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Abstract—Stream applications are often limited in their
performance by their underlying communication system. A
typical implementation relies on the operating system to
handle the majority of network operations. In such cases,
the communication stack, which was not designed to handle
tremendous amounts of data, acts as a bottleneck and restricts
the performance of the application.

In this paper, we propose a parallel runtime framework
that integrates the communication operations with stream
applications, and provides a common parallel processing engine
that can execute both the communication and computation
operations in parallel on multicore processors. We place an
emphasis on the low-level details required to implement such
a framework, but also provide some guidelines on how an
application programmer can employ the framework.

Our runtime system uses a set of operations represented as
filters to perform the relevant computations on the data stream.
Filters that handle the application specific operations are cat-
egorized as computation filters and those that transform data
to and from network devices are classified as communication
filters. Computation filters are designed by the user and are
specific to the application. Communication filters are provided
by the runtime system and are built using system software
that allows direct access to network hardware. Such system
software allows the network operations to be performed by
the runtime system in parallel, leading to better communication
performance.

Applications that are designed for this framework are built
by constructing application specific computation filters and
then connecting them to the communication filters provided
by the runtime system. This abstracts the low-level program-
ming of network adapters and protocols by the application
developer, making it easier to build stream applications that
take advantage of the improved communication performance.
Moreover, by dynamically replicating and statically scheduling
such filters on the given multicore architecture, it is possible
for the runtime system to process multiple data streams in
parallel.

We are able to parallelize stream applications and achieve
speedups of more than a factor of eight in all the applications
we tested. The results show that our system scales to as many
parallel processes as there are cores on our computer, and
achieves speedups of more than a factor of ten in some cases
compared to sequential implementations.
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I. MOTIVATION

Applications that follow a streaming model [1]–[4] are

expressed as a network of filters connected by communica-

tion channels. Tokens of data flow along the communication

channels between filters. Each filter consumes one or more

streams of data from its input channels, and produces

streams of data on its ouput channels. For applications that

fit the model well, stream processing can greatly reduce

the working memory requirements. Since the data flows

through a sequence of filters in a pipelined style, it is often

possible to operate on a relatively small window of the data

at any given time, thereby making it possible to operate on

conceptually infinite data streams.

Traditionally, the stream processing model was used pri-

marily for signal processing type applications, where the

application processes a continuous stream of signal inputs.

For example, many video processing applications are mod-

eled as a set of image filters operating on a stream of

video frames, where the entire video may be hundreds of

gigabytes in size, but the processing can be done with just

a few frames at a time. However, in more recent years it

has been found that the stream model is highly suitable

for many applications that process very large data sets, in

the order of terabytes or even larger. Applications such as

financial trading systems [5], database systems [6], network

data analysis [7], [8] are some examples that follow the

streaming model and also operate on very large data sets.

Stream processing is highly suited to multicore and par-

allel computing, because the filters can typically execute

in parallel. Smaller stream applications often achieve high

levels of parallelism on multicore machines. However, as

the stream processing model is used to address larger

data processing problems, more computational resources are

needed, and a common solution is to distribute the filters

across a number of machines. In such cases, the applica-

tions are typically limited by the traditional communication

mechanisms [9]–[13]. The main reason is that these systems

have limited support for operating on parallel streams and

are burdened by abstraction layers that provide compatibility

for non-streaming applications.

Several high speed networks [14] exist that could han-

dle such communication requirements but these require

expensive hardware and specialized programming skills.

Commodity network adapters based on 10-gigabit ethernet

(10GbE) are a comparatively cheaper alternative and are

being widely deployed in clusters and grids in data centers.

Previous research [15], [16] has been done on optimiz-
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ing ethernet for improving communication in such cases.

However, they do not use many of the features provided

by modern day network adapters such as hardware queues,

flow control, etc., Also, they do not focus specifically on

streaming applications, making it difficult to utilize them

properly.

II. CONTRIBUTION

In this paper, we propose a parallel runtime framework

for building stream applications that are bound by very

large communication. A simple framework is used, where

the filters are described as actors and the application is

represented by connecting such actors into a directed acyclic

graph (DAG). Then our framework is used to establish, (1)

the communication system that allows these actors to send

and receive data across each other and (2) the computation

system that executes these tasks in parallel on a given

multicore system. The main contributions can be described

as,

1) A parallel multi-point communication layer, which

provides the ability for stream actors to communicate

across the network

2) An execution system that can run the given data-

parallel filters on the multicore system

3) The utilization of network hardware features such as

queues and flow control to support stream applications.

