
A Comprehensive Approach to Abusing Locality in Shared Web Hosting Servers

Seyed Ali Mirheidari
1
, Sajjad Arshad

2
, Saeidreza Khoshkdahan

3
, Rasool Jalili

4

1
Computer Engineering Department, Sharif University of Technology, International Campus, Kish Island, Iran

2DNSL, Computer Engineering Department, Sharif University of Technology, Tehran, Iran
3
Sabzfaam Information Technology Corporation, Tehran, Iran

4
Computer Engineering Department, Sharif University of Technology, Tehran, Iran

mirheidari@kish.sharif.edu, msarshadir@gmail.com, khoshkdahan@sabzfaam.ir, jalili@sharif.edu

Abstract—with the growing of network technology along with

the need of human for social interaction, using websites

nowadays becomes critically important which leads in the

increasing number of websites and servers. One popular

solution for managing these large numbers of websites is using

shared web hosting servers in order to decrease the overall cost

of server maintenance. Despite affordability, this solution is

insecure and risky according to high amount of reported

defaces and attacks during recent years. In this paper, we

introduce top ten most common attacks in shared web hosting

servers which can occur because of the nature and bad

configuration in these servers. Moreover, we present several

simple scenarios that are capable of penetrating these kinds of

servers even with the existence of several securing mechanisms.

Finally, we provide a comprehensive secure configuration for

confronting these attacks.

Keywords—Shared Web Hosting; Data Confidentiality

Violation; Data Integrity Violation; Session Poisoning; Session

Snooping; Log Poisoning; Log Snooping; Intensive LFI; CSRF

Token Poisoning; Fast Brute Force; Convenient Phishing.

I. INTRODUCTION

Some companies and organizations use dedicated web

servers while the progression of hardware enables

multitudes of websites to reside on one server. This solution

is commonly known as Shared Web Hosting which has

several advantages including affordability and using

maximum power of server hardware. Another advantage of

this solution is that it is not required for the website owners

to be experts of the domain and they can only handle their

own website applications.

The risks and vulnerabilities involved with using shared

web hosting can prevent it from always being an excellent

solution. As claimed by Zone-H, an unexpected number of

successful attacks were fulfilled after accessing a vulnerable

website on a shared web hosting server and even secure

websites like static pages also being hacked due to residing

on shared web hosting servers [1] [2]. Various security

challenges in different levels of network come along with

these kinds of servers because there is no proper isolation

between resources used by websites [3]. Also, having one

vulnerable website on the shared server allows the attacker

to hack into other websites with no struggle due to improper

configuration of shared web hosting servers.

In this paper, we present top ten most common attacks in

shared web hosting installations and then provide a

comprehensive secure configuration for shared web hosting

servers. A specific configuration is needed for the shared

hosting servers to become vulnerable to these attacks [3]. In

this way, an attacker who controls a website hosted on a

shared web hosting server is able to attack all other websites

hosted on the same server.

In this paper, we focus on the Apache webserver to

present the attacks. Apache webserver as mentioned in

Netcraft [4], is the most common used webserver among

other webservers such as Microsoft IIS. In addition, the

focus of this paper is on Linux operating system due to the

fact that most countermeasures are developed for the POSIX

operating system. Also, we use PHP programming language

because of higher popularity, usability and reliability.

However, it has to be known that any webserver with certain

configuration can be vulnerable to the aforementioned

attacks and they are not only for the Linux/Apache/PHP

installation.

In summary, this paper provides the following

contributions:

• We demonstrate top ten attacks in shared web

hosting servers where six of these attacks are novel.

• We provide sample codes to clarify the concept of

these attacks.

• We provide a comprehensive configuration for

shared web hosting servers to encounter these

attacks.

The remainder of this paper is outlined as follows. In

Section II, the overall architecture of shared web hosting

servers is portrayed. We describe top ten most common

attacks against shared web hosting servers in Section III. In

Section IV, we present a comprehensive secure

configuration for shared web hosting servers to defeat these

attacks and we conclude in Section V.

