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Abstract— In this paper, we propose a novel connection 

tracking mechanism for Tree-rule firewall which essentially 

organizes firewall rules in a designated Tree structure. A new 

firewall model based on the proposed connection tracking 

mechanism is then developed and extended from the basic model 

of Netfilter's ConnTrack module, which has been used by many 

early generation commercial and open source firewalls including 

IPTABLES, the most popular firewall. To reduce the 

consumption of memory space and processing time, our proposed 

model uses one node per connection instead of using two nodes as 

appeared in Netfilter model. This can reduce memory space and 

processing time. In addition, we introduce an extended hash table 

with more hashing bits in our firewall model in order to 

accommodate more concurrent connections. Moreover, our 

model also applies sophisticated techniques (such as using static 

information nodes, and avoiding timer objects and memory 

management tasks) to improve its processing speed. Finally, we 

implement this model on Linux Cent OS 6.3 and evaluate its 

speed. The experimental results show that our model performs 

more efficiently in comparison with the Netfilter/IPTABLES.  

Keywords— Firewall, Tree-rule firewall, Stateful firewall, 

Connection Tracking, Network Security 

 

I.  INTRODUCTION 

The first generation of firewall was proposed in1990s [1] 
and applies packet filtering mechanism to detect unwanted  
packets based on packet header information (i.e., source IP 
address, destination IP address, and destination port) without 
considering their connection states. In the later development, a 
new type of firewall called 'Stateful firewall', which is the 
second generation of firewalls was suggested. This type of 
firewall considers connection states, such as; start of a new 
connection, being part of an existing connection, and not being 
part of any connection. The stateful firewalls operate faster 
and more secure in comparison with the packet filtering 
firewalls (stateless firewalls). Nowadays, almost all firewalls 
are stateful firewalls [2][3]. However, these traditional 
firewalls, including packet filtering and stateful firewalls, have 
a flat structure in terms of listing of firewall policy rules. 
These firewalls have to process packets by comparing packet 
header information against the listed rules sequentially. The 
process will be done if a match is found or the last rule is 
reached. This method gives a low performance compared to 

other searching algorithms. Apart from the speed problem, the 
traditional firewalls suffer rule conflicts, caused by shadowed 
rules and redundant rules [4][5][6][7], especially the 
shadowed rules. A shadowed rule is a rule which cannot be 
matched with any packets because all packets are already 
matched with other rules above it. This can cause a security 
problem due to some rules important in protecting against 
hackers and  may be shadowed and not be used by firewall at 
all. Moreover, it is quite hard for firewall administrators to 
design listed rules for a traditional firewall and to protect a 
large network which requires a large number of rules without 
any rule conflicts. 

In our recent studies [6][7], we proposed a new type of 
firewall to solve the aforementioned problems, and it achieves 
a high processing speed and fewer rule conflicts in large 
networks. In [6][7], we redesigned the firewall model to 
support two goals mentioned above. However, our redesigned 
model works only as a packet filtering firewall but not as a 
stateful firewall maintaining several connection states as 
suggested previously. In particular, the stateful (connection 
tracking) function includes an algorithm that can identify new 
and existing connections, as well as invalid ones which 
otherwise may raise a security concern. Thus, in this paper, we 
propose a novel connection tracking mechanism which will be 
used in the Tree-rule firewall [6][7].  

The rest of this paper is organized as follows. Section II 
discusses the most relevant background and previous research 
works to this study. In particular, the problems with traditional 
List-rule firewalls are recapped in Section II-A, and the 
corresponding solutions suggested in the Tree-rule firewalls 
are reviewed in Section II-B. The design and analysis of a 
novel connection tracking mechanism are presented in Section 
III. The implementation of the proposed stateful mechanism 
and experimentations are detailed in Section IV. Finally, a 
conclusion is drawn  in Section V along with potential future 
works.  

II. BACKGROUND AND PREVIOUS WORKS 

In this section, we present some of the problems with 
traditional firewalls and recap corresponding solutions used in  
our Tree-rule firewall model to avoid such problems. Below, 
the background information on packet filtering firewalls and 
stateful firewalls are first introduced. 



