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Abstract—Many of the proposed mechanisms aiming to achieve
energy-aware adaptations in server environments rely on the exis-
tence of models that estimate the power consumption of the server
as well as its individual components. Most existing or proposed
models employ performance (hardware) monitoring counters and
the CPU utilization to estimate power consumption, but they do
not take into account the statistics of the workload the server
processes. In this paper we propose a lightweight probabilistic
model that can be used to estimate the power consumption of
the CPU, the network interface card (NIC), and the server as
a whole. We tested the model’s accuracy by executing custom-
made benchmarks as well as standard benchmarks on two
heterogeneous server platforms. The estimation error associated
with our model is less than 1% for the custom-made benchmark
whereas it is less than 12% for the standard benchmark.

Index Terms—Power consumption model, stochastic model,
server power consumption, processor power consumption, NIC
power consumption, probability distribution function, random
variable

I. INTRODUCTION

Studying the power consumption of large scale servers
and data centers as a means to achieve energy-proportional
computing is an active research area [3], [1], [17], [15].
Broadly speaking, the studies focus on one of the following
aspects, namely, (1) on investigating the power consumption
characteristics of a server as a whole or (2) on investigating
the relationship between the power consumption and the
workload of a server. The first study is useful for planning
the power budget of a data center [31] and to design energy-
efficient cooling systems [32]. Likewise, the second study
is useful for various purposes such as achieving energy-
aware workload placement [33], designing dynamic power
management policies [34] and energy-aware task scheduling
algorithms [22], and undertaking energy-aware service and
workload consolidation [28], [27], [9], [29].

The models targeting the first aspect often aim to estimate
the power consumption of an entire server or even an entire
data center whereas those targeting the second aspect take a
more fine-grained approach to estimate the power consumption
of some of the individual subsystems of a server, such as
a processor or a memory subsystem. Therefore, the former
models aim to capture long term trends while the latter aim
mainly to capture short term trends.

Among the models targeting the second aspect, many of
them focus on the power consumption of the processor, since
the processor is responsible for producing (when busy) the
largest portion of the overall power consumption of a server

[31]. Moreover, most of these models employ hardware perfor-
mance counters (or performance monitoring counters) which
provide a useful information about the activities of micro-
architectural components inside the processor. The number
and the types of performance monitoring counters each model
selects depend on such factors as the architecture of the
processor and the types of workloads the processor is expected
to deal with. We will give a more detailed explanation on this
subject in Section II.

In this paper, we propose a probabilistic model for es-
timating the power consumption of the processor and the
network interface card of a server. We use one and the same
approach for both subsystems and, complementary to hard-
ware performance counters, employ the utilization statistics
of the subsystem under consideration. Our approach can also
estimate the power consumption of the entire server, but we
do not consider it in this paper for lack of space.

The remaining part of this paper is organized as follows:
In Section II, we review some of the proposed power esti-
mation approaches. In Section III, we introduce our model
and discuss its essential features in detail. In Section IV, we
discuss the essential features of a memoryless system with a
stochastic inputs – a prerequisite feature to apply our model.
In Section V, we outline in detail our experiment setting and
the methodology we adopt to measure the power consumption
of the processor and the network interface card. In Section VI,
we employ the power estimation model to estimate the power
consumption of a processor for different types of workloads.
Likewise, in Section VII, we apply the proposed model to
estimate the power consumption of a network interface card.
Finally, we give concluding remarks and outline future work
in Section VIII.

II. RELATED WORK

The power consumption of a server depends on both static
and dynamic factors. Among the static factors are the type
of hardware subsystems that make up the server and the
efficiency of the software that manages these subsystems. The
predominant dynamic factor is the workload of the server
which is then reflected by the utilization level of the sub-
systems such as the CPU utilization, the memory utilization,
the network bandwidth utilization, etc. Our focus is on the
dynamic component of the power consumption and we use
the term workload to refer to a utilization level.



Broadly speaking, the approaches pertaining to power con-
sumption estimation can be classified into four different
groups.

The first group attempts to establish the relationship be-
tween a known workload (for example, in terms of the number
of requests per second, number of transactions per second,
number of operations per second, etc.) and the overall power
consumption of the entire system [23], [2], [29]. This approach
simplifies the task because it is relatively easy to measure the
AC power consumption. But it also includes the inefficiency
of the power supply unit and the various voltage regulators
into the estimation model. Moreover, it does not target the
power consumption of the individual subsystems to understand
the characteristic of the workload, which may be helpful for
power-aware schedulers.

The second approach attempts to directly measure and
relate the DC power consumption of the different subsystems
(particularly, the processor, the memory, the network interface
card, and the external storage devices) to their utilization
level [21], [26], [7]. This approach, if successful, has two
advantages. Firstly, it enables to apply separate dynamic power
management policies to the individual subsystems. Secondly,
it enables a power-aware scheduler to determine where to
place a workload [30]. The two advantages are related to each
other, but the second advantage is achieved by managing the
workload (or the service) instead of the server. The difficulty
with the second approach is that it is difficult to estimate the
power consumption of the individual subsystems. As a result,
it is inevitably made under several critical assumptions or by
modifying the structure of the server to insert power meters.
Our own approaches partially belongs to this group.

The third approach employs software simulation environ-
ments to estimate the power consumption of the individual
hardware subsystems [14], [19], [24], [11]. Often the simu-
lation environments take the peak power consumption of the
various subsystems as a reference to establish the power model
of a system. The difficultly with this approach is finding a
mechanism to validate the accuracy of the estimation, since
most hardware devices do not actually consume the power
prescribed by the specification. It is also difficult to accom-
modate the power loss due to wear-and-tear and hardware
inefficiencies.

The fourth approach, which is perhaps the most frequently
used approach, employs hardware performance counters, as-
suming that the CPU is the predominant consumer of the
dynamic component of the power consumption of a server
[10], [25], [18], [6], [5]. A contemporary CPU provides one
or more model-specific registers (MSR) that can be used
to count certain micro-architectural events (or performance
monitor events). The types of events that should be captured
by a PMC is specified by a performance event selector (PES),
which is also a MSR. The amount of countable events has
been increasing with every generation, family, and model of
processors. At present, a processor can provide more than
200 events. The motivation for using PMC is that accounting
for certain events may offer detailed insight into the reason
why the processor consumes power the way it does [4], [22].
PMC do not require the modification of or intrusion into
the hardware structure. Moreover, the events they capture can
accurately reflect the activity levels of the processor.

