
Escrow: A Large-Scale Web Vulnerability
Assessment Tool

Baden Delamore
Cyber Security Lab

University of Waikato
Hamilton, New Zealand

Email: delamore@outlook.com

Ryan K. L. Ko
Cyber Security Lab

University of Waikato
Hamilton, New Zealand

Email: ryan@waikato.ac.nz

Abstract—The reliance on Web applications has increased
rapidly over the years. At the same time, the quantity and
impact of application security vulnerabilities have grown as
well. Amongst these vulnerabilities, SQL Injection has been
classified as the most common, dangerous and prevalent web
application flaw. In this paper, we propose Escrow, a large-scale
SQL Injection detection tool with an exploitation module that
is light-weight, fast and platform-independent. Escrow uses a
custom search implementation together with a static code analysis
module to find potential target web applications. Additionally, it
provides a simple to use graphical user interface (GUI) to navigate
through a vulnerable remote database. Escrow is implementation-
agnostic, i.e. it can perform analysis on any web application
regardless of the server-side implementation (PHP, ASP, etc.).
Using our tool, we discovered that it is indeed possible to identify
and exploit at least 100 databases per 100 minutes, without prior
knowledge of their underlying implementation. We observed that
for each query sent, we can scan and detect dozens of vulnerable
web applications in a short space of time, while providing a
means for exploitation. Finally, we provide recommendations for
developers to defend against SQL injection and emphasise the
need for proactive assessment and defensive coding practices.

I. INTRODUCTION

In recent years, a large number of software systems are
being ported to the Web, and platforms providing new kinds
of services over the Internet are becoming increasingly more
popular [1]: e-health, e-commerce, e-government. At the same
time, however, such services, which take the form of web
applications are subject to attacks by hackers with the objective
of gaining unauthorised access to the system, accessing private
information, or simply causing a denial of service.

According to the Open Web Application Security Project
(OWASP) [2], Structured Query Language (SQL) [3] Injection
is presently the most dangerous and prevalent vulnerability
pertaining to web applications. Due to the nature of SQL in-
jection, successful attacks can lead to leakage of administrator
credentials, credit card information, social security numbers,
email data and so forth. Additionally, the Common Weaknesses
Enumeration (CWE) [4] has classified SQL Injection as the
most widespread and most critical software error at the time
of writing this paper. Contrary to popular belief, SQL injection
reports to the CWE as a percentage of total reported vulnera-
bilities have almost doubled from 2013 to 2014 [5], indicating
that there is a real need to address the ubiquity of such a
vulnerability. In spite of their continuous evolution, vulnera-
bility scanners that scan for SQL injection still have their faults

with regards to the high number of undetected vulnerabilities
and high percentage of false positives [6]. With that said, we
propose to build a large-scale detection and exploitation tool
to achieve two goals. First, to identify how widespread SQL
Injection is today. And secondly, to illustrate how using search
can aid in the discovery for potential vulnerabilities by using
simple search parameters. In addition, our proposed tool will
also provide a proof of concept for the vulnerabilities it claims
to detect, thereby reducing the false positive rate.

The remainder of the paper is organised as follows. In
Section II we study existing security tools and compare and
contrast their capabilities. In Section III we describe our
main contributions to this paper, namely Escrow, a large-scale
web vulnerability assessment tool. Section IV compares and
evaluates our tool in terms of speed and efficacy. In Section V
we outline a number of recommendations about mitigation and
defensive techniques to defend against SQL injection. Finally
we conclude the paper in Section VI.

II. COMPARISON / RELATED WORK

Escrow shares commonalities with both scanners and ex-
ploitation tools. Two programs that lend themselves to com-
parison with Escrow, FImap [7] and SQLMap [8], will be
examined and contrasted in this section. In many cases, Escrow
is technically and/or administratively easier to deploy than
other open source or commercially available tools.

Perhaps the best comparisons of Escrow is FImap and
SQLMap. FImap is a command line based python tool which
scans for Local and Remote File Inclusion (LFI, RFI) vulner-
abilities. SQLMap, however, is a program that automates the
process of detecting and exploiting SQL injection flaws, also
built in python. A detailed analysis of SQLMap is covered
in Section IV. Both tools have the capability to use search
modules for information gathering on remote sites. This feature
is essential in any large-scale vulnerability program. Presently,
Escrow does not detect for LFI or RFI, but future versions will
implement this capability.

