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Abstract—Parallel programmers face the often irreconcilable dominant programming model on clusters is explicit message
goals of programmability and performance. HPC systems use passing. Other proposed models and systems for clusters com
distributed memory for scalability, thereby sacrificing the pro- closer to the traditional shared memory model, including

grammability advantages of shared memory programming mod- . <
els. Furthermore, the rapid adoption of heterogeneous arda Fartitioned Global Address Space (PGAS) [1] languages

tectures, often with non-cache-coherent memory systems,ag and distributed shared memory (DSM) systems [2]-[13].
further increased the challenge of supporting shared memgr Meanwhile, emerging heterogeneous node architectures

programming models. Our primary objective is to define a generally do offer shared memory. However, they do not
memory consistency model that presents the familiar thread provide cache coherence across all components of the system

based shared memory programming model, but allows good ap- . . .
plication performance on non-cache-coherent systems, ihaing and the best programming model for these systems is still an

distributed memory clusters and accelerator-based systesn We OP€n que_stion._ _ _
propose regional consistency (RegC), a new consistency model  Resolving this tension—between a programmer’s desire for

that achieves this objective. Results on up to 256 processofor g strong shared memory consistency model and an archi-
representative benchmarks demonstrate the potential of REC in - 1acp's need to sacrifice cache-coherence for scalability an
the context of our prototype distributed shared memory syseém. . . .
heterogeneity—requires a new look at memory consistency
models. The consistency model defines the semantics of
memory accesses; to a large extent it determines both the
A fundamental issue on all high performance computingerformance and programmability of the programming model.
platforms is how best to share data among concurrent tasksthis paper we proposegional consistency (RegC), a new
For example, parallel applications may share data betwememory consistency model that gives programmers the strong
physically distributed nodes of a cluster, between prawesshared memory programming model they prefer, but that can
and coprocessor or accelerator on a single node, among nig-implemented efficiently over modern non-cache-coherent
tiple coprocessors attached to a single node, between abaes systems.
single processor or accelerator, and among various comg®ne The common approach to providing shared memory se-
of a cluster-on-a-chip. Each of these scenarios preseigaein mantics over non-cache-coherent architectures is to tékax
challenges and opportunities to the system designer; lmit egonsistency model to allow greater parallelism in data s&ce
has one important feature in common, namely that there bt at the cost of some ease of programming. Table | compares
a distinction between local and remote memory. Applicaticthree popular relaxed consistency models with RegC in terms
developers use local “cached” data to gain performance bf four defining properties: 1) whether shared data must
exploiting spatial and temporal locality. be explicitly associated with synchronization primitivey
From a programmer’s point of view, the key question is whathether critical and non-critical section memory accesses
programming model should be used to orchestrate concyrreace distinguished; 3) the granularity at which consistency
and data sharing across these memories. The most straightfpdates are typically done; and 4) to what extent consigtenc
ward model is probably the traditional shared memory modé, maintained for non-critical memory updates. The entry
e.g., as offered by POSIX Threads (Pthreads) over cacleensistency model [6] requires explicit association betwe
coherent shared-memory hardware. On such platforms dakeared data and synchronization primitives; it does notideo
sharing is transparent, and simple synchronization mesimen any memory consistency guarantees for non-critical-secti
allow programmers to write correct and performant codess Thlata. Although entry consistency has performance advastag
traditional shared memory model is dominant for platformthe association restriction and its lack of consistency for
with the largest market share, e.g., portable devicesppept updates to shared data done outside of critical sectiong mak
servers. Hence, there is a growing ecosystem of shared méndifficult to use. Scope consistency [14] removes the ex-
ory parallel programs, tools and design practices. plicit association requirement and makes non-criticatisac
Unfortunately, two dominant trends in high-endipdates consistent at barriers. Scope consistency unisiiue
computing—scalable clusters and heterogeneous nodesk—wmtogrammer from the explicit shared data to synchroniratio
against the traditional shared memory model. Distributgaimitive association but consistency updates are donbeat t
memory clusters offer no physically shared memory at alé Thyranularity of a page, which has performance implications.
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TABLE |
COMPARISON OF PROPERTIES OF POPULAR CONSISTENCY MODEL

