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Abstract—Parallel programmers face the often irreconcilable
goals of programmability and performance. HPC systems use
distributed memory for scalability, thereby sacrificing the pro-
grammability advantages of shared memory programming mod-
els. Furthermore, the rapid adoption of heterogeneous archi-
tectures, often with non-cache-coherent memory systems, has
further increased the challenge of supporting shared memory
programming models. Our primary objective is to define a
memory consistency model that presents the familiar thread-
based shared memory programming model, but allows good ap-
plication performance on non-cache-coherent systems, including
distributed memory clusters and accelerator-based systems. We
propose regional consistency (RegC), a new consistency model
that achieves this objective. Results on up to 256 processors for
representative benchmarks demonstrate the potential of RegC in
the context of our prototype distributed shared memory system.

I. I NTRODUCTION

A fundamental issue on all high performance computing
platforms is how best to share data among concurrent tasks.
For example, parallel applications may share data between
physically distributed nodes of a cluster, between processor
and coprocessor or accelerator on a single node, among mul-
tiple coprocessors attached to a single node, between coresof a
single processor or accelerator, and among various components
of a cluster-on-a-chip. Each of these scenarios presents unique
challenges and opportunities to the system designer; but each
has one important feature in common, namely that there is
a distinction between local and remote memory. Application
developers use local “cached” data to gain performance by
exploiting spatial and temporal locality.

From a programmer’s point of view, the key question is what
programming model should be used to orchestrate concurrency
and data sharing across these memories. The most straightfor-
ward model is probably the traditional shared memory model,
e.g., as offered by POSIX Threads (Pthreads) over cache-
coherent shared-memory hardware. On such platforms data
sharing is transparent, and simple synchronization mechanisms
allow programmers to write correct and performant codes. This
traditional shared memory model is dominant for platforms
with the largest market share, e.g., portable devices, laptops,
servers. Hence, there is a growing ecosystem of shared mem-
ory parallel programs, tools and design practices.

Unfortunately, two dominant trends in high-end
computing—scalable clusters and heterogeneous nodes—work
against the traditional shared memory model. Distributed
memory clusters offer no physically shared memory at all. The

dominant programming model on clusters is explicit message-
passing. Other proposed models and systems for clusters come
closer to the traditional shared memory model, including
Partitioned Global Address Space (PGAS) [1] languages
and distributed shared memory (DSM) systems [2]–[13].
Meanwhile, emerging heterogeneous node architectures
generally do offer shared memory. However, they do not
provide cache coherence across all components of the system,
and the best programming model for these systems is still an
open question.

Resolving this tension—between a programmer’s desire for
a strong shared memory consistency model and an archi-
tect’s need to sacrifice cache-coherence for scalability and
heterogeneity—requires a new look at memory consistency
models. The consistency model defines the semantics of
memory accesses; to a large extent it determines both the
performance and programmability of the programming model.
In this paper we proposeregional consistency (RegC), a new
memory consistency model that gives programmers the strong
shared memory programming model they prefer, but that can
be implemented efficiently over modern non-cache-coherent
systems.

The common approach to providing shared memory se-
mantics over non-cache-coherent architectures is to relaxthe
consistency model to allow greater parallelism in data access,
but at the cost of some ease of programming. Table I compares
three popular relaxed consistency models with RegC in terms
of four defining properties: 1) whether shared data must
be explicitly associated with synchronization primitives; 2)
whether critical and non-critical section memory accesses
are distinguished; 3) the granularity at which consistency
updates are typically done; and 4) to what extent consistency
is maintained for non-critical memory updates. The entry
consistency model [6] requires explicit association between
shared data and synchronization primitives; it does not provide
any memory consistency guarantees for non-critical-section
data. Although entry consistency has performance advantages,
the association restriction and its lack of consistency for
updates to shared data done outside of critical sections make
it difficult to use. Scope consistency [14] removes the ex-
plicit association requirement and makes non-critical section
updates consistent at barriers. Scope consistency unburdens the
programmer from the explicit shared data to synchronization
primitive association but consistency updates are done at the
granularity of a page, which has performance implications.
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TABLE I
COMPARISON OF PROPERTIES OF POPULAR CONSISTENCY MODEL.