One advantage of Escrow is that it provides a users with
scanning and proof of concept modules while still being a
lightweight, cross-platform tool that doesn’t require installa-
tion. Lightweight security tools are small, powerful and flexible
enough to be used as permanent elements in security assess-
ment. Escrow is well suited to fill these roles, weighing in at
roughly 1200 Kilobytes. Compare this with many commercial



security assessment tools, which require dedicated platforms
and user training to deploy in a meaningful way.

Another advantage of Escrow is that it provides a user
friendly Graphical User Interface (GUI). The GUI has search
modules with pre-defined parameters that make it easy for
users to search for areas within a web application that take
part in a database query. We believe it is better to generate
only those pages that are of interest to us, rather than searching
through the entire web application. In addition, Escrow pro-
vides a simple to use database traversal module. Once SQL
injection has been exploited with Escrow, users need only
click on the database of interest to them in order view the
corresponding tables and column data.

One powerful feature that Escrow has is the ability to
send HTTP requests in parallel. For example, when a search
query has returned pages that are of interest to us, we can
systematically scan multiple pages for vulnerabilities at the
same time. This significantly reduces the time taken to process
requests. We cover this more in detail in Section III.

III. ESCROW IMPLEMENTATION / USAGE

In this section we describe our main contribution for this
paper, namely Escrow, a large-scale vulnerability assessment
tool with exploitation capability. Built in Java, Escrow’s archi-
tecture is focused on performance, simplicity and flexibility.
The tool is designed to be used by information security
specialist, penetration testers, researchers and IT practitioners.

The proposed approach for large-scale SQL injection anal-
ysis can be broken down into four phases described below.

Step I - Link Gathering. This phase aims at gathering
URLs for further analysis. How this is achieved is by using a
search module that can query within Escrow using pre-defined
parameters.

Step II - Analysing URLs. After receiving URLs from the
search module, we then move onto the analysis phase. This is
carried out by sending a HTTP request back to the URL along
with a specific query concatenated to the value element of the
parameter field. At this point we compare the response source
code of the page returned against a list of known database
errors.

Step III - Identifying Injection Type. When URLs have
been identified as being susceptible to SQL injection, we
then send specially crafted requests to the web application to
identify the type of SQL injection that might yield information
from the database system.

Step IV - Database Exploration. In this phase we examine
the data that is extracted from the application database. This is
achieved by a GUI-based exploitation module within Escrow
that allows simple table, column and database traversal. When
required, it is possible to store the database data to disk in
HTML format for further analysis.

The implementation and usage details are described in the
forthcoming subsections:

A. Search

Our approach for finding vulnerable injection points in a
web application is to use search. For this, we have implemented

a Google search module that uses the Google API [9], allowing
users to systematically send requests directly from Escrow
and have the URLs returned as output. In addition, we have
constructed a Bing module that is built by directly analysing
the source code of an HTTP request sent to the Bing search
engine, as illustrated in Figure 1. Our rationale for doing this
is based on the limitations of the Google API, and the number
of results capped by the API which is 64. Due to the type of
requests that are sent to Google’s servers, there is a limit of
around half a dozen search requests imposed by using the API.
As such, for this paper, we have chosen to focus on using the
Bing module for sending queries.

Fig. 1: Bing search panel.

B. Search Heuristics

Finding vulnerable web applications using search requires
the use of specific pre-defined queries. Our approach for this
is to search specifically for a parameter with a corresponding
value in a URL. For example, consider the following URL -
http://www.site.com/shop.php?productid=20. In this example,
productid is the parameter and its corresponding value 20
are the elements that were interested in. We can observe
from this pattern that productid takes part in generation of
an SQL query which may take the form of SELECT * FROM
products WHERE productid = 20. The parameter element is
always fixed; however, an adversary can freely alter the value
element. As such, we have chosen to craft our pre-defined
query list searching for such parameters which are illustrated
in Figure 2. For example, a request containing page.php?id=
returns hundreds of pages within the Bing module that have
a similar pattern in their URL. Variations for this kind of
query do in fact yield URL’s that are of high interest to
both malicious and benign users. This includes government,
education, banking and finance related web applications.