II. SHARED WEB HOSTING ARCHITECTURE

In order to gain a more precise view for understanding

the attacks mentioned in the next section, we describe the

shared web hosting architecture in this section. In shared

web hosting, a webserver hosts many websites

simultaneously. There is a FTP account for every website

owner for uploading new files which are owned by the user

account of the website owner. Webserver runs as a specific

user account (apache, daemon, www-data) and handles all

HTTP requests for all websites. Thus, it is necessary for a

webserver to have the ability to read the files of every

website. Despite this, users in some Content Management

Systems (CMS) must be capable of uploading files thus

besides reading files, write access to files and directories of

2

websites is also needed for a webserver [5].

In Figure 1 where web1 and web2 are owners of two

separate websites, necessary permissions are shown for the

Apache webserver in Linux operating system.

Figure 1. Essential Permissions for the Apache Webserver

There are two universal forms of webserver

configurations for executing scripts in shared web hosting,

which are:

• Configuring the webserver to load the script interpreter

as a webserver module

• Configuring the webserver for running the script

interpreter as a CGI [6] binary

The webserver process loads the webserver module or it

is compiled into webserver binary, meaning that a binary

image of the interpreter exists in the webserver process. In

CGI mode, by arrival of each request, the webserver will

create a new interpreter process to handle it. In comparison

to the CGI mode, using script interpreter as webserver

module has advantages like more stability under load and

more efficiency in managing requests and resources.

However due to the fact that malicious scripts do not affect

webserver process, the CGI mode is more secure.

III. SHARED WEB HOSTING ATTACKS

In Section II, we provided an overview of how shared

web hosting servers work. The attacks which we are going

to present are based on the fact that there is no proper

isolation between different websites hosted on the shared

web hosting server.

This weakness gives the attacker a set of capabilities like

accessing files of other websites and exploiting the

disclosed information (Data Confidentiality Violation),

modify important files (Data Integrity Violation), force

arbitrary sessions to the vulnerable websites (Session

Poisoning), inspect and modify their session values (Session

Snooping), manipulate logs of other websites (Log

Poisoning), inspect their logs (Log Snooping), execute

malicious code by using LFI (Intensive LFI), inspect and

modify CSRF Tokens (CSRF Token Poisoning), launch

brute force attack faster (Fast Brute Force) and easily phish

victims (Convenient Phishing).The details of these attacks

are presented in following sections.

A. Data Confidentiality Violation

In shared web hosting servers, webserver is run by one

individual user account in a default way and the scripts of

all websites are executed under that user account. Thus, this

user account can access all files and folders and as a result

all scripts of a website can access the files and folders of

other websites. One attacker can access the files and folders

of a website belonging to the victim and exploit the resulted

information [5].

For instance, an attacker can generate malicious script

and read the database configuration file which includes

username and password (which are usually in clear text) and

connect to database and read private data. Using this

method, an attacker can exploit the resulted information and

change the behavior of the website in a desired way.

B. Data Integrity Violation

As mentioned before, in shared web hosting servers

users have read access to all files of all websites. But there

are some websites like CMS that give the user the ability of

uploading files. In this case if database is not used for

storing uploaded files, the webserver user account should

have permission for creating new files in folders of one

individual website. In other words, webserver user account

has read/write access. Since in the default mode, scripts of

all websites run under webserver user account, by using this

method attacker can recognize victim websites and change it

in a desired way [5].

As an illustration, an attacker can write a script to search

files with the read permission and find the vulnerabilities of

websites and finally attacker can use another script to

modify important files or create some new files in victim

websites.

C. Session Poisoning

In shared web hosting servers, websites store their

session files in temp directory based on their needs and all

users can read or modify the files in temp directory. Thus,

there is a strong possibility for users to have access to

session files of a website in the case we do not use secure

mechanisms.

In Session Poisoning [7] attack, attackers create a new

session file and force the victim site to use it like other valid

session files. As an illustration assume that the victim

website has an administration panel with an authentication

page. When administrator login the page successfully,

victim website defines a new session variable named as

level and send session ID to the admin client. Thus, in future

it is enough for administrator to send just the session ID and

not all the login information. On the other side, an attacker

can create a session file using his own website which

includes the admin level variable. Finally, the attacker will

see the administration panel of the victim website which

sends the newly created session ID to the victim website.

Since both websites hold their session files in temp

directory, the victim website loads the session file uploaded

by the attacker and consequently gives the attacker

administration permission. This can be also done by the

attacker with inserting one fake session in the temp folder if

it is possible for him to write directly on the files of temp

folder.