Consistency model Shared_da_lt_a and syr_]cl'_lronization S_e_parates _critical and Consistency granularity non-critical sectign
primitive association Non-critical section accesses seee data consistenc
Entry consistency explicit yes object no consistency guess
Scope consistency transparent yes page requires barriers
Release consistency transparent no page consistent
Regional consistency transparent yes page - ordlnary region  consistent
object - consistency region

Release consistency [15] does not require any explicit aremory consistency models. We define and describe the
sociation nor does the programmer have to use barriersrégional consistency model in Sectibn] Ill. A brief overview
make non-critical section data consistent. In this seredease of Samhita and its implementation appears in Secfioh IV.
consistency is easier to program than either entry or scoperformance results from one computational kernel and two
consistency. However, since release consistency doesagpdapplications are presented and discussed in SeEflon V. We
at the granularity of a page, and since it does consistermynclude and discuss future work in Sectiod VI.

updates at page granularity for both critical sections amt n 1
critical sections it can still suffer from performance plerbs.

Our new RegC memory consistency model is motivated k?l){

. RELATED WORK

For a programmer to write correct concurrent applications,
e results of memory operations need to be predictable.

t_hes_e observations. It explicitly distinguishe_s b_etwee:_rdh? Memory consistency models describe the rules that guaran-
fications to memory protected by synchronization primiiv ee memory accesses will be predictable. There are several
and those that are not, allowing for a more performant a’Pﬁi

) ) : . emory consistency models that have been proposed, in-
scalable implementation. In this paper we give performana%ding sequential consistency (SC)[17], weak consistenc
results for two implementations of RegC—one that tak : '

full advantage of this distinction and one that does not— W‘CC:))/ (lljz\;Sg) [[;-FE;J]CZ??:);Ctz)onn;lss‘:teennCny(I(EF(’:({)[(S[]li]éorséesjssgen&s
order to emphasize and evaluate the relative benefits of t ) [14]_‘ ' S

feature. In our first implementation of RegC all updates a eSequentiaI consistency (SC) has two important properties:
done at the granularity of a page. In the more sophisticat program order is maintained at each processor, (2) globa
implementation we use fine grain (object level) updates f der is an interleaving of all the sequential orders at each
modifications to shared data protected by synchronizatinocessor. The SC model, though conceptually simple, is
primitives and use page inyalidation_s f.o.r modifications aed extremely strong and imposes restrictions that negatact

not protected by synchronization primitives. In essen@g® performance. To alleviate the performance limitations 6f S

is similar to edntry q|c>n3|tsten<|:y for cr|t|ca_1I—tsect|o? Shhdﬁ;?.t,other consistency models have been proposed that relax or
accesses and similar to release consistency for nonatritig ..\an the restrictions.

section accesses. The weak consistency (WC) model, one of the earliest

Our current implementations of RegC are partSafrhita, \weak models, differentiates shared data into two categorie
a portable user-level distributed shared memory (DSM) Sygata that has no effect on concurrent execution, and data
tem. Samhita/RegC provides cache-coherent shared mem@gt includes synchronization variables to protect actess
semantics over the physically distributed memory of a elustshared data or provide synchronization. WC has three main
Compared to other platforms where such a programmiggaracteristics:(1) access to all synchronization végmlis
model is desired but not directly supported by the hardwaggquentially consistent, (2) no operation on synchroitizat
(e.g., processor+coprocessor, cluster-on-a-chip), @illlised variables is permitted until all previous accesses to shdata
memory cluster is in some sense the hardest case, since ﬂa@@performed, and (3) no access to shared data is allowed
is no shared memory at all, and network latency and banghtil all previous operations on a synchronization vagabl
width can be a significant bottleneck. However, we belieVgave been performed. An important distinction between WC
the rapid and steady improvements in high-end interconnegld SC is that consistency is enforced on a set of accesses
performance (relative to memory latency and bandwidtioyall for WC rather than individual accesses. Weak consistency
us to treat DSM primarily as “just” another cache managemegiproves performance by overlapping writes from a single
problem, and as an excellent testbed for evaluating thenpot@rocessor; to serialize writes to the same location progrera
tial of the RegC memory consistency model. are required to use synchronization variables, which is an

