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Figure 1. Modeling the launch of process p in a chain and flat trees.

SEQ the constant amount of time required at a parent
process between the instants that process can create
two subsequent children processes.

For a flat tree of n processes (see Figure 1(b)), SEQ is
repeated n − 2 times, once for each child process node
with exception to the final child launched (which incurs cost
REM). Intuitively, the time it takes to launch a flat tree with
i children is SEQ ∗ (i− 1) + REM .

C. Modeling Arbitrary Trees

For arbitrary trees, we still rely on remote launch time,
REM and sequential wait time, SEQ. However, we must
identify the number of repetitions of these components for
any given process in any given tree. To identify the number
of repetitions of REM and SEQ, we build a recursive equation
by observing that every child process in a given tree can be
considered as the child of a flat tree rooted at the child’s
parent. Intuitively, the time to launch that child would be
the sum of the time required to launch the child’s parent
and the time to launch the child in the flat tree rooted by
the parent. Formally, the launch time of a single process is:

launch(root) = 0

launch(childi) = launch(parent) +

SEQ ∗ (i− 1) + REM (1)

where i is the ith process launched with respect to its parent.
If we execute this recursion up to the root of the entire

tree (see Figure 2), we see that REM must be repeated for
each level of the tree. We also observe that at each level
of the tree, a process experiences a sequential delay SEQ
proportional to the number of preceeding siblings.

Finally, we formalize the time required to launch a
complete tree T as:

launch(T ) = maxn
p=1 launch(p) (2)

IV. OPTIMAL PROCESS LAUNCH TREES

We now present an algorithm that produces an optimal
process launch tree for a given process launch problem.
Optimal means that the output tree is guaranteed to launch

Figure 2. Modeling the launch of process p in an arbitrary tree of 5 nodes.

the given processes on the given nodes in a minimal amount
of time for a particular system. 1

A. The Greedy Tree

We use a greedy algorithm to find an optimal process
launch tree. We call the resulting process launch tree the
greedy tree. Our algorithm is inspired by the construction of
an optimal-multicast tree [7]. Based on a model that param-
eterizes the delay between subsequent transmissions from
a single process and inter-process communication latency,
Park et al. used a dynamic-programming algorithm to create
optimal-multicast trees by combining smaller optimal trees
into larger optimal ones. Our greedy algorithm uses similar
parameters that have been adapted for process launching.

B. Greedy Algorithm

Figure 3 shows the pseudo code of the greedy algorithm,
which produces a tree to be used for launching one process
per node for a given set of nodes. We assume that the time
for a process on any node to launch a process on any other
node is constant. This means we can treat all nodes in the
input set equally. We start by placing the first node from
the set in the root position. During each iteration of the
algorithm, another node is removed from the input set and
greedily placed in the position on the tree which has the
smallest modeled launch time.

To keep track of the available positions, we use a
heap data structure of {position,time} pairs. This allows
us constant time lookup of the position with the smallest
modeled launch time and O(log n) time for the insertion of
newly available positions. Therefore, the greedy algorithm
completes in O(n log n) time. Due to the large number
of positions with the same launch times, the algorithm
is closer to Θ(n) in practice. Our testing shows that the
additional overhead from generating the optimal tree is
minimal, ranging from 7E-5 seconds for 100 processes to
0.09 seconds for 100,000 processes.

1Multiple trees may satisfy the minimum launch time requirement.



for (each process p)
if (tree == empty)
p = root

else
p = position of smallest launch time in heap

add launch time for p’s next sibling and first child to heap

Figure 3. Pseudo code for our greedy algorithm that creates an optimal process launch tree.

C. Proof of Optimality

Intuitively, the greedy algorithm should produce an opti-
mal process launching tree. The algorithm tries to maximize
the productivity of each process, which results in a minimal
launch time. If a parent process is idle for long, its next child
position eventually will become the best next child position
in the tree and it will be assigned the next child.