Fig. 2: Pre-defined search queries.



C. Search Modules

In Escrow there are two separate search modules built
for the purpose of finding pages that contain input parameter
elements, but for the purposes of this paper we will be covering
the Bing module. We have implemented a custom Bing class in
Escrow that queries the Bing search engine. Our rationale for
this is due to the lack of restrictions imposed on using Bings’
search service, and to reduce the reliance on an external API.
To do this, we first reverse engineered a typical query sent
to the search engine. We found that within the URL, one can
craft a request by populating the query parameter, and specify
the maximum number of URLs to retrieve by use of the count
parameter. Therefore, we can systematically send queries to the
Bing search engine without the need for an external API. An
illustration of typical search query results is given in Figure 3.
Further, if a user wishes to restrict their search to a particular
region or country, one can constrain their search by appending
the site operator within their query. Both Google and Microsoft
support the use of such operators.

Fig. 3: Bing search results.

D. Code Analysis

To determine whether a web application is susceptible
to SQL Injection, first we must identify vulnerable injection
points within an application. To do this, we use the search
engine modules provided in Escrow and gather a list of poten-
tially vulnerable applications. From here, the URLs retrieved
from our search are then passed to a static code analysis
module to be scanned for potential errors. Static code analysis
in Escrow is performed by analysing the page source code
of a web application against a list of database errors (This
occurs after sending a request back to the original URL with
a modified value element in the parameter field). When an
application has been identified as having a potential SQL
Injection, we add this to our table of potential vulnerable
URLs. Using this method is orders of magnitude faster than
exhaustively scanning a site for potential SQL vulnerabilities.
This is due to the high number of requests that scanners
perform when doing vulnerability assessment. Thus, using
pre-defined search parameters eliminates the need for such
exhaustive scanning and significantly reduces the number of
requests sent to a target server.

E. Multi-Threading

Due to the number of HTTP requests that are sent to
remote servers with Escrow, we decided to make use of multi-
threading. In doing so, we specify a fixed amount of threads to
handle our concurrent outgoing requests. Our rationale for this

is due to high wait times when using a single thread. We first
identified that a significant amount of time was spent waiting
for the response from a remote server, as every outbound
request had to be acknowledged and returned before moving
on to the next request. This indicated to us that the bottle-
neck was at the network layer. Thus, using a multi-threaded
approach, and sending our requests in parallel, we significantly
reduced the time required to process multiple HTTP requests.
The results for this experiment are illustrated in Section IV.

F. Database Errors

Dynamic content that web applications generate is in many
cases provided by means of SQL queries to a database. This
holds true for a variety of web content technologies including
PHP, ASP, ASP.NET, JSP in which web applications are
written in. Queries to such web applications are generally
benign. That said, it is quite possible that some queries might
be mal-formed and executed in the database. When sending a
mal-formed query to a web application, and input validation
and/or error handling are overlooked, it is possible that the
web application may produce an error, which is then echoed
back to the user by the application.

Our approach is to scan the web pages source code and
compare it against a list of known database errors. These errors
are given in Table I. When we find a successful match, we
can say to a certain extent that SQL Injection is possible. One
advantage of scanning in this way is that we do not require
rendering a page in a browser, thus eliminating significant
overhead. In addition, many of the errors that we scan for
exist only in the page source of the site and not in the rendered
version. Therefore, systematically scanning in this way is more
effective and eliminates the need for manual analysis of a
rendered web page.

