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Abstract—Multicast DNS Service Discovery (mDNS-SD), made
fashionable through Apple’s Bonjour, is a prevalent technique
allowing service distribution and discovery in local networks
without configuration (Zeroconf). Possible application areas are
device synchronization, instant messaging, VoIP, file and screen
sharing. It is very convenient for users, because they can connect
to and offer services when they enter a network without any
manual configuration. However, it requires the public exposure
of the offering and requesting identities along with information
about the offered and requested services, even when services do
not need to be public. Some of the information published by the
announcements can be very revealing, including complete lists of
family members. In this paper we discuss the privacy problems
arising when using mDNS-SD and present our privacy extension,
which allows hiding all information published while still not
requiring any network configuration except for an initial pairing.
A key feature of our solution is the ease of upgrading existing
systems, a must for widespread deployment and acceptance.
To show the feasibility of our mDNS-SD privacy extension, we
developed an implementation based on the open-source Avahi
daemon.

Index Terms—Privacy, DNS, Multicast, Service Discovery.

I. INTRODUCTION

Multicast DNS Service Discovery (mDNS-SD) is a preva-

lent technique widely used to distribute services in local

networks without configuration. It uses the upper two layers

of the Zeroconf stack[1], namely, DNS Service Discovery[2]

built on Multicast DNS[3], and is intended to improve user

experience. For example it allows a student who enters his

campus network to automatically connect his mobile devices

(smartphone, tablet, notebook) to each other, allowing file

sharing and synchronization; it further allows to automatically

connect to friend’s devices on campus allowing to chat or share

data and to connect to infrastructure devices like printers. This

works seamlessly, without user interaction and regardless of

the IP addresses and ports the corresponding services use.

Since Zeroconf is built on multicast, every machine in the

same network will automatically receive all the announcement

traffic and thus obtain a lot of information about the users

in the network without having to send a single packet itself.

Using mDNS-SD, devices publish their hostnames, commonly

containing the user’s name, when entering a network, followed

by information about offered and requested services. When a

user named Daniel enters the campus network, his Notebook

publishes “Daniel’s notebook joined the network” to all de-

vices in the network. Many users are completely unaware of

how chatty their devices are [4]. Most users do not consent

to this information being published whenever they approach

a McDonald’s or Starbucks [4]. However, there is no user-

accessible mechanism to limit or prevent this chattyness.

The device might further publish:

• “I want to sync Daniel’s mobile folder with Daniel’s

smartphone.”

• “I share the folders /home/daniel/share,

/home/alice/share, and /home/bob/share.”

• “I am online using iChat and my status is gaming.”

Offering shares might allow inferring names of family mem-

bers, furthermore opening pathways to social engineering

attacks, while a chat application shows the user’s activity status

to everyone in the same network. Most users do not even know

how much information is published via mDNS-SD every time

they connect their mobile devices to a network or come close

to a known WLAN access point.

In this paper, we present a privacy extension for Zeroconf

daemons, which gives users the choice of what they want

to have published without affecting their applications. Our

mechanism

• adds privacy to mDNS-SD by hiding all probably private

discovery data that has to be multicast,

• is transparent to client software using mDNS-SD,

• is transparent to the existing network infrastructure,

• allows automatic service discovery like standard mDNS-

SD,

• is fully backward compatible,1

• is very efficient, in all of network traffic, memory con-

sumption, CPU time, and wall clock time.

To grant these features, a relationship between an offered

service and a service querier has to be established. This is done

by an initial pairing during which a shared secret is exchanged.

After this initial pairing, service discovery requires no further

configuration. The IETF Zeroconf charter2 states that minimal

configuration is tolerated for security’s sake; we assume this

goes for privacy as well.

1Public services’ operation remains entirely unchanged; private services
seem entirely unchanged within the trusted group.

2http://datatracker.ietf.org/wg/Zeroconf/charter
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Fig. 1. Queries and responses sent using mDNS-SD.