Let us provide several definitions that we will use in our
proof:

launch(t)
the time taken to launch a tree t.

launch(childi)
the time taken to launch a particular node childi.

available(t)
returns the set of potential (unused) child positions
in tree t with respect to a single insertion.

timei
the ith lowest value of range(launch(t))

nodesi
the set of positions in a tree that will launch within
timei.

Definition 1. Let us label the Greedy tree which contains
n nodes as Gn. The Greedy tree is defined recursively:

For n = 1, G1 is the tree which only contains the root.
For n > 1, Gn = Gn−1 +x where x ∈ available(Gn−1)

and ∀y ∈ available(Gn−1), launch(x) ≤ launch(y)

Definition 2. Let Tn be the set of all possible trees with
n nodes. Given that op ∈ Tn, op is optimal if ∀t ∈
Tn, launch(op) ≤ launch(t).

Theorem 1. The greedy algorithm defined in Definition 1,
will create an optimal tree of n nodes.

Proof: By induction:
For n = 1: G1 is the tree comprised of only the root.

Since |T1| = 1, ∀t ∈ T1, launch(G1) ≤ launch(t), so G1

is optimal.
For n > 1: Gn is created by starting with Gn−1 and

adding a node to the position which results in the lowest
possible launch time. For increasing numbers of nodes, the
greedy algorithm first adds all of nodesx to the tree. Once all
of the nodes in nodesx are in the tree, the greedy algorithm
moves on to the nodes in nodesx+1.

The greedy algorithm is guaranteed to be able to add the
nodes in nodesx+1 to its tree because all of the nodes that
precede any of the nodes in nodesx+1 (ancestors, preceding

siblings, ...), will require less than or equal time than the
nodes in nodesx+1. By way of contradiction, they will be in
nodesx, nodesx−1 or nodes... and are already in the Greedy
tree.

If Gn is not optimal, there would have to exist a tree
t ∈ Tn, such that launch(t) ≤ launch(Gn).

First let us consider the case where an alternative tree of
equal launch time exists. We label this tree equal, such that
launch(equal) = launch(Gn), and available(equal) 6=
available(Gn). One way to define equal, is to describe how
it is different from Gn. We can describe this difference in
terms of a function, move(Gn), which will create the tree
equal by moving a node x in Gn to a new position y such
that launch(y) = launch(x). In the case that we add a
new node to Gn the smallest position in available(Gn) is y,
which will not increase launch(Gn) since x = y. A similar
argument can be made for adding a node to the tree equal.
Assuming the trees have only two points x and y that are
equivalent, we see that they converge to the same tree after
adding a single node to each. A proof by induction shows
that if trees have K positions of equivalent launch time, after
K addtions the possible trees converge into a single identical
tree. For any addition less than K the trees have equivalent
performance since launch(x) = launch(y), ∀x, y ∈ K.

Let us consider the case in which Gn is not optimal such
that there is a tree with faster launch time. We label this
faster tree as fast. If launch(Gn) = timei, move(Gn)
can remove a node, g, from Gn where launch(g) ≤ timei,
but the lowest place g can be moved to is a position in
nodesi or nodesi+1. If g is moved to a position in nodesi,
launch(Gn) = launch(fast). If g is moved to a position in
nodesi+1, launch(Gn) < launch(fast). Either way, fast
is not faster than Gn, so Gn is optimal.

D. Discussion

This approach assumes a hierarchical process launching
strategy that follows the algorithm outlined in Section III.
It also assumes that the parameters REM and SEQ are
constant values. These conditions are reasonable but they
are not absolute. For example, a process launching strategy
could replace the sequential operation, of a parent launching
its children, with a non-sequential operation. This could
potentially be accomplished by intermixing the launch of
remote and co-located processes, instead of launching co-
located processes at the end. The co-located process could
then be used to launch the remaining remote processes, in



100 1000 10,000 100,000
16-ary tree 1.8E-4 1.8E-3 1.8E-2 1.9E-1
optimal tree 2.5E-4 2.1E-3 2.3E-2 2.8E-1

Table I
OVERHEAD (SECONDS) TO DESIGN THE OPTIMAL TREE VS A 16-ARY

TREE.

parallel. Additionally, a better performance model might
be created by modeling the variability of REM and SEQ
throughout the launch.

