file size and 

is about           blocks in length. In terms of computation, there are modular exponentiations, 

multiplications and additions involved in the proof of possession. Since the size of the file is  , 

the storage at the server is     . The client computes one-time signatures on each file block and 

then stores the file along with the corresponding signatures with the server. At a later time, the 

client can verify if the server possesses the file by sending a random challenge against a 

randomly selected set of file blocks. Using the queried blocks and their corresponding signatures, 



 
 

4 
 

the server generates a proof of possession. The proof of possession is a linear combination of a 

constant number   of file blocks and a linear combination of their corresponding signatures. The 

client checks the validity of the proof with the help of secret data that it stored and is thus 

convinced of data possession, without actually having to retrieve the file blocks. The proof of 

security is based on the discrete logarithm assumption. 

The proposed scheme can be easily understood by first considering ∑-protocols. A ∑-

protocol is a three-move protocol between a prover and a verifier. The prover proves to the 

verifier that it knows a witness to a common input without revealing the witness. This is called 

Zero-Knowledge Proof of Knowledge (ZKPOK). One-time signatures are generated based on 

this simple protocol using the Okamoto protocol, an example of a ∑-protocol. The signing key in 

the one-time signature scheme consists of a pair of witness and a pair of secret parameters. These 

secret parameters are randomly chosen each time a new message has to be signed. Therefore, a 

new signing key is used to sign every new message, making the use of one-time signatures 

possible. The prover also computes the public key for each message block which when given to 

the verifier along with the signature gives provision to check the validity of the signature. The 

client acts as the prover and the server behaves as the verifier of the signatures that the client 

generates. 

A random challenge chosen by the client consists of indices and co-efficients. To 

generate a proof of possession for this challenge, the server has to possess the blocks indicated 

by the indices to multiply them with the corresponding co-efficients and send across a small 

amount of data to the client for verification. The client needs to have the private keys to verify 

this proof. Therefore, the client is convinced of data possession, without actually having to 



 
 

5 
 

retrieve the file blocks, hence minimizing bandwidth. The security property of the proposed 

scheme is proved under standard assumptions. 

The goal of this thesis is to construct an efficient PDP scheme for proofs of storage using 

∑-protocols. Our main strategy is to devise an efficient protocol using sigma protocols and one-

time signatures for PDP systems. 

We refer to the complexity parameters throughout this thesis. The definition of the 

performance parameters of ∑-PDP follows the parameters from [4]. They include: 

 Computation complexity: The computational cost to pre-process a file F (at  ), to 

generate a proof  of possession (at  ) and to verify this proof (at  ); 

 Block access complexity: The number of file blocks accessed to generate a proof of 

possession (at  ); 

 Communication complexity: The amount of data transferred (between   and  ). 

1.4. Thesis Outline 

This thesis is organized as follows: Chapter 2 gives an overview of related work. Chapter 

3 gives a detailed description of Provable Data Possession. It also outlines ∑-protocols and its 

properties, followed by the definition of the Okamoto protocol that provides basis for the 

proposed scheme. A one-time signature scheme based on the Okamoto protocol is also 

presented.  

Chapter 4 gives the definitions for ∑-PDP schemes followed by the construction of the 

proposed scheme (∑-PDP).  This chapter also gives the details of the complexity of the scheme. 

The scheme is compared to previous work in terms of exponentiations being represented as 



 
 

6 
 

multiplications. This section also gives details of comparison of PDP with POS. Chapter 5 

presents the implementation details of the algorithms used in the proposed scheme using 

Crypto++. Finally, Chapter 6 includes the conclusions derived from the study and 

recommendations for future research. 

  



 
 

7 
 

CHAPTER 2. LITERATURE REVIEW 

This section summarizes related work in PDP systems and introduces the concept of 

Provable Data Possession. 

2.1. Related Work 

This section consists of comparison of PDP and POR. It also has the details of various 

PDP schemes. The Provable Data Possession is given later in this section. 

2.1.1. Comparison of PDP and POR 

At the first glance, proving possession of data might seem like a simple problem which 

can be solved using known cryptographic primitives like collision-resistant hash functions. As an 

example, the owner could store the hash of the data and ask the server to return a copy of the 

data so that it can verify its integrity. Unfortunately, there are many practical settings in which 

such a simple approach will not work. If the bandwidth available between the client and the 

server is limited, then transferring large amounts of data might be infeasible. Also, if the client is 

computationally limited, then it might not be able to process the entire data collection. Finally, if 

the owner has limited storage-which, after all, is the motivation for outsourcing storage to begin 

with-then it might be impossible for it to maintain a copy of the data for verification purposes. 

Recently, two approaches to the problem of proving possession of data were put forth ( [4], [7]).  

While all these works address the same problem, the approaches and techniques used are 

very different. The first approach, referred to as a proof of retrievability (POR), is based on 

symmetric-key techniques and enables a server to prove to an owner that it possesses enough of 

the original data to allow for its efficient retrievability (i.e., in polynomial-time). On the other 

hand, the second approach, referred to as a proof of data possession (PDP), is based on public-



 
 

8 
 

key techniques and allows a server to prove to anyone with the owner’s public-key that it 

possesses the original file. Both PORs and PDPs are proof systems executed between a prover 

and a verifier that enables the prover to convince the verifier that he is in possession of a file  . 

They are generally composed of two phases: a setup phase where the owner of the file encodes 

the file and sends it to the prover; and a challenge phase where a verifier engages in an 

interactive protocol with the prover to determine if it indeed possesses the file. If only the owner 

is allowed to verify possession, then the system is privately verifiable. If the verifier can be any 

party that possesses the owner's public-key then the system is publicly verifiable. If the verifier is 

willing to store a commitment of  , then the prover can execute a zero-knowledge proof of 

knowledge (POK) for  . A POK allows a prover to convince a verifier that is in possession of a 

commitment, that it knows the secret under the commitment. In addition, this is done while 

guaranteeing that the verifier does not learn any information about the secret. For our purposes, 

however, where files can be very large, we are interested in proof systems with communication 

complexity and storage at the verifier that is    ).  

In this thesis, we present an explicit connection between POK and PDP systems. 

Concretely, we show how to compile certain 3-move POK into PDP systems with      size 

proofs. Due to their efficiency these protocols are widely used in practice and many efficient 

constructions are known. We use our compiler on an example ∑-protocol for proving knowledge 

of discrete logarithms [9] to generate a privately verifiable PDP system. The resulting 

construction is the first ∑-protocol construction based on the hardness of computing discrete 

logarithms. It is efficient and supports an unlimited number of proofs.  



 
 

9 
 

2.1.2. Various PDP schemes 

Ateniese et al. [4] were the first to have formalized the PDP model. The authors present 

several variations of their scheme under different cryptographic assumptions. These schemes 

provide probabilistic guarantees of possession, where the client checks a random subset of stored 

blocks with each challenge. We refer to [4] for a detailed review on earlier relevant works. 

The PDP scheme given in [4] provides an optimal protocol for the static case. Reference 

[3] is an improved scheme of the original PDP in that the client asks the server to prove that the 

stored data has not been tampered with or deleted. In this paper, they propose constructions for 

dynamic provable data possession, which extends the PDP model to support provable updates on 

the stored data. Pietro et al. [10] gave another dynamic PDP solution called Scalable PDP. This 

PDP technique is based on symmetric key cryptography (without requiring any bulk encryption), 

it also supports operations such as modification, deletion and append. This is known to be a very 

efficient PDP scheme for operations that are only append-like. Reference [11] uses the PDP 

framework for remote data checking based on spot checking where in corruption of any fraction 

of the data stored at the server can be detected by the client. They integrate forward error-

correcting codes into PDP. Reference [12] gives a PDP scheme in hybrid clouds that supports 

dynamic scalability in which they consider multiple cloud service providers to cooperatively 

store and maintain the client’s data. Another extension of the original PDP is presented in [13]. 