III. INTRODUCTION

Our main objective is to optimize performance of stream-

ing applications by first, providing a specialized commu-

nication link between the filters and second, extracting

data-parallel actors and executing them in parallel. Stream

applications usually consists of stateless and stateful filters.

Stateful filters are those that are depedendent on the previ-

ous execution which makes it difficult to replicate them.

Stateless filters do not pose such limitations and can be

freely replicated based on the available data streams. In

this paper, we focus on extracting data parallelism based

on stateless filters and streams. Example operations of such

an application are represented in the stream graph shown in

Figure 1. All the filters used in this application are essentially

stateless. This application operates by performing encryption

on the data that matches predefined rules like file names,

access level of user, etc., otherwise it performs compression.

Due to the nature of such stream applications, it is possible

to replicate and distribute the filters across different CPUs.

We are particularly interested in a scenario where groups of

networked servers are used to perform these kind of stream

operations by distributing data streams over multiple nodes.

The main challenge that arises in such a situation is how

best to address the intensive computational and communica-

tion demands of such applications. Two important features

enable us to tackle this challenge in our framework. Firstly,

the operations of both the application and the network are
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Figure 1: Sample stream application

designed to be stateless filters. Secondly, communication

techniques are employed that enable multicore processors

to perform computation and communication in parallel.

In building a framework for such applications on general

purpose computers, we exploit two hardware features that

could allow for dramatically improved performance, namely

multicore processors and multi queue network controllers.

Using multiple queues makes it possible to perform commu-

nication in parallel and by using the multiple cores, the filters

from the stream application can be executed concurrently.

A major bottleneck for communication on general pur-

pose computers is the overhead of the operating system’s

network stack. In particular, for applications that run as user

processes, data must be copied between OS kernel space

and user space. Previous research uses other mechanisms

to access data from the network hardware directly to over-

come this problem [11]–[13]. Most of these use modern

network hardware in combination with specialized system

software that allows direct access to hardware-controlled

packet queues, dramatically reducing overheads and improv-

ing performance. However, constructing stream applications

that use these features is difficult. Furthermore, many stream

applications have a very specific communication pattern,

typically operating on a flow, which is a specific stream
between two filters. Data in a stream must be processed

sequentially, whereas different flows can often be processed

in parallel.

Newer network hardware has introduced mechanisms for

separating arriving data into multiple queues, where data that

belong to the same flow are placed in the same queue [17],

[18]. We can utilize this feature to operate on flows by

processing each of the queues in parallel. However, building

applications that can use this feature directly is a challeng-

ing task because it requires explicit parallel programming

and interaction with low-level network interfaces. Previous

research [11], [12] that focuses on improving the perfor-

mance of network applications in such a manner, shows the

complexity involved in building such a system.

In our framework, we use a more elegant approach. We

define a runtime framework that provides pre-built commu-

nication filters. In order to implement a stream application

such as that shown in Figure 1, all we need to do is define

the computation filters and connect them in the framework

to the pre-built communication filters. On execution, our

runtime framework is able to replicate the stateless filters and
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the communication filters onto the different multiple cores,

thereby executing the operations belonging to different flows
in parallel. Since this paper describes the design of our

framework, it concentrates on the low-level issues regarding

network protocol, hardware and operating system calls and

how we create high level filters to abstract these issues

thereby making it easier to program while at the same time

improving performance.

Section IV represents the design principles that we fol-

low to conceptualize our framework. Section V describes

the implementation details used in the construction of the

system. In section V-B1, we discuss the challenges in using

a system consisting of execution engines to manage the

work. Finally in section VI-B, we present a simple stream

application constructed from operations such as compression

and encryption and evaluate our framework.

IV. DESIGN PRINCIPLES

The design of a high-level programming framework that

integrates packet processing tasks into the application re-

quires overcoming several challenges. In this section, we

describe these challenges and the principles that are used to

address them.