The architecture of Samhita and early performance resultdded burden. Processor consistency (PC) follows a middle
are described in[[16]. The focus of this paper is on repproach between WC and SC. PC allows writes from two
gional consistency. We give performance results that evaluprocessors, observed by themselves or a third processtw not
Samhita’s implementation of RegC, and also identify how thee identical. However, writes from any processor are oleskrv
runtime system can support additional performance-erihgncsequentially.
extensions. The remainder of the paper is organized as®llo  One of the biggest drawbacks in weak consistency is the fact
In Section[dl we present an overview of related work othat when a synchronization variable is accessed, the gsoce



has no knowledge if the access to the shared data is compbgtehe processor and (2) access to memory is allowed at a
or about to start. This requires the processor to performpeocessor only after all the associated consistency sdupes
memory consistency operation every time a synchronizatibeen successfully opened. Though ScC presents a relaxed
variable is accessed. Release consistency (RC) extends Wh@sistency model, the programming model exposed to the
by categorizing accesses to shared daterdisiary or special user is complex when compared to RC or LRC. Iftode et
accesses, which are equivalent to accesses to data andsynai. [14] mention that precautions need to be taken to ensure
nization variables, respectively. RC further categorgmsial that a program runs correctly under ScC, the primary chgden
accesses async and nsync accesses. Finallysync access being that all accesses to shared data must be made inside
are further categorized as eithelease or acquire accesses critical sections.
(analogous to the corresponding mutex lock operationsg. Th All of the previously discussed consistency model are
RC model enforces the following rules: (1) before any ordinasequentially consistent for data race free codes. The mitho
read or write access is performed, all previaoguire accesses of location consistency (LC) [21] present a model that is not
must be performed, (2) beforeralease access is performed sequentially consistent, i.e., writes to the same locai@mnot
all previous reads and writes done by the processors mustdeeialized and not necessarily observed in the same order by
performed, and (3) all accesses to synchronization vasabhny processor. LC represents the state of a memory location
are processor consistent. At every release the processpr pas a partially ordered multiset of write and synchronizatio
agates its modifications to shared data to all other procgssoperations. For the LC model to be able to provide this
This entails a significant data transfer overhead. To redugartial ordering of writes and synchronization operatidgns
the amount of data transfer, propagation of modified datequires an accompanying cache consistency model which is
is postponed in a variant known as lazy release consistemmyt provided by traditional multi-processor systems. Bisea
(LRC) [20Q]. In LRC the acquiring processor determines therites to the same location are not serialized the programgmi
modification it requires to meet the requirements of RC. model associated with using LC is complicated and adds a
Both the WC and RC models use synchronization primitivessgnificant burden on the programmer.
to ensure ordering of access to shared data. Entry congjsten To summarize, programmability and performance are two
(EC) exploits this relationship between synchronizatiomp ends of a spectrum. The traditional approach in the past to
itives and access to shared data by requiring all shared deteble performance on parallel platforms was to use a re-
to be explicitly associated with at least one synchronirati laxed consistency model. However, weaker consistency lmode
primitive. Whenever a synchronization primitive is acguairall achieve performance by sacrificing programmability. In our
updates to the shared data associated with that synchtiomizaapproach, to support the familiar memory consistency model
primitive are performed. In EC each synchronization priveit expected by today’s shared memory programmers, we provide
has a current owner that last acquired the primitive. When strong consistency model. However, we believe most of
the ownership changes because another processor actairethe performance can be recovered by a consistency model
synchronization primitive, all updates to the shared datma that enables one to develop intelligent runtime system that
ciated with the primitive are sent to the acquiring processaupport it and by providing programmers with extensions to
To reduce performance impact, synchronization primitses the programming model that can leverage intrinsic inforamat
exist in two modes-exclusive and non-exclusive. In thenon-  available only at runtime.
exclusive mode, though the synchronization primitive is owned
by one processor it can be replicated at others. Only a single
processor is allowed to acquire a synchronization primitiv Before giving a formal definition of our new consistency
in exclusve mode. To modify the shared data associatedodel, we describe the basic idea and how it compares
with a synchronization primitive a processor must own th® similar models. The idea behindgional consistency
synchronization primitive irexclusive mode. (RegC) is to divide an application’s memory accesses into tw
Though association of shared data with synchronizatimmds of regions—eonsistency regions andordinary regions—
primitives reduces the overhead of data transfer amongeprocas depicted in Figur€l 1. These regions are demarcated by
sors, EC is hindered by the increased complexity of explicitsynchronization primitives utilizing mutual exclusion (tex)
associating shared data with synchronization primiti&®- locks and barriers. More specifically, a consistency regson
gramming using EC is complicated and can be error prordemarcated by a mutex lock acquire and release. All memory
Scope consistency (ScC) alleviates the explicit associatiaccesses outside of a consistency region occur in an oydinar
of shared data with synchronization primitives. ScC dsteategion. A barrier separates one ordinary region from anpthe
the association dynamically at the granularity of pagess thi.e., one ordinary region ends at a barrier and a new one $egin
providing a simpler programming model. The implicit asscafter a barrier.
ciation of memory accesses to synchronization primitiges i The RegC rule for barriers is simple: all modifications
termed theconsistency scope. The ScC model defines themade in the preceding ordinary region are made consistent
following rules: (1) before a new session of a consistendgr the processors participating in that barrier. To déscthe
scope is allowed to be open at a processor, all previoussnritRegC rules for consistency regions, we first defingoan as
performed with respect to the scope need to be performede instance of a consistency region that executes at a given