There are some challenges with employing hardware per-
formance counters: Firstly, one is required to have knowledge

of the low-level counters in order to be able to meaningfully
correlate hardware events with the power consumption. Sec-
ondly, the identification of the relevant counters is strongly
dependent on the nature of the benchmark and the server
architecture. Thirdly, in most server architectures, one may
be able to read not more than a few counters at the same
time. This in turn may affect the analysis of the existence
of correlation between the hardware events and the power
consumption. We propose a light-weight stochastic model to
estimate the probability distribution function of the power
consumed by a hardware system as long as this system can
be modeled as a memoryless system with a stochastic input.
This assumption can be satisfied if the power consumption
and the utilization of the hardware system are sampled at an
appropriate granularity (in the range of seconds). The only
input our model requires is the statistics of the utilization.
We will demonstrate the scope and usefulness of our model
by estimating the power consumption of a processor and a
network interface card of two different servers.

III. STOCHASTIC MODEL

Before we begin with the introduction of our model, we ex-
plain how we represent variables. A boldface lower case letter
(w) refers to a random variable. A normal lower case letter (w)
refers to a real number associated with the random variable w.
An upper case F refers to the cumulative distribution function1

(CDF) while a lower case f refers to the probability density
function2.

A. Known Relationship
Suppose we wish to reason about the relationship between

the utilization of a system (for example, the utilization of a
processor) w and its power consumption p. Modeling these
two quantities as random variables or random processes is
reasonable because they cannot be known in advance except
in a probabilistic sense. Consequently, one way to reason
about their relation is to observe and examine their statistics.
We assert that if the subsystem can be considered as a
memoryless system and if the relationship between w and p
can be represented by a one-to-one function, then examining
the cumulative distribution functions of the two quantities can
be sufficient to establish a quantitative relationship between
them.

To highlight our point, we shall begin by assuming that the
relationship is already known. Hence, we wish to determine
the CDF of one of the random variables (the one whose
statistics we do not know) in terms of the the other (whose
statistics we do know). For example, if the power consumption
of a processor is expressed as:

p = aw + b a, b > 0. (1)

Then, Fp(p) = P{p ≤ p} = P{aw + b ≤ p} =

P
{

w ≤
[
p−b
a

]}
= Fw

([
p−b
a

])
, where Fw(p) refers to

the distribution of w expressed in terms of p. Likewise,
the probability density function of p can be expressed as

1The distribution function Fw(w) of the random variable w is defined as
Fw(w) = P {w ≤ w}, for −∞ ≤ w ≤ ∞. The distribution function is
a non-decreasing, right continuous function, i.e., if w1 and w2 are two real
numbers and w2 > w1, then Fw(w2) ≥ Fw(w1), ∀w2, w1.

2The probability density function of w is the derivation with respect to w

of Fw(w), f(w) =
dF (w)
dw

.



sumption of a server [10], [25], [18], [6], [5]. A contem-
porary CPU provides one or more model-specific reg-
isters (MSR) that can be used to count certain micro-
architectural events (or performance monitor events).
The types of events that should be captured by a PMC
is specified by a performance event selector (PES), which
is also a MSR. The amount of countable events has been
increasing with every generation, family, and model of
processors. At present, a processor can provide more
than 200 events. The motivation for using PMC is that
accounting for certain events may offer detailed insight
into the reason why the processor consumes power the
way it does [4], [22]. PMC do not require the mod-
ification of or intrusion into the hardware structure.
Moreover, the events they capture can accurately reflect
the activity levels of the processor. There are, how-
ever, some challenges with employing hardware perfor-
mance counters: Firstly, one is required to have knowl-
edge of the low-level counters in order to be able to
meaningfully correlate hardware events with the power
consumption. Secondly, the identification of the rele-
vant counters is strongly dependent on the nature of
the benchmark and the server architecture. Thirdly,
in most server architectures, one may be able to read
not more than a few counters at the same time. This
in turn may affect the analysis of the existence of cor-
relation between the hardware events and the power
consumption.
We propose a light-weight stochastic model to esti-

mate the probability distribution function of the power
consumed by a hardware system as long as this system
can be modelled as a memoryless system with a stochas-
tic input. This assumption can be satisfied if the power
consumption and the utilisation of the hardware sys-
tem are sampled at an appropriate granularity (in the
range of seconds). The only input our model requires
is the statistics of the utilisation. We will demonstrate
the scope and usefulness of our model by estimating
the power consumption of a processor and a network
interface card of two different servers.

3. A RANDOM VARIABLE
A random variable is a variable whose values are

governed by an underlying probabilistic condition. In
other words, the domain of the random variable is as-
sociated with a probability of occurrence. The distri-
bution function F (w) of the random variable w1 is a
function that specifies the probability that the value of
w is less than or equal to the real number w. Hence,
F (w) = P{w ≤ w}, −∞ ≤ w ≤ ∞. For example,
F (30) = 0.7 means the probability that the value of
w being 30 or less is 0.7. F (w) is a non-decreasing,

1We represent a random variable with a boldface small letter
while the particular instance (value) of the random variable
is represented by a plain letter.
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Figure 1: A one-to-one relationship between p
and w results in F (pi) being equal to F (wi).

right continuous function, i.e., if w1 and w2 are two real
numbers and w2 > w1, then F (w2) ≥ F (w1), ∀w2, w1.
The probability density function (pdf) of w is the

derivative with respect to w of F (w), i.e., f(w) = dF (w)
dw .

The distribution function of w can be obtained by inte-
grating the pdf of w: F (w) =

∫ w

−∞ f(τ)dτ . If f(w) = 0

for w < 0, then F (0) = 0 and F (w) =
∫ w

0 f(τ)dτ .
If two random variables are related with each other,

it is possible to express the distribution and the den-
sity function of one of the random variables (whose
stochastic properties are not known) in terms of the
other (whose stochastic properties may be known). For
example, if the random variables w and p are related
as: p = aw + b, a > 0, then, F (p) = P{p ≤ p} =
P{aw + b ≤ p} = P{w ≤ p−b

a }, which is the distribu-

tion of w expressed in terms of
(

p−b
a

)
. To denote that

the distribution of p can be expressed in terms of the
distribution of w, we use the following notation: Fw(p).
If the two random variables have a one-to-one rela-

tionship, then expressing F (p) in terms of F (w) and
vice versa becomes interesting. For example, the re-
lationship p = aw + b is a one-to-one relationship,
since the expression has only one solution ∀w. Likewise,
p = aw2 + b has a single solution for w > 0. As can be
seen in Figure 1, because of the one-to-one relationship
between p and w, P{p ≤ p1} if and only if P{w ≤ w1};
likewise, P{p ≤ p2} if and only if P{w ≤ w2}. From
this we can conclude that

F (pi) = F (wi), ∀i ∈ R (1)

The significance of this observation becomes clear in
Section 4.