Consistency model
Shared data and synchronization Separates critical and

Consistency granularity
non-critical section

primitive association Non-critical section accesses accesses data consistency
Entry consistency explicit yes object no consistency guarantees
Scope consistency transparent yes page requires barriers
Release consistency transparent no page consistent

Regional consistency transparent yes page - ordinary region consistent
object - consistency region

Release consistency [15] does not require any explicit as-
sociation nor does the programmer have to use barriers to
make non-critical section data consistent. In this sense, release
consistency is easier to program than either entry or scope
consistency. However, since release consistency does updates
at the granularity of a page, and since it does consistency
updates at page granularity for both critical sections and non-
critical sections it can still suffer from performance problems.

Our new RegC memory consistency model is motivated by
these observations. It explicitly distinguishes between modi-
fications to memory protected by synchronization primitives
and those that are not, allowing for a more performant and
scalable implementation. In this paper we give performance
results for two implementations of RegC—one that takes
full advantage of this distinction and one that does not—in
order to emphasize and evaluate the relative benefits of this
feature. In our first implementation of RegC all updates are
done at the granularity of a page. In the more sophisticated
implementation we use fine grain (object level) updates for
modifications to shared data protected by synchronization
primitives and use page invalidations for modifications to data
not protected by synchronization primitives. In essence, RegC
is similar to entry consistency for critical-section shared data
accesses and similar to release consistency for non-critical
section accesses.

Our current implementations of RegC are part ofSamhita,
a portable user-level distributed shared memory (DSM) sys-
tem. Samhita/RegC provides cache-coherent shared memory
semantics over the physically distributed memory of a cluster.
Compared to other platforms where such a programming
model is desired but not directly supported by the hardware
(e.g., processor+coprocessor, cluster-on-a-chip), a distributed
memory cluster is in some sense the hardest case, since there
is no shared memory at all, and network latency and band-
width can be a significant bottleneck. However, we believe
the rapid and steady improvements in high-end interconnect
performance (relative to memory latency and bandwidth) allow
us to treat DSM primarily as “just” another cache management
problem, and as an excellent testbed for evaluating the poten-
tial of the RegC memory consistency model.

The architecture of Samhita and early performance results
are described in [16]. The focus of this paper is on re-
gional consistency. We give performance results that evaluate
Samhita’s implementation of RegC, and also identify how the
runtime system can support additional performance-enhancing
extensions. The remainder of the paper is organized as follows.
In Section II we present an overview of related work on

memory consistency models. We define and describe the
regional consistency model in Section III. A brief overview
of Samhita and its implementation appears in Section IV.
Performance results from one computational kernel and two
applications are presented and discussed in Section V. We
conclude and discuss future work in Section VI.

II. RELATED WORK

For a programmer to write correct concurrent applications,
the results of memory operations need to be predictable.
Memory consistency models describe the rules that guaran-
tee memory accesses will be predictable. There are several
memory consistency models that have been proposed, in-
cluding sequential consistency (SC) [17], weak consistency
(WC) [18], processor consistency (PC) [19], release consis-
tency (RC) [15], entry consistency (EC) [6], scope consistency
(ScC) [14].

Sequential consistency (SC) has two important properties:
(1) program order is maintained at each processor, (2) global
order is an interleaving of all the sequential orders at each
processor. The SC model, though conceptually simple, is
extremely strong and imposes restrictions that negativelyaffect
performance. To alleviate the performance limitations of SC
other consistency models have been proposed that relax or
weaken the restrictions.

The weak consistency (WC) model, one of the earliest
weak models, differentiates shared data into two categories:
data that has no effect on concurrent execution, and data
that includes synchronization variables to protect accessto
shared data or provide synchronization. WC has three main
characteristics:(1) access to all synchronization variables is
sequentially consistent, (2) no operation on synchronization
variables is permitted until all previous accesses to shared data
are performed, and (3) no access to shared data is allowed
until all previous operations on a synchronization variable
have been performed. An important distinction between WC
and SC is that consistency is enforced on a set of accesses
for WC rather than individual accesses. Weak consistency
improves performance by overlapping writes from a single
processor; to serialize writes to the same location programmers
are required to use synchronization variables, which is an
added burden. Processor consistency (PC) follows a middle
approach between WC and SC. PC allows writes from two
processors, observed by themselves or a third processor notto
be identical. However, writes from any processor are observed
sequentially.

