
A Stateful Mechanism for the Tree-Rule Firewall

Thawatchai Chomsiri, Xiangjian He, Priyadarsi Nanda, Zhiyuan Tan

Center for Innovation in IT Services and Applications (iNEXT),

School of Computing and Communications, Faculty of Engineering and Information Technology

University of Technology, Sydney,

PO Box 123, Broadway 2007, Australia

Thawatchai.Chomsiri@student.uts.edu.au, {Xiangjian.He, Priyadarsi.Nanda, Zhiyuan.Tan}@uts.edu.au

Abstract— In this paper, we propose a novel connection

tracking mechanism for Tree-rule firewall which essentially

organizes firewall rules in a designated Tree structure. A new

firewall model based on the proposed connection tracking

mechanism is then developed and extended from the basic model

of Netfilter's ConnTrack module, which has been used by many

early generation commercial and open source firewalls including

IPTABLES, the most popular firewall. To reduce the

consumption of memory space and processing time, our proposed

model uses one node per connection instead of using two nodes as

appeared in Netfilter model. This can reduce memory space and

processing time. In addition, we introduce an extended hash table

with more hashing bits in our firewall model in order to

accommodate more concurrent connections. Moreover, our

model also applies sophisticated techniques (such as using static

information nodes, and avoiding timer objects and memory

management tasks) to improve its processing speed. Finally, we

implement this model on Linux Cent OS 6.3 and evaluate its

speed. The experimental results show that our model performs

more efficiently in comparison with the Netfilter/IPTABLES.

Keywords— Firewall, Tree-rule firewall, Stateful firewall,

Connection Tracking, Network Security

I. INTRODUCTION

The first generation of firewall was proposed in1990s [1]
and applies packet filtering mechanism to detect unwanted
packets based on packet header information (i.e., source IP
address, destination IP address, and destination port) without
considering their connection states. In the later development, a
new type of firewall called 'Stateful firewall', which is the
second generation of firewalls was suggested. This type of
firewall considers connection states, such as; start of a new
connection, being part of an existing connection, and not being
part of any connection. The stateful firewalls operate faster
and more secure in comparison with the packet filtering
firewalls (stateless firewalls). Nowadays, almost all firewalls
are stateful firewalls [2][3]. However, these traditional
firewalls, including packet filtering and stateful firewalls, have
a flat structure in terms of listing of firewall policy rules.
These firewalls have to process packets by comparing packet
header information against the listed rules sequentially. The
process will be done if a match is found or the last rule is
reached. This method gives a low performance compared to

other searching algorithms. Apart from the speed problem, the
traditional firewalls suffer rule conflicts, caused by shadowed
rules and redundant rules [4][5][6][7], especially the
shadowed rules. A shadowed rule is a rule which cannot be
matched with any packets because all packets are already
matched with other rules above it. This can cause a security
problem due to some rules important in protecting against
hackers and may be shadowed and not be used by firewall at
all. Moreover, it is quite hard for firewall administrators to
design listed rules for a traditional firewall and to protect a
large network which requires a large number of rules without
any rule conflicts.

In our recent studies [6][7], we proposed a new type of
firewall to solve the aforementioned problems, and it achieves
a high processing speed and fewer rule conflicts in large
networks. In [6][7], we redesigned the firewall model to
support two goals mentioned above. However, our redesigned
model works only as a packet filtering firewall but not as a
stateful firewall maintaining several connection states as
suggested previously. In particular, the stateful (connection
tracking) function includes an algorithm that can identify new
and existing connections, as well as invalid ones which
otherwise may raise a security concern. Thus, in this paper, we
propose a novel connection tracking mechanism which will be
used in the Tree-rule firewall [6][7].

The rest of this paper is organized as follows. Section II
discusses the most relevant background and previous research
works to this study. In particular, the problems with traditional
List-rule firewalls are recapped in Section II-A, and the
corresponding solutions suggested in the Tree-rule firewalls
are reviewed in Section II-B. The design and analysis of a
novel connection tracking mechanism are presented in Section
III. The implementation of the proposed stateful mechanism
and experimentations are detailed in Section IV. Finally, a
conclusion is drawn in Section V along with potential future
works.

II. BACKGROUND AND PREVIOUS WORKS

In this section, we present some of the problems with
traditional firewalls and recap corresponding solutions used in
our Tree-rule firewall model to avoid such problems. Below,
the background information on packet filtering firewalls and
stateful firewalls are first introduced.