A. Communication filters

These filters represent simple operations responsible for

transforming application data suitable for transmission over

the network. We use a graph-based representation of filters

to determine the dependencies involved for the different

stages and to determine the relation with the different

tasks of the application. This graph contains the stages

through which the data associated with the application is

converted into network packets and vice versa. It shows

which of the tasks can be performed in parallel with those

of the application, and highlights those that have a data

dependency on a specific task in the application. The graph

also enables optimizations based on specific characteristics

of the application or the architecture used for execution. For

example, Figure 2 shows a simple graph representing User

Datagram Protocol (UDP) packet generation. As the data

is passed from one filter to another, a particular operation

transforms the data. For example the Compute Checksum
filter handles the process of calculating the checksum of the

data required by the UDP protocol and adds it to the location

specified by UDP Header filter.
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Figure 2: Simplified UDP packet construction

B. Userspace communication

For a communication system to be integrated with an

application, it is necessary to have an efficient mechanism

for reading and writing packets to and from the network

interface controller (NIC) without interacting with the op-

erating system. Rapid data access here is crucial for the

extraction of data parallelism at later stages. We use a

number of techniques to support this rapid data access.

1) Handling Multiple Hardware Queues: The develop-

ment of virtualization and improved network flow handling

has led to hardware-level multi queue support in NICs.

During transmission, concurrent writes to different queues

are possible, enabling multiple processes to send data simul-

taneously. During reception, the NIC classifies each packet

onto one of the receive queues in a technique known as

Receive Side Scaling (RSS) [17], [18]. This technique uses

the header information or tuples to classify packets onto

different hardware queues. Multi queue support can handle

several streams of data in parallel and it is exploited exten-

sively in our framework for this reason. By offloading the

classification of packets to the NIC, we remove any overhead

associated with packet classification in the application. We

can also use these hardware queues as a means of balancing

the workload across different threads by controlling the

number of queues that each thread handles.

2) Flow based communication: A common technique

known as batching is used to boost the performance of

network applications, where several packets are combined

and operated upon together, thus reducing the overhead of

I/O operations. In our framework, batching is utilized in

a form where the number of packets in a batch is varied

based on the available space in the hardware queue. This

number reflects the amount of data we are able to process

before issuing hardware synchronization calls and forms an

important means by which we reduce the usage of system

calls.

3) Reduction of Per Packet System Calls: System calls

are required in order to synchronize data between the NIC

hardware and the buffer memory used for intermediate stor-

age of data. Previous work describes the overhead associated

with per-packet system calls and provides mechanisms for

overcoming this overhead [12], [19], [20].

We employ an adaptive scheme described in section V-A

that utilizes this strategy of reducing per-packet system

calls. Our framework balances the system calls based on

the communication rate and application processing speed.

The transmission and reception are handled differently to

optimize the usage of system calls in each of the cases

independently. During transmission, we issue system calls

to synchronize the available buffer space based on the rate

at which we transmit data. This prevents degradation in

latency for larger packets and improves performance for

smaller packets. During reception of packets, the system

reads packets at the rate at which it is able to process them.

C. Computation filters

In the stream processing model, the communication flow

between tasks is well-defined. The computation filter con-
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sists of operations that the user wishes to perform on the

data. The design guideline is to split the application into as

many filters as possible and let the runtime framework de-

cide the scheduling and execution order, making it possible

to extract more task parallelism. The filters associated with

the computation are connected to the communication filters

by specifying them in the form of a directed acyclic graph

(DAG). The runtime system uses this graph to execute a

particular filter while passing the corresponding data from

one filter to another. The computation filters are designed by

the user, and the runtime framework provides the necessary

communication filters.

D. Integration

This stage connects the corresponding communication

filter to the computation filter defined earlier. Based on the

stream graph that is provided, the necessary communication

filters are added. This also determines the unique flows that

exists between the filters and is used later to replicate and

execute them in parallel.

E. Parallel Processing Engine

Two important aspects that the parallel processing engine

must address are the scheduling of filters and the balancing

of the load across the available resources. The parallel

processing engine consists of collaborating processes which

are bound to specific CPUs and act as engines to execute

the workload. Based on their requirements and the available

resources, filters are scheduled across these execution en-

gines. We assume a static schedule of the filters onto the

given multiple cores is provided for execution.