A. Traditional firewall (Listed-rule firewall) 

The traditional firewalls (Listed-rule firewall) filters 
packets by comparing their header information against a set of 
pre-defined firewall rules. This process operates rule by rule 
until a specific condition is reached. The rules in traditional 
firewalls are a list of condition statements followed by actions 
which are shown in Table 1 below.  

 

Table. 1 An example of rule in Listed-rule firewall 

 

  
 

We have identified three key issues with the traditional 
firewalls in our previous studies [6][7]. They are 

1. Security problem, caused by potential shadowed rules 
[6] and the change of meaning of the rule policy due to rule 
repositioning,  

2. Functional speed problem, raised by shadowed rules [6], 
redundant rules [6] and sequential rule matching, and  

3. Difficulty in rule design, in which one needs to carefully 
choose the proper positions for the firewall rules in order to 
avoid listing 'bigger rules'[7] before 'smaller rules'[7]. 

To overcome the aforementioned problems, we have 
proposed a 'Tree-Rule firewall' [7], where firewall rules are 
presented and operated in a tree data structure. A forwarding 
decision of an input packet follows the tree structure, so that 
the decision on the packet becomes faster. 

B. The Tree-rule firewall 

 In this section, we recall the Tree-Rule firewall [7] and 
present its design in Figure 1. As discussed in [7], the 
advantages of the Tree-Rule firewall include: 

 No shadowed rules, 

 No redundant rules, 

 No need of rule swapping because all rules will be 

sorted automatically, 

 Ease of rule design with independent 'rule paths' [7], 

and 

 High speed for packet decision. 
  

 With the Tree-rule firewall, network administrators can 
design a firewall rule easily using Graphical User Interface 
(GUI) that comes with the firewall. The firewall rules are 
organised in a tree shape as shown in Figure 1. They can 
define attributes for each column, and can add more attribute 
columns such as 'protocol type' and 'source port' columns. The 
attribute within the root node (the left column) can be Source  

IP address, Destination Port, or any attribute suitable to work 
with their networks. Ranges of numbers in each node will be 
sorted automatically without overlapping. Thus, administrators 
do not need to specify the position of a numbers so that this 
can avoid problems caused by rule swapping. The pointers 
between nodes can distinguish the 'rule paths' [7]. Therefore, 
no packet can match with two or more rule paths. This 
technique can avoid shadowing anomaly and redundancy 
anomaly.   

 

Fig 1. The design of Tree-rule firewall [7] 

 

Apart from the users' view, the firewall also processes the rule 
on a tree structure as well. The firewall will take a 
corresponding attribute within packet header (i.e., Destination 
IP address) for searching in the root node first. Then, the 
firewall will verify packet's other attributes in order, by 
searching only on relevant nodes at the corresponding levels. 
As a result, the packet will be decided quickly with a specific 
action.       

 The next subsection will provide background knowledge 
on Packet filtering (Stateless) and Stateful firewalls. 

C. Packet filtering and Stateful firewalls 

Packet Filtering firewalls (Stateless firewalls) have been 
designed and created in the first decade of firewall age. These 
firewalls use an uncomplicated operation to examine incoming 
and outgoing packets. With this operation, each line of a set of 
firewall rules can regulate packet flow in one direction only 
[8]. In the context of Packet Filtering firewalls, Johansson and 
Riley [8] highlighted that a rule, which allows outbound 
access, requires a mirror rule [8] for allowing inbound access 
to permit replies to enter the network. Even though some 
Packet Filtering firewalls can add mirror rules automatically, 
most of these firewalls need firewall administrators to perform 



this task manually [9]. More importantly, Packet Filtering 
firewalls have a critical security issue because the mirror rule 
generated by the firewalls or even administrators can cause a 
big loophole, which allows attackers connecting into protected 
ports on protected computers of internal networks. 

Similar to Packet Filtering firewalls, Stateful firewalls 
would examine packets' header (i.e., IP, TCP and UDP 
header). However, Stateful firewalls are little smarter because 
they understand TCP and UDP connection status by watching 
all connection states [8]. If clients behind a Stateful firewall 
create a new connection to communicate with web servers on 
the outside, the firewall will create inbound filters to allow 
relevant reply packets from the web server to the clients. The 
Stateful firewall will keep track states of network connection 
which travel across it. The firewall may check TCP sequence 
numbers for observing the connection status. Some examples 
of Stateful firewalls are Check Point Firewall-1 [10][11], 
Juniper Net Screen [12][13], and IPTABLES [14][15].  

