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Abstract

In this paper, we propose a simple randomized protocol for identifying trusted nodes

based on personalized trust in large scale distributed networks. The problem of identifying

trusted nodes, based on personalized trust, in a large network setting stems from the huge

computation and message overhead involved in exhaustively calculating and propagating the

trust estimates by the remote nodes. However, in any practical scenario, nodes generally

communicate with a small subset of nodes and thus exhaustively estimating the trust of

all the nodes can lead to huge resource consumption. In contrast, our mechanism can be

tuned to locate a desired subset of trusted nodes, based on the allowable overhead, with

respect to a particular user. The mechanism is based on a simple exchange of random walk

messages and nodes counting the number of times they are being hit by random walkers of

nodes in their neighborhood. Simulation results to analyze the effectiveness of the algorithm

show that using the proposed algorithm, nodes identify the top trusted nodes in the network

with a very high probability by exploring only around 45% of the total nodes, and in turn

generates nearly 90% less overhead as compared to an exhaustive trust estimation mechanism,

named TrustWebRank. Finally, we provide a measure of the global trustworthiness of a node;

simulation results indicate that the measures generated using our mechanism differ by only

around 0.6% as compared to TrustWebRank.
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1 Introduction

The Internet has witnessed a huge growth not only in the number of users but also in the vol-

ume of contents and resources being shared between them. In recent times, with the advent of

peer-to-peer (p2p) based services, online social networks (OSN) as well as platforms that facil-

itate the sharing of user-generated content, the importance of user contributions has increased

significantly. However, as the amount of these contributions is growing in the Internet commu-

nity, their trustworthiness is becoming an important concern: In the context of file-sharing and

content distribution systems, malicious participants that deliberately distribute malware, fake

files or mislabeled content constitute a significant problem. At the same time, p2p based services

frequently suffer from freeriding users which exploit the resources provided by other participants

while not contributing resources in return. It has thus been acknowledged that it is important

to consider trust and reputation management schemes in the design of any distributed system

that relies on user contributions [11].

Typically, such trust and reputation management aims at globally estimating the trustworthiness

of users based on a record of previous cooperative or defective behavior. In file-sharing scenarios,

this typically refers to the quality of files previously provided to other users, while in settings

prone to freeriders, the amount of previously shared resources may be considered for this purpose.

There exist several examples for trust management mechanisms which approach this problem by

estimating the trustworthiness of users by a global, typically scalar value [8, 9, 12, 13, 2].

A major drawback of such approaches to trustworthiness is the fact, that in general trust is a

personalized concept, i.e. the level of trust users may have in the behavior of a particular partic-

ipant will differ across different sets of users or user communities. At the same time, differences

between user preferences may lead to situations where the trust in the quality of other users’

content may vary significantly across different participants [9].

Due to the importance of providing personalized notions of trust in a variety of distributed

computing scenarios, recently a number of works have addressed this question [6, 7, 10]. Typically,

these models rely on a transitive notion of indirect trust, i.e. if a node A trusts node B and node

B trusts node C, then it is assumed that node A also trusts node C to a certain extent. A major

benefit of this approach is that, based on a very sparse network of direct trust relations, it allows

to make statements about the indirect trust between users that have not interacted so far.

Interesting approaches have been studied which intend to capture this personalized and indirect

trust. A major hurdle in applying them in practical settings is the huge communication and

computation overhead that is necessary to exhaustively compute the indirect trust between all

possible pairs of nodes. A particular observation that serves as a motivation for our scheme

is however that the exhaustive computation of all pairs of indirect trust is often unnecessary.

Instead, there are numerous situations where it is sufficient to present users with a personalized
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set containing only a limited number of most trusted peers. Examples, where such a limited set

of trusted peers can be useful are social recommender systems, peer selection schemes in file-

sharing scenarios, as well as topology management and adaptation mechanisms in p2p-based

distributed services. Furthermore, since the required number of trusted interaction partners can

vary depending on the actual application, any practical scheme to retrieve such a list should

provide the designer of a distributed system with the possibility to make a trade-off between

the required number of most trusted nodes and the communication and computation overhead

entailed by the protocol.