4. POWER MODEL
Suppose we observed in the time interval [t1, t2] the

utilisation pattern (w) and the power consumption (p)
of the processor (see Figure 2) and determined that their

3

Fig. 1. Exploiting the one-to-one relationship between p and w and
the monotonic nature of distribution functions to determine a quantitative
relationship between w and p.

d
dp (Fp(p)) =

1
afw

([
p−b
a

])
, where fw(p) refers to the density

of w expressed in terms of p. If, for instance, the density
of w is exponential: f(w) = λe−λw, λ > 0, where λ
is the inverse of the mean of the random variable, then,
fp(p) =

λ
a e

−λ([ p−ba ]).

B. Unknown Relationship
If, however, the relationship between w and p is not known

(which is why we need to develop a model), then the task can
be considered as the inverse process of Section III-A. Hence,
given two distribution functions Fw(w) and Fp(p) which we
know are related to each other, our task is to determine the
exact nature of the relationship. In other words, we provide
the system a workload of known statistics and observe the
statistics of the power consumption of the system. Then we
should find a function g(w) such that the distribution of p =
g(w) equals Fp(p).

If the relationship between p and w can be estimated as
a one-to-one function, i.e., every element of the range of p
corresponds to exactly one element of the domain of w3,
then P {p ≤ pi} equals to P {w ≤ wi} because p ≤ pi
if and only if w ≤ wi. This can be better visualized in
Figure 1 which displays a one-to-one function. From the
figure it is apparent that the value p2 corresponds to w2.
Therefore, P {p ≤ p2} corresponds to P {w ≤ w2}. Similarly,
P {p ≤ p1} corresponds to P {w ≤ w1}. From this, we can
conclude that for a one-to-one function:

Fp(pi) = P {p ≤ pi} = P {w ≤ wi} = Fw(wi) (2)

Subsequently, using Equation 2, we can express p in terms
of Fw(p) and Fw(w) as follows:

pi = F−1
P (Fw(wi)) (3)

where F−1
p refers to the inverse of Fp(p) [35]. For example,

if we observe a uniformly distributed power consumption in
the rage of (10, 50) W for an exponentially distributed work-
load, Fw(w) = 1 − e−λw, λ > 0, then, using Equation 2 we
have:

(
1− e−λw

)
= 1

40p, from which, p = 40(1 − e−λw) =
40Fw(w).

3For example, the function p = aw + b is a one-to-one function, since p
has exactly one solution ∀w. Likewise, p = aw2 + b has a single solution
for w > 0.

IV. MEMORYLESS PROPERTY

Equation 3 is a useful expression, but its usefulness is bound
to two conditions, namely, (1) the system is memoryless and
(2) the workloads should be statistically stationary. Fulfilling
the second condition is possible, since the stochastic property
of the workload can be controlled during the experiment. Ful-
filling the second condition requires choosing the appropriate
measurement granularity – if the sampling interval is fine
grained, the system may not be considered as a memoryless
system, because there can be a strong dependency between
the samples of the measurement. This is particularly true
of processors. If, on the other hand, there is a sufficient
distance between the samples of the power consumption and
the utilization (for the processors we considered, a sampling
interval in the range of hundred milliseconds was sufficient),
then the dependency between the samples becomes weak and
the system can be regarded as memoryless.

The autocorrelation function, Rww(t2, t1) = E[w(t2)w(t1)]
[35], is the best tool to measure the degree of dependency
between the samples of a stationary random process, w(t). The
difference between t2 and t1 refers to the time lag between the
samples. For a memoryless system, Rpp(t2, t1) ≈ 0 for t2 6= t1
if Rww(t2, t1) ≈ 0 for t2 6= t1. Rpp(t2, t1) and Rww(t2, t1)
are the autocorrelation functions of p and w, respectively.

Figure 2 displays the autocorrelation functions of uniformly
distributed CPU and NIC workloads (utilization). For both
devices the utilization was sampled every second. The auto-
correlation of the CPU utilization displays the existence of an
apparent correlation for a time lag less than eight seconds,
because we deliberately introduced dependency between the
samples of the eight consecutive seconds (we refer the reader
to Section 5 to learn how the CPU workload was generated).
For a time lag of greater than eight seconds, however, the
autocorrelation drops nearly to zero. Likewise, the autocorre-
lation of the NIC workload drops sharply for t = t2− t1 > 0.
These observation confirm that for a sampling interval of one
second or even a few hundred milliseconds, our assumption
that the two systems can be modeled as memoryless systems
with stochastic inputs is plausible.

Figure 3 shows the autocorrelation functions of the corre-
sponding power consumptions of the CPU and the NIC. Unlike
the workloads which were sampled every second, we sampled
the power consumption every 250 ms on average because
of the relatively high resolution of the devices we used to
measure power (Yokogawa WT210 digital power analyzers).
Therefore the time lag 240 in Figure 3 corresponds to the
60 s time lag in Figure 2. With this adjustment and taking
into account how we generated the workload of the CPU,
it is clear that the correlation between the samples becomes
weak for a time lag greater than 32 (corresponding to 8 s),
confirming our assumption that the processor can indeed be
regarded as a memoryless system. The autocorrelation of the
power consumption of the NIC dropped to zero for t2−t1 > 0,
since all the samples of the workload were independent.

V. EXPERIMENT SETTING

In this section, we explain how we applied the concepts
we developed in the previous sections to estimate the power
consumption of a processor and a network interface card (NIC)
based on their utilization statistics.

We performed our experiment on two heterogeneous server
platforms. The first one was built on a D2581 Siemens-Fujitsu



w

100
= 1− e−λp (14)

Therefore,

p = − 1

λ
ln
(
1− w

100

)
(15)

Equation 15 complies with the expression given in
Equation 13.

5. MEMORYLESS SYSTEMS
Equation 13 is a useful expression, but its usefulness

is bound by two elementary conditions, namely, (1) the
system is a memoryless system and (2) the workloads
should be stochastically stationary. Fulfilling the sec-
ond condition is feasible, since the stochastic property
of the workload can be controlled during the experi-
ment. Fulfilling the second condition requires choos-
ing the appropriate measurement granularity – if the
sampling interval is fine grained, the processor may not
be considered memoryless. Fortunately, a service con-
solidation process involves a service migration as well
as switching off and/or switching on physical servers.
These tasks usually take a few seconds or even a few
hundred seconds. In this regard, it is sufficient to sam-
ple the power consumption and the resource utilisation
of the server every few milliseconds or every second. We
shall experimentally demonstrate that at this sampling
granularity, we can consider the processor as a memo-
ryless system.
The autocorrelation function, Rww(τ) = E [w(t)w(t+ τ)],

is the best tool to measure the degree of dependency
between the samples of the stationary random process,
w(t). τ refers to the time lag between the samples. For
the memoryless system depicted in Figure 2, Rpp(τ) ≈ 0
for τ 	= 0 if Rww(τ) ≈ 0 for τ 	= 0, where Rpp(τ) and
Rww(τ) are the autocorrelation functions of p and w,
respectively.
Figure 3 displays the autocorrelation functions of uni-

formly distributed CPU and NIC workloads. In all the
cases, the workloads were sampled every second. The
autocorrelation of the CPU workload displays the ex-
istence of an apparent correlation for a time lag less
than eight seconds, because we deliberately introduced
dependency between the samples of the eight consecu-
tive seconds (refer to Section 6 to understand how the
CPU workload was generated). For a time lag of greater
than eight seconds, however, the autocorrelation drops
nearly to zero. Likewise, the autocorrelation of the NIC
workload drops drastically for t 	= 0. This observation is
important due to our assumption that the two systems
can be modelled as memoryless systems with stochastic
inputs.
Figure 4 shows the autocorrelation function of the
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Figure 3: The autocorrelation function of uni-
formly distributed CPU (top) and NIC (bottom)
workloads. Maximum time lag = 60 seconds.