V. IMPLEMENTATION

In commodity systems, the interaction with the OS for

network operations is a necessary abstraction to handle mul-

tiple applications. However, in the case of specialized servers

which cater to specific applications, it would be beneficial

to interact directly with the network device. Moreover, in

the case of intensive network traffic, the OS could act

as a bottleneck due to the overhead associated with data

flowing through the kernel before being transmitted through

the network device [9], [10]. Eliminating this would be

possible, either by executing the application in the kernel

space (which could compromise stability of the system), or

by using an interface for accessing the NIC buffers from user

space. The latter approach is supported by several interfaces

such as netmap [20], PF RING DNA [19], etc., Even

though these interfaces support user space packet access,

they lack the ability to be invoked in a efficient manner by

the application. More specifically, they do not have any way

of optimizing the rate of processing, lacking, for example,

the concept of flows for application tasks. These application

tasks are represented as computation filters similar to those

described in Figure 1. The lack of support for interacting

with these interfaces, in order to read and write data in

parallel from concurrent processes or threads, adds to the

problem. Also, since the application is now responsible for

handling network packets, it has to perform the additional

operations that would otherwise be carried out by the OS.

Our framework provides support for sending and receiving

data in parallel over the NIC from user space and a common

parallel execution engine that supports both computation and

communication filters.

A. Parallel communication interface

The parallel communication interface, when combined

with the computation filters, provides concurrent commu-

nication for the application threads or processes over the

network. To do this, two important requirements have to

be met. Firstly, access to network data from user space

should be provided, which can be read from and written to in

parallel. Secondly, it should be possible to integrate this with

the computation by providing the necessary communication

filters that can perform packet operations. The ability to

choose communication filters allows the flexibility in the

choice of communication protocol.

1) Userspace data access: Several researchers [19], [20],

etc., propose access to network buffers from user space. We

use netmap APIs [20] to access data from the network

buffers. Netmap uses a set of ring buffers in kernel space

and user space to export the network hardware buffer’s

memory region. This enables applications in user space to

directly access the network hardware.

We leverage the availability of multiple hardware queues

present in modern NICs to read and write data concurrently.

Netmap, by default, supports assigning each hardware

queue to an individual application process or thread. How-

ever, in order to allow for more efficient communication

in the framework, we require the ability to assign more

than one queue to a particular thread or process. Our

modifications to netmap’s hardware queue assignment API

allows our framework to balance the amount of data handled

by each process by varying the number of queues assigned

to it.

During testing, it was found that it was essential to have

control over the rate at which system calls were issued with

respect to the amount of data being transferred. Frequent

system calls hamper bandwidth and limit the peak perfor-

mance of the application. To tackle this, we propose the

following algorithms for reading and writing data from the

hardware queues using the Netmap APIs. These algorithms

are designed to provide the following features,

• Provide batching of packets based on available space

on hardware rings

• Reduce the usage of system calls such as ioctl and poll
• Provide mechanisms for handling multiple queues

through the application.
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Algorithms 1 and 2 use a batch update for sending

and receiving packets based on the rate at which data

flows through the interface. This is done by maintaining

a data structure that has information about the hardware

rings, updating it on a periodic basis. In cases where the

application is generating sparse traffic, it is possible to

frequently update the ring in order to maintain a consistent

latency in transmission. Choosing a specific queue to send or

receive data is determined based on an application specific

function. The f(n) present in Algorithm 1 line 9 and

Algorithm 2 line 9 represents this. Choosing a random queue

(f(n) = X ∼ U([0, n]) n = no of queues) has proven

to be effective in our experiments, but if an application

requires a specific flow to be maintained, a different function

here could provide that support. The threshold specified in

Algorithm 2 line 18 is determined for each application based

on the rate at which it is able to process data. By issuing

the system calls such as ioctl and poll only when required,

and effectively handling the multiple queues, we are able to

achieve improved performance.

Algorithm 1 To send packets

1: struct ring[n]{
2: � Stores information about hardware rings

3: � n← tx rings assigned to thread

4: avb, available space

5: curr, current position

6: limit, total space }
7: function SEND DATA MQUEUE(Ring f(n), Data

packet)
8: while !success do
9: i← f(n)

10: success = SEND_DATA(i, packet)
11: end while
12: end function
13: function SEND DATA(Ring i, Data packet)
14: if ring[i].avb > 0 then
15: hw ring[i].slot(ring[i].curr)← packet
16: ring[n].avb← ring[i].avb− 1
17: ring[i].curr ++
18: if ring[i].avb == 0 then
19: hw ring[i].avb − = ring[i].limit
20: hw ring[i].curr ← ring[i].curr
21: end if
22: return success
23: end if
24: issue ioctl and poll
25: ring[i].avb← hw ring[i].avb
26: ring[i].limit← hw ring[i].avb
27: end function

2) Packet processing operations: Packet processing oper-

ations consist of converting the raw data that the application

provides into network packets suitable for transmission.