Following this motivation, in this article we introduce and evaluate a simple heuristic mechanism

which attempts to solve the open problem of estimating indirect trust in a more efficient way. In

particular, as will be argued in section 4, we show that the proposed protocol captures precisely

the same transitive notion of personalized indirect trust as the TrustWebRank algorithm which

has been proposed in [10]. We further show, that our protocol effectively constitutes a very

simple heuristic that allows to sample indirect trust values to a variable degree of precision and

completeness which can be tuned to the needs and resources of a particular application. In its

essence, the protocol is a random message passing scheme in which nodes bias message passing

probabilities according to the level of direct trust they hold in their previous interaction partners.

The proposed protocol, as well as its relation to the TrustWebRank algorithm will be described

in more detail in sections 2 and 3. We then evaluate the correctness of the proposed scheme

with respect to how well it is able to recover the indirect trust computed by the exhaustive and

analytical approach taken by the TrustWebRank algorithm. We further evaluate the efficiency

in terms of the reduction of messages passed compared to the original analytical approach.

Simulation results based on scale-free as well as Erdös-Rényi trust topologies indicate that with

as much as a 90% reduction in terms of message overhead, the proposed sampling algorithm can

produce almost equivalent results as the TrustWebRank mechanism in terms of the identification

of the most trusted remote nodes for each user in the network. We also propose a measure of

global trustworthiness of the users in section 5 and compare the same for the users when the

trust values are calculated using our mechanism and TrustWebRank. We finally conclude our

paper with some interesting directions for future research.
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Tij Normalized direct trust of node i in node j

T Direct trust matrix whose each element is tij

β Damping factor used in TrustWebRank mechanism

γ Damping factor used in our proposed mechanism

N(i) Neighbor set of node i

N Diagonal matrix representing the number of

random walkers sent by each node

H Matrix, whose entry hij represents the

number of hits from source i to j

Ĥ Matrix obtained by normalizing each entry of H over each row

S Matrix, whose entry sij represents the trust rating

of source i in j calculated using TrustWebRank

Ŝ Matrix obtained by normalizing each entry of S over each row

Table 1: List of symbols

2 TrustWebRank

In this section we discuss about TrustWebRank, an existing personalized trust estimation mech-

anism, and discuss about the motivation of our proposed algorithm. A summary of the list of

symbols used in this description as well as in the remainder of the paper is shown in table 1.

In TrustWebRank, each node, i, maintains individual trust opinions about certain other users

(represented by Tij ∈ (0, 1]) with which it has direct interaction or have similarity in the prefer-

ences. These users are termed as direct neighbors of the node and the measured trust in these

users as the direct trust. The trust estimation for user j that is not a direct neighbor of node i is

done by considering all the paths used to reach user j weighted by the direct trust values of each

link used in the path. It is necessary to explore all the paths, as more the number of paths to a

user j, the higher will be its trust. The trust value calculated using this mechanism is termed as

the indirect trust of node i on user j and is represented as T̃ij. The TrustWebRank mechanism

is an exhaustive mechanism for estimating trust between every pair of nodes and can also be

implemented in a distributed network as proposed in [3]. The indirect trust values of the nodes

obtained using the TrustWebRank mechanism can be represented analytically as follows.

If S is a stochastic matrix such that the elements Sij =
Tij∑

k∈N(i) Tik
, then the indirect trust of

node i in a node l is given as

T̃il = Sij + β
∑

k∈N(i)

SikT̃kl ∀i, l (1)
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where β ∈ [0, 1) is a damping factor that reduces the trust value of node l with increasing distance

from i. If T̃ denotes the matrix representing the indirect trust values then T̃ can be represented

as

T̃ = (I − βS)−1
S, (2)

where I is the identity matrix. These indirect trust values can be normalized to form a row

stochastic matrix Ŝ whose elements are represented as

Ŝij =
T̃ij

∑

k∈N(i) T̃ik

(3)

However, for large graphs, performing these matrix operations require huge computational over-

head. A practical distributed implementation scheme for the TrustWebRank mechanism has been

proposed in [3], where they proposed an iterative method to derive the trust values of the node

pairs. In this approach, equation 1 is formulated as

T̃m+1
il = Sij + β

∑

k∈N(i)

SikT̃
m
kl , (4)

where T̃m
kl is computed at step m. Thus the algorithm is a flooding based algorithm that iteratively

explores the trust values of the nodes with increasing steps m finally leading to a convergent

solution. This scheme is exhaustive with little control over the number of nodes that are to be

explored and hence also on the message overhead involved. However from a designer’s perspective

a practical alternative would be to design a tunable algorithm that can provide the users an option

to consider a trade-off between the required number of trusted nodes and the allowable message

overhead. Users willing to explore more number of trusted nodes will have to pay with a higher

overhead. This is suitable in realistic scenarios, e.g. during bootstrapping in p2p networks like

Gnutella [5], a newly arriving node need not evaluate the trust to all the nodes in the network.