They proposed a generic transformation that meets the specified requirements and that encodes a 

file using forward error correcting codes in order to add robustness to any Remote Data 

Checking (RDC) scheme based on spot checking. Our scheme has static properties and hence 

follows the original PDP presented in [4]. Many other variations of PDP schemes have been 



 
 

10 
 

proposed in the past. The techniques have been based on various concepts to verify the 

possession of data that a remote server stores. 

The PDP solution proposed in this thesis is the first attempt to build a PDP scheme that 

uses the concepts of ∑-protocols. The security of the proof of possession of data on a server is 

proved using the properties of sigma protocols. Reference [4] uses various assumptions to 

guarantee data possession of their scheme in the random oracle model. The proposed scheme 

uses the discrete logarithm assumption to prove security. Reference [4] offers unlimited 

verifications which we achieve but we do not address public verifiability that is given in [4]. 

Compared to the PDP scheme in [4], the proposed scheme is more efficient in both setup and 

verification phases because it depends on lesser number of modular exponentiations, 

multiplications and additions. 

2.2. Provable Data Possession (PDP) 

Reference [4] gives a framework for provable data possession. A PDP protocol checks 

that an outsourced storage site retains a file  , which is a collection of blocks. The client   (data 

owner) pre-processes the file, generating a small amount of metadata that is stored locally, 

transmits the file along with the metadata to the server and may delete its local copy. The server 

stores this file. At a later time, the client issues a challenge to the server to check if the server has 

retained the file. The client requests that the server compute a function of the stored file and 

metadata, which it sends back to the client. Using its locally stored data, the client verifies the 

response. Several variations of this scheme have been proposed under different cryptographic 

assumptions. Such schemes provide probabilistic guarantees of possession, where the client 

checks a random subset of stored blocks with each challenge that it generates.  



 
 

11 
 

CHAPTER 3. BASIC CRYPTOGRAPHIC PRIMITIVES 

In this chapter, the details of the cryptographic primitives that are needed to understand 

the main scheme are explained. 

3.1. Public-key Encryption 

Public-key encryption allows two parties who do not share a secret key to communicate 

privately. To use a public-key encryption scheme, a receiver begins by generating a public key 

     and private key       It then publishes the public key while keeping the private key secret. 

The sender uses the receiver’s public key      to encrypt messages, while the receiver uses the 

private key      to decrypt. 

3.2. Zero-knowledge Proofs 

Zero-knowledge proof is an interactive proof with the additional property that the verifier 

learns nothing beyond the correctness of the statement being proved. In the context of 

cryptographic protocols, zero-knowledge proofs can be used to enforce “good behavior” by 

having parties prove that they indeed followed the protocol correctly. These proofs must reveal 

nothing about the parties’ private inputs, and as such must be zero knowledge. 

3.3. Proofs of Knowledge 

Proof of Knowledge [14] is a proof system where the prover claims to know a certain 

piece of information (such as a secret key corresponding to a given public one). Such proof 

systems are built using knowledge completeness and knowledge soundness.  

3.4. Properties of Completeness and Soundness 

In any proof system, there are following properties: completeness and soundness. 



 
 

12 
 

3.4.1. Completeness 

A correct statement can be proved within the proof system, so when the prover and 

verifier are honest and interact with each other on a statement that’s in a language, then the 

verifier will accept. This property simply means that if the prover knows the claimed information 

and follows the protocol, he can almost always convince the verifier. 

3.4.2. Soundness 

 You cannot prove incorrect statements in your proof system. i.e., for any   that’s not in 

the language, the verifier will accept after interacting with any arbitrary cheating prover with at 

most negligible probability. Loosely speaking, this property says that if some prover can, using 

whatever strategy, convince the verifier with substantial probability, then the prover knows the 

information in question. By “knowing the information” we mean that the prover can compute it, 

and that the time he needs to do so is roughly inversely proportional to the probability with 

which the verifier gets convinced. 

3.5. Sigma Protocol [15] 

 A proof of knowledge for a binary NP-relation, i.e., R ⊆               , enables a 

prover that is given         to prove his knowledge of   to a verifier that knows  . The 

binary relation   has the restriction that if   ,     , then the length of   is at most        for 

some polynomial      and     is the length of  . For some        , we may think of x as an 

instance of some computational problem, and   as the solution to the instance. We call   a 

witness for  . We define    to be the set of inputs   for which there exists a   such that       

 .   



 
 

13 
 

∑-protocols ( [16], [15]) are three-move protocols between a prover, P and verifier, V in 

which P and V have a common input   and P has a private input   such that         . P tries 

to prove to V that either   belongs to language    or it knows a witness   such that        . 

The protocol pattern is given below. 

Protocol 3.1. ∑-protocol template for a relation  : 

 Common Input: P and V get  . 

 Private Input: P has a value   such that        . 

 The protocol: 

1. P sends V a message  . Let   be the randomness used to generate  . 

2. V sends a random  -bit challenge   to P. 

3. P sends a reply  , and V decides to accept or reject based on the data he has 

seen, i.e. (       ). 

The protocol representation is given in Figure 1. 

 



 
 

14 
 

∑-protocol

Prover Verifier

Message a

Challenge e

Response z

Accept or reject 
based on (x,a,e,z)

Common input: P and V get x
Private input: P has w

 

Figure 1. Protocol representation of ∑-protocol template 

We will assume throughout that both P, V are probabilistic polynomial time machines, so 

P’s only advantage over V is that he knows  . If V accepts then it is convinced that P knows a 

witness   such that        . Moreover, if V is honest it does not learn any more information 

than        . This implies that the ∑-protocol is honest-verifier zero-knowledge. Note that 

the relation   is such that it is hard to compute   from  , otherwise V could compute   by itself 

and it does not need to be convinced that P knows  . 



 
 

15 
 

Like any proof system a ∑-protocol is only useful if it satisfies a notion of completeness 

and soundness. Completeness guarantees that if a honest prover (i.e., one that follows the 

protocol) indeed “knows” a witness   such that        , then an honest verifier will be 

convinced. Soundness, on the other hand, guarantees that if the verifier accepts an interaction 

with a prover, then the prover indeed “knows” a witness   such that        . The soundness 

of a sigma-protocol can be defined in a variety of ways (see [10] for a discussion), but is 

typically formalized using the notion of special soundness [17]. Informally, special soundness 

requires that one be able to efficiently “extract” a witness from the transcripts of two instances of 

the protocol that use the same commitment but different challenges. 

We now define ∑-protocols formally. 

Definition 3.1 [15]. A protocol P is said to be a ∑-protocol for relation   if:  

 P is of the above 3-move form, and we have completeness: if P, V follow the protocol 

on the input   and private input   to P where        , the verifier always accepts. 

 From any x and any pair of accepting conversations on input                     

where     , one can efficiently compute   such that        . This is called the 

soundness property.  

 Define    to be the set of  ’s for which there exists   such that        . There 

exists a polynomial-time simulator M, which on input      and a random   outputs 

an accepting conversation of the form        , with the same probability distribution 

as conversations between the honest P, V on input  . This is called special honest-

verifier zero-knowledge. 



 
 

16 
 

Reference [16] shows that a sigma-protocol can be converted to zero-knowledge proofs 

or ZKPOK using commitment schemes. In this paper, we use ∑-protocols that are witness 

indistinguishable and witness hiding to construct an efficient one-time signature scheme [15] 

given in Section 3.7. 

3.6. Okamoto Protocol 

 We consider an example one-time signature scheme that is based on the Okamoto 

protocol, an example ∑-protocol. Let    be a group of prime order  , with generators    and   , 

set in such a way that no one can efficiently compute,  , such that      
 . The Okamoto 

protocol is a ∑-protocol based on the relation   = {                  
    

  }.  P and V have a 

common input   =   
    

  . P has private input           such that               . The 

Okamoto protocol proceeds as follows: 

Protocol 3.2. The Okamoto Protocol: 

 Common Input: P and V get      
    

  . 

 Private Input: P chooses a value         such that                .  

 The protocol: 

1. P sends V a message      
    

  , where          is chosen uniformly at 

random from   . 