A. Traditional firewall (Listed-rule firewall)

The traditional firewalls (Listed-rule firewall) filters
packets by comparing their header information against a set of
pre-defined firewall rules. This process operates rule by rule
until a specific condition is reached. The rules in traditional
firewalls are a list of condition statements followed by actions
which are shown in Table 1 below.

Table. 1 An example of rule in Listed-rule firewall

We have identified three key issues with the traditional
firewalls in our previous studies [6][7]. They are

1. Security problem, caused by potential shadowed rules
[6] and the change of meaning of the rule policy due to rule
repositioning,

2. Functional speed problem, raised by shadowed rules [6],
redundant rules [6] and sequential rule matching, and

3. Difficulty in rule design, in which one needs to carefully
choose the proper positions for the firewall rules in order to
avoid listing 'bigger rules'[7] before 'smaller rules'[7].

To overcome the aforementioned problems, we have
proposed a 'Tree-Rule firewall' [7], where firewall rules are
presented and operated in a tree data structure. A forwarding
decision of an input packet follows the tree structure, so that
the decision on the packet becomes faster.

B. The Tree-rule firewall

 In this section, we recall the Tree-Rule firewall [7] and
present its design in Figure 1. As discussed in [7], the
advantages of the Tree-Rule firewall include:

 No shadowed rules,

 No redundant rules,

 No need of rule swapping because all rules will be

sorted automatically,

 Ease of rule design with independent 'rule paths' [7],

and

 High speed for packet decision.

 With the Tree-rule firewall, network administrators can
design a firewall rule easily using Graphical User Interface
(GUI) that comes with the firewall. The firewall rules are
organised in a tree shape as shown in Figure 1. They can
define attributes for each column, and can add more attribute
columns such as 'protocol type' and 'source port' columns. The
attribute within the root node (the left column) can be Source

IP address, Destination Port, or any attribute suitable to work
with their networks. Ranges of numbers in each node will be
sorted automatically without overlapping. Thus, administrators
do not need to specify the position of a numbers so that this
can avoid problems caused by rule swapping. The pointers
between nodes can distinguish the 'rule paths' [7]. Therefore,
no packet can match with two or more rule paths. This
technique can avoid shadowing anomaly and redundancy
anomaly.

Fig 1. The design of Tree-rule firewall [7]

Apart from the users' view, the firewall also processes the rule
on a tree structure as well. The firewall will take a
corresponding attribute within packet header (i.e., Destination
IP address) for searching in the root node first. Then, the
firewall will verify packet's other attributes in order, by
searching only on relevant nodes at the corresponding levels.
As a result, the packet will be decided quickly with a specific
action.

 The next subsection will provide background knowledge
on Packet filtering (Stateless) and Stateful firewalls.

C. Packet filtering and Stateful firewalls

Packet Filtering firewalls (Stateless firewalls) have been
designed and created in the first decade of firewall age. These
firewalls use an uncomplicated operation to examine incoming
and outgoing packets. With this operation, each line of a set of
firewall rules can regulate packet flow in one direction only
[8]. In the context of Packet Filtering firewalls, Johansson and
Riley [8] highlighted that a rule, which allows outbound
access, requires a mirror rule [8] for allowing inbound access
to permit replies to enter the network. Even though some
Packet Filtering firewalls can add mirror rules automatically,
most of these firewalls need firewall administrators to perform

this task manually [9]. More importantly, Packet Filtering
firewalls have a critical security issue because the mirror rule
generated by the firewalls or even administrators can cause a
big loophole, which allows attackers connecting into protected
ports on protected computers of internal networks.

Similar to Packet Filtering firewalls, Stateful firewalls
would examine packets' header (i.e., IP, TCP and UDP
header). However, Stateful firewalls are little smarter because
they understand TCP and UDP connection status by watching
all connection states [8]. If clients behind a Stateful firewall
create a new connection to communicate with web servers on
the outside, the firewall will create inbound filters to allow
relevant reply packets from the web server to the clients. The
Stateful firewall will keep track states of network connection
which travel across it. The firewall may check TCP sequence
numbers for observing the connection status. Some examples
of Stateful firewalls are Check Point Firewall-1 [10][11],
Juniper Net Screen [12][13], and IPTABLES [14][15].