Several user space libraries exist that perform packet related

processing operations like libnids [21], lwip [22], Click [13]

etc. Since our application is targeted at a closed environment,

we chose the Click modular router due to its flexibility and

vast library of elements. Our current framework supports

the UDP protocol but Click’s modular infrastructure makes

it easy to support more complex ones.

Algorithm 2 To receive packets

1: struct ring[n]{
2: � Stores information about hardware rings

3: � n← rx rings assigned to thread

4: avb, available packets

5: curr, current position

6: limit, total packets }
7: function RECEIVE DATA MQUEUE(Ring f(n))
8: while !packet do
9: i← f(n)

10: packet = RECEIVE_DATA(Ring i)
11: end while
12: end function
13: function RECEIVE DATA(Ring i)
14: if ring[i].avb > 0 then
15: packet← hw ring[i].slot(ring[i].curr)
16: ring[i].avb← ring[i].avb− 1
17: ring[i].curr ++
18: if ring[i].avb < threshold then
19: hw ring[i].avb− = ring[i].(limit− avb)
20: hw ring[i].curr ← ring[i].curr
21: ring[i].avb← hw ring[i].avb
22: ring[i].limit← hw ring[i].avb
23: end if
24: return packet
25: end if
26: issue ioctl and poll
27: ring[i].avb← hw ring[i].avb
28: ring[i].limit← hw ring[i].avb
29: end function

B. Parallel Processing Engine

After defining the communication filters by means of

Click’s infrastructure and access to network hardware

through netmap’s APIs, we integrate these filters with the

application tasks. The result is a complete stream graph that

does both the computation and communication operations.

The next logical step is executing these filters in parallel

by exploiting data parallelism. Packet streams are inherently

operable in a data parallel fashion i.e. it is possible to operate

on two different streams simultaneously.

1) Execution engine: The execution engine consists of

a set of processes and threads that the work is scheduled
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upon in order to be executed. When implementing threads to

execute code which consist of system calls such as malloc(),
ioctl(), poll(), etc., we found a performance degradation,

even when the threads are completely independent. To

support the lightweight style of threads, the OS implements

most of the locking mechanisms for system calls from

threads. Previous research such as [23]–[25] shows the

degradation in performance due to the usage of malloc() in

threads. Since our framework has to deal with system calls

and issue them in parallel, we use unix process to perform

the tasks concurrently. We do this by using Message Passing

Interface (MPI) [26] to construct a set of processes that is

scheduled onto the different CPUs on a multicore system.

In order to prevent unwanted process migration due to the

OS scheduler, we specify affinity of the MPI processes to

particular CPU cores acting as execution engines on which

different operations are scheduled. Previous research [27],

[28] highlights the importance of affinity in network sensi-

tive applications. Next, by utilizing our parallel communica-
tion interface (V-A), we specify the hardware queues each

of these processes handle.

2) Parallel processing of computation filters: Once we

have scheduled our execution engines on the physical sys-

tem, the next step is to execute the stream graph for

different flows. To extract data parallelism, we replicate the

stream graph onto multiple execution engines. This ensures

operations on the same flow are performed on the same

CPU, thereby using local cache. By making sure that data

belonging to a specific flow always ends up in the same

execution engine, we only perform operations conforming

to that stream of data.

VI. EXPERIMENTAL EVALUATION

In order to evaluate our framework, we test the scalability

and the performance speedup on a multicore system for an

application that is constructed with the framework. Using

two generic operations: compression and encryption, we

build simple stream applications. We then measure the

performance improvement as we increase the number of

execution engines dedicated to the application. Although

the framework can be used with a greater variety of more

complex benchmarks, these simple benchmarks allow us to

evaluate the framework’s performance without unnecessary

application-specific complications.

A. Hardware Setup

The evaluation system consists of two servers connected

directly to each other. Each server consists of two Intel

Xeon 5600 hexacore HT in a dual socket configuration with

24GB DDR3 memory. In total there are 2 Processors x 6

Cores x 2 HT = 24 CPUs in each server. These servers are

connected using Intel 8299EB 10Gbe adapters over directly

attached twin-axial cables. The adapters are located in the

PCI Express x8 slot to provide required bandwidth for the

network cards. This forms a closed connection between two

servers and limits the influence of external devices such as

switches or routers on data transmission.