Constant values for REM and SEQ do not necessarily
capture physical environments in which these values are
not constant in practice, for example environments with
non-uniform network latencies. In future work, we plan to
evaluate the impact of accounting for hardware topologies,
however, our current experiments in the next section demon-
strate that despite this imprecise assumption, our model can
still be very accurate.

V. EXPERIMENTS AND RESULTS

Our experimental goals were: (1) to validate our process
launching performance model; (2) to validate our optimal
(greedy) tree empirically; (3) to demonstrate the impact of
choosing an optimal process launch tree versus an arbitrary
one, and (4) to evaluate the cost of determining the optimal
tree using our greedy algorithm. Table I summarizes the
latter result and shows that a process launch tree for 100,000
processes can be generated in less than 0.3 seconds. We now
present the experiments and results for the first three goals.

A. Experimental Environment

All experiments were run on Lawrence Livermore Na-
tional Laboratory’s Atlas system. Atlas has 1,152 nodes,
each of which contains 8 AMD Opteron 2.4 GHz cores.
The nodes are interconnected via a double data rate Infini-
Band network. Atlas is managed by the SLURM resource
manager. Maximum job size is limited to 386 nodes.

We used LIBI, a scalable bootstrapping framework, in our
experiments [10]. LIBI launches one process per node using
rsh in a manner dictated by a process launch tree. Once
one process exists on each of the requested nodes, then co-
located processes are launched locally.

B. Validating our Process Launch Performance Model

To validate the performance model outlined in Sec-
tion III-C, we used LIBI to launch a test application. We
then compared the measured launch times with the projected
launch times of our performance model.

All tests were executed sequentially on the same alloca-
tion of nodes. This simplified batch scheduling, minimized
the environmental variations between test run and eliminated
inter-test interferences and contentions. Consequently, this
left the test executable in each node’s local file cache
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Figure 4. LIBI Launch Performance: Solid: measured; Dashed: modeled.
The modeled launch times were created using the parameters: {0.007s,
0.172s}. The coefficient of determination between the modeled and the
measured curves range from R2 = 0.59 to R2 = 0.99.

between test runs. We accounted for this by adjusting our
performance model’s parameters.

We designed a small, standalone, LIBI-based software
system, comprised of two executables. The first executable
uses LIBI to launch the second executable, which is 238 KB
in size. These executables were statically-linked. We deploy
a single process per node, varying the process count and
tree topology. Each test condition was executed ten times
and averaged.

As described in Section IV-B, the greedy algorithm re-
quires two parameters. We use the 2-tuple, {SEQ, REM},
to represent these values. We obtained values for these
parameters by averaging these metrics from a small number
of test runs. The values obtained were {0.015s, 0.227s}.

Figure 4 shows that our model very accurately matches
observed performance. In this figure, solid lines represent
measured performance and dashed lines represent modeled
performance. The parameters of the modeled launch times
are the result of a least-squares fit of Equation 2 to the actual
data, giving the parameters, {0.007s, 0.172s}. These param-
eters differ from the parameters used to create our greedy
tree. We suspect the differences stem from differing levels
of system noise (from resource contentions). Despite the
differences, the modeled data created from the overestimated
values had a coefficient of determination of R2 = 0.886 to
the measured data, an indication that our model can tolerate
system noise to some extent.

C. Evaluating Process Launch Tree Topologies

We now use our validated performance model to evaluate
the impact that a process launch tree topology has on the
bulk process launch performance. Using modeled launch
times allow us to execute a larger, more comprehensive suite
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Figure 5. Modeled launch time with the executable on the NFS server.

of experiments in an easier and faster manner. Additionally,
we can project results for system scales orders of magnitude
larger than the test machines.

1) The Tests: For this experiment we apply our perf-
ormance model to a varying set of topologies at varying
node counts. However, unlike in the previous experiment
that needed to be validated empirically, we can vary process
counts to much greater extents, from

(
24 − 1

)
to

(
217 − 1

)
.