The IPTABLES is one of the most popular open source
Stateful firewalls. There are many sources of documents
which can guide one to understand the mechanism inside the
Stateful firewalls. The article entitled "Netfilter's Connection
Tracking System" by Pablo Neira Ayuso [16] gives useful
information about a stateful mechanism within the Netfilter
used by IPTABLES. This article reveals that the Netfilter uses
a hashing algorithm to digest important packet header
information (i.e., source IP address, destination IP address,
source port, and destination port), and then push the hashed
result into a hash table. To prevent hashing collision, the
Netfilter uses buckets of linked lists to carry the hashed
results. If a new connection is created, a firewall will compute
a hashing result and find a location for it. If a reply packet
reaches back to the firewall, the firewall will verify whether
the packet belongs to an existing connection or not. Finally, an
entry of a hash will be destroyed when the relevant connection
is disconnected or expired. Thus, the first packet of connection
will be examined against the firewall's rule list while other
packets will be examined against the hash tables and buckets.

Considering the merits of stateful firewall models in
configuration and security, we intend to enhance our Tree-
based firewall via an integration of the mechanism of stateful
firewall models into its system design. The details of the new
stateful Tree-based firewall will be presented in the next
section. The connection tracking model in our new stateful
Tree-based firewall outperforms the one of Netfilter.

III. DESIGN AND ANALYSIS

Our stateful Tree-rule firewall is designed based on the
connection tracking model of Netfilter [16][17][18][19] with
improvements. Similar to the connection tracking model of
Netfilter, a 'Hashing Table' is involved in the connection
tracking model in our stateful Tree-rule firewall.
Comparatively, this newly designed model consumes less
memory space (RAM) and operates in a faster manner. The
details of this new model is discussed in Sections III-A to III-
F.

A. Using one node per connection

Netfilter uses two nodes per connection for storing packet
information (i.e., Source IP address, Destination IP address,
Source Port, Destination Port, and Protocol Type), which is
called 'tuple'. The first node (node 'x') as shown in Figure 2 (a)
is used for recording information of packets transmitting from
the 'original direction' (i.e., packets coming from the point that
started the connection), while the second node (node 'y') is
used for the 'reply direction' (i.e., reply packets going to the
point that started the connection). In the Netfilter's model, the
five important attributes of packet information are stored into
nodes and are digested (hashed) using hashing function to
obtain entry numbers (i.e., 'a' and 'b' in Figure 2 (a)). These
numbers then indicate in which buckets the nodes are located.
Thus, the two nodes related to the same connections are
located on different entries. For example, Entry1 and Entry2
are entry numbers for the two nodes related to the same
connection. They are calculated using the functions as shown
below.

Entry1 = Hash(Source_IP, Destination_IP,
Source_Port, Destination_Port, Protocol_Type, Key),

and

Entry2 = Hash(Destination_IP, Source _IP,
Destination_Port, Source_Port, Protocol_Type, Key),

where 'Key' is a secret number generated by the firewall

randomly.

 Fig 2. Hashing Tables of IPTABLES and the Tree-rule

firewall

 Differently, in our model, only a single node is used per
connection using Max() and Min() functions. Consequently,
we need only one entry number (i.e., 'c' in the Figure 2 (b))
which is obtained using the function below:

Entry = Hash(Max(Source _IP, Destination_IP),
Min(Source_IP, Destination_IP), Max(Source_Port,
Destination_Port), Min(Source_Port, Destination_Port),
Protocol_Type, Key).

Note: Jenkins' hash (jhash) is used in both the connection

tracking model of Netfilter and that of our stateful Tree-rule

firewall. This is due to the reason that jhash provides fast

operation and is capable of distributing its 32 output bits

randomly.
By using our proposed scheme, approximately 50 per cent

of the memory space can be saved. This allows our firewall to
increase the number of concurrent connections up to two times
more. In the Netfilter's model, the first packet in a new
connection, as shown in Figure 3, needs to be calculated twice.
The first calculation is for the 'original direction' node and the
second calculation is for the 'reply direction' node (as shown in
Figure 2 (a). Moreover, it has to allocate memory two times
for the two nodes as well. In contrast, our model needs only
one hashing calculation because we use only one node per
connection. With the same reason, to terminate a connection
needs two operations to delete the two nodes from memory,
while our model takes only one node away. Thus, our model
can reduce the processing time significantly.