IIl. REGIONAL CONSISTENCY



P propagate the modifications in ordinary and consistency re-

. Result RegC . . . . . . . .
acquire (M) E O % - % gions, i.e., page-based invalidation policy for ordinaegions
B = : . . )
O % : § > % and fine grained updates for consistency regions.
>c e
£5 { X =5 A. Formalizing RegC
or ... ) -
g acquire () To define RegC formally we use the formal definitions
(%) — oy -
€5 J|v = 2; I Orgfnd:rtyefe;"i;n P, for the memory access transitions presented_in [22]. For the
[%] . . . ey
28 coc memory accesses »| acquire (M) purpose of completeness we include these definitions here:
] release(N)j\ updates for B =X _ . .
consistency region release (M) Definition 1. Performing with respect to a processor.A
memory accesses gcc_lu)l(re () LOAD by processolP; is consideregerformed with respect
. _y to P at a point in time when the issuing of 8I'ORFE to
release () the same address h¥, cannot affect the value returned by

the LOAD. A STORE by P; is considerecerformed with
respect toP; at a point in time when an issuebtlOAD to
the same address b, returns the valued defined by this

processor. A span starts at the acquire of a mutex lock afd ORE (or a subsequerfTORE to the same location).

ends on the successful release of that lock. Any modificati®futinition 2. Performing an access globallyA STORE is
to data made in a span will be visible to processors th@bbally performed when it is performed with respect to all
subsequently enter spans corresponding to the same m‘ﬂr%%essors. ALOAD is globally performed if it is performed
lock. Note that spans corresponding to different locks ajgin respect to all processors and if tS§'ORE that is the

independent, i.e., they can execute concurrently. Differegq ce of the returned value has bagobally performed.
spans can also be nested, corresponding to nested critical

sections. Finally, modifications made in the precedingreadi ~ In addition to the above two standard definitions we propose
region are propagated on the start of a span. RegC guarantBesfollowing new definition.

that these updates will be visible at other processors bEf%efinition 3. Subsequently after.A span for any consistency

the stgrt ofany span corresponding.lzmy consistency region. region at P; is said to starsubsequently after a span for any
Regional consistency can be viewed as an amalgamatigf\ggency region at P, if and only if thespan has successfully

of release consistency and scope consistency. Similar@ Sg;,teq atP; before thespan at P; successfully starts. Note

we transparently detect data modification within a constste 5t 5 span only successfully starts when the corresponding
region and implicitly associate it with corresponding Isck |,k acquisition succeeds.