These values correspond to the number of nodes in a full
2-ary tree of increasing depth.

The values used for {SEQ, REM} reflected two different
launch environments. The first set {0.013s, 0.485s}, reflects
launching a 1.6M executable from an NFS server. The
second pair {0.015s, 0.227s}, reflects launching a 155K
executable when it is in the local file cache. These values
were created by performing a single test run at 386 nodes,
in each environment, timing the relevant portions of code,
and taking the average.

2) The Results: The results of these experiments are
shown in Figures 5 and 6. The first rather obvious observa-
tion is that both the chain and flat tree topologies are poor
performers and must be avoided at large scale. Secondly,
it shows the greedy tree outperforms all other trees in
all scenarios, corroborating our proof. Thirdly, while the
relative performance improvements of our greedy algorithm
over other techniques are dramatic, the absolute differences
are not as impactful. At the largest process count, the
differences range from 70% to 360% better. The absolute
differences are on the order of a few seconds; however, the
absolute differences increase with a larger REM parameter,
for example, when ssh must be used instead of rsh.

Our final observation from these experiments is that the
performance of the k-ary trees changes dramatically with
the the value of REM. In Figure 5 the 2-ary tree takes
almost twice as long to launch a tree at any node count.
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Figure 6. Modeled launch time with the executable in the local file cache.

In contrast, Figure 6 shows the 2-ary tree always launching
faster than the 128-ary tree. The same relative-performance
reversal can be seen between the 8-ary tree and the 32-ary
tree. This means that arbitrarily chosen k-values for k-ary
launching strategies can lead to dramatically poor launch
performance. We discuss this point further in Section V-E.

D. A Real Case Study: Improving MRNet Startup

We also evaluate our process launch strategy by incor-
porating it into a real infrastructure. For these experiments,
we integrated our LIBI framework into MRNet [15]. MR-
Net is a software overlay network that provides efficient
data multicast and reduction communications for distributed
software systems. MRNet improves group communication
performance using a tree-based overlay network (TBON) of
processes between the application’s front-end and back-ends.

Currently, MRNet’s start-up process integrates process
launch and information dissemination: when a child is
launched with rsh, the child must connect to its parent
and receive topology information before it can launch its
own children. We modified MRNet to use LIBI for both the
launching of the TBON processes and the the dissemination
of topology information. LIBI completely separates these
two tasks. Once the processes are launched, the LIBI session
master gathers then scatters the relevant setup information.

1) The Tests: This experiment is designed to evaluate the
time required to bootstrap MRNet under varying conditions.
There are three independent variables: process count, boot-
strap mechanism, and MRNet fanout. The first variation in
bootstrap mechanism is the current version of MRNet versus
the new MRNet over LIBI. MRNet over LIBI is further
varied by using different process launch tree topologies. The
parameters, {0.013s, 0.485s}, used to create the greedy tree
were from the NFS server scenario in Section V-C.

Each test run was given its own allocation of 386 nodes
regardless of the number of nodes needed. The relatively
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Figure 7. MRNet Bootstrap Time vs. Process Count using an MRNet
fanout of 16.

large allocation size reduces the network congestion from
other users and the likelihood of running tests concurrently.
We also cleared the local file cache between test runs.

The executables being launched include the program for
MRNet’s communication (intermediary) processes and the
program for our MRNet back-end (leaf) processes. All
executables were compiled to be statically-linked.

We ran two sets of tests: first we held MRNet’s fanout
constant at 16, while varying the total process count. The
process count includes MRNet’s communication daemons
as well as our back-end daemons. Then we held the process
count constant at 3080, while varying MRNet’s fanout. Each
test condition was repeated three times, and all tests were
run with 8 processes per node.