Fig 3. Steps of Netfilter's connection tracking [16]

Additionally, in our model, the number of connections
handled by our stateful Tree-rule firewall can reach the
maximum value. This is different from the Netfilter's model,
which has a limitation on the use of pair nodes. Given a pair
nodes in the Netfilter's model with a new connection (as
shown in Figure 3), after calculating Entry1 and Entry2 the
Netfilter looks for spaces to place the two nodes by checking
bucket lengths. If the relevant buckets are close to be full or
already full, then the length of the two buckets can be
categorized into three cases (A, B, and C):

 A. 7 and 7

 B. 8 and 8

 C. 7 and 8

Note:

- The maximum bucket length of Netfilter's model is 8, and

- Assuming that Jenkins' hash is used in Netfilter's model and

our model to provide random output bits.
 In case A, luckily, there are memory spaces for the two
nodes. If the two nodes are allocated to the tails of the buckets,
the lengths of the buckets will now both be 8s exactly. In case
B, unluckily, the two relevant buckets are already full. No
more nodes can be appended to the tails of these buckets. In
case C, there is only a space for one of the pairs but not
enough for two. In this case, Netfilter's model are not able to
use memory space efficiently because maximum bucket length
in average, for this case, is 7.5 but not 8.

One may argue that our model has to calculate Max and
Min for the Source IP address, Destination IP address, Source
Port, and Destination Port, for every packet. As such, these
operations may consume additional CPU load. To respond to
this argument, we have created a small program for measuring
time consumption of Jenkins' hash function and the Max/Min
functions. It is found that the computation of Jenkins' hash
applied in Netfilter's model takes approximately 1,000 times
longer than those of the Max and Min functions. Our model
requires hashing calculation once only and four times of Max
and Min calculations, while Netfilter's model makes hashing
calculation twice and no Max and Min calculations. Overall,
our model achieves a better performance in terms of speed.

B. Expanding Hashing Table size vertically

In this section, we propose to improve Netfilter's model by
expanding the size of Hashing table vertically (as shown in
Figure 4). This method can reduce hashing collisions and
further improve the speed of operation. We decrease
'maximum bucket length' and then increase the number of
entries in Hashing table with the same memory space. For
example, if we double the size of Hashing table vertically, we
need to decrease maximum bucket length by half of the size
(i.e., from 8 to be 4). Hence, by increasing the size of Hashing
table by two times, the collision will be decreased
approximately by 50%. This percentage is reasonable for
decreasing maximum bucket length to half. In our model, in
fact, we use one node per bucket and expand the Hashing table
vertically to 8 times or more. However, the size of the hashing
table can be expanded to 16, 32, 64 times or more because our
model requires smaller node size than that used in Netfilter's
model.

Fig 4. Expanding hashing tables in vertical direction

It is worth emphasizing that a collision may still occur
because there will be a chance to have two different packets
associated with the same hashed output. However, expanding
the size of the Hashing table in vertical direction as proposed
in this section can reduce probability of collisions generated
by a hashing function. This method can handle more
concurrent connections and allows shorter bucket lengths for
the same memory space, and the same chance of collisions.
Consequently, time consumption for a sequential search
within buckets will be decreased automatically.

 Considering systems A and B which have different sizes
of Hashing tables (the size of A is bigger than the size of B). If
distribution of nodes of the two systems is random, and
increasing rates of nodes in the two systems are the same, we
have found that the bucket length in A will be shorter than the
bucket length in B. Consequently, searching for nodes in
system A will be faster than B . Thus, we can conclude that
expanding size of Hashing table vertically can reduce
searching time within the buckets.

Although expanding the size of a Hashing table vertically
requires more spaces for the pointer of each expanded entry
because each entry must point to its first node, these pointers
require little memory space compared to the size of nodes.

In the Netfilter's model, one node requires 350 bytes [20],
while one pointer requires only 8 bytes. In our model, one
node requires 40 bytes while one pointer requires only 8 bytes.
The number of bytes used for each node has been reduced by
8.75 times.

C. Using one node per bucket

It is apparently that a short bucket length requires less time
for a sequential search in comparison with a long bucket
length (as shown in Figure 4). Thus, we decide to use one
node per bucket in our model (as shown in Figure 2 (b))
instead of using 8 nodes per bucket as presented in the
Netfilter's model. However, to mitigate the collision problem,
we will expand the size of Hashing table vertically by at least
eight times.