The IPTABLES is one of the most popular open source 
Stateful firewalls. There are many sources of documents 
which can guide one to understand the mechanism inside the 
Stateful firewalls. The article entitled "Netfilter's Connection 
Tracking System" by Pablo Neira Ayuso [16] gives useful 
information about a stateful mechanism within the Netfilter 
used by IPTABLES. This article reveals that the Netfilter uses 
a hashing algorithm to digest important packet header 
information (i.e., source IP address, destination IP address, 
source port, and destination port), and then push the hashed 
result into a hash table. To prevent hashing collision, the 
Netfilter uses buckets of linked lists to carry the hashed 
results. If a new connection is created, a firewall will compute 
a hashing result and find a location for it. If a reply packet 
reaches back to the firewall, the firewall will verify whether 
the packet belongs to an existing connection or not. Finally, an 
entry of a hash will be destroyed when the relevant connection 
is disconnected or expired. Thus, the first packet of connection 
will be examined against the firewall's rule list while other 
packets will be examined against the hash tables and buckets. 

Considering the merits of stateful firewall models in 
configuration and security, we intend to enhance our Tree-
based firewall via an integration of the mechanism of stateful 
firewall models into its system design. The details of the new 
stateful Tree-based firewall will be presented in the next 
section. The connection tracking model in our new stateful 
Tree-based firewall outperforms the one of Netfilter. 

III. DESIGN AND ANALYSIS 

Our stateful Tree-rule firewall is designed based on the 
connection tracking model of Netfilter [16][17][18][19] with 
improvements. Similar to the connection tracking model of 
Netfilter, a 'Hashing Table' is involved in the connection 
tracking model in our stateful Tree-rule firewall. 
Comparatively, this newly designed model consumes less 
memory space (RAM) and operates in a faster manner. The 
details of this new model is discussed in Sections III-A to III-
F. 

A. Using one node per connection 

Netfilter uses two nodes per connection for storing packet 
information (i.e., Source IP address, Destination IP address, 
Source Port, Destination Port, and Protocol Type), which is 
called 'tuple'. The first node (node 'x') as shown in Figure 2 (a)  
is used for recording information of packets transmitting from 
the 'original direction' (i.e., packets coming from the point that 
started the connection), while the second node (node 'y') is 
used for the 'reply direction' (i.e., reply packets going to the 
point that started the connection). In the Netfilter's model, the 
five important attributes of packet information are stored into 
nodes and are digested (hashed) using hashing function to 
obtain entry numbers (i.e., 'a' and 'b' in Figure 2 (a)). These 
numbers then indicate in which buckets the nodes are located. 
Thus, the two nodes related to the same connections are 
located on different entries. For example, Entry1 and Entry2 
are entry numbers for the two nodes related to the same 
connection. They are calculated using the functions as shown 
below. 

Entry1 = Hash(Source_IP, Destination_IP,   
Source_Port, Destination_Port, Protocol_Type, Key), 

and 

Entry2 = Hash(Destination_IP, Source _IP, 
Destination_Port, Source_Port, Protocol_Type, Key), 

where 'Key' is a secret number generated by the firewall 

randomly.  

 
 Fig 2. Hashing Tables of IPTABLES and the Tree-rule 

firewall 



 Differently, in our model, only a single node is used per 
connection using Max() and Min() functions. Consequently, 
we need only one entry number (i.e., 'c' in the Figure 2 (b)) 
which is obtained using the function below:  

Entry = Hash( Max(Source _IP, Destination_IP), 
Min(Source_IP, Destination_IP), Max(Source_Port, 
Destination_Port), Min(Source_Port, Destination_Port), 
Protocol_Type, Key ). 