NIC. Unlike the workloads which were sampled every
second, we sampled the power consumption every 250
ms on average because of the relatively high resolution
of the device we used – we employed Yokogawa WT210
digital power analysers to measure the power consump-
tion. Therefore the time lag 240 in Figure 4 corresponds
to the 60 s time lag in Figure 3. With this adjustment
and taking into account how we generated the workload
of the CPU, it is clear that the correlation between the
samples becomes weak for a time lag greater than 32
(corresponding to 8 s), confirming our assumption that
the processor can indeed be modelled as a memoryless
system. The autocorrelation of the power consumption
of the NIC plunged to zero for τ 	= 0, since all the
samples of the workload were deliberately made inde-
pendent.

6. METHODOLOGY
In this section, we will show how we applied the con-

cepts we have developed in the previous section to esti-
mate the power consumption of a processor and a net-
work interface card (NIC) as a function of the proces-
sor and the network bandwidth utilisation (workload)
statistics.
We carried out our experiment on two heterogeneous
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Figure 3: The autocorrelation function of uni-
formly distributed CPU (top) and NIC (bottom)
workloads. Maximum time lag = 60 seconds.

NIC. Unlike the workloads which were sampled every
second, we sampled the power consumption every 250
ms on average because of the relatively high resolution
of the device we used – we employed Yokogawa WT210
digital power analysers to measure the power consump-
tion. Therefore the time lag 240 in Figure 4 corresponds
to the 60 s time lag in Figure 3. With this adjustment
and taking into account how we generated the workload
of the CPU, it is clear that the correlation between the
samples becomes weak for a time lag greater than 32
(corresponding to 8 s), confirming our assumption that
the processor can indeed be modelled as a memoryless
system. The autocorrelation of the power consumption
of the NIC plunged to zero for τ 	= 0, since all the
samples of the workload were deliberately made inde-
pendent.

6. METHODOLOGY
In this section, we will show how we applied the con-

cepts we have developed in the previous section to esti-
mate the power consumption of a processor and a net-
work interface card (NIC) as a function of the proces-
sor and the network bandwidth utilisation (workload)
statistics.
We carried out our experiment on two heterogeneous

server platforms. The first one was built on a D2581
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Fig. 2. The autocorrelation function of uniformly distributed CPU (top) and NIC (bottom) utilization. Maximum time lag t = (t2 − t1) = 60 seconds.
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Figure 4: The autocorrelation function of the power consumption of the CPU (left) and the NIC
(right) for uniformly distributed workloads. Maximum time lag = 60 seconds.

Siemens-Fujitsu motherboard integrating a 3.16 GHz
Intel E8500 dual core processor and 4 GB DDR2 SDRAM
memory chips. The second server was built on a DB65Al
Intel motherboard integrating a 2.5 GHz Intel i5-2400S
dual core processor, 8 GB DDR3 SDRAMmemory chips,
and 1GBit Intel network interface card. For testing the
processor power model we used the E8500 server and
for testing the NIC model, we used the i5-2400S server.
The motherboards of both servers provide two DC

power connectors to supply the various subsystems with
power. One of them is a 12 V, 4-pole connector whereas
the other is a 24-pole connector with 12 V, 5 V and 3.3 V
rails (among others). The 12 V rail of the 4-pole connec-
tor is exclusively used by the voltage regulators of the
processor in both motherboards to generate the core-
voltages. The voltage regulators draw some amount of
power from the 5V rail of the 24-pole connector – mainly
used by the Pulse Width Modulator controllers – and
it is comparatively very small.
The 3.3 V of the 24-pole connector is predominantly

used by the Low Pin Count (LPC) IO controllers. De-
vices connected to the PCI and PCI Express cards, such
as the network interface card, exclusively draw power
through the 3.3 V rail.
For establishing the relationship between the power

consumption and the utilisation of the processor and
the NIC, we generated CPU-bound and IO-bound work-
loads having different resource utilisation characteris-
tics and run them on the two servers. The CPU-bound
workload was a an infinite loop operation in which in-
teger, float point, and shift operation were carried out.
While the loop operation executed, it utilised 100% of
the CPU, but when the loop operation was not exe-
cuted, the CPU was idle. In order to generate the
desired workload distribution, we divided time into a
sequence of one-second none overlapping windows. We
then generated a set of random numbers in the interval
[0, 100] using the runif function of the R statistical tool
to make sure that the distribution of the random num-

bers is uniform. In each time window, we picked one
of these random numbers to determine the portion of
time the CPU was fully utilised by the loop operation
(between 0 and 100% of the time window). In order
to avoid instability in computation, the proportion of
CPU utilisation for the subsequent eight windows was
made the same. This means that there was an appar-
ent correlation between the eight consecutive windows;
otherwise, the random numbers we picked were indepen-
dent. The program run for one hour. For testing pur-
pose, we executed the loop operation with an exponen-
tial distribution and used the SPECPower 2008 bench-
mark provided by the Standard Performance Evalua-
tion Corporation2. When tested our model while the
server run under three different dynamic frequency and
voltage scaling policies.
To establish the relationship between w and p of the

NIC, we followed the same approach, but this time, in-
stead of a loop operation, we used an application that
uploads data on the server at different transmission
rates thus varying the amount of network bandwidth
utilised per second (MBps) according to a predefined
probability distribution function, namely, uniform, ex-
ponential, and normal distributions. The application
run for 15 minutes for each configuration.
To measure the power consumption of the NIC, we

connected it with a raiser card which is in turn con-
nected to the PCI Express bus. We intercepted the 3.3
V rail of the raiser board to directly measure the power
drawn by the NIC. Figure 5 shows this configuration.

7. PROCESSOR POWER MODEL
In this section we will explain how we employed the

expression we obtained in Equations 13 and 1 to es-
timate the probability distribution and density func-
tions of the power consumption of a processor using
utilisation statistics. In the first step we supplied the

2http://www.spec.org/power ssj2008/.
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Figure 4: The autocorrelation function of the power consumption of the CPU (left) and the NIC
(right) for uniformly distributed workloads. Maximum time lag = 60 seconds.