With this scheme, we can avoid the sequential search
within buckets, and provide a better speed performance. This
scheme also results in less memory consumption because no
left and right pointers are required to be maintained in a node
to work as doubly linked list (i.e., in the Netfilter's model
[16]). Consequently, the node size can be reduced. Moreover,
this decrease of complexity provides an easy way to
implement or create a efficient firewall.

Some users may have negative thinking about the collision
problem on our model (maximum node per bucket = 1)
because they may believe that collisions can be mitigated
using only buckets. In fact, we have already mitigated the
collision problem by expanding the size of Hashing table
vertically. Reducing bucket length from 8 to 1 can be
compensated by extending the Hashing table by 8 times.
Moreover, we can extend it up to 64 times with the same
amount of memory space used in Netfilter because our nodes
are smaller than Netfilter's nodes (our node size = 40 bytes,
Netfilter's node size = 350 bytes).

D. Verifying non-first packets using Tree Rule before Hashing

Table

Generally, in firewalls including Netfilter, the 'rule set'
created by firewall administrators will be used only for the
first packet of a connection (as shown in Figure 3.). The first
packet of a connection is verified with the 'rule set'. If the
result is ‘ACCEPT’, then the firewall will create
corresponding nodes within the 'Hashing table'. Then, the
subsequent packets, namely the second packet, third packet
and so on, will be verified with the entries in the 'Hashing
table' instead of the 'rule set'. Therefore, it can be seen that
verifying packets using Hashing table will be done more often
than verifying packets using the rule set. From our study, we
have found that hashing calculation takes approximately 1,000
times in comparing two numbers used in a verifying rule set or
Tree rule. This is because hashing function is very complex
and involves a complicated computing procedure. In contrast,
verifying packets using rule set does not take much time
because it requires only comparison between a pair of
numbers.

However, there are some attack packets that are
deliberately designed as non-first packets and injected into
host connections. An good example of such type of attack is
the 'Reset Flood Attack' [21][22][23], where packets are
generated by worms randomly and contain no SYN flag.
These attack packets will be verified by using the Hashing
Table. If these packets are verified by using rule set (or Tree
rule) and are dropped, it can reduce CPU time because
verifying packet with rule set is similar to comparison between
numbers which is faster than using hashing function. We can
drop packets which are denied by rule set (or Tree rule)
without using the Hashing Table again because if the first
packets are denied by rule set, packets' information will have
no chance to appear in the Hashing Table. In this method, we
will consider packets from both directions.

Therefore, in our model, we will verify non-first packets
using Tree Rule first for both directions (as shown in Figure
5). If at least one of results of this test is ACCEPT, we will
then verify using the Hashing Table.

Fig 5. Verifying non-first packets using Tree Rule before

Hashing Table

As such, the proposed firewall can operate faster in the

case of attack using random packets because approximately
50% of randomly generated packets will be the non-first
packets which will be denied by firewall rule as it can be seen

in the bottom flow of packets in Figure 5 (i.e., the path
E→I→K). In this case, by eliminating the unnecessary
hashing calculation, the overhead of our proposed stateful
Tree-rule firewall in packet filtering is further reduced.

In the case of attack where the number of non-first packets
is greater than the number of first packets, if the verified result
of a Tree rule is 'ACCEPT' (i.e., the path E→F or the path
E→I→J shown in Figure 5), the proposed firewall will need
only little extra time to verify packets using Tree rules before
verifying packets using the Hashing table. However, the
overall time consumption is only slightly increased because
verifying packets using Tree rules takes very little time and
can be ignored compared to verifying packets using Hashing
table.