D. Session Snooping

In shared web hosting servers with default configuration,

all websites store their sessions in one directory (e.g. /tmp).

In other words, all websites can read or modify session files.

In Session Snooping [7] attack, attackers analyze and

modify the content of the session files of other website in

order to exploit the results. For example, assume one forum

as a victim website in which users can login and access

different pages based on their permissions. The victim

website uses username variable in its session in order to

prepare appropriate results for different users. On the other

d rwx r-x --- web1:www-data /home/website1/public_html
d rwx r-x --- web2:www-data /home/website2/public_html

3

side, an attacker registers itself in victim forum and login

successfully afterwards which leads in sending session ID

from victim website to attacker. Then the attacker changes

the value of correspondent username variable in new

created session file to the username of the victim. Finally,

the attacker reviews the victim websites and sends his

session ID to it. Consequently, victim website loads the

session file related to the session ID and recognizes the

attacker as another user. Thus, the attacker can visit private

information of other users.

E. Log Poisoning

Webservers usually save the information of processed

requests in a log file. A log file includes information such as

Domain Name, Client IP, Request Time, Request Type

(GET or POST), Requested Filename, Size of Transferred

File and Return Status Code from webserver [8]. The two

attacks presenting are based on the fact that Webserver uses

a single file for storing logs of various websites and the log

file is accessible by every script executed by the webserver

[9]. In the following sections, the details of Log Poisoning

and Log Snooping attacks will be presented.

In default configuration of a shared web hosting server,

modifying the log file is only allowed by the root user and

other users can only read it. Also, permission is required for

a webserver to write in the log file regardless of the user

account running with it. Therefore, in most webservers like

Apache, parent webserver is executed with root privilege

and child webservers are run by parent webserver to handle

the requests. In Linux and other Linux-like operating

systems, child processes inherit file descriptors opened by

their parent process. Now by opening a file by a parent

process in write mode, child processes are able to write in

the already opened file. In this way, although not having

root privilege, child webservers inherit the log file

descriptor and can alter the log file. Scripts of websites are

able to modify the log file since they are executed by child

webservers.

In Log Poisoning [9], a script is created by the attacker

in order to find log file descriptor and open the log file in

write mode. In Linux operating system for example,

information about opened files of each process exists in

/proc/PID/fd, where PID is the process ID. A PHP script is

then created by an attacker for finding opened files of child

webserver processes and the script is executed and the log

file is opened again but with write access. The sample PHP

script for Log Poisoning attack is displayed in Figure 2.

In order to be susceptible to this attack, PHP interpreter

must be used as an Apache module in Apache webserver

because log file descriptor is not inherited by the new CGI

interpreter process and as a result the log file cannot be re-

opened in write mode by the malicious PHP script. Clearing

other websites’ requests for covering track of penetration

and adding fake requests to the log file are examples of

malicious activities which an attacker can carry out in case

of having write access to the log file. We must emphasize

that from a general view having write access to log file in

shared web hosting will lead to very dangerous situation

which attackers can fulfill various attacks on the hosted

websites.

Figure 2. Log Poisoning Attack Script (PHP-Module Mode)

F. Log Snooping

In default configuration, all scripts run by the webserver

can read the log file because webserver user account has

read access to log file. Therefore, scripts of one website are

capable of reading logs of other websites located on the

same shared web hosting server. In Log Snooping [9] attack,

the goal of an attacker is to retrieve critical information by

searching the other website’ logs in order to launch other

complex attacks. Unlike Log Poisoning, Log Snooping

attack is feasible in two modes which webserver runs the

script interpreter (Module or CGI).

Figure 3. Log Snooping Attack Script (PHP-Module Mode)

Figure 4. Log Snooping Attack Script (PHP-CGI Mode)

Even when configuring the log file as unreadable for

other users, Log Snooping attack can be done using the PHP

script shown in Figure 3 and Figure 4. Structure of files and

folders of victim websites is one of the most important

information that attackers can acquire by Log Snooping

attack. Attackers can re-generate the site tree using

requested URLs and find out about names of website files

and folders.

In several hardening best practices, the name of

administrator authentication page is changed to prevent

attackers from penetrating in the administration panel.