One of the biggest drawbacks in weak consistency is the fact
that when a synchronization variable is accessed, the processor



has no knowledge if the access to the shared data is complete
or about to start. This requires the processor to perform a
memory consistency operation every time a synchronization
variable is accessed. Release consistency (RC) extends WC
by categorizing accesses to shared data asordinary or special
accesses, which are equivalent to accesses to data and synchro-
nization variables, respectively. RC further categorizesspecial
accesses assync and nsync accesses. Finally,sync access
are further categorized as eitherrelease or acquire accesses
(analogous to the corresponding mutex lock operations). The
RC model enforces the following rules: (1) before any ordinary
read or write access is performed, all previousacquire accesses
must be performed, (2) before arelease access is performed
all previous reads and writes done by the processors must be
performed, and (3) all accesses to synchronization variables
are processor consistent. At every release the processor prop-
agates its modifications to shared data to all other processors.
This entails a significant data transfer overhead. To reduce
the amount of data transfer, propagation of modified data
is postponed in a variant known as lazy release consistency
(LRC) [20]. In LRC the acquiring processor determines the
modification it requires to meet the requirements of RC.

Both the WC and RC models use synchronization primitives
to ensure ordering of access to shared data. Entry consistency
(EC) exploits this relationship between synchronization prim-
itives and access to shared data by requiring all shared data
to be explicitly associated with at least one synchronization
primitive. Whenever a synchronization primitive is acquired all
updates to the shared data associated with that synchronization
primitive are performed. In EC each synchronization primitive
has a current owner that last acquired the primitive. When
the ownership changes because another processor acquires the
synchronization primitive, all updates to the shared data asso-
ciated with the primitive are sent to the acquiring processor.
To reduce performance impact, synchronization primitivescan
exist in two modes—exclusive andnon-exclusive. In the non-
exclusive mode, though the synchronization primitive is owned
by one processor it can be replicated at others. Only a single
processor is allowed to acquire a synchronization primitive
in exclusive mode. To modify the shared data associated
with a synchronization primitive a processor must own the
synchronization primitive inexclusive mode.

Though association of shared data with synchronization
primitives reduces the overhead of data transfer among proces-
sors, EC is hindered by the increased complexity of explicitly
associating shared data with synchronization primitives.Pro-
gramming using EC is complicated and can be error prone.
Scope consistency (ScC) alleviates the explicit association
of shared data with synchronization primitives. ScC detects
the association dynamically at the granularity of pages, thus
providing a simpler programming model. The implicit asso-
ciation of memory accesses to synchronization primitives is
termed theconsistency scope. The ScC model defines the
following rules: (1) before a new session of a consistency
scope is allowed to be open at a processor, all previous writes
performed with respect to the scope need to be performed

at the processor and (2) access to memory is allowed at a
processor only after all the associated consistency scopeshave
been successfully opened. Though ScC presents a relaxed
consistency model, the programming model exposed to the
user is complex when compared to RC or LRC. Iftode et
al. [14] mention that precautions need to be taken to ensure
that a program runs correctly under ScC, the primary challenge
being that all accesses to shared data must be made inside
critical sections.

All of the previously discussed consistency model are
sequentially consistent for data race free codes. The authors
of location consistency (LC) [21] present a model that is not
sequentially consistent, i.e., writes to the same locationare not
serialized and not necessarily observed in the same order by
any processor. LC represents the state of a memory location
as a partially ordered multiset of write and synchronization
operations. For the LC model to be able to provide this
partial ordering of writes and synchronization operationsit
requires an accompanying cache consistency model which is
not provided by traditional multi-processor systems. Because
writes to the same location are not serialized the programming
model associated with using LC is complicated and adds a
significant burden on the programmer.

To summarize, programmability and performance are two
ends of a spectrum. The traditional approach in the past to
enable performance on parallel platforms was to use a re-
laxed consistency model. However, weaker consistency models
achieve performance by sacrificing programmability. In our
approach, to support the familiar memory consistency model
expected by today’s shared memory programmers, we provide
a strong consistency model. However, we believe most of
the performance can be recovered by a consistency model
that enables one to develop intelligent runtime system that
support it and by providing programmers with extensions to
the programming model that can leverage intrinsic information
available only at runtime.