Note: Jenkins' hash (jhash) is used in both the connection 

tracking model of Netfilter and that of our stateful Tree-rule 

firewall. This is due to the reason that jhash provides fast 

operation and is capable of distributing its 32 output bits 

randomly. 
By using our proposed scheme, approximately 50 per cent 

of the memory space can be saved. This allows our firewall to 
increase the number of concurrent connections up to two times 
more. In the Netfilter's model, the first packet in a new 
connection, as shown in Figure 3, needs to be calculated twice. 
The first calculation is for the 'original direction' node and the 
second calculation is for the 'reply direction' node (as shown in 
Figure 2 (a). Moreover, it has to allocate memory two times 
for the two nodes as well. In contrast, our model needs only 
one hashing calculation because we use only one node per 
connection. With the same reason, to terminate a connection 
needs two operations to delete the two nodes from memory, 
while our model takes only one node away.  Thus, our model 
can reduce the processing time significantly.  

  
 

Fig 3. Steps of Netfilter's connection tracking [16] 
 

Additionally, in our model, the number of connections 
handled by our stateful Tree-rule firewall can reach the 
maximum value. This is different from the Netfilter's model, 
which has a limitation on the use of pair nodes. Given a pair 
nodes in the Netfilter's model with a new connection (as 
shown in Figure 3), after calculating Entry1 and Entry2 the 
Netfilter looks for spaces to place the two nodes by checking 
bucket lengths. If the relevant buckets are close to be full or 
already full, then the length of the two buckets can be 
categorized into three cases (A, B, and C): 

 A. 7 and 7 

     B. 8 and 8 

     C. 7 and 8 

 

 

Note:  

- The maximum bucket length of Netfilter's model is 8, and 

- Assuming that Jenkins' hash is used in Netfilter's model and 

our model to provide random output bits. 
 In case A, luckily, there are memory spaces for the two 
nodes. If the two nodes are allocated to the tails of the buckets, 
the lengths of the buckets will now both be 8s exactly. In case 
B, unluckily, the two relevant buckets are already full. No 
more nodes can be appended to the tails of these buckets. In 
case C, there is only a space for one of the pairs but not 
enough for two. In this case, Netfilter's model are not able to 
use memory space efficiently because maximum bucket length 
in average, for this case, is 7.5 but not 8.   

One may argue that our model has to calculate Max and 
Min for the Source IP address, Destination IP address, Source 
Port, and Destination Port, for every packet. As such, these 
operations may consume additional CPU load. To respond to 
this argument, we have created a small program for measuring 
time consumption of Jenkins' hash function and the Max/Min 
functions. It is found that the computation of Jenkins' hash 
applied in Netfilter's model takes approximately 1,000 times 
longer than those of the Max and Min functions. Our model 
requires hashing calculation once only and four times of Max 
and Min calculations, while Netfilter's model makes hashing 
calculation twice and no Max and Min calculations. Overall, 
our model achieves a better performance in terms of speed. 

B. Expanding Hashing Table size vertically 

In this section, we propose to improve Netfilter's model by 
expanding the size of Hashing table vertically (as shown in 
Figure 4). This method can reduce hashing collisions and 
further improve the speed of operation. We decrease 
'maximum bucket length' and then increase the number of 
entries in Hashing table with the same memory space. For 
example, if we double the size of Hashing table vertically, we 
need to decrease maximum bucket length by half of the size 
(i.e., from 8 to be 4). Hence, by increasing the size of Hashing 
table by two times, the collision will be decreased 
approximately by 50%. This percentage is reasonable for 
decreasing maximum bucket length to half. In our model, in 
fact, we use one node per bucket and expand the Hashing table 
vertically to 8 times or more. However, the size of the hashing 
table can be expanded to 16, 32, 64 times or more because our 
model requires smaller node size than that used in Netfilter's 
model.  

 
Fig 4. Expanding hashing tables in vertical direction 



It is worth emphasizing that a collision may still occur 
because there will be a chance to have two different packets 
associated with the same hashed output. However, expanding 
the size of the Hashing table in vertical direction as proposed 
in this section can reduce probability of collisions generated 
by a hashing function. This method can handle more 
concurrent connections and allows shorter bucket lengths for 
the same memory space, and the same chance of collisions. 
Consequently, time consumption for a sequential search 
within buckets will be decreased automatically. 