Siemens-Fujitsu motherboard integrating a 3.16 GHz
Intel E8500 dual core processor and 4 GB DDR2 SDRAM
memory chips. The second server was built on a DB65Al
Intel motherboard integrating a 2.5 GHz Intel i5-2400S
dual core processor, 8 GB DDR3 SDRAMmemory chips,
and 1GBit Intel network interface card. For testing the
processor power model we used the E8500 server and
for testing the NIC model, we used the i5-2400S server.
The motherboards of both servers provide two DC

power connectors to supply the various subsystems with
power. One of them is a 12 V, 4-pole connector whereas
the other is a 24-pole connector with 12 V, 5 V and 3.3 V
rails (among others). The 12 V rail of the 4-pole connec-
tor is exclusively used by the voltage regulators of the
processor in both motherboards to generate the core-
voltages. The voltage regulators draw some amount of
power from the 5V rail of the 24-pole connector – mainly
used by the Pulse Width Modulator controllers – and
it is comparatively very small.
The 3.3 V of the 24-pole connector is predominantly

used by the Low Pin Count (LPC) IO controllers. De-
vices connected to the PCI and PCI Express cards, such
as the network interface card, exclusively draw power
through the 3.3 V rail.
For establishing the relationship between the power

consumption and the utilisation of the processor and
the NIC, we generated CPU-bound and IO-bound work-
loads having different resource utilisation characteris-
tics and run them on the two servers. The CPU-bound
workload was a an infinite loop operation in which in-
teger, float point, and shift operation were carried out.
While the loop operation executed, it utilised 100% of
the CPU, but when the loop operation was not exe-
cuted, the CPU was idle. In order to generate the
desired workload distribution, we divided time into a
sequence of one-second none overlapping windows. We
then generated a set of random numbers in the interval
[0, 100] using the runif function of the R statistical tool
to make sure that the distribution of the random num-

bers is uniform. In each time window, we picked one
of these random numbers to determine the portion of
time the CPU was fully utilised by the loop operation
(between 0 and 100% of the time window). In order
to avoid instability in computation, the proportion of
CPU utilisation for the subsequent eight windows was
made the same. This means that there was an appar-
ent correlation between the eight consecutive windows;
otherwise, the random numbers we picked were indepen-
dent. The program run for one hour. For testing pur-
pose, we executed the loop operation with an exponen-
tial distribution and used the SPECPower 2008 bench-
mark provided by the Standard Performance Evalua-
tion Corporation2. When tested our model while the
server run under three different dynamic frequency and
voltage scaling policies.
To establish the relationship between w and p of the

NIC, we followed the same approach, but this time, in-
stead of a loop operation, we used an application that
uploads data on the server at different transmission
rates thus varying the amount of network bandwidth
utilised per second (MBps) according to a predefined
probability distribution function, namely, uniform, ex-
ponential, and normal distributions. The application
run for 15 minutes for each configuration.
To measure the power consumption of the NIC, we

connected it with a raiser card which is in turn con-
nected to the PCI Express bus. We intercepted the 3.3
V rail of the raiser board to directly measure the power
drawn by the NIC. Figure 5 shows this configuration.

7. PROCESSOR POWER MODEL
In this section we will explain how we employed the

expression we obtained in Equations 13 and 1 to es-
timate the probability distribution and density func-
tions of the power consumption of a processor using
utilisation statistics. In the first step we supplied the

2http://www.spec.org/power ssj2008/.
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Fig. 3. The autocorrelation function of the power consumption of the CPU (left) and the NIC (right) for uniformly distributed workloads. Maximum time
lag t = (t2 − t1) = 60 seconds.

motherboard integrating a 3.16 GHz Intel E8500 dual core
processor. The second server was built on a DB65Al Intel
motherboard integrating a 2.5 GHz Intel i5-2400S dual core
processor and a 1 GBit Intel network interface card. For testing
the processor power model we used the E8500 server and for
testing the NIC model, we used the i5-2400S server.

The motherboards of both servers provide two DC power
connectors to supply the various subsystems with power. One
of them is a 12 V, 4-pole connector whereas the other is a 24-
pole connector with 12 V, 5 V and 3.3 V rails (among others).
The 12 V rail of the 4-pole connector is exclusively used by
the voltage regulators of the processor in both motherboards to
generate the core voltages. The voltage regulators draw some
amount of power from the 5V rail of the 24-pole connector
mainly used by the Pulse Width Modulator controllers and
it is comparatively very small. The 3.3 V of the 24-pole
connector is predominantly used by the Low Pin Count (LPC)
IO controllers. Devices connected to the PCI and PCI Express
cards, such as the network interface card, exclusively draw
power through the 3.3 V rail.

For establishing the relationship between the power con-
sumption and the utilization of the processor and the NIC,
we generated CPU-bound and IO-bound workloads having
different resource utilization characteristics and executed them

on the two servers. The CPU-bound workload was a con-
volution operation in which integer, float point, and shift
operations were performed. While the convolution operation
was executed, it utilised 100% of the CPU, but when the loop
operation was not executed, the CPU was idle. In order to
generate the desired workload distribution, we divided time
into a sequence of one-second none overlapping windows. We
then generated a set of random numbers in the interval [0, 100]
using the runif function of the R statistical tool to make sure
that the distribution of the random numbers is uniform. In each
time window, we picked out one of these random numbers to
determine the portion of time the CPU was fully utilized by
the convolution operation (between 0 and 100% of the time
window).

In order to avoid instability in computation, the proportion
of the CPU utilization for the subsequent eight windows
was made the same. This means that there was an apparent
correlation between the eight consecutive windows; otherwise,
the random numbers we picked out were independent. The
program run for one hour. For testing the model, we generated
an exponentially distributed convolution operation in addition
to the SPEC Power 2008 standard benchmark provided by



Fig. 4. Using a raiser board to intercept the power rails of the PCI Express
to measure the power consumption of the NIC.

the Standard Performance Evaluation Corporation4. We tested
our model while the server run under three different dynamic
frequency and voltage scaling policies.

To establish the relationship between w and p of the NIC,
we followed the same approach, but this time, instead of the
convolution operation, we used an application that uploads
data on the i5-2400S server at different transmission rates thus
varying the amount of network bandwidth utilized per second
(MBps) according to a predefined probability distribution
function, namely, uniform and exponential distributions. The
application run for 15 minutes for each configuration. To
measure the power consumption of the NIC, we connected
it with a raiser card which is in turn connected to the PCI
Express bus. We intercepted the 3.3 V rail of the raiser board
to directly measure the power drawn by the NIC. Figure 4
displays the NIC instrumentation.