III. R EGIONAL CONSISTENCY

Before giving a formal definition of our new consistency
model, we describe the basic idea and how it compares
to similar models. The idea behindregional consistency
(RegC) is to divide an application’s memory accesses into two
kinds of regions—consistency regions andordinary regions—
as depicted in Figure 1. These regions are demarcated by
synchronization primitives utilizing mutual exclusion (mutex)
locks and barriers. More specifically, a consistency regionis
demarcated by a mutex lock acquire and release. All memory
accesses outside of a consistency region occur in an ordinary
region. A barrier separates one ordinary region from another,
i.e., one ordinary region ends at a barrier and a new one begins
after a barrier.

The RegC rule for barriers is simple: all modifications
made in the preceding ordinary region are made consistent
for the processors participating in that barrier. To describe the
RegC rules for consistency regions, we first define aspan as
one instance of a consistency region that executes at a given
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Fig. 1. Pseudo code describing regional consistency.

processor. A span starts at the acquire of a mutex lock and
ends on the successful release of that lock. Any modification
to data made in a span will be visible to processors that
subsequently enter spans corresponding to the same mutex
lock. Note that spans corresponding to different locks are
independent, i.e., they can execute concurrently. Different
spans can also be nested, corresponding to nested critical
sections. Finally, modifications made in the preceding ordinary
region are propagated on the start of a span. RegC guarantees
that these updates will be visible at other processors before
the start ofany span corresponding toany consistency region.

Regional consistency can be viewed as an amalgamation
of release consistency and scope consistency. Similar to ScC,
we transparently detect data modification within a consistency
region and implicitly associate it with corresponding locks,
thereby creating the dichotomy of ordinary and consistency
accesses. Similar to RC, we ensure that updates from ordinary
regions are propagated on lock acquisition/release, not just on
explicit barrier operations. We believe that performing updates
from ordinary regions only on explicit barriers is unduly
restrictive, i.e., it limits parallel problem decomposition to
block synchronous codes. For other common parallel decom-
positions (e.g., producer/consumer, pipeline) superimposing
barrier semantics creates unnecessary synchronization between
unrelated threads and increases false sharing.

The general view is that relaxing consistency models im-
proves performance but at the cost of programmability. Since
our goal with RegC is to maintain the familiarity of the strong
consistency model expected by thread-based programs, the
challenge is to allow for a performant implementation of the
consistency model. Both RegC and RC provide a sufficiently
strong model for writing correct threaded code compared to
ScC. The differences between RegC and RC allow significant
performance opportunities for RegC. Explicitly distinguishing
between memory modifications made inside a critical section
and those made outside allows an implementation of RegC
to delay updates made in ordinary regions, which RC cannot
(LRC, which makes a similar optimization, is less intuitiveto
programmers than RegC.) Furthermore, the distinction allows
a RegC implementation to use different update policies to

propagate the modifications in ordinary and consistency re-
gions, i.e., page-based invalidation policy for ordinary regions
and fine grained updates for consistency regions.

A. Formalizing RegC

To define RegC formally we use the formal definitions
for the memory access transitions presented in [22]. For the
purpose of completeness we include these definitions here:

Definition 1. Performing with respect to a processor.A
LOAD by processorPi is consideredperformed with respect
to Pk at a point in time when the issuing of aSTORE to
the same address byPk cannot affect the value returned by
theLOAD. A STORE by Pi is consideredperformed with
respect toPk at a point in time when an issuedLOAD to
the same address byPk returns the valued defined by this
STORE (or a subsequentSTORE to the same location).

Definition 2. Performing an access globally.A STORE is
globally performed when it is performed with respect to all
processors. ALOAD is globally performed if it is performed
with respect to all processors and if theSTORE that is the
source of the returned value has beenglobally performed.

In addition to the above two standard definitions we propose
the following new definition.

Definition 3. Subsequently after.A span for anyconsistency
region at Pj is said to startsubsequently after a span for any
consistency region atPi if and only if thespan has successfully
started atPi before thespan at Pj successfully starts. Note
that a span only successfully starts when the corresponding
lock acquisition succeeds.

Before we define the RegC model formally, we distinguish
a STORE performed with respect to the regions of memory
accesses as follows:

• A STORE performed within a consistency region is
defined as aconsistent STORE.

• A STORE performed outside of aconsistency region is
defined as anordinary STORE.