thereby creating the dichotomy of ordinary and consistency

accesses. Similar to RC, we ensure that updates from oydinarBefore we define the RegC model formally, we distinguish
regions are propagated on lock acquisition/release, sboju @ STORE performed with respect to the regions of memory
explicit barrier operations. We believe that performinglages accesses as follows:

from ordinary regions only on explicit barriers is unduly « A STORE performed within a consistency region is

Fig. 1. Pseudo code describing regional consistency.

restrictive, i.e., it limits parallel problem decompositi to defined as aonsistent STORE.

block synchronous codes. For other common parallel decom- A STORE performed outside of aconsistency region is
positions (e.g., producer/consumer, pipeline) supersimzp defined as amrdinary STORE.

barrier semantics creates unnecessary synchronizativede

- " Furthermore, we distinguish a&onsistent STORE be-
unrelated threads and increases false sharing. _ing performed with respect to aconsistency region from a

The general view is that relaxing consistency models inyropp being performed with respect to a processor as
proves performance but at the cost of programmability. Singyjows:

our goal with RegC is to maintain the familiarity of the stgon . . .
g i o A consistent STORE is performed with respect to @&on-
consistency model expected by thread-based programs, the sistency region when the currengpan of that consistency

challenge is to allow for a performant implementation of the .

consistency model. Both RegC and RC provide a sufficiently region ends._ . .

strong model for writing correct threaded code compared to® A STORE is p_erformed with respect toP if a su_b-
sequentLOAD issued byP; returns the value defined

ScC. The differences between RegC and RC allow significant )
performance opportunities for RegC. Explicitly distingjing by this STOR.E (or a subsequerfTORE to the same
memory location).

between memory modifications made inside a critical section
and those made outside allows an implementation of RegCThe rules forregional consistency are as follows:

to delay updates made in ordinary regions, which RC cannotl) Before a span is allowed to start drjy subsequently
(LRC, which makes a similar optimization, is less intuitiee after a span onP;, any ordinarySTORE performed
programmers than RegC.) Furthermore, the distinctiomallo at P, before that span o, must be performed with
a RegC implementation to use different update policies to  respect toP;.



2) Before a newspan of a consistency region is allowed a given page is updated in a consistency region, we must still
to successfully start af?;, any consistent STORE invalidate the entire page on the corresponding lock adapns
previously performed with respect to thatonsistency in any thread. Using fine grain updates on lock acquire, aimil
region must beperformed with respect toP;. to entry consistency, is a better approach in this scenario

3) A STORE performed at P, must beperformed with and is implemented in our second version. When using fine
respect taP;, for all P; and P; participating in a barrier. grain updates we need to propagate only the changes made to

The first rule determines when amdinary STORE is individual shared variables in a consistency region. Haxev
performed with respect to a processor. Qmmnary STORE this requires us to track individual stores. We do this by
is performed with respect to a processgr before anyspan  instrumenting all the stores an application performs usirey
is allowed to start atP;, provided thisspan starts subse- LLVM compiler framework [23]. We insert a function call
quently after the span immediately following theSTORE to the runtime system before each store is performed. The
at processorP;. The second rule ensures that when a neiMntime tracks stores performed within a consistency regio
span starts at a processor, angnsistent STORE performed  and ignores those performed in an ordinary region. On lock
previously with respect to thabnsistency region is guaranteed release we are then able to propagate the changes made in the
to be performed with respect to the processor. The third rul€onsistency region. Our experimental evaluation suggbats
guarantees that anyTORE performed before the start of athe overhead incurred by such store instrumentation isinvith
barrier is performed with respect to all processes pasgtaig reasonable limits for most applications. We believe that we
in that barrier. can further reduce the store instrumentation overhead by no

instrumenting most ordinary stores using static analysithe
IV. OVERVIEW OF SAMHITA application code. This is part of our future work.