E. Use of Static Node and Label to identify free nodes

In the Netfilter's model, if a new connection is created,
firewall must prepare memory spaces for relevant nodes (i.e.,
using the 'kmalloc()' function in C language). Also, if the
connection is terminated, the firewall must return these
memory spaces back to OS (i.e., using the 'kfree()' function).
These operations involve time factor performing these
operations. Considering a normal cycle for the HTTP request
and reply, which use TCP connection with approximately five
relevant packets (in average), firewall called the 'kmalloc()'
function and 'kfree()' function twice generating a total of four
memory related operations which is high compared to the
number of relevant packets (five packets). To resolve this
problem, we develop our model using a static memory. The
node which is used for recording packet information should be
a static node and will be created when the firewall is loaded
and executed. If the connection is created, packet information
will be stored in the node, and the 'Label' of this node will be
marked to be 'Unavailable'. If the connection is terminated, the
Label of this node will be marked to be 'Available' without
destroying the node from memory. If the next connection
which has the same entry number is created, the firewall can
use this node immediately (without requesting further memory
space from OS for the new node) by overwriting information
of the new packets to this area of memory, and then change
the Label to be 'Unavailable'. With this method, verifying
packets can be done easily by considering Label and packet
information within the node. In implementing the above
scheme, the variable type for the Label is a one byte variable
(actually it requires only one bit '0' if the node is 'Available'
and '1' if the node is 'Unavailable').

In the context of computer programming, each function
including memory management function affects run time.
With our scheme, the firewall does not need to request and
return memory space from and to the OS for nodes (i.e.,
calling kmalloc() and kfree()). As a result, the proposed
firewall can operate faster.

Using our scheme, firewall administrators must prepare a
certain (fix) but a very small size of memory for the firewall
software, and this memory space cannot be shared with other
processes although the firewall is working with only few
packets.

Based on our calculation, a 768 MB RAM can handle 16.7
million connections. This provides approximately 46 bytes per
connection for our firewall model. According to the
information presented on the Netfilter's website [15], the
default value for maximum connection of IPTABLES is 8192,
which requires 128 MB of RAM. Therefore, it requests 16,384
bytes per connection for Netfilter's model. Hence, our scheme
can carry a total of 16,384 / 46 = 356 times more connections
compared to the Netfilter's model.

F. Using the Label for Time Out instead of Timer Object

In the Netfilter's model, if a connection is terminated by
FIN or RST flags, firewalls will create a 'Timer Object' to
schedule and specify the time when the relevant nodes will be
deleted. For example, the Timer Object will delete a node in
the next 30 seconds since the FIN flag was detected. This
operation uses event driven techniques. Creating, deleting and
managing Timer Objects consumes OS resources and CPU
times. These resources and time consumptions are significant
when compared with a short connection (i.e., normal use of
web browsing / HTTP protocol). Thus, our model removes
this drawback by using a Label for expired nodes instead of
using the Timer Objects. With this method, if a firewall find
FIN or RST flags, it will calculate expiration time for the node
and store it into the Label. A variable type for this Label is the
'struct timespec' (in C language) which requires 16 bytes, and
can record date and time in seconds, and even nanoseconds.
To verify the node, the firewall will check the timer's Label in
the node before using information from the node. If the current
time is new and greater than the time stored in the Label, it
means that this node is expired (the node does not exist). In
contrast, if the current time is less than the time stored in the
Label, it means that this node is still active, and the firewall
can use information from this node.

Firewalls can work faster because they do not necessarily
manage timer objects such as calling the 'new_timer()' and
'delete_timer()' functions. Moreover, this scheme can save OS
resources and easy to implement.

IV. FIREWALL IMPLEMENTATION AND EXPERIMENTAL

ANALYSIS

We implement the Tree-rule firewall using C language on
Linux Cent OS 6.3, and conduct experiments on real network
environments. In our previous research [6][7], it has been
shown that the Tree-rule firewall provides higher security in
comparison with traditional firewalls. In this paper, however,
we focus on speed issue along with our stateful (connection
tracking) mechanism. We emphasize on the following four
cases of packets in TCP connections (as shown in Figure 6.):

 Case #1: The fist packets (SYN packets) accepted by
the firewall,

 Case #2: The fist packets (SYN packets) denied by
the firewall,

 Case #3: The non-fist packets (Non-SYN packets)
accepted by the firewall, and

 Case #4: The non-fist packets (Non-SYN packets)
denied by the firewall.

Case #4 can then be further divided into two sub-cases, Case
#4a and Case #4b for the following:

 Case #4a: The non-fist packets which will be denied
by the firewall and verified with hashing table, and

 Case #4b: The non-fist packets which will be denied
by the firewall but not be verified with hashing table.