Furthermore, we distinguish aconsistent STORE be-
ing performed with respect to aconsistency region from a
STORE being performed with respect to a processor as
follows:

• A consistent STORE is performed with respect to acon-
sistency region when the currentspan of thatconsistency
region ends.

• A STORE is performed with respect toPi if a sub-
sequentLOAD issued byPi returns the value defined
by thisSTORE (or a subsequentSTORE to the same
memory location).

The rules forregional consistency are as follows:

1) Before a span is allowed to start onPj subsequently
after a span onPi, any ordinarySTORE performed
at Pi before that span onPi must be performed with
respect toPj .



2) Before a newspan of a consistency region is allowed
to successfully start atPi, any consistent STORE

previously performed with respect to thatconsistency
region must beperformed with respect toPi.

3) A STORE performed at Pi must beperformed with
respect toPj , for all Pi andPj participating in a barrier.

The first rule determines when anordinary STORE is
performed with respect to a processor. Anordinary STORE

is performed with respect to a processorPj before anyspan
is allowed to start atPj , provided thisspan starts subse-
quently after the span immediately following theSTORE

at processorPi. The second rule ensures that when a new
span starts at a processor, anyconsistent STORE performed
previously with respect to thatconsistency region is guaranteed
to be performed with respect to the processor. The third rule
guarantees that anySTORE performed before the start of a
barrier is performed with respect to all processes participating
in that barrier.

IV. OVERVIEW OF SAMHITA

Samhita solves the problem of providing a shared global
address space by casting it as a cache management problem.
This motivates our approach of separating the notion of serving
memory from the notion of consuming memory for compu-
tation. Each Samhita thread is associated with a local cache;
the entire shared global address space is accessed through this
local cache. This cache can be considered another level in
the memory hierarchy. Efficient cache management can hide
the latency difference between accessing local memory and
remote memory.

Samhita’s architecture consists of compute servers, mem-
ory servers and resource managers. These three components
execute on the physical nodes of a cluster. The compute
servers execute one or more threads of control from one
or more applications. Samhita exposes afork-join execution
model similar to POSIX threads. It is important to note that
individual threads of an application correspond to traditional
processes in Samhita. The runtime system transparently shares
the global data segment of a program across different pro-
cesses. Because of this transparent sharing, processor cores
on physically different nodes appear as individual cores of
a shared memory system. The memory servers combine to
provide the global shared address space. To mitigate the impact
of hot spots, memory allocations are strided across multiple
memory servers. The total size of the global address space
is equal to the combined amount of memory exported by
the memory servers. The resource manager is responsible
for job startup, thread placement, memory allocation, and
synchronization.

To highlight and evaluate the benefits of distinguishing be-
tween ordinary and consistency regions, we consider two im-
plementations of RegC in Samhita. In the first version, though
we distinguish between ordinary and consistency region stores,
there are still performance limitations due to the consistency
granularity being a page for both ordinary and consistency
region updates. For example, if only a small amount of data on

a given page is updated in a consistency region, we must still
invalidate the entire page on the corresponding lock acquisition
in any thread. Using fine grain updates on lock acquire, similar
to entry consistency, is a better approach in this scenario
and is implemented in our second version. When using fine
grain updates we need to propagate only the changes made to
individual shared variables in a consistency region. However,
this requires us to track individual stores. We do this by
instrumenting all the stores an application performs usingthe
LLVM compiler framework [23]. We insert a function call
to the runtime system before each store is performed. The
runtime tracks stores performed within a consistency region,
and ignores those performed in an ordinary region. On lock
release we are then able to propagate the changes made in the
consistency region. Our experimental evaluation suggeststhat
the overhead incurred by such store instrumentation is within
reasonable limits for most applications. We believe that we
can further reduce the store instrumentation overhead by not
instrumenting most ordinary stores using static analysis on the
application code. This is part of our future work.

V. PERFORMANCE EVALUATION

In this section we describe performance studies that demon-
strate that Samhita and RegC provide a programmable, scal-
able, and efficient shared memory programming model. We
compare our two different implementations of RegC to un-
derline the performance benefits achieved by using fine grain
updates for consistency regions and page based invalidation for
ordinary regions. In the rest of this sectionsamhita refers to
the implementation that uses fine grain updates for consistency
regions and page invalidation for ordinary region updates,
andsamhita page refers to the implementation that uses page
invalidation for both consistency and ordinary region updates.