We grant privacy by substituting service instance keys,

which only authorized hosts can understand, for service

instance names, and encrypting other possibly private data

before transmitting. The service instance keys allow us to

check if a packet is relevant or not in O(1) time, avoiding

attempts to decrypt irrelevant packets.

Our solution limits the uncontrolled application-layer dis-

tribution of private data. To identify a machine, its MAC

identifiers and physical layer characteristics can be used.

Solutions to that problem are outside the scope of this paper,

but are tangentially discussed in section VI.

II. MDNS-SD PRIVACY PROBLEMS

Multicast DNS Service Discovery uses DNS records that are

queried by sending them to the multicast address 224.0.0.251

(IPv4) and FF02::FB (IPv6) and answered via multicast by

hosts that offer a corresponding service instance.

The discovery of a service can be divided into three stages:

a) Browsing for a service: means asking for a list of

services of requested types; this is done by asking for PTR

records, which are used as indicator for the existence of an

instance of a certain service type in addition to the usual

reverse lookup query (see first query and response pair in

Figure 1). When a querier is asking for the service type

_presence, which is used by chat clients like iChat and

Pidgin allowing chat in local networks, it sends a PTR query

with the label _presence._tcp.local. This query is

answered by all hosts that offer a service instance of type

_presence by multicasting an answer typically containing

_presence._tcp.local: type PTR,
daniel@Daniel’s Notebook._presence._tcp.local

(a) PTR record containing the device’s hostname, which by default
typically contains the user’s name.

daniel@Daniel’s Notebook._presence._tcp.local:
type SRV,
port 5298, target Daniel’s Notebook.local

(b) SRV record showing the hostname and port.

daniel@Daniel’s Notebook._presence._tcp.local:
type TXT,
vc=! ver=2.10.6 node=libpurple
port.p2pj=5298 txtvers=1
status=gaming
last=Kaiser
1st=Daniel

(c) TXT record that contains several critical key value pairs like the
first and last name of the user, the chat status and the version of the
service.

Daniel’s Notebook.local: type A, addr 134.34.10.36

(d) A record presenting a mapping of hostname to IP address.

Fig. 2. Resource records multicast when using a chat application that is
based on the _presence service. Each of these resource records violates
privacy.

the information that Figure 2(a) shows.3

There are two privacy problems arising from this. First, the

name and type of the service instance can be seen by anyone

listening to the network traffic. Secondly, anyone browsing

for a service of this type will be offered this service instance,

even if its not meant for him. In the example anyone using

the _presence chat service sees Daniel coming online. This

is not a constructed example; most operating systems choose

a default hostname which contains the username, and chat

applications using the _presence service use the pattern

<username>@<hostname> as chat alias. This problem

is more severe than it might look at first glance; everyone in

the same network can see everyone else coming online, even

users that are not in the buddy list. It is not even necessary

to use sniffing tools like Wireshark; using a simple service

browser or a chat client like Pidgin suffices.

b) Resolving a service: means getting information about

the service to be able to connect to it. The resource records

used for resolving are SRV and TXT (see second query and

response pair in Figure 1). A host who has browsed for existing

services can use the instance names gained from the PTR

records to ask for the corresponding SRV and TXT records.

The one host in the network who offers the requested service

instance will answer by sending the requested SRV and TXT

records. Example answers for the label daniel@Daniel’s
Notebook._presence._tcp.local are shown in Fig-

ures 2(b) and 2(c), respectively. Service resolving yields

another privacy problem. Hostname, service name, and service

type are contained in both SRV and TXT records; the SRV

record further shows the port number the offered service uses.