TABLE I. DATABASE ERROR LIST

No Error
1 mysql num rows()
2 mysql fetch array()
3 FetchRow()
4 GetArray()
5 mysql numrows()
6 mysql fetch object()
7 mysql fetch assoc()
8 include()
9 Syntax error
10 mysql fetch row()
11 Invalid Querystring
12 error in your SQL syntax
13 Microsoft OLE DB Provider for ODBC Drivers error
14 Server Error in ’/’ Application

G. Vulnerable Sites

After receiving the search results back from our query,
users can choose individually what links in the table they are
interested in analysing further, or alternatively, select all the
results from the table via the check-all selection in the pop-up
menu. From here a user ought to send selected links to the
analysis module via the send to injection crawler option in
the pop-up menu, as illustrated in Figure 4. Within a matter
of seconds, courtesy of our multi-threaded HTTP requests,
Escrow handles the processing of these sites in parallel and
populates the vulnerable links table (Figure 5) for sites that



inadvertently disclose error information. Now that we have
established which pages are susceptible to SQL injection, in
the next subsection we will demonstrate how from this panel
we can traverse the back-end database of the remote server.

Fig. 4: Pop-up menu.

Fig. 5: Vulnerable links table.

H. Database Exploration

After successful identification of a vulnerable injection
point within a site, users can then pass the URL on to the
exploit module. The exploit module built in Escrow is an
extension of jSQLs [10] injection class which supports the
following SQL injection types:

• Time Based

• Error Based

• Blind

• Normal

In this section we illustrate how to retrieve data from a
database within Escrow. Figures 6 and 7 have been captured
when exploiting a local web server so as to not publicly
disclose information that does not belong to us. However, links
that are extracted from the vulnerable injection panel could
simply be loaded into the exploit module in the same way; for
security reasons, this will not be demonstrated in this paper.
Instead, we will be targeting the vulnerable web application
WackoPicko [11] on our local machine.

Figure 6 illustrates the database interface provided in Es-
crow in which users can select databases and their correspond-
ing tables and display them in a readable format. Certainly
many cases that we have encountered have an administrator
table that consists of admin credentials and their corresponding
passwords.

Figure 7 illustrates the save-as option provided in Escrow
in which users can save database information for later analysis.

Fig. 6: Database exploration module.

We implemented this function for when providing a proof
of concept is required for penetration testers and application
security practitioners. The information is saved in HTML
format.

Fig. 7: HTML saved data.

As we have seen in this section, it is certainly possible to
search for potential input parameters in most web applications.
Our software successfully retrieves over 150 results per query
using simple search heuristics. Such results can then be passed
to a static code analysis module which rapidly scans these sites
in quick succession and provides the sites URL and error data
back to the GUI. At this point, users can visit the link via
the pop-up menu provided, or alternatively pass the link on to
an exploitation module where data can be extracted from the
remote database and saved to disk.

IV. ESCROW ANALYSIS

In this section we discuss how our static code analysis
module combined with a multi-threaded approach is proven
to be effective in analysing remote sites for SQL Injection
vulnerabilities. We compare our tool with the current state of
the art, SQLMap, in terms of detection speed and number of
requests sent.

To measure the effectiveness of our software we compare
it against another tool that uses search in a similar way to
Escrow, namely SQLMap. SQLMap provides a search module
that makes use of Google’s search engine. In order to quantify
the performance of our tool we send a single query (asp?id=)
and set the maximum number of pages to search at 50. We



measure the time taken to successfully crawl and scan 50 pages
for SQL injection vulnerabilities.

TABLE II. SPEED COMPARISON OF ESCROW & SQLMAP

Parameter Escrow (1 Thread) Escrow (30 Threads) SQLMap
Average Time (sec-
onds)

90 6 7700

Number of Pages 50 50 50
Search Query asp?id= asp?id= asp?id=

Unfortunately, due to the high number of requests sent
using SQLMaps search module to a remote server, the time
taken to analyse one web application for SQL injection is
around 154 seconds. A total time of 2 hours and 28 minutes
to analyse 50 remote pages.

Table II illustrates the performance difference using mul-
tiple threads (in this case we are using 30). The time taken
to scan 50 pages is significantly lower compared with using
a single thread. In fact, multi-threaded HTTP requests, in this
case, is proven to be 15 times faster as opposed to using a
single thread and visiting each page in a sequential manner.

In order to quantify how many requests are sent within
each program we setup a local testbed with a vulnerable SQL
injection point. We then test the capabilities of each tool to first
identify whether the site page is susceptible to SQL injection,
and secondly, to display the list of databases that reside in the
application. Both tools were capable of doing so. We were able
to capture packets on the localhost web application by using
RawCap [12]. RawCap is a command line network sniffer for
Microsoft Windows that uses raw sockets. We then analyse the
captured packets using Wireshark [13].