 Considering systems A and B which have different sizes 
of Hashing tables (the size of A is bigger than the size of B). If 
distribution of nodes of the two systems is random, and 
increasing rates of nodes in the two systems are the same, we 
have found that the bucket length in A will be shorter than the 
bucket length in B. Consequently, searching for nodes in 
system A will be faster than B . Thus, we can conclude that 
expanding size of Hashing table vertically can reduce 
searching time within the buckets. 

Although expanding the size of a Hashing table vertically 
requires more spaces for the pointer of each expanded entry 
because each entry must point to its first node, these pointers 
require little memory space compared to the size of nodes. 

In the Netfilter's model, one node requires 350 bytes [20], 
while one pointer requires only 8 bytes. In our model, one 
node requires 40 bytes while one pointer requires only 8 bytes. 
The number of bytes used for each node has been reduced by 
8.75 times. 

C. Using one node per bucket 

It is apparently that a short bucket length requires less time 
for a sequential search in comparison with a long bucket 
length (as shown in Figure 4). Thus, we decide to use one 
node per bucket in our model (as shown in Figure 2 (b)) 
instead of using 8 nodes per bucket as presented in the 
Netfilter's model. However, to mitigate the collision problem, 
we will expand the size of Hashing table vertically by at least 
eight times.     

With this scheme, we can avoid the sequential search 
within buckets, and provide a better speed performance. This 
scheme also results in less memory consumption because no 
left and right pointers are required to be maintained in a node  
to work as doubly linked list (i.e., in the Netfilter's model 
[16]). Consequently, the node size can be reduced. Moreover, 
this decrease of complexity provides an easy way to 
implement or create a efficient firewall. 

Some users may have negative thinking about the collision 
problem on our model (maximum node per bucket = 1) 
because they may believe that collisions can be mitigated 
using only buckets. In fact, we have already mitigated the 
collision problem by expanding the size of Hashing table 
vertically. Reducing bucket length from 8 to 1 can be 
compensated by extending the Hashing table by 8 times. 
Moreover, we can extend it up to 64 times with the same 
amount of memory space used in Netfilter because our nodes 
are smaller than Netfilter's nodes (our node size = 40 bytes, 
Netfilter's node size = 350 bytes). 

D. Verifying non-first packets using Tree Rule before Hashing 

Table 

Generally, in firewalls including Netfilter, the 'rule set' 
created by firewall administrators will be used only for the 
first packet of a connection (as shown in Figure 3.). The first 
packet of a connection is verified with the 'rule set'. If the 
result is ‘ACCEPT’, then the firewall will create 
corresponding nodes within the 'Hashing table'. Then, the 
subsequent packets, namely the second packet, third packet 
and so on, will be verified with the entries in the 'Hashing 
table' instead of the 'rule set'. Therefore, it can be seen that 
verifying packets using Hashing table will be done more often 
than verifying packets using the rule set. From our study, we 
have found that hashing calculation takes approximately 1,000 
times in comparing two numbers used in a verifying rule set or 
Tree rule. This is because hashing function is very complex 
and involves a complicated computing procedure. In contrast, 
verifying packets using rule set does not take much time 
because it requires only comparison between a pair of 
numbers.  

However, there are some attack packets that are 
deliberately designed as non-first packets and injected into 
host connections. An good example of such type of attack is 
the 'Reset Flood Attack' [21][22][23], where packets are 
generated by worms randomly and contain no SYN flag. 
These attack packets will be verified by using the Hashing 
Table. If these packets are verified by using rule set (or Tree 
rule) and are dropped, it can reduce CPU time because 
verifying packet with rule set is similar to comparison between 
numbers which is faster than using hashing function. We can 
drop packets which are denied by rule set (or Tree rule) 
without using the Hashing Table again because if the first 
packets are denied by rule set, packets' information will have 
no chance to appear in the Hashing Table. In this method, we 
will consider packets from both directions.    

Therefore, in our model, we will verify non-first packets 
using Tree Rule first for both directions (as shown in Figure 
5). If at least one of results of this test is ACCEPT, we will 
then verify using the Hashing Table. 