Attackers can bypass this technique and find the

authentication page by using the site tree. So, the attacker

<?php
 if ($dh = opendir('/proc/self/fd/')) {
 while (($fd = readdir($dh)) !== false) {
 if (strpos(realpath($dir.$fd), "access_log") !== false) {
 $log_fd = $fd;
 break;
 }
 }
 closedir($dh);
 }
 $file = fopen("php://fd/$log_fd", "w");
 fwrite($file, "Some Junk Data\n");
 ...
 fclose($file);
?>

<?php
 if ($dh = opendir('/proc/self/fd/')) {
 while (($fd = readdir($dh)) !== false) {
 if (strpos(realpath($dir.$fd), "access_log") !== false) {
 $log_fd = $fd;
 break;
 }
 }
 closedir($dh);
 }
 $file = fopen("php://fd/$log_fd", "r");
 $data = fgets($file);
 ...
 fclose($file);
?>

<?php
 $file = fopen("/var/log/apache/access_log", "r");
 $data = fgets($file);
 ...
 fclose($file);
?>

4

can use methods like SQL Injection to extract hashed

password of administrator and find clear password text by

using brute force of encoded password or using brute force

for both user and password to discover the admin login

credentials. A significant fact here is that the attacker cannot

easily find the authentication page in case of not having

access to the shared web hosting server.

G. Intensive Local File Inclusion (LFI)

Some websites are vulnerable since they allow special

code reuse by including files through supplying the values

of some parameters in URL. In this case, attackers try to

misuse and include some malicious files. One of the most

common attacks in this area is known as Local File

Inclusion (LFI) [10] which leads in including victim

website’s local file. During recent years, several methods

like LFI2RCE [11] have been proposed which are able to

execute remote code using LFI vulnerability. One method is

to inject malicious code into the log file of webserver and

include the log file by LFI which leads to execution of

malicious code by victim website.

But in case of large log file, this method is not effective

due to the fact that websites cannot include the whole file.

Generally, we can say without having access to the local

victim file system, it is a complicated task to execute

malicious code by including common files such as log file.

But in shared web hosting servers, it is easier since there is

an access to local victim file system and an attacker can do

the LFI2RCE attack easily. As an illustration, attackers can

create a malicious file in a path like temp directory which

can be accessed by all websites and use the LFI attack to

include malicious code and consequently execute its

malicious code. Thus, we can conclude that in shared web

hosting servers, LFI2RCE attack is more common than its

alternatives.

H. Cross Site Request Forgery (CSRF) Token Poisoning

Cross Site Request Forgery (CSRF/XSRF) [12] is a type

of vulnerability in a website whereby unauthorized

commands are transmitted from a user trusted by the

website. In other words, CSRF exploits the trust a website

has in the browser of users [13]. An easy and effective

solution is to use a secret, user-specific and server-side

generated token [12]. In this way, websites generate a token

and sends it to the browser of the user. After that, the

browser should use the token in all form submissions. When

the website receives a request from a user, it checks the

received token with the original one and if two tokens

match, it will process the request of the user. Whereas

attackers are not able to put the right token in their

submissions, they cannot launch CSRF attack.

Websites usually generate tokens per-session and save

the token values in the corresponding session files.

Attackers create some scripts to inspect and modify content

of session files belonging to other websites in shared web

hosting servers. As a result, attackers are able to modify the

value of CSRF tokens which are located in session files. In

this way, attackers can bypass CSRF prevention technique

and send unauthorized requests to the victim websites.

I. Fast Brute Force

Nowadays, Brute Force [14] attack is known as a

common attack on web applications for detecting

passwords, directories, files and session IDs. Bandwidth

protection and request controller tools are the main

constraints of this type of attacks. In dedicated servers,

attackers must follow remote attack in order to detect the

password and most of attempts fail because of the low

bandwidth.

But in shared web hosting servers, attackers can try

brute force attack locally without any bandwidth limit.

Moreover, since shared servers usually have high processing

power, attackers can use the CPU along with their goals and

create a script including brute force code and start the attack

on the victim website. So in shared web hosting servers,

brute force attacks tried locally are generally faster than

remote ones on dedicated servers. Trying local attempts not

only bypass the bandwidth bottleneck but also bypass the

protection mechanisms.