Rather it will preferably connect to a small number of trusted peers and hence need to obtain

the trust of only a small subset of the whole network. Thus, from the perspective of an individual

node, it would be more useful to identify certain number of most trusted peers with which it can

communicate. In this paper, we exploit this concept to propose a tunable mechanism based on

random walks that preferentially samples a set of nodes based on their trust values (evaluated

using the TrustWebRank mechanism) with respect to a user in a network. The parameters in the

algorithm can be tuned to increase or decrease the number of trusted nodes that are explored

based on the allowable message overhead. The proposed mechanism efficiently selects trusted

nodes with high probability besides being lightweight and scalable. We next detail our proposed

mechanism.
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3 Proposed Random Walk Based Mechanism

Similar to the TrustWebRank, we initially normalize the direct trust values to all the neighbors

of a node to obtain the stochastic matrix S given as

Sij =
Tij

∑

l∈N(i) Til

(5)

The normalized trust values provide measure of the relative trust in the neighbors of each node.

To derive the indirect trust of the remote nodes, each node initially sends W random walkers,

each traversing through a link with a probability equal to the normalized direct trust value of

the node connected through that link. Thus for a node i, a random walker visits a neighbor j

with probability Sij. Hence for W random walkers the average number of walkers that visit node

j from node i is given as

V
(i)
j = W · Sij. (6)

When a walker from a source node i reaches a node j on the hth hop, node j stamps its ID on

the walker message and does any of the following two steps.

1. With a probability, γhSjk, it forwards the message to a neighbor node k, where γ is the

damping factor, similar to β that is used in TrustWebRank, with a value that lies between

(0, 1).

2. With a probability 1−
∑

l∈N(j)(γ)
hSjl, the random walker dies, i.e. j does not forward the

message further, instead it sends back the message to the source node i.

Thus γ controls the number of hops of the random walker and hence we do not use an explicit

Time-to-Live (TTL) value of these walkers. The major importance of using this damping factor

is that nodes which are nearer to a source will receive more number of hits as compared to distant

nodes. The rationale behind this is, it is difficult to predict the trust value of a node which is

far away from a source. Thus the trust value of a node will decrease with path length from the

source node.

On receiving the W messages back, the source node calculates the number of times each node

has been hit that provides a measure of trust to the remote nodes. Thus the precision of the

trust values depends on both the number of walkers as well as the damping factor γ and hence

need to be carefully tuned so as to control the message overhead besides maintaining a certain

level of precision. We discuss the effects of both these parameters later in section 4. Thus we

can represent the probability that a random walker that has reached a node j on the hth hop,

traverses the link to a neighbor node k in the next hop by

H
(h)
jk = γhTjk (7)
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and the probability that the random walker dies at node j in the hth step by,

D
(h)
j = 1−

∑

l∈N(j)

H
(h)
jl = 1−

∑

l∈N(j)

γhTjl, (8)

Thus the average indirect trust values of each pair of peers for our proposed algorithm can be

derived as follows. The stochastic matrix S provides the probability that a random walker from

node i will reach a neighbor j in one step. The damping factor γ reduces the probability of a

walker to continue further after each hop; thus the matrix representing the probabilities that

a random walker from any node i reaches node j after exactly l hops (although it might have

reached j in earlier hops) is given as γl−1
S
l . So the average number of times node j has been hit

from source i by a single random walker can be written using a matrix notation as

H1 =
1

γ

[

(γS)1 + (γS)2 + . . .∞
]

= (I− γS)−1
S, (9)

where I is the identity matrix. Note, equation 9 provides the indirect trust between any pair of

nodes and is exactly similar to equation 2 of the TrustWebRank scheme. Thus this proves that

our random walk based method produces consistent trust estimates with the TrustWebRank

mechanism. To implement this mechanism, we send a number of random walkers from each

node and if N be a diagonal matrix that represents the number of random walkers sent by each

node, then, the average number of hits at each node for every source node can be represented as

H = NH1.