 
 

Fig 5. Verifying non-first packets using Tree Rule before 

Hashing Table 

 
As such, the proposed firewall can operate faster in the 

case of attack using random packets because approximately 
50% of randomly generated packets will be the non-first 
packets which will be denied by firewall rule as it can be seen 



in the bottom flow of packets in Figure 5 (i.e., the path 
E→I→K). In this case, by eliminating the unnecessary 
hashing calculation, the overhead of our proposed stateful 
Tree-rule firewall in packet filtering is further reduced.  

In the case of attack where the number of non-first packets 
is greater than the number of first packets, if the verified result 
of a Tree rule is 'ACCEPT' (i.e., the path E→F or the path 
E→I→J shown in Figure 5), the proposed firewall will need 
only little extra time to verify packets using Tree rules before 
verifying packets using the Hashing table. However, the 
overall time consumption is only slightly increased because 
verifying packets using Tree rules takes very little time and 
can be ignored compared to verifying packets using Hashing 
table. 

E. Use of Static Node and Label to identify free nodes 

In the Netfilter's model, if a new connection is created, 
firewall must prepare memory spaces for relevant nodes (i.e., 
using the 'kmalloc()' function in C language). Also, if the 
connection is terminated, the firewall must return these 
memory spaces back to OS (i.e., using the 'kfree()' function). 
These operations involve time factor performing these 
operations. Considering a normal cycle for the HTTP request 
and reply, which use TCP connection with approximately five 
relevant packets (in average), firewall called the 'kmalloc()' 
function and 'kfree()' function twice generating a total of four 
memory related operations which is high compared to the 
number of relevant packets (five packets). To resolve this 
problem, we develop our model using a static memory. The 
node which is used for recording packet information should be 
a static node and will be created when the firewall is loaded 
and executed. If the connection is created, packet information 
will be stored in the node, and the 'Label' of this node will be 
marked to be 'Unavailable'. If the connection is terminated, the 
Label of this node will be marked to be 'Available' without 
destroying the node from memory. If the next connection 
which has the same entry number is created, the firewall can 
use this node immediately (without requesting further memory 
space from OS for the new node) by overwriting information 
of the new packets to this area of memory, and then change 
the Label to be 'Unavailable'. With this method, verifying 
packets can be done easily by considering Label and packet 
information within the node. In implementing the above 
scheme, the variable type for the Label is a one byte variable 
(actually it requires only one bit '0' if the node is 'Available' 
and '1' if the node is 'Unavailable'). 

In the context of computer programming, each function 
including memory management function affects run time. 
With our scheme, the firewall does not need to request and 
return memory space from and to the OS for nodes (i.e., 
calling kmalloc() and kfree()). As a result, the proposed 
firewall can operate faster.    

Using our scheme, firewall administrators must prepare a 
certain (fix) but a very small size of memory for the firewall 
software, and this memory space cannot be shared with other 
processes although the firewall is working with only few 
packets.  

Based on our calculation, a 768 MB RAM can handle 16.7 
million connections. This provides approximately 46 bytes per 
connection for our firewall model. According to the 
information presented on the Netfilter's website [15], the 
default value for maximum connection of IPTABLES is 8192, 
which requires 128 MB of RAM. Therefore, it requests 16,384 
bytes per connection for Netfilter's model. Hence, our scheme 
can carry a total of 16,384 / 46 = 356 times more connections 
compared to the Netfilter's model. 

F. Using the Label for Time Out instead of Timer Object 

In the Netfilter's model, if a connection is terminated by 
FIN or RST flags, firewalls will create a 'Timer Object' to 
schedule and specify the time when the relevant nodes will be 
deleted. For example, the Timer Object will delete a node in 
the next 30 seconds since the FIN flag was detected. This 
operation uses event driven techniques. Creating, deleting and 
managing Timer Objects consumes OS resources and CPU 
times. These resources and time consumptions are significant 
when compared with a short connection (i.e., normal use of 
web browsing / HTTP protocol). Thus, our model removes 
this drawback by using a Label for expired nodes instead of 
using the Timer Objects. With this method, if a firewall find 
FIN or RST flags, it will calculate expiration time for the node 
and store it into the Label. A variable type for this Label is the 
'struct timespec' (in C language) which requires 16 bytes, and 
can record date and time in seconds, and even nanoseconds. 
To verify the node, the firewall will check the timer's Label in 
the node before using information from the node. If the current 
time is new and greater than the time stored in the Label, it 
means that this node is expired (the node does not exist). In 
contrast, if the current time is less than the time stored in the 
Label, it means that this node is still active, and the firewall 
can use information from this node.   