3 The figures containing resource records show the subset of the information
as shown by Wireshark which is relevant for the purpose of showing the
privacy problems.
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Since the port number is often a synonym for a service type,

e.g. 22 for ssh, the port number is critical as well. The

published port number may also yield a security problem;

though not relevant for our chat example, it is a problem

for protected services, allowing attackers to attack the service

without the need of a portscan, which would render them

suspicious on a network monitoring tool. The TXT resource

record contains further information about the offered service

instance in form of arbitrary key value pairs. These may

contain a significant amount of private information accessible

by anyone in the same network. The _presence service

transmits first and last name in the TXT record, if they were

entered during setup. A further problem arises due to the

version number sent in the TXT record, allowing to identify

hosts running a vulnerable version of a particular service in

order to attack them.

c) Resolving the hostname: means asking for A and

AAAA records to get the IP address corresponding to the

hostname gained from the SRV record, which is shown by

the third pair of query and response in Figure 1. Figure 2(d)

shows an example answer. Once again the hostname is publicly

announced. Due to publishing the IP address, it is possible

to get a mapping from hostname to IP address allowing to

infer further information about a host. Even without offering

any service instances the Zeroconf daemon immediately offers

an A (and AAAA) resource record when entering a network.

Depending on the configuration there is also an HINFO

resource record published, which also contains the hostname

plus information about the host’s CPU and operating system.

III. ANALYSIS AND REQUIREMENTS

Analyzing mDNS-SD and in particular its privacy problems

that are shown in section II we build a thread model by

defining attackers that might abuse standard mDNS-SD, and

define requirements that should be met by an mDNS-SD

privacy extension in order to prevent these attackers from

being successful.

A. Threat Model

The following attackers can be successful, because all data

needed for service discovery is sent in the clear, each responder

answers queries from each querier and each querier accepts

answers from each responder.

Passive: The passive attacker wants to get as much informa-

tion as possible by just listening to the multicast traffic. All

plaintext information will be gained by this attacker type.

Active: An active attacker wants to get information by sending

queries for services he is interested in. He might ask for all

_presence service instances, extract the version numbers

from the TXT records, identify the vulnerable versions and

attack the corresponding hosts. He can also offer (fake)

services to make someone connect.

When designing a privacy extension, it is important not to

open new attack vectors. One of those can easily be enabled

if the computational overhead or the network overhead caused

by the extension is to high.

Unmet Enables attack type
Requirement Passive Active DoS
Runtime Efficiency – – �
Network Efficiency – – �
Information Hiding � � –

TABLE I
UNMET REQUIREMENTS OPEN PATHWAYS TO ATTACKS

DoS: This attacker wants to bring the host running mDNS-SD

to a halt by flooding the network with multicast messages

in the mDNS-SD multicast group. A motivation for a DoS

attack on mDNS-SD could be just considering it fun to drain

the battery of many devices.

B. Requirements

Considering these attackers, a mDNS-SD privacy extension

should meet the following requirements. Table I shows which

attack types become performable when neglecting one of them.

Information hiding: All information published using mDNS-

SD should only be accessible by paired devices. This in-

cludes the hostname, the service instance name and service

type, the port, and TXT records.

Network efficiency: The addition of privacy to mDNS-SD

should not cause a heavier network load than standard

mDNS-SD.

Runtime efficiency: Hosts must be able to process incoming

multicast queries and answers in O(1) and the constant

calculations have to be efficient.

The runtime efficiency is also important for batterylife’s sake

and to be able to process incoming queries at wire speed;

otherwise, packets have to be dropped or cached in burst times,

where many multicast packets arrive.

C. Consequences

Solutions based on encrypting whole packets and sending

them without an application layer identifier are infeasible as

they allow the DoS attacker to succeed. This is due to the

fact that these solutions demand every incoming packet on

the multicast DNS socket to be decrypted. Using symmet-
ric encryption, each incoming packet has to be tested with

keys corresponding to each paired service instance, requiring

O(#pairings) time. Using asymmetric encryption, including

some broadcast encryption mechanisms [5], [6], the asymp-

totic run time goes down to O(1), yet the calculations needed

for asymmetric encryption are very expensive. Assuming the

packets sent contain 2048 bits of data encrypted using RSA, a

DoS attacker can send roughly half a million such packets per

second on a gigabit Ethernet link, while a modern notebook

or desktop processor can only decrypt about 600 packets in

the same time4. A further drawback of these methods is the

battery power wasted.