2. V sends P a random challenge   in   . 

3. P computes                ,                 and sends   = (    

  ) to V. V accepts if    
    

      . 

The protocol representation is given in Figure 2.  



 
 

17 
 

Okamoto Protocol

Prover Verifier

 

Common Input: P and V get   =  1
 1 2

 2  

Private Input: P chooses a value ( 1,  2)        

                       such that ( , ( 1,  2))     

 
 

message   =  1
 1 2

 2  

  = ( 1,  2) 

challenge e

V accepts if  

  1
 1 2

 2 =     
 

P computes  

 1 =  1 + 1      , 

           2 =  2 + 2        

 

Figure 2. Protocol representation of Okamoto-protocol 

3.6.1. Properties of witness-indistinguishability and witness-hiding 

The properties of witness-indistinguishability and witness-hiding also hold for Okamoto 

protocols. They are defined as follows: 

Definition 3.2 [17]. Perfect witness-indistinguishable  WI : No matter how   is chosen 

by the verifier, all possible pairs         consistent with  (i.e., satisfying   
    

      ) are 

equally likely from the point of view of the verifier. 



 
 

18 
 

Definition 3.3 [17]. Witness hiding (WH): Even a malicious verifier cannot, by talking to 

the prover, learn the underlying witnesses. 

3.7. One-time Signature Scheme 

 We now build a one-time signature scheme based on the Okamoto protocol [15]. It 

consists of three probabilistic polynomial time algorithms                  . 

One-time signature scheme based on the Okamoto protocol: 

    : The verification key      and signing key      are:           

   
    

           
    

                               

     : The signature on a message   is computed as                

                         

       : The receiver verifies a message-signature pair ( ,  ) by checking if the 

following equality holds:   
    

      . 

   Note that   
    

     
         

          
    

      
    

           

This one-time signature scheme is secure because an adversary having seen at most one 

valid signature cannot efficiently compute a valid signature on a different message. Suppose that 

there exists an adversary that can compute a valid signature on a different message, given one 

valid signature, then the adversary has two different signatures   and    for the same     

     . This implies that the adversary has two different conversations for the underlying ∑-

protocol           and                          . Therefore, from the special soundness 

property of the protocol the adversary can compute        . However this contradicts the 

witness hiding property of ∑-protocols. Thus, there exists no adversary that can efficiently 



 
 

19 
 

compute a valid signature on a different message, given one valid signature. The above one-time 

signature scheme is therefore secure. 

Since the above signature is a one-time signature it can only be used to sign one message 

with one key        . Every new message must be signed with a new key to maintain security. 

We propose to change the key by simply changing         while keeping         

unchanged. The signing key (or private key of the signer) for signing the      message    is 

                      , where         is such that               , for      
    

  , 

and (       ) are chosen at random from    for each   . The verification key (or public key) is 

        
    

      
     

             The verification key has to be distributed to each receiver 

of message   . We assume that this can be accomplished using authenticated message 

transmission. The signer of the message  block can select   pairs of random values 

                                  from    and compute the   verification keys, 

             . Note that      
    

  ,    and    are known to the receiver in the beginning. 

The signer computes the signature of the     message    as                    

                          and sends the message-signature pair          to the receiver. 

Upon receipt of a message         , the receiver performs verification by checking if the 

following equality is satisfied:    
     

       
  . In order to verify the message-signature pair, 

                   , the receiver should know the values   ,   ,  , and   . The receiver 

receives   ,    and   in the beginning. The sender computes   verification keys and sends them 

to all receivers so the receiver knows   .  



 
 

20 
 

3.8. Pseudorandom Function (PRF) 

A pseudorandom function [18] is a function that cannot be distinguished from a truly 

random function. A keyed function F is a two-input function F:              →      , where 

the first input is called the key and denoted by  , and the second input is just called the input.   : 

      →       defined by             . On fixing a key            we obtain a function 

      mapping  -bit strings to  -bit strings. F is efficient if there is a deterministic polynomial-

time algorithm that computes        given   and   as input. F is pseudorandom if the function 

  (for randomly chosen  ) is indistinguishable from a function chosen uniformly at random from 

the set of all functions having the same domain and range, that is, if no polynomial-time 

adversary can distinguish whether it is interacting with    or f (where f is chosen at random from 

the set of all functions mapping n-bit strings to n-bit strings). From theoretical point of view, it is 

known that pseudorandom function exist if and only if pseudorandom generators exist, and so 

pseudorandom functions can be constructed based on any of the hard problems that allow the 

construction of pseudorandom generators. PRFs were introduced by Goldreich, Goldwasser and 

Micali [19] and are known to exist under the assumption that one-way functions exist [20].  

3.9. Pseudorandom Permutation (PRP) 

There exists some keyed permutation F [18] for which it is impossible to distinguish in 

polynomial time between interactions with   (for randomly-chosen key  ) and interactions with 

a truly random permutation. Let F:              →       be an efficient, length-preserving, 

keyed function. We call F a keyed permutation if for every  , the function   (.) is one-to-one. 

We say that a keyed permutation is efficient if there is a polynomial-time algorithm computing 

      given   and  , as well as a polynomial-time algorithm computing   
  ( ) given   and  . 



 
 

21 
 

The only change is that we now require that   (for randomly chosen k) be indistinguishable from 

a randomly-chosen permutation rather than a randomly chosen function.  

3.10. Pseudorandom-Generator 

As given by Ateniese      . [4], we make use of π, a pseudo-random permutation (PRP) 

and f a pseudo-random function (PRF) that takes as input a security parameter   with the 

following parameters: 

π:                                 ; 

f :                            

We write       to denote f keyed with key   applied on input  . The purpose of 

including the coefficients    in the values for   computed by the server as in [4] is to ensure that 

the server possesses each one of the requested blocks (see Section 4.2 for details). These 

coefficients are determined by a PRF keyed with a fresh randomly-chosen key for each challenge 

to prevent the server from storing combinations (e.g., sums) of the original blocks instead of the 

original file blocks themselves. 

  



 
 

22 
 

CHAPTER 4. ∑-PROVABLE DATA POSSESSION 

The client   wants to store a file  , a finite ordered collection of   blocks:  = 

                  on the server  . We denote the output   of an algorithm    by  ← .  

We first give the details of the algorithms used in the main scheme and then define a ∑-

provable data possession scheme that follows [4]. We later present a security definition that 

demonstrates the data possession property. 

4.1. Details of the Proposed ∑-PDP Scheme 

   chooses a value         such that               .         corresponds to the 

witness in the Okamoto protocol and is the client’s secret chosen before the execution of the 

protocol. We propose the witness to remain unchanged throughout. Let    be a group of prime 

order  , with generators    and   , set in such a way that no one can efficiently compute  , such 

that      
 . Instead of choosing the secret parameters                                   at 

random we use a pseudorandom function to generate them to sign the message blocks and later 

to verify the proof of possession. The client deletes these secret parameters from its storage and 

can generate them when needed. For       ,   generates 

                                  from a pseudorandom function        and         . 

Given a secret key   ,                        . 

As defined earlier, let f be a pseudo-random function and π be a pseudo-random 

permutation. 

A detailed description of the algorithms used in building the ∑- PDP scheme based on the 

Okamoto protocol are as follows: 



 
 

23 
 

4.1.1.            

            is a probabilistic polynomial algorithm that generates the public key     

and secret key     pairs          such that                
    

      
     

     for each    for 

all       and                                               . It takes a security 

parameter  , generators    and   , witness         as input, and returns a pair of public and 

secret key         . The public key (also the verification key) is         
    

      
     

     

        The public key on each message    is given to the server. This is done at the beginning 

of the protocol. Private Input: For       ,   generates                                   

in the following manner: 

                            

and sets the secret key                                               . Common Input:   

gives   public key                 
    

      
     

     for each    for all      . These 

public keys are used as verification keys to check the validity of the signatures that the server 

receives from the client on the corresponding messages. 

4.1.2.             

 It computes signature       
on the file block    for all      . The signatures are 

computed in the following manner: 

      
                                           . 

 It returns   =                    and ∑       
       

           
 . 