J. Convenient Phishing

Phishing is a kind of online identity theft in which

confidential information of users such as bank account

password or credit card information is stolen by displaying

fraudulent web pages. Nowadays Phishing is an important

attack on the internet and is accepted as a global criminal

activity. In simple words, phishers try to redirect the users to

a website where they are asked to enter the personal

information. E-mail and online banking websites are the

main target of phishing. Fake websites are designed in a

way to seem as a legitimate website and afterwards phishers

use the private information for malicious tasks [15].

Currently there are some techniques for protecting users

against phishing [16]. But in shared web hosting servers,

phishers can bypass many phishing prevention mechanisms

because they can access to webservers of victims. For

instance, users may use address www.website.com/~attcker/

page.php for login instead of www.website.com/~victim/

page.php. Interestingly, the prevention mechanisms cannot

detect the anomaly activity since the domain address is the

main domain of website and homographic domains have not

been used. In other words, with access to shared web

hosting servers, attackers are able to easily bypass many

phishing obstacles.

IV. A COMPREHENSIVE SECURE CONFIGURATION

In this section, we present a secure configuration for

Linux/Apache/PHP installations and how it confronts the

attacks described in Section III. Precisely observing and

studying these attacks leads us to the fact that the rise of

such attacks is due to the lack of proper isolation between

different websites hosted on one server [17]. Following

sections provide details of proposed configuration for shared

web hosting servers.

A. Script Execution Restriction

In default shared web hosting configuration, all scripts

are executed under the user account of the webserver

regardless of their owners. Thus, a website is able to access

resources of other websites. Due to the popularity of shared

5

web hosting, several methods have been presented for

providing a more secure shared web hosting installation.

Following sections introduce the most well-known

countermeasures developed for this purpose.

1) PHP Methods

Safe_Mode [18] and Open_Basedir [19] are two

methods which PHP developers are studying in order to

solve the security problem, although they both carry on

some limitations. In other words, PHP is not the right

platform for unraveling the security problem [5].

Safe_Mode. In Safe_Mode, PHP examines the access of

running PHP scripts to files based on their owners. PHP

checks the owner of those files and if the owner of the file is

not the same as the owner of the running script, PHP will

not allow that access. However, Safe_Mode has a few

limitations. It has to be known that some applications that

upload files to server, the owner of them will be Apache

user, not the script owner’s user account and those files

cannot be accessed by the PHP scripts anymore [5].

Open_Basedir. In Open_Basedir, PHP determines the

directory which each user is allowed to access. PHP

examines the file access of running PHP scripts and do not

allow access to files outside that directory [5].

2) Apache Module Methods

By precisely seeing the security problem, the cause of

the problem will rise as how we run the Apache server.

Apache is executed by a unique user who can have access to

all files of all websites.

A new idea is that Apache can serve each website by its

owner’s user account. In other words, each script is run with

its owner’s user account permissions. suEXEC [20] and

suPHP [21] are two well-known methods which use this

idea and have been developed as an Apache module.

suEXEC. The suEXEC includes a wrapper binary file

and an Apache module. By the arrival of a HTTP request,

the wrapper is run by Apache and the script name and

user/group ID under which the script has to be executed is

given to the wrapper. The suEXEC can only be used with

CGI or FastCGI programs. For using suEXEC, a unique

CGI or FastCGI binary file for each website is needed. The

user/group ID of the owner must be the website’s owner. By

the release of a new PHP version, these binary files must be

updated and in case of using PHP in CGI or FastCGI mode,

HTTP authentication feature cannot be used. Using suEXEC

with CGI has very low performance in a way that Corentin

Chary has named suEXEC a performance killer due to tis

low performance in use with CGI [5] [22].

suPHP. Same as suEXEC, suPHP runs PHP scripts with

a specified user/group ID. The suPHP has an Apache

module and a setuid-root binary file. Unlike suEXEC, using

suPHP will not require a unique CGI or FastCGI [23] binary

file for each website. The low performance issue still

remains in suEXEC same as the suPHP [5] [24].

3) Apache MPM Methods

After the release of Apache 2.0, various MPM [25]

methods have been introduced in order to solve the shared

hosting security problem [5]. These methods are tested with

greater details in the following sections.