4as shown by openssl speed rsa
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IV. PRIVACY PRESERVING MDNS-SD

Our architecture realizes a privacy extension for mDNS-SD

that meets the requirements stated in section III.

A. Pairing

Pairing is the required process of establishing a relationship

between a service instance and a querier by transmitting a

static shared data structure called privacy service data that is

created by the service offerer for the service it wants to offer

privately and contains

• the service instance name,

• the service type,

• a service instance key used as substitution for the service

instance name,

• cryptographic key material

• and additional data depending on the implementation.

The service data is stored in two hash tables; one indexed

by the service instance name and one indexed by the service

instance key. If this service has already been paired with

another service querier, the service data creation and storing is

omitted. The service data has to be transmitted to the service

querier via a secure in-band[7] or an out-of-band channel,

such as Bluetooth, NFC, photographing a QR code[8], [9],

encrypted Email, or SMS. The service querier then saves the

service data in his hash tables, which completes the pairing

process. It is important for the service data to be stored in

hash tables, because this allows O(1) access time.

Since we store the contents of the hash tables also persis-

tently and load them when the Zeroconf daemon starts, pairing

has to be done only once per pair of service instance and

requesting host. After pairing once no further configuration

is necessary. If a responder wants to revoke a certain privacy

aware service being offered, he can simply delete the cor-

responding pairing data entry. We plan to implement a new

method that allows to individually revoke service offerings

to certain devices. Further we plan to implement means to

synchronize pairing data between different devices of the same

user.

At first glance it might seem that pairing destroys the auto-

matic detection of services in a new network. But information

like the IP address of devices, ports that services use and

other information about services like the version number or

status fields can still be detected automatically, independent

of the network parameters. But responder and querier have to

agree on the service instance name and the type of the offered

service during pairing. We plan to also make it possible to

offer services whose types and instance names are unknown

at the time of pairing.

B. Hiding the Instance Name

When using mDNS-SD, the service instance name and

service type allow the receiver of a packet to decide in constant

time which service instance it is related to and whether he is

interested in this service. Since this service identifying data

should be hidden from the public, we change the service

instance name to the service instance key which is agreed

ResponderQuerier

Query SRV, TXT <service instance key>. privacy. tcp

Answer SRV, TXT containing <enc hostname> + <enc port>

Query A for <enc hostname>

Answer A containing <IP address> of <enc hostname>

connect to Service using <IP address> and <port>

locally lookup <servicetype> in hashtable
and retrieve the <service instance key>s
of the services found

decrypt data in SRV and
TXT record

Fig. 3. Resolving a Service using our privacy extension (compare to the
standard process shown in Figure 1). Instead of browsing for service instance
names corresponding to a certain type, they are retrieved from a local hash
table built during pairing. Private data is either substituted by random strings
exchanged during pairing, or it is encrypted.

upon during pairing. This is a simple solution for hiding

the information while still guaranteeing O(1) lookup time,

because when receiving a query or answer the receiver can

look this key up in his local hash table. If the hash bucket the

key refers to contains the service name, the receiver knows

which service instance the query or answer was related to; if

not, the packet is irrelevant for this receiver.

C. Hiding the Service Type

To hide the service type, we need some sort of type keys
which only partners should be able to map to the corre-

sponding service type. In order to meet the network efficiency

requirement (see section III), we want a single service instance

to be represented by exactly one pair of service instance

key and type key. The advantage of one single obfuscated

representation corresponding to a single service instance is

that important features[3] such as known answer suppression,

duplicate query suppression and duplicate answer suppression

work like they would without the privacy extension, because

the mDNS-SD subsystem recognizes it as one service instance.