We present scalability results on up to 256 cores, which
to our knowledge is the largest scale test by a significant
margin for any DSM system reported to date. The results
demonstrate that for scalable algorithms, our Samhita imple-
mentation achieves good weak scaling on large core counts.
Strong scaling results for Samhita are very similar to equiv-
alent Pthreads implementations on a single node. For less
scalable algorithms, scalability is limited by synchronization
overhead. We identify extensions to the programming model
that transparently leverage information about data placement
and consistency requirements to improve performance.

The performance evaluation was carried out onSystem G,
a 2600 core cluster (325 nodes). Each node is a dual quad-
core 2.8GHz Intel Xeon (Penryn Harpertown) with 8GB of
main memory. The cluster is interconnected over a quad
data rate (QDR) Infiniband switched fabric. The first set
of results are for a synthetic benchmark consisting of our
thread based implementation of the STREAM TRIAD [24].
We then present results from two application benchmarks:
Jacobi and molecular dynamics applications based on codes
from the OmpSCR [25] repository. We ported the OmpSCR
benchmarks from OpenMP to the equivalent threaded code. In
fact, to emphasize the similarity between the Pthreads API and
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the Samhita API our two implementations for each benchmark
are derived from the same code base. Memory allocation,
synchronization and thread management calls are represented
by macros, which are processed using them4 macro processor.

The performance evaluation includes strong scaling results
where problem size is fixed as the number of cores grows, and
weak scaling experiments where problem size grows with the
number of cores. The strong scaling experiments use a single
memory server. The weak scaling experiments use 20 memory
servers to accommodate the largest problem size.

A. STREAM TRIAD

The STREAM benchmark is a synthetic benchmark that
measures sustained memory bandwidth for a set of simple
vector kernels. We implemented a thread based version of the
TRIAD operation. This operation is a simple vector update (or
DAXPY), a level 1 operation from the BLAS package. The
TRIAD kernel computesA = B + αC, whereA, B andC

are vectors of dimensionn andα is a scalar. Each run of the
benchmark consists of 400 iterations of the TRIAD operation
with a barrier between each iteration.
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Figure 2 compares the strong scaling bandwidth achieved
by the Pthreads and the two Samhita implementations. The
Samhita implementations achieve a reasonable sustained band-
width, which scales as we increase the number of cores. The
bandwidth achieved by thesamhita implementation is close to
85% of that achieved by the Pthreads implementation for the
8 core run, whilesamhita page achieves74% of the memory
bandwidth. We note that the bandwidth achieved for1–4 cores
is similar due to the fact that our physical nodes are dual socket
and our placement policy fills the first socket before filling the
second socket.

Figure 3 presents weak scaling results for up to 256 pro-
cessors. The performance of both Samhita implementations
tracks Pthreads up to 8 cores and continues to scale well up
to 128 cores forsamhita page and 256 cores forsamhita,
before synchronization costs begin to constrain scalability.

In the weak scaling results shown in Figure 3 the data
associated with each process fits entirely in the Samhita cache
associated with that process. Figure 4 shows the same results
for samhita, along with results for a problem size twice as
big. The larger problem no longer fits in the local Samhita
cache, which results in capacity misses; the entire data must be
streamed in for each iteration. We see that when the resulting
data spills occur there is a clear impact on the achieved
bandwidth. However, we also notice that the Samhita imple-
mentation still continues to scale reasonably well; we loseat
most a factor of two despite having to refill the cache on each
iteration with data served from remote memory servers. This
illustrates the benefit of our optimization for fetching remote
pages and the benefits of the simple prefetching strategy used
in our current implementation.

B. Jacobi

The Jacobi benchmark application is a threaded implemen-
tation of the Jacobi OpenMP code found in OmpSCR [25].
It corresponds to an iterative linear solver applied to a fi-
nite difference discretization of a Helmholtz equation. Fig-
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ure 5 compares the strong scaling speedup of Pthreads and
four Samhita implementations of the Jacobi benchmark. The
Pthreads implementation and two Samhita implementation use
a mutex variable to protect the global variable that accumulates
the residual error on each iteration. Barrier synchronizations
are required at three points of each iteration as well. We
notice that the lock-based Samhita implementation does not
speed up as the number of processors increases for the
samhita page implementation. The reason for the performance
degradation is the strong memory consistency provided by
RegC. Performance profiling shows that the majority of the
time is spent in one of barriers, which follows the consistency
region, and requires expensive memory consistency operations
to reflect the memory updates made in the preceding ordinary
region. Thesamhita lock based implementation on the other
hand shows good strong scaling results up to 16 processors.
This improvement in performance can be solely attributed to
the fine grain updates to propagate the changes made in a
consistency region.