Peruser MPM. Because Metux MPM [27] is not

appropriate for PHP, Sean Gabriel Heacock introduced

Peruser MPM [26]. Peruser MPM uses processes instead of

threads to handle requests. Peruser MPM runs an Apache

control process as root privilege. The control process creates

several multiplexer processes with Apache user privilege.

The multiplexer process listens to port 80 and accepts

incoming connections and reads the request to check from

which website it is and it passes the connection to related

worker process to be handled. The worker processes run

under the user/group ID of respective owners of websites.

The control process always maintains a pool of idle worker

processes to enhance the performance and forks off new

worker processes if there are no idle processes to handle

new requests. However, one important deficiency of Peruser

MPM is too much use of server resources [5].

ITK MPM. Steinar Gunderson presented ITK MPM

[28] to reduce the shortcomings of Peruser MPM. ITK

MPM creates a managing Apache process with root

privilege. The managing process creates several listener

Apache processes with root privilege. The listener process

listens to port 80 and reads new request to determine the

requested website. In order to serve the request, the listener

creates an Apache handler process with user/group ID of the

owner of the website. But, the main difference between ITK

MPM and Peruser MPM is that the handler Apache process

is terminated after the request has been completed. In other

words, in ITK MPM there is no pool of idle handler

processes for serving the requests [5].

B. Log File Separation

Based on the fact that a webserver with default

configuration will use a single file for logging activities of

all websites, not having a proper separation between log

files of different websites is the cause of log attacks [9]. The

best solution for preventing these attacks is creating separate

log file for each website and putting them in separate

directories. Certainly proper permissions must be set on the

log files to prevent a malicious user from reading or writing

on log files of other websites [9]. A sample configuration in

Apache webserver for creating separate log file for each

virtual host or website is displayed in Figure 5. Also, the

necessary permissions on log file directories in Linux are

shown in Figure 6 where web1 and web2 are user accounts

of owners of the corresponding websites.

C. Session Storage Separation

As same as log attacks, the main cause of session attacks

is the lack of separation between session storage of different

websites [7]. In case of Session Poisoning and Session

Snooping attacks, a webserver with default configuration

will use a temp directory for storing session files of all

websites. Therefore, separating session storage for each

website and providing separate directories for each one is

necessary for stopping these attacks. In addition, proper

permissions must be set on the session directories. Figure 5

shows sample of configuring an Apache webserver for

creating separate session directories for each virtual host or

website and in Figure 6 the required permissions are

depicted.

6

Figure 5. Log and Session Separation in Apache for Each Website

Figure 6. Necessary Permissions for Log and Session Directories in Linux

D. Local Access Limitation

In shared web hosting servers, the local host is usually

trusted and consequently an attacker, who has a website on

the shared server, is able to launch attacks such as Fast

Brute Force. In order to prevent such attacks it is a good

idea to control local traffic. In other words, the local traffic

must be gone through security devices like WAFs and

NIDPSes before reaching target website.

V. CONCLUSION

Today, shared web hosting is recognized as a popular

approach to host thousands of websites but it has multiple

serious vulnerabilities which are primarily due to the fact

that different resources such as memory, CPU, network and

file system are shared between different websites.

In this paper we addressed common attacks in shared

web hosting servers which exploit the lack of proper

isolation between different websites resided on a shared

server. Then, we presented a comprehensive secure

configuration to prevent the risks of these attacks. As a

conclusion we can say that although the mentioned

mechanisms prevent the attacks directed towards the shared

web hosting servers, but generally this architecture is not

advised since it is potentially insecure and new solutions

like virtualization are more secure and reliable.

REFERENCES

[1] Zone-H. Defacements Statistics 2010: Almost 1,5 million websites

defaced, what's happening? http://zone-h.com/news/id/4737.

[2] Zone-H: Defacements Statistics 2008 - 2009 - 2010*. http://zone-

h.com/news/id/4735.

[3] S. Herber. The Challenge with Securing Shared Hosting. http://

blog.stuartherbert.com/php/2007/11/21/the-challenge-with-securing-

shared-hosting/.

[4] Netcraft: October 2012 Web Server Survey. http://news.netcraft.com/

archives/2012/10/02/october-2012-web-server-survey.html.

[5] S. A. Mirheidari, S. Arshad, and S. Khoshkdahan, "Performance

Evaluation of Shared Hosting Security Methods," in the 11th IEEE

International Conference on Trust, Security and Privacy in

Computing and Communications (TrustCom), 2012.