Establishing this mapping for the service instance name is

easy, because a service instance name is mapped to a single

service instance offered by a single service offerer. This is

different for the type. Each group of paired users5 has to use

5all users A and B who are in the transitive closure of the relation A is
paired to B regarding a certain service instance S
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the same type key, to allow for a single pair of service instance

key and type key. This is unpractical for two reasons. On the

one hand all users of such a relation would have to agree on

one type key, which is not possible using a simple, convenient

pairing strategy; on the other hand it would allow all users

in that potentially large group to know the service type in a

query or answer of any of this group’s members.

To solve this problem, we introduce the special service type

_privacy._tcp for all privacy-enabled service instances.

Thus the published service type has no relation to the real

service type at all. This renders browsing for services in the

usual way described in section II infeasible, because browsing

for _privacy._tcp would return all privacy services; e.g.

when using a chat client with a privacy aware presence

protocol not only the chat buddies would pop up as friends,

but all other privacy services as well. To solve this, we have

to change the way privacy services are browsed. Browsing for

a service type returns PTR resource records showing service

instances of this service type (including their name), which can

then be resolved. Since we already obtained this information

during pairing and stored it in local hash tables, we do not

have to browse for a service type using multicast at all. Our

privacy “browsing” happens locally and the matching service

instances are resolved directly. We call this “direct resolving”

because it directly resolves a service instance without browsing

for the corresponding type.

An advantage of direct resolving is the reduction of multi-

cast packets, because no browsing queries and answers have

to be sent. Additionally, the number of resolving queries is

also reduced, because queries and answers are only sent for

service instances a user can really use. Normally, a resolve

query is sent for each PTR record received during browsing.

Depending on the number of service instances offered, a

significant number of resolving queries or answers can be

avoided using direct resolving.

The _privacy._tcp type has another advantage. All

services that are found using a service browser but are not

meant for the browsing user are listed in a single section

_privacy, and thus the visual clutter caused by those

inaccessible services can be easily hidden. A privacy extension

aware service browser is also able to not show privacy service

instances the user is not paired to, without any user interaction.

D. Querying and Responding

In order to hide published data from unauthorized hosts,

all the privacy problems presented in section II have to be

addressed. When a querier asks for a resource record, the query

is altered before sending, substituting the service instance key

for the service instance name and _privacy._tcp for the

service type. Receivers that paired one of their service in-

stances with the querier are able to interpret the request. Before

sending the answer, possibly private data in the resource record

is encrypted, which is especially important for the key-value

pairs in TXT records. When receiving a packet, the querier

again recognizes it by looking up the service instance key in

the hash table. Figure 3 shows the service discovery process

using our privacy extension.

Our privacy extension ignores mDNS-SD packets that are

not meant for a certain receiver, which could be stored in the

cache if they were transmitted in cleartext. This might seem

like a disadvantage of our solution, because cached entries

could increase availability and reduce network load.

But availability is not increased by caching, because the

service offerer has to be available anyway and because mDNS-

SD does not allow hosts to answer queries using their cache

entries; hosts must be authoritative for a resource record to be

allowed to answer [3]. Further, resource records ignored by

our solution mostly belong to services a user is not allowed

to connect to; thus ignoring those packets can be seen as

advantage of our solution, because the cache is not polluted

with irrelevant entries.

Our solution also allows to offer chosen services in the

traditional public way, because there are services everyone

should have access to. For these services everyone is able to

cache the corresponding records if one device queries for it.