Firewalls can work faster because they do not necessarily 
manage timer objects such as calling the 'new_timer()' and 
'delete_timer()' functions. Moreover, this scheme can save OS 
resources and easy to implement. 

IV. FIREWALL IMPLEMENTATION AND EXPERIMENTAL 

ANALYSIS 

We implement the Tree-rule firewall using C language on 
Linux Cent OS 6.3, and conduct experiments on real network 
environments. In our previous research [6][7], it has been 
shown that the Tree-rule firewall provides higher security in 
comparison with traditional firewalls. In this paper, however, 
we focus on speed issue along with our stateful (connection 
tracking) mechanism. We emphasize on the following four 
cases of packets in TCP connections (as shown in Figure 6.):  

 Case #1: The fist packets (SYN packets) accepted by 
the firewall, 

 Case #2: The fist packets (SYN packets) denied by 
the firewall, 

 Case #3: The non-fist packets (Non-SYN packets) 
accepted by the firewall, and 

 Case #4: The non-fist packets (Non-SYN packets) 
denied by the firewall. 



Case #4 can then be further divided into two sub-cases, Case 
#4a and Case #4b for the following: 

 Case #4a: The non-fist packets which will be denied 
by the firewall and verified with hashing table, and 

 Case #4b: The non-fist packets which will be denied 
by the firewall but not be verified with hashing table. 
 

 
 

Fig. 6. The four cases which was evaluated on speed issue 

On client machines, apart from a normal internet browsing, 
we use BackTrack 5 R3 live boot flash to generate packets and 
use 'hping3' command to generate the first packet of 
connection with '-S' parameter. The detailed command is 
given below. 

# hping3 192.168.22.2 -a 192.168.11.2 -p 333 -S -s +1 -d 
1440 -i u1000 

This command can be used for Cases #1 and #2 because the '-s 

+1' parameters will generate packets of which their source 

ports will be starting from '1', and increased by one, for each 

packet. In addition, we use '-d 1440' to specify packet size of 

1440 bytes (not including layer-2 header and tail size) because 

this number is a regular size for the HTTP protocol. With this 

tool, we can create and send packets as much as possible using 

the '--flood' parameter, and can specify time interval for each 

packets using the '-i' parameter. For generating packets related 

to Cases #3 and #4, we will use this command without '-S' 

parameter to turn off the SYN flag.  
We compare the processing speed of the connection 

tracking module in our stateful Tree-rule firewall with that of 
the connection tracking module in Netfilter. Figure 6 shows 
the four cases on the Tree-rule and IPTABLES/Netfilter. We 
also measure the processing time on packet decision process 
for one packet. We start to record packet arrival time on the 
first line of the packet hooking function (i.e., the function 
'hook_func()' of the link [24]). We then record the end time 
before the line 'return NF_ACCEPT' and 'return NF_DROP' 

for all cases. Programmed codes between start time and end 
time for each case, give different time consumptions because 
some cases need to compute hashing function while other 
cases do not. The recorded time in nanosecond will be written 
on the file  '/var/log/messages' using the 'PRINTK' function. 
Likewise, we also measure computation time of packets on 
Netfilter/IPTABLES’ module by using this technique. We 
modify the file '/kernel/net/netfilter/nf_conntrack_core.c' of 
the Netfilter's ConnTrack module, and recompile it (including 
relevant files) to create the new 'nf_conntrack.ko' file. We 
reload the modified modules to operate with IPTABLES. 
Information about starting time and ending time for the four 
cases of our prototype software and Netfilter/IPTABLES are 
collected and their average is computed. We test them on real 
network environment with more than 50,000 packets before 
taking average for every case. Our experimentations use 
approximately 50 client PCs in an university network LAB. 
These computers (firewall and clients) use Intel Core i5 with 
2.30 GHz of CPU, and 4GB of RAM. We test with 50 rules 
for IPTABLES and approximately 50 rule paths for Tree-rule 
firewall.  The experimental results are presented in Table 2 
and Figure 7.  