As the trust in a node j by node i is estimated by the number of hits to node j of the random

walkers from i, one should note that node j should be hit at least once from i to have a measure

of the trust on it. Thus to ensure that at least one random walker reaches to all other nodes in

the connected component, each node will have to theoretically send infinitely large number of

random walkers. Hence, by sending infinitely large number of random walkers from each node,

the nodes can obtain the same relative trust value in the other nodes as is measured using the

TrustWebRank. However, it is obvious that sending such a large number of random walkers is

infeasible due to the huge message overhead it would generate. Hence, the tunability of algorithm

is achieved by controlling the number of random walkers, where a high number of random walkers

will help to explore a large subset of nodes in order of their trust but at the expense of a higher

message overhead.

We can normalize each row of the matrix, H, to produce a row stochastic matrix, Ĥ, where each

element ĥij will represent the relative trust of node i on j over all the nodes in the network. We

use the matrix, Ĥ, along with Ŝ, the normalized trust matrix obtained in the TrustWebRank

mechanism, to analyze the preciseness and efficiency of our proposed algorithm. We perform a

comparative study in the next section based on the following issues that we need to analyze:
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1. How does the trust values correlate with the trust values calculated using TrustWebRank

for various kind of topologies?

2. How does the number of random walkers and the damping factor influence the preciseness

of the trust values?

3. How much performance efficiency is achieved by using our algorithm as compared to the

TrustWebRank?

We seek answers to these questions in the next section.

4 Performance Analysis

In this section we critically analyze the proposed algorithm in terms of several metrics related

to its correctness and efficiency. The initial analysis is based on the ability of the algorithm

to identify the highly trusted nodes in the network with respect to a particular user and then

evaluating the minimum overhead required to identify a critical fraction of a set of trusted nodes.

We then analyze the total coverage achieved in terms of reaching a node by the random walkers

and the efficiency achieved in terms of reducing message overhead. We observe the effect of the

tuning parameters like the number of random walkers and the dampening factor γ on these

metrics and compare the results with that of the TrustWebRank mechanism. We finally extend

the concept of personalization to evaluate a global perspective of the nodes in a network and

then analyze the efficiency of the algorithm in identification of the globally trusted peers in the

network.

Experimental Setup

Our analysis of the accuracy and efficiency of the algorithm is done on two types of networks,

scale-free and Erdös-Rényi networks comprising of 1000 nodes with an average degree of 10. The

scale-free network is generated using the Barabasi-Albert preferential attachment model [1]. The

number of random walkers in the simulations is varied from 60 to 460, whereas the value of γ

is varied from 0.3 to 1.0. The value of β is fixed to 0.75. This is as β = 0.75 to 0.85 has been

declared to be the best possible set of values by the proponents of TrustWebRank in [10]. We

next discuss the performance of the algorithm for the above stated metrics.

4.1 Identification of Trusted Nodes

One of the major motivations of the algorithm is to sample the trusted nodes in the network

with respect to an individual node. To test the efficiency of the algorithm with respect to this
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Figure 1: 1(a) – 1(d) show the simulation results for scale-free networks and 1(e) – 1(h) show the same re-

sults for Erdös-Rényi networks. 1(a) and 1(e) show the percentage overlap of the top 5% most trusted peers

for TrustWebRank and our proposed algorithm for scale-free and Erdös-Rényi networks, respectively, for

varying number of random walkers. 1(c) and 1(g) show the same results for scale-free and Erdös-Rényi net-

works, respectively, for various values of γ. 1(b) and 1(f) show the rank correlation of the overlapping peers

for scale-free and Erdös-Rényi networks, respectively, and the figures in inset shows the trust difference of the

non-overlapping peers, for varying number of random walkers. 1(d) and 1(h) show the same result for scale-free

and Erdös-Rényi networks, respectively, for various values of γ. The networks considered are of 1000 nodes with

an average degree of 10. The value of β considered for the TrustWebRank mechanism is 0.75.