E. Implementation

We implemented our privacy extension based on the open

source Zeroconf daemon Avahi6. We changed very little code

in the avahi-daemon source files, just adding hooks to our

loosely coupled privacy module before queries and answers

are sent to and received from the client, respectively. When a

client asks the daemon to discover a service, we update the

packet by applying our privacy operations as described above,

and let the daemon handle the updated packet. We alter the

packet in a way that it remains a valid mDNS-SD packet,

making the daemon believe the client asked for a _privacy
service instance. When getting the answer, the daemon will

recognize it as having been queried before, processes the

answer and eventually wants to give this answer to the client;

before this happens, we undo all privacy operations and present

the plaintext service to the client. The client software does

not need to know about the privacy subsystem at all, and

the daemon thinks the client wants to query and offer service

instances of type _privacy, allowing us to get all benefits

of the daemon. Because of the very limited code changes and

the loose coupling, it is easy to merge updates from Avahi to

our modified daemon.

F. Scalability

With respect to memory consumption and computational

overhead, our solution scales in huge networks. Pairing data

needs less than 1Kb of memory per service, so even when

paired with 10000 services, the resulting data structure of

10Mb can be easily held in memory.

The computational overhead of our solution is impercep-

tible. For each incoming and outgoing packet a hash table

lookup, and, depending on the resource record type, a few

encryption or decryption operations have to be done, which

6http://avahi.org
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which is estimated7 to use less than 100μs on average even

on older mobile devices. The overhead of our extension is

virtually non-existent compared to the delays, between 20ms
and 120ms, that mDNS-SD is using for network efficiency

and feasibility reasons [3].

The network scalability bottleneck is the use of multicast

as means for transporting service data. Each packet sent will

be received and processed by each member of the same

multicast group, meaning that multicast causes a lot of network

utilization on the downlink of all members, if the multicast

group is large and if a lot of multicast packets are sent. With

n members and one packet sent per time unit, each member

receives n2 packets per time unit. To mitigate this problem and

to make mDNS-SD scalable, we plan to reduce the number of

multicasts sent.

V. RESULTS

When using our privacy extension, all data that has to

be multicast to discover and offer services is transmitted in

a privacy preserving way. Resource records multicast when

publishing a _presence service instance on starting pidgin

using our mDNS-SD privacy extension are shown in Figure 4.

The service instance key is substituted for the service instance

name, a shared random string is substituted for the hostname,

key-value pairs are encrypted, and the port is XORed with

cryptographic key material exchanged during pairing. All the

key-value pairs in the TXT records are encrypted as one

unit and then split to fit the maximum length. This is done

to prevent information inferring based on the number and

length of TXT record key value pairs. Figure 4(c) shows

the encrypted TXT record. Figure 5(b) shows the output of

avahi-browse 8 asking our modified daemon on a paired

host for the service we published above. This shows that

client software, in this case the command-line service browser

avahi-browse , works with our privacy extension without

being changed. When using avahi-browse to ask for the

same service type on an unmodified daemon or a modified

daemon of an unpaired host, the published service instance

shown above will not be found. Browsing for the _privacy
service type yields the result shown in Figure 5(b).

VI. RELATED WORK

We are not aware of any publication regarding privacy ex-

tensions for mDNS-SD. Nevertheless, the problem of mDNS-

SD publishing device names has been addressed [10], [4].

Aura et al. [10] investigate private information published on

different network layers when connecting devices to a network.

While they mainly look at other protocols, they also mention

the privacy problem of device names published by mDNS-

SD. As a solution, they propose network location awareness,

that is, allowing service discovery only in trusted networks.

We consider that too restrictive, and want to give users the

7based on glib benchmarks and openssl speed aes-128-cbc
8We use avahi-browse do demonstrate data received at the host.

Users do not have to bother using a service browser; an mDNS-SD capable
application handles the service discovery transparently.