Samhita solves the problem of providing a shared global
address space by casting it as a cache management problem.
This motivates our approach of separating the notion ofisgrv  In this section we describe performance studies that demon-
memory from the notion of consuming memory for compustrate that Samhita and RegC provide a programmable, scal-
tation. Each Sambhita thread is associated with a local ¢cachble, and efficient shared memory programming model. We
the entire shared global address space is accessed thtosighcompare our two different implementations of RegC to un-
local cache. This cache can be considered another levelderline the performance benefits achieved by using fine grain
the memory hierarchy. Efficient cache management can higigdates for consistency regions and page based invalidatio
the latency difference between accessing local memory amdlinary regions. In the rest of this sectisamhita refers to
remote memory. the implementation that uses fine grain updates for comsigte

Sambhita’s architecture consists of compute servers, meragions and page invalidation for ordinary region updates,
ory servers and resource managers. These three componantksamhita_page refers to the implementation that uses page
execute on the physical nodes of a cluster. The compuwalidation for both consistency and ordinary region upda
servers execute one or more threads of control from oneWe present scalability results on up to 256 cores, which
or more applications. Samhita expose$oek-join execution to our knowledge is the largest scale test by a significant
model similar to POSIX threads. It is important to note thahargin for any DSM system reported to date. The results
individual threads of an application correspond to tradidl demonstrate that for scalable algorithms, our Samhitaempl
processes in Samhita. The runtime system transparentlgshanentation achieves good weak scaling on large core counts.
the global data segment of a program across different pi®tong scaling results for Samhita are very similar to equiv
cesses. Because of this transparent sharing, processs calent Pthreads implementations on a single node. For less
on physically different nodes appear as individual cores e€alable algorithms, scalability is limited by synchratian
a shared memory system. The memory servers combineot@rhead. We identify extensions to the programming model
provide the global shared address space. To mitigate thedmpthat transparently leverage information about data placgm
of hot spots, memory allocations are strided across maltigind consistency requirements to improve performance.
memory servers. The total size of the global address spac@he performance evaluation was carried outQystem G,
is equal to the combined amount of memory exported k& 2600 core cluster (325 nodes). Each node is a dual quad-
the memory servers. The resource manager is responsitdee 2.8GHz Intel Xeon (Penryn Harpertown) with 8GB of
for job startup, thread placement, memory allocation, amdain memory. The cluster is interconnected over a quad
synchronization. data rate (QDR) Infiniband switched fabric. The first set

To highlight and evaluate the benefits of distinguishing bef results are for a synthetic benchmark consisting of our
tween ordinary and consistency regions, we consider two ithhread based implementation of the STREAM TRIAD[24].
plementations of RegC in Samhita. In the first version, thoudVe then present results from two application benchmarks:
we distinguish between ordinary and consistency regiarsfo Jacobi and molecular dynamics applications based on codes
there are still performance limitations due to the coneisge from the OmpSCRI[25] repository. We ported the OmpSCR
granularity being a page for both ordinary and consistenbgnchmarks from OpenMP to the equivalent threaded code. In
region updates. For example, if only a small amount of data fact, to emphasize the similarity between the Pthreads ARl a

V. PERFORMANCE EVALUATION
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Fig. 2. Sustained memory bandwidth vs. number of cores fdAREBAM  Fig. 4. Sustained memory bandwidth vs. number of cores fonttita for

TRIAD synthetic benchmark. Vectors of dimensien= 16 M. two different problem sizes. Data si3er and number of corep are scaled
proportionally, i.e.,3n/p is a constant. Problem size for small problem on
p = 1 node isn = 16 M; problem size for large problem gn= 1 node is

STREAM TRIAD weak scaling n=32M

140000

" pthread mm— j
samhita_page mmwm
samhita m—

] Figure[2 compares the strong scaling bandwidth achieved
by the Pthreads and the two Sambhita implementations. The
Samhita implementations achieve a reasonable sustaimed ba
width, which scales as we increase the number of cores. The
bandwidth achieved by theamhita implementation is close to
1 85% of that achieved by the Pthreads implementation for the
8 core run, whilesamhita_page achievesr4% of the memory
bandwidth. We note that the bandwidth achievedifef cores
1 is similar due to the fact that our physical nodes are duddestoc
o e RN W and our placement policy fills the first socket before fillihg t
1 2 4 8 16 32 64 128 25 second socket.