9/18



Joydeep Chandra, Ingo Scholtes, Niloy Ganguly, Frank Schweitzer:
A Tunable Mechanism for Identifying Trusted Nodes
in Large Scale Distributed Networks

objective, we observe the ability of the algorithm to identify the top p percentage of the most

trusted nodes. We formally define this metric as follows:

Definition 1 If S
p
H(i) and S

p
S(i) denote the set of top p percentage of the most trusted nodes

of node i, obtained using our proposed algorithm and the TrustWebRank respectively, then the

fraction of overlap of these two sets, given by
Sp
H
(i)∩Sp

S
(i)

|Sp
H
(i)|

, provides a measure of efficiency of the

proposed algorithm in identifying the highly trusted nodes in network by an individual node.

We initially analyze the average fraction of overlap of the node set of top 5% of the most trusted

nodes for both TrustWebRank and our proposed mechanism for varying number of random

walkers and for various values of γ. We also derive the rank correlation, R, of the overlapping set

of nodes, using the Spearman rank correlation coefficient, and the absolute trust difference of the

non overlapping nodes. As stated earlier, the fraction of overlap provides a measure of correctness

of the proposed algorithm in identifying the most trusted nodes by an individual node. The rank

correlation R provides an indication that if for a node i, the set of its trusted nodes obtained

using TrustWebRank can be sequenced in order of their trust values, then whether our algorithm

can also rank the nodes in the same sequence. For the non-overlapping nodes, the difference in

the normalized trust values (that we term as Trust Difference of the non-overlapping peers) is

calculated to provide an indication of how close our algorithm has been in missing the trusted

node. We discuss the effect of the number of random walkers and the dampening factor γ in this

context.

Effect of the number of random walkers

We initially discuss the effects of the number of random walkers on the above described parameter.

Simulation results in figures 1(a) – 1(d) show the results for scale-free networks and the figures in

1(e) – 1(h) show the same for Erdös-Rényi networks, for increasing number of random walkers.

Figures 1(a) and 1(e) show the average percentage overlap of the top 5% most trusted peers

for TrustWebRank and our algorithm for scale-free and Erdös-Rényi networks respectively. The

percentage overlap for Erdös-Rényi networks is higher as compared to the scale-free networks

for low value of γ (0.50 in this case). This is due to the presence of a small number of hubs and

large heterogeneity in the degree of nodes in scale-free networks; for low values of γ, the random

walkers initially move towards the very few hub nodes and die out without exploring further

trusted nodes. However, as can be observed that both the networks show similar trends, where

with increasing number of random walkers, the percentage of overlap increases and is nearly 80%

when the number of random walkers is 460, for higher values of γ. Further as shown in figures

1(b) and 1(f), the rank correlation of the overlapping set of nodes is nearly 0.8 for both scale-

free and Erdös-Rényi networks indicating that the ordering of the nodes in terms of their trust
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values as observed in TrustWebRank is highly maintained in our algorithm. The figures in inset

shows the trust differences of the non-overlapping nodes. It can be observed that although the

differences are very high (nearly 0.01) for very low number of random walkers but it decreases

rapidly to as low as 0.001, when the number of random walkers is increased to 460. This indicates

that using our algorithm, nodes are able to identify the most trusted nodes in the network with

a very high probability.

Effect of the Damping Factor γ

Simulation results for certain random walkers shown in figures 1(c) and 1(g) indicates that the

percentage overlap increases very rapidly with increasing values of γ, reaches a maximum point

after which it starts decreasing. For γ = 0.8, the percentage overlap is nearly 80% for both scale-

free and Erdös-Rényi networks for 460 number of random walkers. Beyond a threshold value of

γ, the random walkers tend to forget their respective starting source node and the number of

hits to a node become proportional to its degree. Thus the number of hits to a node gets biased

by its degree and hence the percentage of overlap decreases. This fact causes similar trends for

the rank correlation of the overlapping nodes and the trust differences for the non-overlapping

nodes, as shown in figures 1(d) and 1(h).

Thus we observe that the damping factor γ plays an important role in our algorithm in deter-

mining the efficiency to predict the top trusted nodes in the network. By selecting an optimal

value of γ (nearly 0.75-0.8 in this case) the algorithm can be highly efficient in identifying the

trusted nodes in the network.