_privacy._tcp.local: type PTR,
prvGK8cApytjxKRd._privacy._tcp.local

(a) PTR record hiding the service instance name.
The _privacy service type is substituted for the
_presence service type.

prvGK8cApytjxKRd._privacy._tcp.local: type SRV,
port 8320, target prvq0XhpZA0zeYqa.local

(b) A privacy aware SRV record. The port is XORed with the key
exchanged during pairing. A randomly generated string that was also
agreed upon during pairing is substituted for the hostname.

prvGK8cApytjxKRd._privacy._tcp.local: type TXT,
Text: p01=hjl6ACDCtvEOWuU8cZ41wPrhbhGBcu/VAvbtzzBZO
hJ5rkL3SGR2HMbciNuycVhtEEx3Blgl7mzqlvBGt0HWhW3o6u
PrKx0LJJQ4/gpZhnJ9nWndY1FTnf531Ai

Text: p02=kou/ddoOGrpkRnyfH5ahbnueP5g==

(c) TXT record showing encrypted key value pairs. The key value pairs were
concatenated before encrypting and split afterwards to avoid inferring of the
service based on typical key value pair quantities and lengths.

prvq0XhpZA0zeYqa.local: type A, addr 134.34.10.36

(d) A record with hidden hostname. A mapping of hostnames containing
user’s names to IP addresses is no longer available.

Fig. 4. Resource records multicast by our privacy extension when using
a chat client that is based on the _presence chat service. Critical data is
substituted by identifiers randomly generated during pairing, or it is encrypted.

eth0 IPv4
daniel@Daniel’s Notebook iChat Presence local
hostname = [Daniel’s Notebook.local]
address = [134.34.10.36]
port = [5298]
txt = ["vc=!" "ver=2.10.6" "node=libpurple"
"status=gaming" "port.p2pj=5298"
"last=Kaiser" "1st=Daniel" "txtvers=1"]

(a) Output of avahi-browse -r _presence._tcp on a paired host.

The host gets all information about the _presence service instance published
by a chat application of a friend.

eth0 IPv4
prvGK8cApytjxKRd privacy local
hostname = [prvq0XhpZA0zeYqa.local]
address = [134.34.10.36]
port = [8320]
txt = ["p01=hjl6ACDCtvEOWuU8cZ41wPrhbhGBcu

/VAvbtzzBZOhJ5rkL3SGR2HMbciNuycVhtEEx3
Blgl7mzqlvBGt0HWhW3o6uPrKx0LJJQ4/gpZhn
J9nWndY1FTnf531Ai"

"p02=kou/ddoOGrpkRnyfH5ahbnueP5g=="]

(b) Output of avahi-browse -r _privacy._tcp on a unauthorized

host showing encrypted or substituted data. If the unauthorized host would
browse for _presence._tcp it would not discover this service instance at
all.

Fig. 5. Output of the command line service browser avahi-browse on

a paired and unauthorized host, respectively. avahi-browse is used to
show data received at the host.
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possibility to request and offer services in a privacy preserving

way even if the network cannot be trusted. Further we want

to mitigate the configuration overhead of making assumptions

about the trustworthiness of the network in use.

The public announcement of device names by mDNS-SD is

discussed in more detail in [4]. The authors conducted studies

showing that almost 60% of the published device names

contain real user names and that 90% of the users consider this

as privacy problem. As a solution they propose making users

aware of the problem and changing hostnames, and also refer

to network location awareness and identifier free networks[11].

The privacy problem of SRV and TXT records being published

is not mentioned. We consider it important to hide all possibly

private information, because it can be as easily seen by anyone

as the hostname and might deserve more privacy protection

(e.g. TXT records). Furthermore, users should not have to

change hostnames.

Existing secure pairing methods for pairing with both a

single device and groups of devices have been surveyed

in [12]. Nguyen et at.[13] survey out-of-band authentication

protocols that use manual transfers of short authentication

strings; these protocols can be used for device pairing. Secure

in-band pairing in 802.11 wireless networks is addressed in

[7]. Sethi et al. [14] present a pairing method that is based

on simultaneously drawing with two fingers (e.g. thumb and

index finger) on the touchscreens of two devices that are about

to be paired. We plan to incorporate some of these methods

in our privacy extension.