 
 

24 
 

4.1.3.                 
  

    (            
) is an algorithm that checks the validity of the signature 

      
corresponding to message    that it received from the client for          . It takes a 

public key    , signature       
and message block    and checks if       

is a valid signature on 

  . The client computes the signature of the     message    as       
           

                                and sends           
  to all receivers. On receiving 

          
 , the server performs verification by checking if the following equality is satisfied: 

   
     

       
  . The server receives   ,   , and   in the beginning. To verify the message-

signature pair,            
           , the server should know the values   ,   ,  , and   .   

computes   public keys (also verification keys) and sends them to   so the server knows    in 

the beginning. It returns            if       
 is a correct signature on   . Otherwise outputs 

           

4.1.4.                                   ∑           
       

           
   

1. A pair of keys         is chosen by  . The challenge    is chosen in the following 

manner. For 1 ≤   ≤  , it computes the indices,    of the blocks and co- efficients,    

for which the proof is generated. 

          

          

Therefore,  

Challenge                                   is chosen where        . 



 
 

25 
 

2. Compute message                                 and         

           
            

                
        

                                                                 

                                                Note:          
is the   -th value in 

∑  . 

3. Output proof            . 

4.1.5.                                 

1. For      ,   generates                                in the following 

manner: 

                            

2. Compute 

    
        

             
         

        
            

           

  
                              

                                . Set private key     

       (  
    

  )    
                             

                           and secret 

key                                               . For       , compute 

the indices,    of the blocks and co- efficients,    for which the proof is generated. 

          

          

3. Given                    and                                   (for         , 

if   
    

         output          . Otherwise output          . Note that    
    

   



 
 

26 
 

   
                                                            

  
                                                                

   
                              

                           

    
    

                                      . 

4.2. ∑-Provable Data Possession 

Definition 5.1. (∑-Provable Data Possession (∑-PDP)) [21]. A ∑-PDP scheme is a tuple 

of five polynomial-time algorithms                                       such that: 

                     is a probabilistic key generation algorithm that is run by 

the client to generate the public and private key to the scheme. It takes a security 

parameter   as input, and returns a pair of public and secret keys (      ) for each 

file block   .  

                 
is an algorithm run by the client to generate the signature for 

each message block for       . It takes as inputs a secret key    and a file block 

   , and returns the signature       
. 

                 
                        is run by the server to check the 

validity of the signature       
corresponding to message    that it received from the 

server for      . It takes a public key    , signature       
and message block    

and returns            if       
 is a correct signature. Otherwise outputs          . 

                ∑)            is an algorithm run by the server to generate a 

proof of possession. It takes as inputs an ordered collection of  , a challenge   from 

the client   and ∑ which is an ordered collection of signatures corresponding to the 



 
 

27 
 

blocks in   sent by  . It returns a proof of possession             for the blocks in   

that are determined by the challenge  . 

                                                      is run by the client in 

order to validate a proof of possession. It takes as inputs a public key   , a secret key 

  , a challenge   and proof of possession            . It outputs whether 

            is a correct proof of possession for the blocks given by  . 

4.3. ∑-PDP Scheme 

 We now construct a ∑-PDP scheme in two phases, Setup and Challenge: 

Setup: The client   runs                    , gives    to   and keeps    secret.   

then runs      
             for all       and sends   ,                   and 

∑       
       

            
  to   for storage.   may run                         

                
  to check the validity of the signatures it received for       .   may now 

delete   and ∑ from its local storage.  

Challenge:   requests proof of possession for   distinct blocks of file   (with     

 ): 

1.    generates a random challenge   and sends it to  . 

2.   runs                           ∑  and sends             to  . 

3.   runs                                  to check if   
    

      . 

In the Setup phase,   generates signatures for each file block and stores them along with 

the file at  . In the Challenge phase,   requests proof of possession for a challenge which is a 

subset of the blocks in  .  



 
 

28 
 

Heading

∑-PDP Scheme

 

Figure 3. ∑-PDP scheme 

We use the data possession game (defined below) [4] to show security of the ∑-PDP 

scheme. The Data Possession Game shows that an adversary cannot successfully construct a 

valid proof without possessing all blocks corresponding to a given challenge, unless it guesses all 

the missing blocks correctly.  

4.4. Data Possession Game 

 Setup: The challenger runs algorithm           ,  to obtain     and   . It sends 

    to the adversary and keeps    secret. 



 
 

29 
 

 Query: The adversary adaptively selects some file block    and sends it to the 

challenger. The challenger computes the verification signature 

     
               and sends it back to the adversary. The adversary continues 

to query the challenger for the verification signatures       
       

           
on the 

blocks of its choice                . The challenger generates       
 for      , 

by computing      
                  . The adversary stores all the blocks as an 

ordered collection                     along with the corresponding verification 

signatures ∑       
       

            
 . 

 Challenge: The challenger generates a challenge   for the file blocks 

                where                     and requests the adversary 

to provide a proof of possession for these blocks  determined by  . 

 Forge: The adversary computes a pair of values as proof of possession             

for the blocks indicated by   and returns            . 

If                                           , then the adversary has won the 

Data Possession Game. 

Definition 4.2 [4]. A ∑-PDP system  Setup, Challenge  built on a PDP scheme 

(                               ) guarantees data possession if for any (probabilistic 

polynomial-time) adversary A the probability that A wins the Data Possession Game on the set of 

file blocks is negligibly close to the probability that the challenger can extract those file blocks 

by means of a knowledge extractor K.  

As given by Ateniese et al. [4], in the security definition, the notion of a knowledge 

extractor is similar to the one introduced in the context of proof of knowledge [22]. If the 



 
 

30 
 

adversary is able to win the Data Possession Game, then K can execute          repeatedly 

until it extracts the selected blocks. On the other hand, if K cannot extract the blocks, then the 

adversary cannot win the game with more than negligible probability. 

4.5. Proof of Security  

Theorem 4.3. If there exists a hard discrete logarithm problem that cannot be computed 

efficiently then there exists a ∑-PDP that guarantees data possession. 

Proof: Under the Discrete Logarithm (DL) assumption of Okamoto protocols, we prove 

that ∑-PDP guarantees data possession. 

We assume that a group    with prime order   is known. Furthermore, two generators    

and    of    are known. These values have been set up in such a way that nobody knows 

       , i.e., we assume that no one can efficiently compute   such that      
 . This is the DL 

assumption.  

We assume there exists an adversary   that wins the Data Possession Game on a 

challenge picked by   and show that   will be able to extract the file blocks determined by the 

challenge. If   wins the data possession game of the ∑-PDP scheme by sending a valid proof 

that contains a message that is not same as the correct message, then we show how to construct 

an adversary   that uses   in order to find   such that       
 . This violates the DL 

assumption. Therefore,   must generate a proof that contains a message identical to the correct 

message. A knowledge extractor K is then constructed which can extract the file blocks involved 

in the proof.   will play the role of the challenger in the Data Possession Game and will interact 

with  . 



 
 

31 
 

  simulates a ∑-PDP environment for   as follows: 

Setup:  

   chooses         . The secret key values         are chosen at random from the 

group   and                                   are generated by a PRF with a secret key   . 

The witnesses         remain constant throughout the execution of the protocol and are hence 

chosen before the start of the protocol. The parameters                                   are 

chosen at the beginning of the protocol.   

  computes   
    

     and    
     

       and sets public key            

    
    

      
     

     on the file block    for all        ; secret key 

                                              .  

 It sends     to   and keeps    secret. (see Section IV-D for details on checking the 

validity of the signatures at the server on knowing the public key) 

Query:  

  makes signing queries adaptively:   selects a block    and index   .    sends    and 

   to  ,   generates        at random and sends it back to  .   continues to query   for the 

signatures        
            

on the blocks           . The restriction is that   cannot make 

tagging queries for two different blocks using the same index.   answers  ’s signing oracle 

queries as follows: 

—when   receives a signing query for a block   and index  , with      : 



 
 

32 
 

if a previous tagging query has been made for the same   and  , then   retrieves the recorded 

tuple                 and returns               .  

else,   picks          
 
    , records the tuple                and returns the signature      

         . 