Each application is constructed in two parts, one a source

of data and the other a sink. We measure the overall

time it takes for application task operations, communication

operations, and the time to send from the source and receive

at the sink. This is done for different packet sizes and

applications. Then we plot the speedup achieved in each

of the cases over the serial version, where we have a single

sender and receiver operating on the multiple queues. This

is the baseline in our experiments and is similar to how the

application would behave if it were implemented without

our framework but still using the system software to directly

access the network hardware.

The Intel 82599EB is restricted to 16 queues when using

Receive Side Scaling (RSS). This limited the maximum

amount of processes at the sink to be 16, even though 24

CPUs were available. The source is not affected by this

limitation and can use all the 24 CPUs available, along

with 24 hardware transmission queues. Overall, we require

at least one hardware queue mapped to each of our processes

or execution engines.

We only use two nodes connected directly with each other

as the experimental setup. This establishes an ideal setup to

empirically evaluate the performance gain obtained due to

our framework.

B. Application Construction

In order to evaluate our framework, distinct operations

were required that would be suitable for a streaming frame-

work. Since compression and encryption applications are

relatively common, we chose two applications composed

from these operations. The stream graph that represents both

these applications is shown in Figure 3. The UDP protocol

is used for transmission to send the data between source and

sink.
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Figure 3: Integrated Task Graph

Both applications are constructed similarly. Data sizes

of 1.28GB and 2.56GB are selected as the workload for

the compression and encryption applications respectively.

The OpenSSL library is used for encryption/decryption and

zlib is used for compression/decompression operations. Each

application consists of a data generation phase, then data

is compressed or encrypted depending on the application

over the two nodes. These are representative of some of

the typical operations that would be involved in a much

more complex application. Use of these simpler stream

applications enables us to evaluate the performance of our
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framework and not that of any optimizations specific to the

application.

MPI’s communication calls are at a higher level and rely

on the Linux kernel for handling network operations, unless

there are specialized interconnects such as Infiniband which

provide dedicated hardware for these operations. As a result,

a corresponding MPI implementation would suffer from the

substantial overheads resulting from frequent kernel calls.

So in our comparison we chose to measure the speedup we

achieve only due to our communication system when utilized

by different parallel processes. As regards to scalability,

an improperly configured network topology or poor load

balancing can adversely affect an MPI implementation in

the same way that it could affect our system.

VII. RESULTS

It can be seen in Figure 4 that there is considerable

difference in the way each of the operations scale. Three

distinct observations can be made from the results.

One is that, from Figure 4.(d,e,f), we note that com-

pression requires more work than decompression, whereas

from Figure 4.(a,b,c) encryption and decryption are more

balanced. This is evident from the continued speedup ob-

tained from up to 4 senders in the case of compres-

sion/decompression. Only a slight asymmetry can be seen in

the encryption/decryption case, where adding more senders

than receivers only yields a slight increase in performance. In

this case, the likely explanation is support for AES instruc-

tions in the architecture, making decryption a marginally

easier task. In general though, the performance here only

improves by increasing both the number of senders and re-

ceivers simultaneously. Even from these preliminary results,

it is clear that the optimal sender/receiver balance varies

from application to application and highlights the need for

effective load-balancing.

Packet size also impacts performance as seen in Fig-

ure 4.(d,e,f). The compression operation is influenced more

than that of the encryption application. There is a speedup

of 12x in Figure 4.(d) with smaller packets and 10x in Fig-

ure 4.(f) with larger packets. This discrepancy appears to be

greater in cases where there is a large number of senders and

a high number of receivers. A possible explanation for this

relates to the CPU utilization on the faster receivers. With

large packet sizes, they are more likely to block, waiting for

data to be streamed from the slower senders. Smaller packets

allow the work to be distributed more evenly among the

available receivers. In the encryption application, there is not

as much asymmetry and packet size does not matter as much.

The fact that packet size impacts applications differently

suggests that it is essential to incorporate dynamic packet-

size selection into the framework itself.

From Figure 4(a,b,c,d,e,f), a drop in speedup is apparent

when employing 12 senders or more. The most likely

explanation for this is the influence of the NUMA archi-

tecture [29]. In such a architecture there are two or more

physical CPUs connected with each other using a high

bandwidth bus. Due to our hardware setup when we use

more than 12 parallel processes we start to utilize the second

CPU. Due to the limitation in the way our data is processed,

all the nodes try to access the memory belonging to a single

CPU thereby causing cache misses and leading to a drop in

performance. Eventually, since the processing requirement

is more than this bottleneck we see a steady increase in

performance. Despite these NUMA architecture issues, once

the initial drop is overcome, the application continues to

scale and eventually attain better performance in most cases.