Figure 8 shows that both tools do comparatively well for
the number of requests sent to our testbed. SQLMap, however,
only requires sending a total of 37 requests to detect for
SQL injection and output a list of the databases that reside
on the server, back to the program. While Escrow requires a
total of 51 requests to achieve the same goal; A difference of
14 requests in total. Our assumption for these results is that
when SQLMap detects SQL injection, it then returns back
to the main program. However, our tool will check for all
injection types before returning back to the program, regardless
of whether it has succeeded along the way or not.

In Figure 9 we compare each tool in terms of elapsed time
to detect for SQL injection. We note that although SQLMap
requires sending less amount of HTTP requests, the time
required to identify the vulnerability is significantly higher.
SQLMap takes approximately 33 more seconds to detect for a
known SQL injection, with a total time of 43 seconds. Escrow,
however, only needs 10 seconds for the injection type to be
identified. These results show that Escrow far outperforms
SQLMap in both the time taken to scan numerous remote sites,
and the elapsed time for identifying SQL vulnerabilities.

What we have observed in this section is that both tools
we tested are capable of achieving large-scale assessment on
remote servers, however, they differ in their implementation
details. The main differences with respect to Escrow are given
below:

Fig. 8: Number of requests sent comparison.

Fig. 9: Time taken to detect SQL injection.

User Interaction: Escrow is completely automatic with
its testing implementation. That is to say it does not require
any interaction with the tester, who just needs to specify the
web application URL. SQLMap on the other hand requires a
continuous interaction to better address attacks.

Detection Performance: The time taken to scan 50 remote
pages retrieved from SQLMaps search module takes over 2
hours to complete. While Escrows multi-threaded approach can
achieve the same result in under 10 seconds.

User Interface: Escrow provides a simple to use GUI
which takes care of all the heavy lifting while abstracting away
the unnecessary intricacies of the program. SQLMap, however,
is a command line tool which shares similar functionality but
requires more user interaction.

Search Module: Both tools provide a Google search
module. Additionally, Escrow also provides a Bing module
that enables users to send the same queries but without the
restrictions imposed by using an API - specifically the number
of requests retrievable and the type of queries sent.

SQLMap’s reliance on the Google API which has imposed
restrictions for the type of queries it allows within a certain
time frame, is certainly one of the major drawbacks of the
tool. That said, when passed a vulnerable URL, SQLMap
requires less amount of HTTP requests compared with Escrow.



However, the difference in this case is marginal. Escrow on
the other hand is equipped with two search modules and pre-
defined heuristics which makes it a simple to use tool and
gives users the option for which search engine they want to
use. Moreover, the time taken to detect for SQL injection in
Escrow on a large scale is orders of magnitude faster than that
of the current state of the art. This approach, coupled with
a multi-threaded static code analysis module, highlights the
speed and effectiveness of Escrow compared with that of its
predecessors.

V. RECOMMENDATIONS

Researchers have proposed a wide range of techniques
to address the problem of SQL injection [6][14][15]. These
techniques range from development best practices to fully
automated frameworks for detection and prevention of SQL
injection attacks.

The root cause of SQL injection vulnerabilities is insuffi-
cient input validation. In this section we give a brief overview
of some of the defensive coding practices proposed in the
literature for SQL injection prevention.

• Input type Checking: SQL injection attacks can be
performed by injecting commands into either a string
or a numeric parameter. Therefore, we propose that
developers should reject input that isn’t consistent with
the data type they’re expecting. For example, in the
case of numeric input, developers ought to reject any
input that are not digits. This principle also applies for
string data.

• Input Encoding: Certainly many injection attempts are
often executed through the use of meta characters
that trick the SQL parser into interpreting user input
as SQL tokens. It is possible to restrict the use of
meta characters usage, however, doing so would result
in non malicious users ability to specify input that
contains such characters. A better approach is to use
functions that encode a string in such a way that they
are interpreted by the database as normal characters.