Number of cores Figure[3 presents weak scaling results for up to 256 pro-
Fig. 3. Sustained memory bandwidth vs. number of cores fontfta and cessors. The performance of both Samhita implementations
Pthreads based STREAM TRIAD benchmark. Data simeand number of tracks Pthreads up to 8 cores and continues to scale well up
coresp are scaled proportiona_llly, i.e3n/p is a constant. Problem size for g 128 cores forsamhita_page and 256 cores fosamhita,
p=1Lisn=16M; problem size forp = 256 is n = 4G before synchronization costs begin to constrain scatgbili

y g gb

the Samhita API our two implementations for each benchmark!n the weak scaling results shown in Figure 3 the data
are derived from the same code base. Memory a”ocati@ﬁsoc?ated wi_th each process fit_s entirely in the Samhitaecac
synchronization and thread management calls are repesse@Ssociated with that process. Figlife 4 shows the samesesult
by macros, which are processed usingtiiemacro processor. fqr samhita, along with results for a.pr(_)blem size twice as
The performance evaluation includes strong scaling resutig- The larger problem no longer fits in the local Samhita
where problem size is fixed as the number of cores grows, a#fhe, which results in capacity misses; the entire data beus
weak scaling experiments where problem size grows with thi€amed in for each iteration. We see that when the regultin
number of cores. The strong scaling experiments use a singff@ Spills occur there is a clear impact on the achieved
memory server. The weak scaling experiments use 20 memg%ndmdth. However, we also notice that the Samhita imple-

120000 [

100000 [

80000 -

60000 -

Bandwidth (MB/s)

40000

20000 -

0

servers to accommodate the largest problem size. mentation still continues to scale reasonably well; we lase
most a factor of two despite having to refill the cache on each
A. STREAM TRIAD iteration with data served from remote memory servers. This

The STREAM benchmark is a synthetic benchmark thdlustrates the benefit of our optimization for fetching rete
measures sustained memory bandwidth for a set of simplages and the benefits of the simple prefetching strategy use
vector kernels. We implemented a thread based version of theour current implementation.

TRIAD operation. This operation is a simple vector update (0 ,

DAXPY), a level 1 operation from the BLAS package. Thé&- Jacobi

TRIAD kernel computesA = B + aC, where A, B and C The Jacobi benchmark application is a threaded implemen-
are vectors of dimension and« is a scalar. Each run of thetation of the Jacobi OpenMP code found in OmpSCR [25].
benchmark consists of 400 iterations of the TRIAD operatidh corresponds to an iterative linear solver applied to a fi-
with a barrier between each iteration. nite difference discretization of a Helmholtz equationg-Fi
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Fig. 5. Parallel speedup vs. number of cores for Jacobi. deis relative Fig. 7. Parallel speedup vs. number of cores for moleculaadycs. Speedup
to 1-core Pthreads execution time. is relative to 1-core Pthreads execution time.