Much research has been done in the area of privacy in

wireless networks. Especially finding access points in WiFi-

networks is related to our paper, because it also has to solve

the task of finding entities in a network using broadcast, where

everybody in the vicinity can listen to the messages. [15]

presents a privacy preserving protocol for discovering WiFi

access points. Since it is an extension to the 802.11 MAC

protocol, it does not meet our requirement of not changing

any deeper protocol layers.

Greenstein et al. [11] present an identifier free wireless OSI

layer 2 protocol, which allows to find access points and com-

municate in the wireless network in privacy. Since it provides

privacy on the link layer, it also solves the private service

discovery problem. But to allow private service discovery,

the whole network infrastructure has to be updated, while

our solution allows private service discovery by just updating

the local Zeroconf daemon. Nevertheless, an identifier free

network fulfills more privacy requirements than those stated

in section III. It allows to hide information about a certain

device being online in a network, because there are no MAC

addresses published; thus allowing users to be untrackable.

While we consider it beneficial to be able to meet more privacy

requirements, we also consider it important to give users the

possibility to easily hide the cleartext information published,

while being independent of the network infrastructure.

Generic protocols for privacy preserving service discovery

[16] and presence sharing [17] have been proposed. Since they

use a central entity [16] and depend on a trusted broker [17],

respectively, we did not use them because we want to keep

mDNS-SD decentralized and do not want to rely on trusted

third parties.

There is much research in the area of service discovery

in pervasive computing environments[18] and mobile ad hoc

networks[19]. Zhu et al. present a model for privacy preserving

service discovery [20], [21]. Since it is a generic model, we

consider it unnecessarily complex for our application area.

Nevertheless it is a sophisticated model and we want to

incorporate ideas like the usage of bloom filters in our privacy

extension in future work.

Mechanisms such as the IPv6 privacy extensions[22] and

locally administered MAC addresses also aim to reduce the

ability of others to trace the whereabouts of end systems.

These methods work independently of our privacy extension,

on OSI layers 3 and 2, respectively, and thus can be used at

the same time.

Device fingerprinting [23], [24] can be used to track the

devices, even if the protocol in use has no explicit identifiers.

It is outside the scope of this paper to address tracing using

information leaked by the physical layer [25] and tracing of

the users by other ‘metadata,’ such as the number or rate of

connections devices open, or where they connect to [26].

VII. CONCLUSION AND FUTURE WORK

In this paper we pointed out privacy problems in mDNS-SD

and presented a privacy extension which hides all private infor-

mation contained in published resource records, while being

efficient and transparent. Figure 4 presents resource records

published by our solution, showing that none of the cleartext

strings are published, unlike mDNS-SD without our extension

(see Figure 2). It is efficient because incoming packets can be

identified as being relevant in O(1), and thus reduce the efforts

of even the efficient symmetric cryptographic operations we

use. The major advantage of our extension to existing solutions

(see section VI) is that none of the existing OSI layer protocols

and none of the existing client software has to be altered. Only

the Zeroconf daemon running on the users devices has to be

modified, while afterwards still being able to exchange service

information with unmodified daemons.

In the future, we plan to make pairing more lightweight

while maintaining a high level of security. Our main goal

is to limit pairing to once per pair of users who want to

share service instances, instead of the current mode of once

per pair of service instance and user. To achieve this, it is

also necessary to securely synchronize pairing data between

devices of the same user. We further plan to include user

friendly pairing methods for two use cases: for users meeting

each other, and for users who cannot easily meet.

Since mDNS-SD has shown to cause significant load in

huge networks[27], we also want to further reduce the number

of multicast packets sent. Furthermore, we hope to improve the

privacy protecting abilities such that the possibilities of infer-

ring information is reduced, while still remaining compatible

with standard mDNS-SD.
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The daemon alone is not sufficient without a user-friendly

service browser, extended to give users straightforward control

which services they want to be published publicly, which

services they want to be published in private, and which

services they do not want to be published at all. Together, they

empower the users with mDNS-SD privacy and transparency.
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