We next observe the variation of the minimum number of random walkers required in recovering

a certain number of trusted nodes in the network.
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Figure 2: 2(a) shows the minimum number of random walkers required to identify a certain percentage of the

nodes in a set E formed from taking the top 5% and 10% (δ = 0.05 and 0.10 respectively) most trusted nodes

in the network, for scale-free networks. 2 shows the same for Erdö-Rényi networks. The number of nodes used

in the simulation is 1000 and the average degree is 10 for both these networks.

4.2 Recoverability of Trusted Nodes

In this section we observe how the minimum number of random walkers can be tuned to recover

a certain fraction of the trusted nodes. In various applications it may be so required that one

needs a subset of trusted nodes. Let E denote a set of trusted nodes formed from selecting δ

fraction of top-trusted nodes. Then the efficacy of the algorithm lies in discovering x% of E with

minimum number of walkers.

As shown in figures 2(a) and 2(b) for scale-free and Erdös-Rényi network respectively, the mini-

mum required number of random walkers is very low when one requires just 50% of trusted nodes.

Note that the value is roughly same for δ = 0.05, 0.10, although in essence the random walkers

are discovering double the nodes in the second case. However, the number of walkers increases

rapidly when one wants to obtain a higher fraction. The value increases even further when the

cardinality of E (δ) increases. This confirms that for identifying a very high fraction of trusted

nodes in the network, the minimum number of random walkers required will be enormously high;

however, for smaller values of δ, by appropriately tuning the number of random walkers, a certain

fraction of the top trusted nodes can be easily identified by using much less number of random

walkers.
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Figure 3: 3(a)and 3(b) compare the average coverage of the nodes for various random walkers and various

values of γ, respectively, expressed in terms of the percentage of nodes with non-zero trust values per node

for both scale-free and Erdös-Rényi networks. 3(c) and 3(d) show the percentage reduction in message redun-

dancy by using the proposed algorithm for increasing number of random walkers and for various values of γ,

respectively, as compared to the TrustWebRank mechanism for both scale-free and Erdös-Rényi networks.

The number of nodes in each of the simulation results is 1000 and the average degree of the nodes is 10. The

number of random walkers is varied from 60 to 460 and the value of both β and γ is considerd as 0.75.

4.3 Network Coverage

We now analyze the network coverage of the peers achieved in terms of the number of unique

nodes explored by the random walkers from a source node and hence has an estimate of their

trust values. We observe the network coverage for both the number of random walkers as well as

the damping factor γ.
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Effect of the number of random walkers

We simulated the coverage of the nodes, i.e. the number of nodes in the network that has been

reached by the random walkers and hence has a non-zero trust value. The results shown in figure

3(a) for γ = 0.75 indicate that the coverage in case of scale-free network is higher as compared

to Erdös-Rényi networks is higher; this is due to the lower diameter of the scale-free network as

compared to the latter. However, in both cases, although the coverage of the nodes are small for

low number of walkers, but the coverage of the nodes increases rapidly with small increase in the

number of walkers. The coverage of the nodes is as high as 45% for the scale-free networks, when

the number of walkers is 460. However for higher values of random walkers, the rate of increase

of the coverage is slower for a fixed value of γ.

Effect of the damping factor

We also simulated the coverage of the nodes for various values of γ when the number of random

walkers is equal to 460. The simulation results shown in 3(b) shows that the damping factor has

a huge effect on the coverage of the peers. Although the coverage of the peers for lower values of

γ is very low but with increasing values of the damping factor the coverage of the nodes increase

rapidly and reaches almost 80% for a γ of 1.0. Thus from figures 3(a) and 3(b), we conclude that

the coverage of the nodes can be tuned by a suitable controlling the number of random walkers

and γ. Note that although we are sampling just 45% of the nodes, we are identifying almost all

the most trusted nodes in the network.

We next analyze the efficiency of the algorithm in terms of the involved message overhead.

4.4 Message Overhead

In this section we discuss about the reduction in message overhead using our algorithm as com-

pared to the distributed implementation of TrustWebRank in [3]. We assume that a single unit

of message is passed when a node communicates with other nodes for both the TrustWebRank

as well as our proposed algorithm. We observe the effect of both the number of random walkers

as well as the damping factor on the percentage reduction of number of messages passed by a

node.