VI. PROCESSOR POWER CONSUMPTION MODEL

To determine the relationship between the utilization statis-
tics of the E8500 Intel processor and its power consumption,
we first disabled one of the cores5. Then, we generated a one
hour uniformly distributed workload in the interval (0,100) by
the convolution operation. We choose a uniformly distributed
workload because it simplifies the evaluation of Equation 3.
During the execution of the convolution operation, we mea-
sured the power consumption of the processor and plotted its
Fp(p). Then, using R’s nls curve fitting toolbox, we approx-
imated Fp(p) which can be best approximated by a quadratic
function, Fp(p) = a1p

2 + a2p+ a3, 9.45 ≤ p ≤ 32.15, where
a1 = −0.001026, a2 = 0.07765, and a3 = −0.6136 are
the coefficients of the quadratic function. Figure 5 displays
the experimental and the approximated Fp(p). Hence, for the
quadratic functions, we have:

Fp(p) = a1p
2 + a2p+ a3 9.54 ≤ p ≤ 32.15 (4)

Fw(w) =
w

100
, 0 ≤ w ≤ 100 (5)

4www.spec.org/power ssj2008/
5The relationship between the workload and the power consumption of

the dual-core processor is linear: p = K4w + K5 where K4 = 3.5 and
K5 = 10.5, 0 ≤ w ≤ 100. The derivation of this relationship is beyond the
scope of this paper.

Figure 5: Intercepting the 3.3 V rail of the raiser
card to measure the power consumption of the
NIC.

processor a uniformly distributed workload to establish
the relationship between w and p and then, we using
custom made and standard benchmarks, we tested the
estimation capacity of the relationship.

7.1 Model Parameters
Figure 6 displays the distribution function of the ac-

tual power consumption of the E8500 processor in a
single-core setting3 when the processor’s utilisation was
uniformly distributed, i.e., w: U(0, 100%). We approx-
imated the distribution with a quadratic function using
Matlab’s curve fitting tool (with coefficient of determi-
nation, R2 = 0.957 and a root mean square deviation
(RMSD) of 0.0523) as shown by the dashed coral line
in the same figure. The estimated quadratic function
Fest(p) as a function of the real power consumption of
the processor is expressed as:

Fest(p) = p1p
2 + p2p+ p3, 9.45 ≤ p ≤ 32.15 (16)

where p1 = −0.001026, p2 = 0.07765, p3 = −0.6136
and p is the power consumption of the processor defined
as a random variable.
The distribution of w in the interval [0, 100] is ex-

pressed as: F (w) = w
100 . Hence, we have both Fest(p)

and F (w) to make use of Equation 13 and to express p
in terms of w:

p =
−p2 +

√
p22 − 4p1 × (p3 − (w− a) / (b− a))

2× p1
(17)

Equation 17 can be expressed as:

p = K1 + (K2w+K3)
1
2 (18)

3The relationship between the workload and the power con-
sumption of a dual-core processor is best approximated by a
linear relationship. For the E8500 processor: p = K4w+K5

where K4 = 3.5 and K5 = 10.5, 0 ≤ w ≤ 100. The deriva-
tion of this relationship is beyond the scope of this paper.
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Figure 6: The actual (dark solid line) and ap-
proximated (dashed coral) CDF of the power
consumption of the CPU for a uniformly dis-
tributed utilisation.

where K1 = − p2

2p1
, K2 = 1

p1(b−a) , and K3 =
p2
2

4p1
2 −

a
p1(b−a) −

p3

p1
.

Equation 18 is the desired relationship we wished to
establish between the CPU utilisation and the CPU
power consumption. Using this relationship, it is now
possible to determine the distribution and density of p
in terms of the distribution and density of w for any
arbitrary w.
Earlier, we showed that F (p) can be expressed as

P{p ≤ p} = P{g(w) ≤ p}. Hence,

F (p) = P
{(

K1 + (K2w+K3)
1
2

)
≤ p
}
, 0 ≤ w ≤ 100

(19)
Expressing Equation 19 in terms of F (w) yields:

Fw(p) = P

{
w ≤ (p−K1)

2 −K3

K2

}
, 0 ≤ w ≤ 100

(20)

which is the same as Fw

(
(p−K1)

2−K3

K2

)
. Likewise, the

density of p can be expressed as:

f(p) =

∣∣∣∣
2

K2
(p−K1)

∣∣∣∣ fw
(
(p−K1)

2 −K3

K2

)
(21)

7.2 Model Validation
To validate the relationship we established in Equa-

tions 17 and 18, we used both a custom made and
a standard benchmark. The custom made benchmark
was the one we used to establish the model parameters,
but this time it had an exponential distribution instead
of a uniform distribution. Moreover, the exponential
distribution workload had different means (μ = 5 and
μ = 15) as well as execution durations (10, 20, and 30
minutes). The standard benchmark is the SPECPower
2008 benchmark, specially developed to test the power

7

Fig. 5. The actual (measured) and estimated values of Fp(p) of the uniformly
distributed utilization U(10, 90) for the Intel E8500 dual core processor.

By inserting Equation 4 and 5 into Equation 3, we obtain:

p =
−a2 +

√
a22 − 4a1 ×

(
a3 − w

100

)
2× a1

(6)

Equation 6 can be expressed as:

p = K1 + (K2w +K3)
1
2 (7)

where K1 = − a2
2a1

, K2 = 1
a1(100)

, and

K3 =
a22
4a1
− b

a1(100)
− a3

a1
.

Equation 7 is the desired relationship we wished to establish
between the CPU workload and the power consumption.
Using this relationship, it is now possible to estimate the
runtime power consumption of the processor as long as we
can predict its utilization. Moreover, using Equation 7, we
can determine the distribution and density of p for a workload
of arbitrary distribution and density.

Earlier, we showed that Fp(p) can be expressed as P{p ≤
p} = P{g(w) ≤ p}. Hence,

Fp(p) = P
{(
K1 + (K2w +K3)

1
2

)
≤ p
}

0 ≤ w ≤ 100

(8)
Expressing Equation 8 in terms of Fw(w) yields:

Fw(p) = P

{
w ≤ (p−K1)

2 −K3

K2

}
b ≤ w ≤ c (9)

which is the same as Fw

(
(p−K1)

2−K3

K2

)
. Likewise, the

density of p can be expressed as:

fp(p) =

∣∣∣∣
2

K2
(p−K1)

∣∣∣∣ fw
(
(p−K1)

2 −K3

K2

)
(10)

A. Theoretical Fp(p) and fp(p)
Using the relationship expressed in Equation 7, it is possible

to compute the distribution and density functions of p for a
workload of arbitrary probability density function. We shall
demonstrate this by computing the theoretical density and
distribution functions of p for an exponentially distributed
workload. In the subsection that will follow we shall compare
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Figure 7: The probability distribution function
of the power consumed by the processor when its
10, 20, and 30 minute utilisation was exponen-
tially distributed. The solid lines indicate the
actual power consumption whereas the dashed
lines indicate the estimated distribution using
the inverse relation in Equation 13.“A” refers to
the actual power consumption and “E” to the
estimated.