In summary, it can be seen that the framework scales well

for different workloads, can handle both computations and

communication, and can operate on them in parallel. We see

that we can achieve a speedup 10× for compression and 12×
for encryption based stream applications respectively on an

architecture consisting of two nodes of 24 logical cores each.

In some cases, the framework can be improved by having

a greater degree of control over the fine grained parallelism

within the execution engines. This can be achieved by

introducing pipeline stages for different operations.

Since we work with a static schedule provided by the

user in executing the applications, dynamic load balancing is

likely to be a beneficial addition to the framework, in terms

of performance. It is also possible to add the capability to

dynamically adjust the number of network queues allocated

to each core as a stream application’s requirements change

over time. In the future we would also like to extend our

framework to work with larger number of nodes. Finally,

as seen in Figure 4, being able to adjust packet sizes

dynamically to an optimal value for each network link,

dependent on the stream application, would also be a useful

addition to the framework.

VIII. RELATED WORK

Stream programming languages such as StreamIt [1] and

LUSTRE [2] target stream applications, but the focus is more

on parallelizing the computations related to the application

alone on multicore systems, unlike our runtime framework

which also parallelizes communication operations.

The Stream Project [30] concentrates on researching mul-

tiple facets of middleware for a large scale system with an

emphasis on problems such as data storage, redundancy, and

real time systems. In comparison, our work is more about

providing a simple system using which we can improve

performance of stream applications by providing filters that

can be used to interact with the hardware without the usage

of the traditional Linux subsystem. Ultimately, our work

could feed into such large scale middleware systems to

improve communication and computation performance.

MPICH-G2 [31] targets large grid networks and applica-

tions written using the MPI programming model, unlike our
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Figure 4: Performance Speedup; (a),(b),(c) - Application A. Encryption; (d),(e),(f) - Application B. Compression;
Speedup based on time in takes to compute a fixed workload for different number of source and sink processes

and for varying packet sizes over a single source and sink are shown above

focus on the streaming model. Moreover, we do not employ

any of the MPI communication primitives provided to handle

streaming data. Instead we use our own fast runtime system

to communicate data between the filters in the stream graph

across systems.
Wagner et al. [32] propose a stream processing framework

that completely utilizes the MPI library. They make use of

MPI groups and communicators to improve the flexibility

of the MPI library to support stream processing. Their ap-

proach employs a library using MPI primitives to construct

their stream processing system and relies on the underlying

abstraction layer to communicate over any network the MPI

library supports. Our runtime framework is designed to

provide a low overhead, parallel communication framework

by directly utilizing the network link.
Mancini et al. [33] propose a hybrid approach of Stream

and MPI programming models, and use a whole MPI pro-

gram as a building block in a stream application to improve

processing speeds of computational units in hetrogeneous

computational systems.
While we use MPI to execute the computation filters, our

runtime framework employs a direct and parallel communi-

cation interface for the actual transmission and reception of

data between filters. This is the key feature that enables us to

parallelize the communication along with the computation

for a given streaming application, which is essential in

improving its performance.

IX. CONCLUSIONS

In this paper, we have proposed a parallel runtime frame-

work that can integrate communication and computational

operations in stream applications and perform both types of

operation in parallel.
Our algorithms for sending and receiving data implicitly

perform batching and reduce the usage of system calls, and

we combine this with netmap APIs to minimize the inter-

action with the OS. This allows communication performance

in our framework to better scale with the number of avail-

able processors. Instead of performing the communication

operations separately in the OS, by integrating them within

the stream application, we are able to construct a unified

stream graph that represents the entire application, including

computation and communication filters. Using this, we are

able to parallelize stream applications and achieve speedups

of more than a factor of eight in all the applications we

tested.
By integrating these features into a runtime framework,

the system of multiple queues, parallel communication, and

computation are entirely hidden from the programmer, who

merely specifies a standard stream graph for computation

alone. This frees the programmer from the onerous task

of dealing with the implementation of the substantial com-

munication requirements that result from the distribution of

stream applications across multiple systems.
The results show that our system scales to as many parallel

processes as there are CPUs on our 24 multicore system, and

achieves speedups of more than a factor of ten in some cases

compared to sequential implementations.
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