Jacobi weak scaling mance, but programmability would be sacrificed. Instead, we
60000 ‘ e —— ‘ extend the programming model by providing a reduction op-
samhita_page+reduce mum eration (as in OpenMP) that replaces the operation perfdrme
50000 - samhitasreduce = in the consistency region but is implemented by the Samhita
runtime system. The second set of Samhita results in Figure 5
show the dramatic improvement in performance. Using the re-
duction operation extension, tsamhita_page implementation
achieves just ove69% of the speedup achieved by Pthreads
for the 8-core run. Using the reduction extension in the
samhita case also yields performance improvement achieving
just over79% of the speedup achieved by Pthreads, but the
improvement is not as dramatic as in thenhita_page case.
— e This once again underlines the importance of having differe
1 2 4 8 16 32 64 128 256 . . . .
Number of cores update mechanisms for ordinary and consistency regions.
Figure[® presents weak scaling results for Jacobi on up to
Fig. 6. Computation rate vs. number of cores for Samhita dhteBds based 256 processors. We see that all the Samhita implementations
Jacobi. Data siz&n“ and number of corep are scaled proportionally, i.e., .
3n?/p is a constant. Problem size fpr= 1 is n = 4096; problem size for Of Jacobi track the Pthreads case very well up to 8 cores.
p = 256 is n = 65536. The benefit of the reduction extension is again clear, with
good scalability for both Samhita implementations to 128
ure[3 compares the strong scaling speedup of Pthreads aates. Beyond 128 cores the scalability of this algorithm is
four Samhita implementations of the Jacobi benchmark. Thevited, i.e., as problem size and core counts grow, the cost
Pthreads implementation and two Samhita implementatien & synchronization eventually outweighs the computation.
a mutex variable to protect the global variable that accanesl ]
the residual error on each iteration. Barrier synchroiomat C- Molecular dynamics
are required at three points of each iteration as well. WeThe molecular dynamics application benchmark is a simple
notice that the lock-based Samhita implementation does mebody simulation using the velocity Verlet time integoati
speed up as the number of processors increases for fiethod. The particles interact with a central pair poténtia
samhita_page implementation. The reason for the performancehe OpenMP code from OmpSCR uses reduction operations
degradation is the strong memory consistency provided fy summing the kinetic and potential energy of the particle
RegC. Performance profiling shows that the majority of th@imilar to the Jacobi benchmark, our threaded implementa-
time is spent in one of barriers, which follows the consisjen tions use a mutex variable to protect the global kinetic and
region, and requires expensive memory consistency opagatipotential energy variables. Barrier synchronization igdis
to reflect the memory updates made in the preceding ordinaliyring various stages of the computation for synchroropati
region. Thesamhita lock based implementation on the otheFigure[T compares the strong scaling speedup of Pthreads and
hand shows good strong scaling results up to 16 processatg Samhita implementations.
This improvement in performance can be solely attributed towe see that the two different Samhita implementations,
the fine grain updates to propagate the changes made iBn@ using mutex variables and the other using reduction
consistency region. variables, track the Pthreads implementation very clogaly
Relaxing the consistency model would improve perfothe samhita_page implementation. For theamhita case, we

40000

30000

Rate (MFlops)

20000

10000




notice that though the application scales well there is iles

(5]

impact of the cost associated with the store instrumemtatio
In this application the cost associated with synchronirais
significantly lower than the computational cost. Most of the

stores are performed in ordinary regions but the instrument
tion function is still called. We can use static analysis loé t
application code to avoid instrumenting most ordinary oagi

6

(7]

stores. We believe that with this approach we can reclaif§!
most of the lost performance due to instrumentation ovethea

This benchmark result clearly indicates that applicatitivat
are computationally intensive (the computation per partic [°]
is O(n)) can easily mask the synchronization overhead of
Samhita enabling the application to scale very well.

VI. CONCLUSIONS

[10]

We have definedegional consistency (RegC), a new mem- [11]
ory consistency model that allows programs written using

familiar threading models such as Pthreads to be easilgg@o
to a non-cache-coherent system. We evaluated the perfeam

e

of two implementations of RegC using Samhita, a system that
provides shared memory over a distributed memory clustﬁg
supercomputer. Recent advances in modern high performa cJe
interconnects allow us to implement a relatively strong-con
sistency model (easier programmability) while still actie
acceptable application performance using a sophisticated
time system.

Performance results show that our Samhita implementatidh3
achieve computational speedup comparable to the original
Pthreads implementations on a single node with trivial code

modifications, and illustrate the performance improveme
achieved by a simple programming model extension and

[14]

iy

distinguishing ordinary and consitency region stores. K\ea

scaling results on up to 256 processor cores demonstréte
scalable problems and algorithms scale well over Samhita.

ta

A promising future enhancement is be to use static anal-
ysis to avoid instrumenting most ordinary region storessth (18]
reclaiming most of the performance overhead associatdud wit
store instrumentation in our current implementation. Aweot [19]
possible direction for future research is exploring the ad-
ditional performance improvement opportunity by delayin&(,]
propagation of updates done in ordinary region, similar to
lazy release consistency (LRC) [20]. We also plan to in-
vestigate providing a shared memory programming modfg_lL]
using regional consistency by extending Sambhita to other no
cache-coherent platforms like accelerators, clustectop-and
COprocessors.

(1]
(2]

(3]

(4
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