consumption of Internet based servers. To test the
strength of our model, we run the server under different
dynamic frequency and voltage scaling policies while
executing the SPECPower 2008 benchmark – namely,
performance, conservative, and on-demand policies. For
the detail of these policies, we refer our reader to our
previous work [13, 8].
Figure 7 displays the distribution function of the ac-

tual and estimated power consumption of the processor
for the exponentially distributed utilisation. All solid
lines indicate actual power consumptions while the two
dashed lines are the estimated distributions for μ = 5
and μ = 15. Understandably, there is a little deviation
in the estimated power consumptions of the processor
for the different execution durations. It is to be noted
that we generated random numbers to determine the
portion of a time slot the CPU should be 100% busy.
Each time we generated these numbers we got different
results. Moreover, the number of samples we obtained
for the different execution durations (10, 20, and 30
minutes) was different. This resulted in a reasonably
small deviation in the power consumptions estimated.
Otherwise, Equation 17 was able to estimate the distri-
bution of the power consumption with an average stan-
dard error of 0.009559.
Figure 8 displays the probability density functions of

the actual and estimated power consumed by the E8500
processor when executing the SPECPower 2008 bench-
mark. Unlike the exponentially distributed workload,
the SPECPower benchmark occupies the entire utilisa-
tion spectrum which in turn resulted is a wider power
consumption spectrum, which is difficult to estimate.
Moreover, we obtained the model parameters of Equa-
tion 18 when the server was running under the per-
formance policy in which the processor frequency was

set to the maximum during the entire operation. How-
ever, when we tested the model, the processor operation
voltages and frequencies were varied based on the an-
ticipated workload. Even so, our model was able to
estimate the power consumption of the processor in all
power management settings. The combined average es-
timation error was 7.3%. The error is a small amout
compared to the simplicity of our model, which uses
a single input, unlike most existing or proposed power
estimation models (see Related Work), which have mul-
tiple parameters that are difficult to obtain or may not
transfer well from one processor architecture to another.

8. NIC POWER MODEL
Similar to Section 7, we will employ Equations 13

and 1 to estimate the probability distribution and den-
sity functions of the power consumption of a network
interface card. Hence, we will first show how the rela-
tionship betweenw an p was determined for a uniformly
distribution bandwidth utilisation and then, how, using
the relationship, we estimated the power consumption
statistic of the NIC for a utilisation of arbitrary statis-
tics.

8.1 Model Parameters
Figure 9 – the solid black line – shows the power

consumption of the network interface card when its 15
minute bandwidth utilisation was uniformly distributed
between 0 and 125 MBps. We approximated this distri-
bution using curve fitting by the following expression:

Fest(p) = 1− 6e−p2

(22)

Since the network bandwidth utilisation varied uni-
formly, we have F (w) = w

125 for 0 ≤ w ≤ 125 MBps.
Thus using the inverse relation we obtained in Equa-
tion 13, the power consumption of the network interface
card can be expressed as follows:

p =

√
−ln

[
125−w

750

]
(23)

And the probability distribution function of p in terms
of the distribution function of w is expressed as:

F (p) = Fw

(
1− 6e−p2

)
(24)

And the density of p is expressed as:

f(p) = 12pe−p2

fw

([
125− 600e−p2

])
(25)

8.2 Model Validation
Figure 9 (bottom) displays the power consumption

of the NIC when its bandwidth utilisation was expo-
nentially distributed. We have considered three cases:

8

Fig. 6. The actual (A) and estimated (E) F (p) of the Intel E8500 processor
when executing exponentially distributed workloads.

the theoretical result with the one we obtained from an
experiment.

1) Exponentially distributed workload: When w is expo-
nentially distributed (f(w) = λe−λw;µ = 1

λ ), its distribution
function equals:

Fp(w) = 1− e−w
µ b ≤ w ≤ c (11)

And the probability density function of p can be expressed
as follows:

fp(p) =

∣∣∣∣
2

K2
(p−K1)

∣∣∣∣ e
−(((p−K1)

2−K3)/K2)/µ (12)

The distribution function of p is expressed as:

Fp(p) = Fw(p) = 1− e−(((p−K1)
2−K3)/K2)/µ (13)

where p is in the interval [9.45, 32.15] and Fw(p) refers to
the probability distribution function of w expressed in terms
of p.

B. Experimental F (p)
After having established the relationship between p and w,

we tested the validity of our model by generating custom-made
exponentially distributed workloads and the SPEC Power
benchmark. The workloads with the exponential distribution
had the following average utilization: µ = 5%, 10%, 15%
and 20%. To ensure that our model was time invariant, we
generated the workloads for the duration of 10, 20, and 30
minutes (i.e., the sample size of the workload for each test case
was different). Figure 6 displays the theoretically estimated
(the dashed lines) and the experimentally obtained (solid lines)
Fp(p) for the exponentially distributed workloads of the E8500
processor. As can be seen from the figure, when the test
workload was similar in type with the training workload (in
both cases we used the convolution operation), its power
consumption could be accurately predicted (with an average
error < 1%) even though the statistics of the workloads were
dissimilar and the durations of the workloads were different
for the test cases.

Similarly, we tested our model with the
SPECpower ssj2008 (SPEC Power) benchmark. The
SPEC Power “is the first industry-standard SPEC benchmark
that evaluates the power and performance characteristics of

20 40 60 80

0.
00

0
0.

00
5

0.
01

0
0.

01
5

w(%)

f(
w

)

Fig. 7. The actual workload distribution of the SPEC power benchmark.

volume server class and multi-node class computers”6. The
full SPEC power benchmark runs for 70 minutes. We tested
the model while the server operated under different dynamic
voltage and frequency scaling policies, to examine how its
estimation accuracy was affected by frequency and voltage
variations (real-world servers often employ dynamic voltage
and frequency scaling for energy-efficient operation). The
policies we examined were the performance, conservative,
and on-demand policies. For the detail of these policies, we
refer our reader to our previous work [13, 8]. The conservative
and on-demand policies vary the frequency and core voltage
of the processor depending on its anticipated future workload
using exponential moving average filters to predict the future
workload of the processor. Figure 8 displays the probability
density functions of the actual and estimated power consumed
by the E8500 processor when executing the SPEC Power
benchmark. Unlike the exponentially distributed workload,
the SPEC Power benchmark occupies the entire utilization
domain (see Figure 7) which in turn resulted in a wider
power consumption range.

It must be noted that the model parameters of Equation 7
were obtained when the server was operating at maximum core
voltage and maximum operation frequency whereas when we
tested the model, the processor operation voltages and fre-
quencies were dynamically varied by the power management
policies. Even so, our model was able to estimate the power
consumption of the processor in all the power management
settings with comparable accuracy. The average estimation
error was 11.3%.