Challenge:  

   generates the challenge                                  , where                are 

the indices of the blocks and                are corresponding co-efficients of the blocks for 

which   requests proof of possession  with                    and   is chosen 

at random from    .   sends   to   and requests a proof of possession for this challenge. 

Forge:  

  generates a proof             on the blocks     
            . Note that 

            is a valid proof if it passes                               .   returns 

            to   and   checks the validity of this proof.  

Let the correct proof be               where                            .   

knows this because it knows     and   .   

If   sent a valid proof such that       , then   knows two sets of values that satisfy 

the verifiability condition: 

  
     

        .…………………. (1) 

  
      

          ………………...… (2) 



 
 

33 
 

On dividing (1) by (2), 

  
         

               
        

  
        

 

 Note that     
    

    

This implies  

  
                 

   
                 

 

     
                                     

 

Therefore, an   such that      
  can be computed using the above as follows: 

                                        

This violates the DL-assumption. Therefore,  ’s proof is such that     . Hence   is 

successfully able to extract the correct message   . 

At the end of the simulation   will be able to extract                            . 

We now show that our protocol constitutes a proof of knowledge of the blocks     
 

           when              are pairwise distinct. We show that a knowledge extractor K may 

extract the file blocks     
             . Note that each time K runs the ∑-PDP protocol, he 

obtains a linear equation of the form                              . By choosing 

independent coefficients              in   executions of the protocol on the same 

blocks    
          , K obtains   independent linear equations in the variables     

 

           ,  K may now solve these equations to obtain the file blocks     
            . This 

shows that our proof is a proof of knowledge. 



 
 

34 
 

4.6. Complexity Analysis and Comparison 

We follow the specifications for a scalable solution given by Ateniese et al. [4] where the 

block access and hence the computation at the server should be minimized, because the server 

may be involved in concurrent interactions with many clients. We also minimize bandwidth by 

making our PDP scheme check for proof of data possession without retrieving entire file blocks. 

A deterministic guarantee of possession can be given by when the client asks for proof for all the 

file blocks. But we give probabilistic guarantee of possession wherein we let our scheme access a 

random subset of the file blocks from the server’s storage to compute the proof. The computation 

complexity at the client is not of much importance.  Table 1 shows the computation details of the 

proposed scheme in comparison with S-PDP given by [4]. All exponentiations and 

multiplications listed in the table are modular operations. 

When the input file F has  =1,000,000 blocks, assuming that the server S deletes at least 

1% of F, the client C can detect server misbehavior with probability over 99% by asking proof 

for c = 460 randomly selected blocks. 

When the client asks the server for a proof for a challenge with  =460 randomly selected 

blocks out of a file  =1,000,000 blocks, the S-PDP scheme requires the server to perform 461 

exponentiations, 919 multiplications and 459 additions while the ∑-PDP needs only 1380 

multiplications and 1377 additions. We eliminate any exponentiation in our scheme. To check 

the proof at the client, S-PDP needs to perform 462 exponentiations, 461 hashes, 460 inverses 

and 460 additions while ∑-PDP uses only 5 exponentiations, 923 multiplications and 918 

additions. 



 
 

35 
 

Table 1. Computations involved in S-PDP and ∑-PDP 

 S-PDP ∑-PDP 

client computation to pre- 

process a file 

   exponentiations,   

multiplications,   hashes 

  multiplications,    

additions 

server computation  to 

generate proof  

      exponentiations, 

       multiplications, 

      additions, 1 hash 

     multiplications, 

         additions 

client computation (to 

verify the proof) 

      exponentiations,  

      hash,   inverses,   

multiplications 

5 exponentiations,        

multiplications, 2      

additions 

Server block access           

communication           

Client storage           

 

We are interested in minimizing the server computation and hence we have very few 

multiplications and additions in order to generate proof of possession while the S-PDP scheme 

proposed by Ateniese      . [4] needs exponentiations, hash operations along with the 

multiplication and addition operations to be done in order to generate the proof. Exponentiations 

can be expensive and we eliminate any such computation at the server. This shows that the 

proposed scheme is more efficient.  

We perform multiplications on       while S-PDP has modulus N which results in 

larger number of multiplications. For comparison sake we first convert modular exponentiations 

to modular multiplications using square and multiply presented in [23]. The number of modular 

multiplications is equal to the number of     in the binary representation of the exponent. 



 
 

36 
 

Therefore, the total number of modular multiplications is at least the number of bits and 

at most twice the number of bits. If we consider the signed binary representation of the exponent, 

then the number of     will be 
 

 
 times the total number of bits. For example, if the exponent is 

    -bits, then the number of 1’s in that number would be 
 

 
          . Therefore, the total 

number of modular multiplications involved in computing a modular exponentiation of a 1024-

bit exponent is                . Table 4.2 gives the total number of modular 

multiplications involved in online computation of the client and the server in the proposed 

scheme in comparison with the       for one message block. 

N=1024 bits, p=160 bits, q=160 bits, m=1024 bits, d = 1024 bits,   =1024 bits, s=1024 

bits, e=1024 bits, M=1024 bits. 

The sizes of the parameters considered in the above computations are as follows: 

For comparison between the two schemes, mod N multiplications need to be represented 

in terms of mod p/ mod q. The time taken for a mod n operation is proportional to   , where l is 

the number of bits in n. Taking q to have 160 bits and N to have 1024 bits, the time taken for a 

mod q operation is proportional to (160 * 160) and the time taken for a mod N operation is 

proportional to (1024 * 1024). Therefore, the number of mod q operations in a mod N operation 

is (
         

       
) = 40.96. 

The small number of fixed exponentiations involved in ∑-PDP shows the improvement 

over the number of exponentiations that are linear in the number of challenges in S-PDP.  

 



 
 

37 
 

Table 2. Modular multiplications involved in ∑-PDP in comparison with S-PDP 

 S-PDP ∑-PDP 

To generate 

tag/signature 

(Offline 

computation

s at client) 

        
           

 

    : (
 

 
     )       = 2730 

multiplications 

        
    : 1.5 * 2730 * n = 

4095n multiplications 

Total number of mod N 

multiplications: 4095n 

      
          

      

               

            
Total number of mod q multiplications: 2n 

To generate 

proof 

(Online 

computation

s at the 

server) 

          

        

       

            

  : 1366 * c 

multiplications 

  
               : 4096 

multiplications 

Total number of mod N 

multiplications: 4096+1366c 

 

              

                               
 

 

Total number of mod q multiplications:  c 

To check 

proof 

(Online and 

offline 

computation

s at the 

client) 

Online 

computations 

Offline 

computations 

Online 

computations 

Offline computations 

     :1366 

multiplications 
 

         
: c 

multiplications 

           : 
1366 

multiplications 

 

Total number 

of mod N 

multiplications

: 2732+c 

c number of 

       
  :1366

c 

(mod N) 

  
    

         

  
  :(

 

 
*160)+16

0 = 213 

multiplications 

  
    

  : 1.5*213 

= 320 

multiplications 

  : 1366 

multiplications 

   : 1 

multiplication 

 

Total number of 

mod p 

multiplications: 

1687 

  

  
                            

  
                          :  

Total number of mod p 

multiplications: 320+2c 

 



 
 

38 
 

4.6.1. Computations to generate tags/signatures at the client (offline computations) 

The following table gives data obtained by varying the size of input message blocks, n in 

generating tags/signatures at the client. The same is represented graphically in Figure 4. Note 

that X-axis is n and Y-axis is S-PDP and ∑-PDP. 