[6] Apache: CGI. http://httpd.apache.org/docs/2.2/howto/cgi.html.

[7] N. Nikiforakis, W. Joosen, and M. Johns, "Abusing Locality in Shared

Web Hosting," in European Workshop on System Security, Salzburg,
Austria, 2011.

[8] Apache Log Files. http://httpd.apache.org/docs/2.2/logs.html.

[9] S. A. Mirheidari, S. Arshad, S. Khoshkdahan, and R. Jalili, "Two

Novel Server-Side Attacks against Log File in Shared Web Hosting

Servers," in IEEE 7th International Conference for Internet

Technology and Secured Transactions (ICITST), 2012.

[10] G. Johnson, Remote and Local File Inclusion Explained.: Hacking9,

2008.

[11] T. Be'ery, "FYI: You got LFI," in Black Hat Europe, Amsterdam,
Netherlands, March 14-16 2012.

[12] A. Barth, C. Jackson, and J. C. Mitchell, "Robust Defenses for Cross-

Site Request Forgery," in 15th ACM Conference on Computer and

Communications Security (CCS), 2008.

[13] N. Jovanovic, E. Kirda, and C. Kruegel, "Preventing Cross Site

Request Forgery Attacks," in IEEE International Conference on

Security and Privacy for Emerging Areas in Communication Networks

(Securecomm), 2006.

[14] D. Endler. Brute Force Exploitation of Web Application Session ID.

http://www.cgisecurity.com/lib/SessionIDs.pdf.

[15] Markus Jakobsson and Steven Myers, Phishing and Countermeasures:

Understanding the Increasing Problem of Electronic Identity Theft.:

Wiley, 2007.

[16] Kirda E. and Kruegel C., "Protecting Users Against Phishing Attacks

with AntiPhish," in Proceedings of the 29th Annual International

Computer Software and Applications Conference (COMPSAC'05),

2005, pp. 517 - 524.

[17] S. Herbert. PHP’s Built-In Solutions For Shared Hosting. http://

blog.stuartherbert.com/php/2007/11/27/phps-built-in-solutions-for-

shared-hosting/.

[18] PHP: Safe_Mode. http://php.net/manual/en/features.safe-mode.php.

[19] PHP: Open_basedir. http://www.php.net/manual/en/

ini.core.php#ini.open-basedir.

[20] Apache: suEXEC. http://httpd.apache.org/docs/2.0/suexec.html.

[21] suPHP. http://www.suphp.org/Home.html.

[22] C. Chary and C. Khamly. Securing A Shared Web Server. http://

xf.iksaif.net/papers/securing-a-shared-web-server.pdf.

[23] Apache: FastCGI. http://httpd.apache.org/mod_fcgid/.

[24] S. Herbert. Using suPHP to Secure a Shared Server. http://

blog.stuartherbert.com/php/2008/01/18/using-suphp-to-secure-a-

shared-server/.

[25] Apache: Multi-Processing Module (MPM). http://httpd.apache.org/

docs/2.0/mpm.html.

[26] Peruser MPM. http://www.peruser.org.

[27] Metux MPM. http://www.sannes.org/metuxmpm/.

[28] ITK MPM. http://mpm-itk.sesse.net/.

<VirtualHost *:80>
 DocumentRoot /home/website1/public_html
 ServerName website1
 ErrorLog /home/website1/log/error_log
 CustomLog /home/website1/log/access_log common
 php_value session.save_path /home/website1/session
 ...
</VirtualHost>

<VirtualHost *:80>
 DocumentRoot /home/website2/public_html
 ServerName website2
 ErrorLog /home/website2/log/error_log
 CustomLog /home/website2/log/access_log common
 php_value session.save_path /home/website2/session
 ...
</VirtualHost>

d rwx r-x --- web1:web1 /home/website1
d rwx r-x --- web1:web1 /home/website1/public_html
d rwx r-x --- web1:web1 /home/website1/log
d rwx r-x --- web1:web1 /home/website1/session

d rwx r-x --- web2:web2 /home/website2
d rwx r-x --- web2:web2 /home/website2/public_html
d rwx r-x --- web2:web2 /home/website2/log
d rwx r-x --- web2:web2 /home/website2/session