Relaxing the consistency model would improve perfor-
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mance, but programmability would be sacrificed. Instead, we
extend the programming model by providing a reduction op-
eration (as in OpenMP) that replaces the operation performed
in the consistency region but is implemented by the Samhita
runtime system. The second set of Samhita results in Figure 5
show the dramatic improvement in performance. Using the re-
duction operation extension, thesamhita page implementation
achieves just over69% of the speedup achieved by Pthreads
for the 8-core run. Using the reduction extension in the
samhita case also yields performance improvement achieving
just over79% of the speedup achieved by Pthreads, but the
improvement is not as dramatic as in thesamhita page case.
This once again underlines the importance of having different
update mechanisms for ordinary and consistency regions.

Figure 6 presents weak scaling results for Jacobi on up to
256 processors. We see that all the Samhita implementations
of Jacobi track the Pthreads case very well up to 8 cores.
The benefit of the reduction extension is again clear, with
good scalability for both Samhita implementations to 128
cores. Beyond 128 cores the scalability of this algorithm is
limited, i.e., as problem size and core counts grow, the cost
of synchronization eventually outweighs the computation.

C. Molecular dynamics

The molecular dynamics application benchmark is a simple
n-body simulation using the velocity Verlet time integration
method. The particles interact with a central pair potential.
The OpenMP code from OmpSCR uses reduction operations
for summing the kinetic and potential energy of the particles.
Similar to the Jacobi benchmark, our threaded implementa-
tions use a mutex variable to protect the global kinetic and
potential energy variables. Barrier synchronization is used
during various stages of the computation for synchronization.
Figure 7 compares the strong scaling speedup of Pthreads and
the Samhita implementations.

We see that the two different Samhita implementations,
one using mutex variables and the other using reduction
variables, track the Pthreads implementation very closelyfor
the samhita page implementation. For thesamhita case, we



notice that though the application scales well there is a visible
impact of the cost associated with the store instrumentation.
In this application the cost associated with synchronization is
significantly lower than the computational cost. Most of the
stores are performed in ordinary regions but the instrumenta-
tion function is still called. We can use static analysis of the
application code to avoid instrumenting most ordinary region
stores. We believe that with this approach we can reclaim
most of the lost performance due to instrumentation overhead.
This benchmark result clearly indicates that applicationsthat
are computationally intensive (the computation per particle
is O(n)) can easily mask the synchronization overhead of
Samhita enabling the application to scale very well.

VI. CONCLUSIONS

We have definedregional consistency (RegC), a new mem-
ory consistency model that allows programs written using
familiar threading models such as Pthreads to be easily ported
to a non-cache-coherent system. We evaluated the performance
of two implementations of RegC using Samhita, a system that
provides shared memory over a distributed memory cluster
supercomputer. Recent advances in modern high performance
interconnects allow us to implement a relatively strong con-
sistency model (easier programmability) while still achieving
acceptable application performance using a sophisticatedrun-
time system.

Performance results show that our Samhita implementations
achieve computational speedup comparable to the original
Pthreads implementations on a single node with trivial code
modifications, and illustrate the performance improvements
achieved by a simple programming model extension and by
distinguishing ordinary and consitency region stores. Weak
scaling results on up to 256 processor cores demonstrate that
scalable problems and algorithms scale well over Samhita.

A promising future enhancement is be to use static anal-
ysis to avoid instrumenting most ordinary region stores, thus
reclaiming most of the performance overhead associated with
store instrumentation in our current implementation. Another
possible direction for future research is exploring the ad-
ditional performance improvement opportunity by delaying
propagation of updates done in ordinary region, similar to
lazy release consistency (LRC) [20]. We also plan to in-
vestigate providing a shared memory programming model
using regional consistency by extending Samhita to other non-
cache-coherent platforms like accelerators, cluster-on-chip and
coprocessors.
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