Table 2. Time consumption of packet decision on Tree-rule 

firewall and Netfilter / IPTABLES 
 

 

 

 
 

Fig. 7. Representation of time consumption on Tree-rule 

firewall and Netfilter/IPTABLES 

 
The experimental results of the Tree-rule firewall shown in 

Table 2 and Figure 7 reveal that Case #3 takes little more time 
than Case #1, because Case #3 needs to verify packet header 
with a tree rule for one or two times before verifying the 
packet information with the hashing table. This slight time 
difference is due to the fact that verifying packet with the tree 
rule is an easy job in comparison with calculating a hashing 
function. Case #2 and Case #4b of the Tree-rule firewall take 
less time compared to other cases because they do not need to 
perform the hashing function. Theoretically, Cases #3 and #4 

Firewall 

  

  

Processing Time for one packet  (nanosecond) 

  

Case 1 Case 2 

Case 3 

(average) 

Case 4a 

(average) Case 4b 

Tree-Rule firewall 

                       

481.13  

                       

164.44  

                       

497.69  

                       

455.12  

                       

239.94  

Netfilter/IPTABLES 

                   

3,722.82  

                   

1,259.94  

                   

3,319.55  

                   

3,193.41  

                   

3,193.41  



of Netfilter/IPTABLES should take equal time because they 
use same algorithms. However, in practical, they may 
encounter different time of computations. The largest time 
used by Netfilter/IPTABLES is the time in Case #1, where the 
firewall has to perform hashing task two times (for two 
directions), and also requests memory spaces from OS to 
create two nodes for storing connection information for both 
original and reply directions.  

Apart from time consumption on packet decision, we also 
measure memory consumption of both the Tree-rule firewall 
and Netfilter/IPTABLES. Theoretically, Netfilter require 350 
bytes per connection [20], while our model (Tree-rule 
firewall) requires only 40 bytes per connection. The Tree-rule 
firewall uses less memory because it does not use timer 
objects and memory spaces for a reply-direction nodes. 
However, our experimental results show that Netfilter takes 
approximately 400-430 bytes per connection, whereas our 
model takes approximately 40-60 bytes per connection. These 
numbers are based on 10,000 concurrent connections with 
normal traffic load on real network.  

V. CONCLUSION AND FUTURE WORKS 

In this paper, we propose a stateful mechanism which will 
be used on the Tree-rule firewall. We design and develop our 
model from the basic connection tracking model of Netfilter. 
Our proposed connection tracking model requires low memory 
space, while it can handle more concurrent connections by 
using one node per connection. Our scheme extends the 
hashing table vertically and uses one-node bucket length. 
Moreover, this model has a low time consumption, which 
benefits from the avoidance of hashing computation by 
considering the Tree rule first. If packets are not 
corresponding to the Tree rule (for both directions), the 
firewall will not perform hashing calculation. We also get rid 
of the timer objects used for closing connections. Instead, we 
use the Label which can tell the firewall which connections 
are expired by reading only 16 bytes of time information  from 
the memory. Moreover, this model does not necessarily create 
new nodes to store packets' information because we use static 
memory for all nodes created after the firewall is loaded into 
the memory and executed. With this scheme, the firewall only 
checks whether the relevant node is free or not by using the 
marked Label. Our experimentation is conducted on real 
network environments, and the results show that our stateful 
Tree-rule firewall operates faster than Netfilter/IPTABLES. 
Our stateful Tree-rule firewall also requires less memory 
owing to the fact that the size of a node has been reduced and 
the number of nodes used per connection has been decreased 
from two to one. In future, we plan to consider FIN and RST 
packets and their effects on the Tree-Rule firewall 
implementation. Our stateful Tree-Rule firewall will be 
developed and tested for Network Address Translation (NAT), 
IPv6 and Virtual Private Network (VPN) in future.  
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