Table 3. Multiplications to generate tags/signatures at client 

 

 S-PDP 

(4095n) 

  –PDP 

(2n) 

n mod N multiplications mod q multiplications mod p multiplications 

(1 mod p 

multiplication = 40.96 

mod q multiplications) 

100 409500 200 4.88 

250 1023750 500 12.2 

500 2047500 1000 24.4 

750 3071250 1500 36.6 

1000 4095000 2000 48.8 

2500 10237500 5000 122 

5000 20475000 10000 244 

7500 30712500 15000 366 

10000 40950000 20000 488 

25000 102375000 50000 1220 

50000 204750000 100000 2440 

75000 307125000 150000 3660 

100000 409500000 200000 4880 

250000 1023750000 500000 12200 

500000 2047500000 1000000 24400 

750000 3071250000 1500000 36600 

1000000 4095000000 2000000 48800 

2500000 10237500000 5000000 122000 

5000000 20475000000 10000000 244000 



 
 

39 
 

 

Figure 4. Multiplications at client to generate tags/signatures 

4.6.2. Computations to generate proof at server (online computations) 

The following table gives data obtained by varying the size of challenge blocks, c in 

generating proof at the server. The same is represented graphically in Figure 5 where X-axis is c 

and Y-axis is S-PDP and ∑-PDP. 

 

 

 

 

 

0

5E+09

1E+10

1.5E+10

2E+10

2.5E+10

0 1000000 2000000 3000000 4000000 5000000 6000000

S-PDP

∑-PDP 



 
 

40 
 

Table 4. Multiplications to generate proof at server 

 S-PDP 

(4096+1366c) 
  –PDP 

(3c) 

c 

mod N multiplications mod q 

multiplications 

mod p multiplications 

(1 mod p multiplication = 

40.96 mod q multiplications) 

10 17756 30 0.732422 

15 24586 45 1.098633 

20 31416 60 1.464844 

25 38246 75 1.831055 

30 45076 90 2.197266 

35 51906 105 2.563477 

40 58736 120 2.929688 

45 65566 135 3.295898 

50 72396 150 3.662109 

75 106546 225 5.493164 

100 140696 300 7.324219 

150 208996 450 10.98633 

200 277296 600 14.64844 

250 345596 750 18.31055 

300 413896 900 21.97266 

350 482196 1050 25.63477 

400 550496 1200 29.29688 

450 618796 1350 32.95898 

500 687096 1500 36.62109 

 

 

Figure 5. Multiplications at the server to generate proof 

0

100000

200000

300000

400000

500000

600000

700000

800000

0 100 200 300 400 500 600

S-PDP

∑-PDP 



 
 

41 
 

4.6.3. Computations to check proof at the client on c challenge blocks 

This section gives details on computations involved in checking proof at the client. 

4.6.3.1. Online multiplications at server to generate proof 

The following table gives data obtained by varying the size of challenge blocks, c in  

checking proof at the client. The same is represented graphically in Figure 6 where X-axis is c 

and Y-axis is S-PDP and ∑-PDP. 

Table 5. Online multiplications to check proof at the client 

c S-PDP 

(1366c) 

  –PDP 

(320+c) 

 mod N 

multiplications 

mod p 

multiplications 

10 13660 330 

15 20490 335 

20 27320 340 

25 34150 345 

30 40980 350 

35 47810 355 

40 54640 360 

45 61470 365 

50 68300 370 

75 102450 395 

100 136600 420 

150 204900 470 

200 273200 520 

250 341500 570 

300 409800 620 

350 478100 670 

400 546400 720 

450 614700 770 

500 683000 820 



 
 

42 
 

 

Figure 6. Online multiplications at client to check proof 

4.6.3.2. Offline multiplications at server to generate proof 

The following table gives data obtained by varying the size of challenge blocks, c in 

checking proof at the client. The same is represented graphically in Figure 7. Note that X-axis is 

c and Y-axis is S-PDP and ∑-PDP. 

 

 

 

 

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500 600

S-PDP

∑-PDP 



 
 

43 
 

Table 6. Offline multiplications to check proof at the client 

c S-PDP 

(1366c) 

  –PDP 

(320+c) 

  mod N 

multiplications 

mod p 

multiplications 

10 13660 330 

15 20490 335 

20 27320 340 

25 34150 345 

30 40980 350 

35 47810 355 

40 54640 360 

45 61470 365 

50 68300 370 

75 102450 395 

100 136600 420 

150 204900 470 

200 273200 520 

250 341500 570 

300 409800 620 

350 478100 670 

400 546400 720 

 

 

Figure 7. Offline computations to check proof at client 

0

100000

200000

300000

400000

500000

600000

700000

800000

0 100 200 300 400 500 600

S-PDP

∑-PDP 



 
 

44 
 

4.6.4. Comparison of ∑-PDP with previous work 

In this section, Proof of Storage (POS) [35] is compared with PDP. The major difference 

between POS and PDP is that, PDP concentrates on reducing the computation complexity on the 

server due to limited bandwidth and also due to the huge number of requests that the server 

receives from multiple clients while the goal of POS is to reduce the communication complexity, 

mostly to make server-to-client communication independent of file length. This is done to reduce 

network traffic and overhead on both the client and server. The client-to-server communication is 

large in both PDP and POS. 

In POS, the server computation is a constant multiple of the file size. In order to 

homomorphically combine the tags on all the input messages the verifier will need to access and 

compute a single tag on all the messages. This makes it linear in file length. Since this happens at 

the server, this has been made independent of the file length in ∑-PDP. 

4.6.5. Computations involved in ∑-PDP as compared to POS 

The major difference between Proofs of Storage (POS) from Homomorphic Identification 

Protocols and ∑- PDP scheme is that, we concentrate on reducing the computation complexity 

on the server due to limited bandwidth and also due to the huge number of requests that the 

server receives from multiple clients while their goal is to reduce the communication complexity 

both client-to-server and server-to-client and most importantly to make server-to-client 

independent of file length. This is done to reduce network traffic and overhead on both the client 

and server. In Proof of Storage (POS), a pseudorandom function, F, that takes as input a security 

key k that is given by the client is used at the server in order to generate the challenge. This is 

done to reduce client-to-server communication, so instead of the client generating the challenge 

and then sending it to the server to generate proof on it, the server itself generates the challenge 



 
 

45 
 

using a pseudorandom function, given key k. This poses security questions as the key k is made 

public.  

Another observation made for comparison sake in POS is that, although the challenge 

vector  ⃗ sent by the client is a random integer, the challenge length is taken to be equal to the 

input file length n. The challenge length in ∑- PDP is a random subset of input length n which 

makes the proof probabilistic and efficient. 

POS has modulo N operations where N = p.q and p and q are primes. On the other hand, 

∑- PDP consists of mod p and mod q operations. In POS, client generates n number of tags on n 

input message blocks. The following computations are done in the scheme: 

Offline computations at the client: 

           ⃗  ⃗ =∏   
        

   : This takes n number of exponentiations and n 

multiplications.  

Online computations at the server to generate proof: 

          ⃗  ⃗ =∏   
        

   : Takes n exponentiations and (n-1) number of 

multiplications, where     

   ∑      : Takes n multiplication.  

Therefore, the server takes a total of 2n exponentiations and n multiplications in order to 

generate proof of storage. 

  



 
 

46 
 

CHAPTER 5. IMPLEMENTATION 

Each of the cryptographic algorithms designed in the proposed scheme are implemented 

using Crypto++, the C++ class library of cryptographic algorithms and schemes by Wei Dai. The 

experiment was performed on an Intel 2.30 GHz i7 core. The machine runs Windows 7 

Enterprise edition. The algorithms use Crypto++, a crypto class library version 5.6.1. Crypto++ 

helps perform difficult mathematical operations and cryptographic algorithms involved in the 

proposed algorithms. Microsoft Visual Studio 2012 was used to compile the C++ source code.  

The five polynomial-time algorithms                                       are 

implemented and the details of the implementation are given in this Section. 

       : This algorithm generates the public and private keys that are used throughout 

the scheme. It takes as input a security parameter  , generators    and   , witness         and 

returns a pair of public and secret key         .  

As per the details of the proposed scheme, the algorithm uses pseudorandom functions in 

order to generate the witness         and the security parameters 

                                for       , which constitute the secret key    

                                            . Since the pseudorandom number generator 

(the function PRNG) does not allow us to control the input (key) to the function so as to generate 

the same outputs at a later point, we compromise this at the implementation stage and hence use 

AES (Advanced Encryption Standard) in CBC mode in order to generate the secret parameters.  