Effect of the number of random walkers

We simulated the reduction in the number of messages with increasing number of random walkers

when the value of γ is 0.75. The simulation results shown in figure 3(c) indicate that for both

scale-free and Erdös-Rényi networks, the proposed algorithm sends nearly 96% less number of
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messages as compared to the TrustWebRank, when the number of random walkers is 460. The

overhead involved is extremely low due to the fact that by using a constant number of random

walkers only a very small fraction of the edges are traversed.

Effect of the damping factor

We also simulated the effect of γ on the reduction of the number of messages when the number

of random walkers is equal to 460. Simulation results for scale-free network shown in figure 3(d)

indicate that by increasing the value of γ from 0.3 to 1.0 leads to an increase in the message

overhead by around 62% (not shown in figure) but the reduction in message overhead as compared

to TrustWebRank is still around 92%.

We next attempt to evaluate a global trust measure of a node, in light of how trusted it is

perceived by other users in the network and observe whether the proposed mechanism can capture

such a trust measure.
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Figure 4: 4(a) and 4(b) show the simulation results for the RMSE values with respect to the number of ran-

dom walkers and γ respectively. The threshold value τ is considered to be 0.01. The networks considered are of

1000 nodes with an average degree of 10. The value of β considered for the TrustWebRank mechanism is 0.75
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5 From Local to Global Trust

Personalized trust values can in turn be used to calculate the global trust of a node, i, by

aggregating all the personal trust values of other nodes in node i. Such a global trust can be

helpful for a node in selecting initial trusted users in a community with whom the node had no

prior interaction. To capture the global trust of the nodes, we observe the global importance of

the nodes in the network that we define as follows:

Definition 2 We define the global importance, Ij, of a node, j, in the whole network as the

fraction of the nodes in the network that have normalized trust value in node j, greater than a

given threshold τ . Thus the global importance of a node gives a measure of what fraction of nodes

in the network consider the node as trusted and have trust in it greater than the threshold τ .

We observe the effectiveness of the proposed algorithm in identifying the globally trusted nodes

in the network. We analyze the root mean square error (RMSE) values of the global importance

of all the nodes, for the TrustWebRank and our proposed mechanism. So if I
(T )
i and I

(R)
i denote

the global importance values of node i, calculated using the TrustWebRank and our proposed

mechanism, respectively, then the RMSE is given as

√∑
i(I

(T )
i −I

(R)
i )2

N
, where N is the number of

nodes in the network. The threshold value τ in our simulations is considered as 0.01. The RMSE

values indicate whether the fraction of nodes that considers a node as trusted differs when the

trust values are calculated using our mechanism and TrustWebRank.

Effect of the number of random walkers

Simulation results for scale-free networks, shown in figure 4(a) indicate that when the value of

γ is greater than 0.75, for moderately large number of random walkers, the RMSE values are

very low — around 0.006. Since the global importance of a node indicates a fraction, a RMSE

value of 0.006 indicates that the percentage of nodes that can be considered as trusted, when the

trust values are calculated using TrustWebRank and our mechanism, differ by only 0.6%, which

is very low.

Effect of the damping factor

The effect of γ on the RMSE values of global importance of the nodes, for scale-free network,

shown in figure 4(b), indicates that with increasing γ, nodes are able to identify the globally

trusted nodes more effectively. However beyond a threshold value of γ (which is near to γ = 0.8

in the present scenario), the RMSE values start increasing. The reason behind this trend is, as

explained earlier, the coverage of the nodes increases with increasing γ thus leading to decreasing
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RMSE; however, with further increase the number of hits at a node becomes biased by its degree

leading to an increase in RMSE values. Thus for a suitable value of γ, the algorithm effectively

identifies the globally trusted peers in the network.

6 Conclusion

In this paper, we have proposed a random walk based mechanism to identify the trusted nodes

in a network with respect to a user in a distributed network. We have shown that preferentially

sampling the nodes in the network based on their direct trust values identifies the highly trusted

nodes in the network, by exploring a very small subset of the total nodes and with much less

overhead as compared to an exhaustive search. However the present analysis does not consider

the dynamicity of the nodes in the network. But it may be assumed that the trusted nodes in the

network are relatively more stable as compared to other nodes. Hence these nodes can be easily

located using our algorithm, as sampling in presence of such dynamicity will preferentially lead

to the relatively more stable nodes. Further, this algorithm can be naturally extended to explore

the non-transitive relations among the nodes (as discussed in [4]) and compute trust based on

these relations.
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