VII. NIC POWER MODEL

Similar to Section VI, we employed Equations 2 and 3 to
estimate the power consumption of the network interface card
of the i5-2400S server. We shall show how the relationship
between w and p was determined for a uniformly distributed
bandwidth utilization and how, using the relationship, we
estimated the power consumption statistic of the NIC for a
utilization of arbitrary statistics.

6http://www.spec.org/power ssj2008/
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Figure 8: The probability density function of the actual and estimated power consumption of the
processor for the SPECPower benchmark. The processor was running under the performance (left),
conservative (middle), and on-demand (right) dynamic voltage and frequency scaling policies.

1.3 1.4 1.5 1.6 1.7 1.8 1.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p (W)

Fp
(p

)

●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●

●●
●●
●
●
●●●

Actual
Estimated

E: E(10)
A: E(10)
E: E(20)
A: E(20)
A: E(50)
E: E(50)

Figure 9: Top: The probability distribution
function of the actual and estimated power
consumption of the NIC during the training
phase ( 15 minutes uniformly distributed band-
width utilisation). Bottom: The distribution
of the power consumption of the NIC during
the testing phase (for 15 minutes exponentially
distributed bandwidth utilisation of different
means) – “A” stands for Actual and “E” for Es-
timated.

μ = 10, 20, 50. Except for the case μ = 50, the relation-
ship in Equation 24 was able to accurately estimate the
power consumption of the NIC based on knowledge of
the stochastic of the bandwidth utilisation (with a stan-
dard error that equals 0.00955). The estimation error
was larger for μ = 50 (a standard error of 0.0146). The
justification for this is similar to the one we gave to the
SPECPower benchmark. As the utilisation spectrum
increases, the accumulated estimation error increases as
well. Even so, the estimation error can be considered
negligible.

9. CONCLUSION
We proposed a stochastic model to estimate the power

consumption of the different subsystems of a server in a
data centre. Our model uses two variables only, namely,
the stochastic of the utilisation level (w) and the ac-
tual power consumption (p), both obtainable in any
server platform. In this model the probability distri-
bution function played a vital role in establishing the
relationship between w and p.
We demonstrated the scope and usefulness of our ap-

proach by estimating the power consumption of the pro-
cessor and the network interface card of two heteroge-
neous servers for a variety of workload statistics. Alto-
gether we ran 16 test cases and observed that the model
was indeed accurate.
This said, the model is useful for memoryless sys-

tems, which means, the sampling interval should be big
enough to ensure that the samples of the power con-
sumption can be considered statistically independent.
But in a typical service consolidation scenario this is ac-
tually the case. Our model performed relatively poorly
for the SPECPower benchmark. This is because, the es-
timation region occupies the entire utilisation spectrum
of the processor thereby accumulating the estimation
error. A typical Internet server may not have such a
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Fig. 8. The probability density function of the actual and estimated power consumption of the processor for the SPEC Power benchmark. The processor
was running under the performance (left), conservative (middle), and on-demand (right) dynamic voltage and frequency scaling policies.
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Figure 8: The probability density function of the actual and estimated power consumption of the
processor for the SPECPower benchmark. The processor was running under the performance (left),
conservative (middle), and on-demand (right) dynamic voltage and frequency scaling policies.
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width utilisation). Bottom: The distribution
of the power consumption of the NIC during
the testing phase (for 15 minutes exponentially
distributed bandwidth utilisation of different
means) – “A” stands for Actual and “E” for Es-
timated.
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Fig. 9. The actual (measured) and estimated values of Fp(p) of the uniformly
distributed bandwidth utilization for the i5-2400S server.

A. Model Parameters

Figure 9 (the black solid line) displays the distribution of
the actual power consumption of the NIC when its 15 minute
bandwidth utilization was uniformly distributed in the interval
[0, 125] MBps. We approximated this distribution using a
curve fitting by the following expression (the coral solid line
in Figure 9):

Fp(p) = 1− 6e−p
2

(14)

Since the network bandwidth utilization varied uniformly,
we have Fw(w) = w

125 for 0 ≤ w ≤ 125 MBps. Thus using
the inverse relation we obtained in Equation 3, the power
consumption of the network interface card can be expressed
as follows:

p =

√
−ln

[
125− w
750

]
(15)

And the probability distribution function of p in terms of
the distribution function of w is expressed as:

Fp(p) = Fw

(
1− 6e−p

2
)

(16)

Finally, the density of p is expressed as:
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Fig. 10. The actual (measured) and estimated values of Fp(p) of the
exponentially distributed bandwidth utilization for the i5-2400S server.

f(p) = 12pe−p
2

fw

(
125− 600e−p

2
)

(17)

B. Model Validation

Figure 10 displays the power consumption of the NIC when
its bandwidth utilization was exponentially distributed. We
have considered three cases: µ = 10, 20, 50. Except for the
case µ = 50, the relationship in Equation 15 was able to
accurately estimate the power consumption of the NIC based
on knowledge of the statistics of the bandwidth utilization
(with a standard error that equals 0.00955). The estimation
error was larger for µ = 50 (a standard error of 0.0146).
The justification for this is similar to the one we gave to the
SPEC Power benchmark – as the span of the utilization domain
increased, the accumulated estimation error increased as well.
Even so, the average estimation error, similar to the estimation
error of the processor for the exponential workload, was < 1%.

VIII. CONCLUSION

We proposed a probabilistic model to estimate the power
consumption of the different subsystems of a server. Our
model uses two variables only, namely, the system’s utilization
statistics (w) and the statistics of the actual power consumption
(p), both are easily obtainable in many server platforms. In our
model the cumulative distribution function played a vital role.



We demonstrated the scope and usefulness of our approach
by estimating the power consumption of the processor and
the network interface card of two heterogeneous servers for a
variety of workload statistics. Altogether we executed 16 test
cases. This said, the model is useful for memoryless systems,
which means, the sampling interval should be long enough
to ensure that the samples of the workload and the power
consumption should be statistically independent.

Our model performed relatively poorly for the SPECPower
benchmark. This is because, the estimation region occupies the
entire utilization domain of the processor thereby increasing
the accumulated estimation error. A typical Internet server may
not have such a wide utilization domain. One of the problems
we faced during the testing of our model was the difficulty of
using curve fitting. Without this step, it was not possible to
establish a relationship between w and p. For a curve fitting to
produce an accurate approximation, the expressions should be
complex. Simple expressions come up with large errors. But
obtaining the inverse of complex expressions is difficult.

In this paper we have not included the memory subsystem,
without which it is difficult to estimate the overall DC power
consumption of a server. Our aim in future is to include it and
to compute the contribution of individual components to the
overall power consumption of a server.
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