Dhparam generates safe primes p, q such that        of size 1024 and 1023 

respectively. This function also generates generator   of sub group of order 1023. To generate a 

cipher text of size 64 characters(256 bits), an encryption key of length 16 hex characters(64 bits) 



 
 

47 
 

and 16 hex characters(64 bits) initial vector length is used on a plain text of length 24 

characters(96 bits). The first 32 characters (128 bits) of the cipher text is used as the witness    

with 0x(32), the next 32 are used as   . The same is repeated with different cipher text to get the 

secret parameters                                 for       . 

The function ModularExponentiation() is used to perform exponentiations under modular 

p throughout the scheme. Similarly, modular additions are performed using the corresponding 

function. For 10 message blocks, a simple rand() function is used to generate the indices    and 

co-efficients   . Modular multiplications and modular additions are performed to check the 

equality of the proof of possession. 

5.1. Timing Analysis for Varying Message and Challenge Lengths 

Experiments were performed for varying input message and challenge length. Table 6. 

gives results for various combinations of message and challenge length. The data is analyzed for 

max input file length = 35 messages and challenge size = 20. The sizes of parameters used in the 

implementation is given as: Size of witnesses (w's): 128 bits, size of secret parameters (v's): 128 

bits, size of messages (m's): 152 bits. 

The offline timing analysis includes preparing the message blocks prior to computation 

and also generating one time signatures on each of the message blocks. The time taken for online 

computation remains same if the number of challenge blocks is increased because of the fixed 

number of exponentiations involved in checking the proof. 



 
 

48 
 

Table 7. Time to perform computations for varying file and challenge length 

Length of F=n 

blocks 

Length of 

challenge=c blocks 

Offline 

computations 

Online 

computations 

15 10 1 ms 0.72 ms 

20 10 1.09 ms 0.78 ms 

30 10 1.29 ms 0.81 ms 

35 10 1.34 ms 0.87 ms 

35 15 1.34 ms 0.87 ms 

  



 
 

49 
 

CHAPTER 6. CONCLUSION AND FUTURE RESEARCH 

This chapter talks about the conclusion of this thesis study and scope for suture research 

in this topic. 

6.1. Main Contribution and Results 

We introduced a scheme for ∑-Provable Data Possession, in which we minimize client 

and server computation, file block access complexity, and client-server communication 

complexity by a major reduction in the number of exponentiations involved in the proof of 

possession. Our solution minimizes the storage at both client and server. We completely 

eliminate exponentiation which can be expensive at the server to generate proof of possession. 

We instead perform simple modular multiplications and additions at the server. This provides 

unlimited number of verification of the proof of possession. We allow the client to verify data 

possession with a minimum of 5 exponents irrespective of the size of the challenge while the 

previous solution requires a minimum of   exponentiations. The complexity analysis under 

various levels are presented to compare the results of this thesis with the previous PDP solutions. 

Proof of security was proved based on discrete logarithm assumption over finite group. Finally, 

the algorithms designed in the scheme are efficiently implemented using Crypto++, a class 

library for C++ using Microsoft Visual Studio 2012 to check for the proof of possession. The 

scheme was successfully implemented to get the desired results.  

We reduced the number of exponentiations involved in the proof. This minimized client 

and server computation- we relieve the server of computational overhead client-server 

communication complexity storage at both client and server. 



 
 

50 
 

6.2. Limitations and Future Research 

One of the main areas that we did not address in this thesis work is public verifiability. In 

the              phase, for a challenge  , given the public key          along with the 

signature on that block, any third party can verify the validity of the proof of possession. This 

will require the third party to interact with the client in order to get the public key    for that 

challenge set. Future researchers can include the study of the client giving this information to any 

third party that requests it, making the scheme publicly verifiable.  

Future research can also include having multiple servers in the PDP scenario while also 

keeping in mind the complexity factor which was the main focus of this thesis. 

  



 
 

51 
 

BIBLIOGRAPHY 

 

[1]  S. Kamara, "Computing Securely with Untrusted Resources," 2008. 

[2]  N. Leavitt, "Is cloud computing really ready for prime time," in IEEE Computer Society, 

2009. 

`[3]  C. Erway, A. Küpçü, C. Papamanthou and R. Tamassi, "Dynamic provable data 

possession," in Proceedings of the 16th ACM Conference on Computer and Communication 

Security, 2009. 

[4]  G. Ateniese , R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson and D. Song, 

"Provable Data Possession at Untrusted Stores," in Proceedings of the 14th ACM, CCS, 

2007. 

[5]  A. Fiat and A. Shamir, "How to prove yourself. Practical solutions to identification and 

signature problems," Advances in Cryptology-Crypto, Springer-Verlag, 1986. 

[6]  S. Goldwasser, S. Micali and C. Rackoff, "The knowledge complexity of interactive proof-

systems," in ACM Symposium on Theory of Computing (STOC), 1985. 

[7]  A. Juels and B. S. Kaliski, "PORs: Proofs of retrievability for large files," in Proceedings of 

14th ACM Conference on Computer and Communications Security(CCS '07), 2007. 

[8]  W. Diffie, Interviewee, "How Secure Is Cloud Computing." [Interview], 2009. 



 
 

52 
 

[9]  C. Schnorr, "Efficient signature generation by smart cards," Journal of Cryptology, 1991. 

[10]  G. Ateniese, R. D. Pietro, L. V. Mancini and G. Tsudik, "Scalable and efficient provable 

data possession," in Proceedings on the 14th International conference on Security and 

Privacy in Communication networks (SecureComm '08), 2008. 

[11]  R. Curtmola, O. Khan and R. Burns, "Robust remote data checking," in The 4th 

International workshop on storage security and survivability (StorageSS '08), 2008. 

[12]  Y. Zhu, H. Wang, Z. Hu, G. Ahn, H. Hu and S. Yau, "Efficient provable data possession for 

hybrid clouds," in The 17th ACM Conference on computer and communications security 

(CCS '10), 2010. 

[13]  G. Ateniese, R. Burns, R. Curtmola and J. Herrin, "Remote data checking using provable 

data possession," in ACM Transactions on Information and System Security (TISSEC), 

2011. 

[14]  Y. Lindell, "Lecture notes on Introduction to Cryptography," 2006. [Online]. Available: 

http://u.cs.biu.ac.il/~lindell/89-656/Intro-to-crypto-89-656.pdf. 

[15]  I. Damgard, "Lecture Notes on ∑-protocols, Aarhus University," Department of Computer 

Science (DAIMI), 2011. 

[16]  C. Hazay and Y. Lindell, "Efficient Secure Two-Party Protocol," Springer, 2010. 

[17]  R. Cramer, I. Damgard and J. Nielsen, "Lecture notes on Electronic Payment Systems," 

Cryptographic Protocol Theory, 2009. 



 
 

53 
 

[18]  Y. Lindell and J. Katz, "Introduction to modern cryptography," Chapman & Hall/CRC 

Press, 2007. 

[19]  O. Goldreich, S. Goldwasser and S. Micali, "How to construct random functions," in the 

IEEE Symposium on the Foundations of Computer Science (FOCS '84),IEEE Computer 

Society, 1984. 

[20]  J. Hastad, R. Impagliazzo, L. Levin and M. Luby, "A pseudorandom generator from any 

one-way function," in SIAM Journal on Computing, 1999. 

[21]  A. Mohan and R. Katti, "Provable Data Possession using Sigma-protocols," in Proceedings 

of 11th IEEE International Conference on Trust, Security and Privacy in Computing and 

Communications(TRUSTCOM '12), IEEE Computer Society press, 2012. 

[22]  M. Bellare and O. Goldreich, "On defining proofs of knowledge," in The Proceedings of 

12th Annual International Cryptology Conference in Advances of Cryptology (CRYPTO 

'92), 1992. 