• Positive Pattern Matching: Developers can validate
their input using a white-list. This approach is labeled
positive validation. Different from negative validation
which filters out known bad input, positive validation
allows only input that is explicitly defined as valid.

In addition to the defensive coding practices listed above,
we recommend users employ proactive assessment, including
traditional black box testing on their servers. This gener-
ally involves crawling the entire application and exhaustively
scanning for all points where SQL statements are executed.
In conjunction with black box testing, we also recommend
using search heuristics, like the ones described in this paper,
to efficiently test areas of their web application that search
engines have previously crawled.

VI. CONCLUSION

In this paper we assessed two vulnerability scanners and
exploitation tools and gave a brief overview of their capabilities
for detecting and exploiting SQL injection. Our observations

of the gaps in these tools motivated us to develop Escrow
- a large-scale vulnerability assessment tool. We observed
that for each query sent within our software, we were able
to identify dozens of web applications susceptible to SQL
injection including government, banking and education TLDs
(Top Level Domains). Using this approach we can say with
confidence, it is indeed possible for adversaries to discover
and exploit at least 100 databases per 100 minutes. To our
best knowledge, this is the first GUI-based large-scale SQL
injection detection and exploitation tool available at the time
of writing this paper. Finally, we state our recommendations
for improving web application security and emphasise the need
for defensive coding and proactive assessment.

Future work for this tool aims at building Cross Site
Scripting (XSS), Local File Inclusion (LFI) and Remote File
Inclusion (RFI) detection modules. Cross Site Scripting, at
the time of writing this paper, is currently the most reported
vulnerability according the MITRE CWE.

VII. ACKNOWLEDGMENTS

The authors would like to thank Raja N Akram for his
comments on this paper.

REFERENCES

[1] A. Ciampa, C. A. Visaggio, and M. Di Penta, “A Heuristic-
based Approach for Detecting SQL-injection Vulnerabilities in Web
Applications,” in Proceedings of the 2010 ICSE Workshop on
Software Engineering for Secure Systems, ser. SESS ’10. New
York, NY, USA: ACM, 2010, pp. 43–49. [Online]. Available:
http://doi.acm.org/10.1145/1809100.1809107

[2] “OWASP - Open Web Application Security Project.” [Online].
Available: https://www.owasp.org/index.php/

[3] “Structured Query Language - SQL.”
[4] “Common weaknesses enumeration.” [Online]. Available:

https://cwe.mitre.org/
[5] “2014 sql injection statistics.” [Online].

Available: http://web.nvd.nist.gov/view/vuln/statistics-
results?adv search=true&cves=on&cwe id=CWE-89/

[6] S. Roy, A. K. Singh, and A. S. Sairam, “Detecting and defeating SQL
injection attacks,” International Journal of Information and Electronics
Engineering, vol. 1, no. 1, pp. 38–46, 2011.

[7] “Fimap.” [Online]. Available: https://code.google.com/p/fimap/
[8] “Sqlmap.” [Online]. Available: http://sqlmap.org/
[9] “Googleapi.” [Online]. Available: https://code.google.com/p/google-

api-java-client/
[10] “jsql injection.” [Online]. Available: http://jsql-

injection.googlecode.com/
[11] A. Doupé, M. Cova, and G. Vigna, “Why johnny can’t pentest: An

analysis of black-box web vulnerability scanners,” in Proceedings
of the 7th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, ser. DIMVA’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 111–131. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1884848.1884858

[12] “Rawcap network sniffer.” [Online]. Available:
http://www.netresec.com/?page=RawCap

[13] “Wireshark - a packet capture and analysis tool.” [Online]. Available:
http://www.wireshark.org/

[14] S. Boyd and A. Keromytis, “Sqlrand: Preventing sql injection attacks,”
in Applied Cryptography and Network Security, ser. Lecture Notes
in Computer Science, M. Jakobsson, M. Yung, and J. Zhou, Eds.
Springer Berlin Heidelberg, 2004, vol. 3089, pp. 292–302. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-24852-1 21

[15] W. G. J. Halfond, J. Viegas, and R. Orso, “Abstract a classification of
sql injection attacks and countermeasures.”