2) The Results: As we keep fan-out constant and vary
process count, Figure 7 shows how the LIBI-based MR-
Net bootstrapping outperforms the original procedure.
Likewise, Figure 8 shows the results of changing MRNet’s
fanout, while holding the process count at 3080. Here we see
that the bootstrapping time of the current version of MRNet
changes with the fanout while LIBI-based bootstrapping
performance remains relatively constant. Many overlay
networks like MRNet use their preferred run-time topology
as their bootstrapping topology. The important corollary is
that in many instances, the optimal topology for steady-
state overlay network execution may not be the optimal
topology for overlay network deployment. Therefore, it
is important to use a strategy like the one we devised to
determine optimal deployment strategy independent of the
desired runtime topology.

E. The Impact of Arbitrary Topologies

Finally, we use our model to evaluate the impact that
arbitrary launch topology choices can have on launch perf-
ormance. We model the launching of 1000 processes under
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Figure 8. MRNet Bootstrap Time vs. MRNet Fanout using a total of 3080
processes.

three different scenarios. The first scenario, S1, represents an
HPC system with a high speed inter-connection fabric with
{SEQ,REM} set to {0.007, 0.172}. The second scenario,
S2 is more representative of wide area network connectivity
with parameters {0.007, 2}. The third scenario, S3 repre-
sents a wide area networked system in which remote job
launch also entails transferring an executable program to the
destination node with parameters {0.007, 10}. These roughly
map to different scenarios of the many task computing
model often used in the volunteer computing paradigm or
in uncertainty quantification as described in Section I.

The results, shown in Table II, demonstrate the potential
impact of always using a fixed process launch topology
independent of the features of the target environment. For
each of the above scenarios, this table ranks the process
launch topologies based on their resulting launch times. If,
for example, an arbitrary 4-ary launch topology is chosen,
this would perform favorably for scenario S1 but suffer more
than 100% slowdown compared to optimal for scenario S2
and almost 200% slowdown for scenario S3. Also, contrary
to intuition, the flat tree is the best topology for scenario S3,
but performs abysmally for the other scenarios. In short, no
arbitrary topology is good for all scenarios. Of course, as
the number of jobs launched increases, the absolute penalty
for poor topology choices also increases.

VI. CONCLUSION

The main impact of this work is our efficient algorithm for
finding an optimal way to launch jobs comprised of large
numbers of processes on extreme-scale systems. Efficient
process launching is becoming increasingly important for
emerging computational models such as many-task com-
puting and uncertainty quantification. Moreover, it becomes
more expensive as the scales of HPC, clustered, Grid and
cloud systems increase. We show performance benefits in



S1: SEQ=0.03, REM=0.172 S2: SEQ=0.007, REM=2 S3: SEQ=0.007, REM=10
Rank Topology Launch Time (s) Topology Launch Time (s) Topology Launch Time (s)

1 greedy 0.609 greedy 4.272 greedy 17.006
2 16 0.753 32 4.44 flat tree 17.006
3 32 0.784 64 4.552 32 20.44
4 8 0.841 128 4.944 64 20.552
5 64 0.896 256 5.812 128 20.944
6 4 0.971 16 6.237 256 21.812
7 128 1.288 512 7.422 512 23.422
8 2 1.624 8 8.153 16 30.237
9 256 2.156 flat tree 9.006 8 40.153

10 512 3.769 4 10.111 4 50.111
11 flat tree 7.178 2 18.076 2 90.076

Table II
PROCESS LAUNCH TOPOLOGIES RANKED BY LAUNCH TIME FOR 1000 PROCESSES UNDER VARIOUS SCENARIOS.

today’s environments and project even more value when
mapped to future system requirements.

In addition to highlighting the performance benefits of our
launching algorithm over ad-hoc strategies, this work pro-
vides a quantitative framework for performance evaluations
of resource managers. Additionally, resource managers and
tools can leverage this work to launch processes optimally,
as we demonstrated in our MRNet case study.

Currently, determining the greedy topology relies on user-
supplied parameters. We are looking into automatically
generating these parameters during application configuration
or installation. Additionally, the greedy tree sequentially
executes the individual launches that originate from the same
node. Multicore systems provide an opportunity for a single
node to concurrently execute multiple remote launches.
Finally, adding physical machine topology awareness may
provide even further potential for improvements.
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