[23]  D. R. Stinson, "Cryptography Theory and Practice," University of Waterloo: Chapman & 

Hall/CRC, 2006. 

[24]  G. Ateniese , R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson and D. Song, 

"Provable Data Possession at Untrusted Stores," in in Proceedings of the 14th ACM, CCS, 

2007. 

[25]  S. Goldwasser, S. Micali and C. Rackoff, "The knowledge complexity of interactive proof-



 
 

54 
 

systems.," in ACM Symposium on Theory of Computing (STOC), 1985. 

[26]  A. Juels and B. Kaliski, "PORs: Proofs of retrievability for large files," in ACM CCS, 2007.  

[27]  W. Diffie, "Interviewee, How Secure Is Cloud Computing?." [Interview]. 2009. 

[28]  G. Ateniese, R. D. Pietro, L. V. Mancini and G. Tsudik, "Scalable and efficient provable 

data possession," in SecureComm, 2008. 

[29]  R. Curtmola, O. Khan and R. Burns, "Robust remote data checking," in 4th International 

workshop on storage security and survivability, StorageSS, 2008. 

[30]  Y. Zhu, H. Wang, Z. Hu, G. Ahn, H. Hu and S. Yau, "Efficient provable data possession for 

hybrid clouds," in 17th ACM Conference on computer and communications security, ACM, 

CCS, 2010. 

[31]  M. Bellare and O. Goldreich, "On defining proofs of knowledge," in Proceedings of 

CRYPTO, 2009. 

[32]  N. Leavitt, "Is cloud computing really ready for prime time," in IEEE Computer Society, 

2009. 

[33]  Y. Lindell, "Introduction to Cryptography," 2006. 

[34]  A. Mohan and R. Katti, "Provable Data Possession using Sigma-protocols," in Proceedings 

of 11th IEEE International Conference on Trust, Security and Privacy in Computing and 

Communications(TRUSTCOM), IEEE Computer Society press, 2012. 



 
 

55 
 

[35]  G. Ateniese, S. Kamara and J. Katz, "Proof of Storgae from Homomorphic Identification 

Protocols," in Advances in Cryptology-ASIACRYPT '09, 2009. 

 

 

 

  



 
 

56 
 

APPENDIX A. SOURCE CODE 

A.1. Code to Generate Witnesses, Secret Parameters and Input Message Blocks 

int main(int argc, char* argv[]) 

{ 

AutoSeededRandomPool prng; 

byte key[AES::DEFAULT_KEYLENGTH]= {0xA7, 0x8D, 0xC8, 0xBE, 0x6C, 0xE3, 

0xA0, 0x9A, 0x7A, 0x0B, 0x2A, 0x92, 0x51, 0x03, 0x19, 0x6D}; 

byte iv[AES::BLOCKSIZE]= {0x0D, 0xF6, 0xD8, 0x71, 0x90, 0xA3, 0x42, 0xD5, 0x25, 

0x18, 0xED, 0x4E, 0x7B, 0xBE, 0xD3, 0x7B}; 

string plain = "1234567891234567"; 

string cipher, encoded, recovered; 

encoded.clear(); 

StringSource(key, sizeof(key), true, 

new HexEncoder( 

new StringSink(encoded) 

  ) ; // encoded is the encryption key 

 encoded.clear(); 

 StringSource(iv, sizeof(iv), true, 

  new HexEncoder( 

   new StringSink(encoded) 

  )  

 ); 

 try 



 
 

57 
 

 { 

  string str= plain; // plain is the plain text to get witness w 

  CBC_Mode< AES >::Encryption e; 

  e.SetKeyWithIV(key, sizeof(key), iv); 

  StringSource s(plain, true,  

   new StreamTransformationFilter(e, 

    new StringSink(cipher) 

   )  

  );  

#if 0 

  StreamTransformationFilter filter(e); 

  filter.Put((const byte*)plain.data(), plain.size()); 

  filter.MessageEnd(); 

  const size_t ret = filter.MaxRetrievable(); 

  cipherh.resize(ret); 

  filter.Get((byte*)cipherh.data(), cipherh.size()); 

#endif 

 } 

 catch(const CryptoPP::Exception& e) 

 { 

  cerr << e.what() << endl; 

  exit(1); 

 } 



 
 

58 
 

 encoded.clear(); 

 StringSource(cipher, true, 

  new HexEncoder( 

new StringSink(encoded) 

string str= encoded;  // str is the cipher text to get witness w 

 );  

A.2. Code to Generate Signatures with Modular Exponentiation Multiplication Function 

   string strprep1, strprep2; 

   strprep1 = str.substr (0,32; // sub-string 0-32 from cipher text for w1 

   strprep2 = str.substr (32,32); // sub-string 33- 64 from cipher text for w2 

   string strw1, strw2;  

   const char * cw1 = {strprepw1.c_str()};// convert string to char 

   const char * cw2 = {strprepw2.c_str()}; 

  Integer ulw1(cw1); // convert char to Integer 

  Integer ulw2(cw2);  

  Integer h1 = ModularExponentiation(g1,ulw1, p); //   
  mod p 

  Integer h2 = ModularExponentiation(g2,ulw2, p); //  
  mod p 

Integer h= a_times_b_mod_c(h1, h2, p); //   =   
    

  mod p 

A.3. Code to Generate Challenge and Proof on this Challenge 

   int k=1, n[10], l[20]; 

   Integer M= 0; 

   Integer BZ1= 0, BZ2= 0; 

   Integer bz1[10], bz2[10]; 



 
 

59 
 

 for(k=1; k<10; k++) 

 { 

  srand (k); 

  n[k] = rand() % 11; // indices k 

  l[k] = rand() % 21; co-efficients 

  Integer ulchal1 = a_times_b_mod_c(*ulm1[n[k]], l[k], q); 

  M = (M+ ulchal1) % q; // M 

  bz1[k] = a_times_b_mod_c(sigma11[n[k]], l[k], q); 

  bz2[k] = a_times_b_mod_c(sigma12[n[k]], l[k], q); 

  BZ1 = (BZ1 + bz1[k]) % q; //    

  BZ2 = (BZ2 + bz2[k]) % q; //    

 } 

A.4. Code to Check Proof 

 Integer LHS_CHECKPROOF_1 = ModularExponentiation(g1, BZ1, p); 

 Integer LHS_CHECKPROOF_2 = ModularExponentiation(g2, BZ2, p); 

Integer LHS_CHECKPROOF = a_times_b_mod_c(LHS_CHECKPROOF_1, 

LHS_CHECKPROOF_2, p); //   
    

  : LHS of checkproof 

   Integer biv1i[20], biv2i[20]; 

 Integer BIV1I= 0, BIV21; 

 for(k=1; k<10; k++) 

 { 

  srand (k); 

  n[k] = rand() % 11; 



 
 

60 
 

  l[k] = rand() % 21; 

  biv1i[i] = a_times_b_mod_c(*ulv1[n[k]], l[k], q); 

  BIV11 = (BIV11 + biv1i[i]) % q; //                         mod q 

  biv2i[i] = a_times_b_mod_c(*ulv2[n[k]], l[k], q); 

  BIV21 = (BIV21 + biv2i[i]) % q; //                          mod q 

} 

 Integer RHS_CHECKPROOF_1 =  ModularExponentiation(g1,BIV1I, p); // 

  
                                  

 Integer RHS_CHECKPROOF_2 =  ModularExponentiation(g2,BIV2I, p); // 

  
                                

Integer RHS_CHECKPROOF1 = a_times_b_mod_c(RHS_CHECKPROOF_1, 

RHS_CHECKPROOF_2, p); 

  Integer RHS_CHECKPROOF_3 = ModularExponentiation(h,M, p);//   mod p 

 Integer RHS_CHECKPROOF = a_times_b_mod_c(RHS_CHECKPROOF1, 

RHS_CHECKPROOF_3, p); //    mod p 

 cout<< "The LHS of check proof :  " << LHS_CHECKPROOF << " ? "<< "The 

RHS of check proof  :" << RHS_CHECKPROOF << endl; 

getch(); 

 return 0; 

} 