Fig. 6. The four cases which was evaluated on speed issue

On client machines, apart from a normal internet browsing,
we use BackTrack 5 R3 live boot flash to generate packets and
use 'hping3' command to generate the first packet of
connection with '-S' parameter. The detailed command is
given below.

hping3 192.168.22.2 -a 192.168.11.2 -p 333 -S -s +1 -d
1440 -i u1000

This command can be used for Cases #1 and #2 because the '-s

+1' parameters will generate packets of which their source

ports will be starting from '1', and increased by one, for each

packet. In addition, we use '-d 1440' to specify packet size of

1440 bytes (not including layer-2 header and tail size) because

this number is a regular size for the HTTP protocol. With this

tool, we can create and send packets as much as possible using

the '--flood' parameter, and can specify time interval for each

packets using the '-i' parameter. For generating packets related

to Cases #3 and #4, we will use this command without '-S'

parameter to turn off the SYN flag.
We compare the processing speed of the connection

tracking module in our stateful Tree-rule firewall with that of
the connection tracking module in Netfilter. Figure 6 shows
the four cases on the Tree-rule and IPTABLES/Netfilter. We
also measure the processing time on packet decision process
for one packet. We start to record packet arrival time on the
first line of the packet hooking function (i.e., the function
'hook_func()' of the link [24]). We then record the end time
before the line 'return NF_ACCEPT' and 'return NF_DROP'

for all cases. Programmed codes between start time and end
time for each case, give different time consumptions because
some cases need to compute hashing function while other
cases do not. The recorded time in nanosecond will be written
on the file '/var/log/messages' using the 'PRINTK' function.
Likewise, we also measure computation time of packets on
Netfilter/IPTABLES’ module by using this technique. We
modify the file '/kernel/net/netfilter/nf_conntrack_core.c' of
the Netfilter's ConnTrack module, and recompile it (including
relevant files) to create the new 'nf_conntrack.ko' file. We
reload the modified modules to operate with IPTABLES.
Information about starting time and ending time for the four
cases of our prototype software and Netfilter/IPTABLES are
collected and their average is computed. We test them on real
network environment with more than 50,000 packets before
taking average for every case. Our experimentations use
approximately 50 client PCs in an university network LAB.
These computers (firewall and clients) use Intel Core i5 with
2.30 GHz of CPU, and 4GB of RAM. We test with 50 rules
for IPTABLES and approximately 50 rule paths for Tree-rule
firewall. The experimental results are presented in Table 2
and Figure 7.

Table 2. Time consumption of packet decision on Tree-rule

firewall and Netfilter / IPTABLES

Fig. 7. Representation of time consumption on Tree-rule

firewall and Netfilter/IPTABLES

The experimental results of the Tree-rule firewall shown in

Table 2 and Figure 7 reveal that Case #3 takes little more time
than Case #1, because Case #3 needs to verify packet header
with a tree rule for one or two times before verifying the
packet information with the hashing table. This slight time
difference is due to the fact that verifying packet with the tree
rule is an easy job in comparison with calculating a hashing
function. Case #2 and Case #4b of the Tree-rule firewall take
less time compared to other cases because they do not need to
perform the hashing function. Theoretically, Cases #3 and #4

Firewall

Processing Time for one packet (nanosecond)

Case 1 Case 2

Case 3

(average)

Case 4a

(average) Case 4b

Tree-Rule firewall

481.13

164.44

497.69

455.12

239.94

Netfilter/IPTABLES

3,722.82

1,259.94

3,319.55

3,193.41

3,193.41

of Netfilter/IPTABLES should take equal time because they
use same algorithms. However, in practical, they may
encounter different time of computations. The largest time
used by Netfilter/IPTABLES is the time in Case #1, where the
firewall has to perform hashing task two times (for two
directions), and also requests memory spaces from OS to
create two nodes for storing connection information for both
original and reply directions.

Apart from time consumption on packet decision, we also
measure memory consumption of both the Tree-rule firewall
and Netfilter/IPTABLES. Theoretically, Netfilter require 350
bytes per connection [20], while our model (Tree-rule
firewall) requires only 40 bytes per connection. The Tree-rule
firewall uses less memory because it does not use timer
objects and memory spaces for a reply-direction nodes.
However, our experimental results show that Netfilter takes
approximately 400-430 bytes per connection, whereas our
model takes approximately 40-60 bytes per connection. These
numbers are based on 10,000 concurrent connections with
normal traffic load on real network.

V. CONCLUSION AND FUTURE WORKS

In this paper, we propose a stateful mechanism which will
be used on the Tree-rule firewall. We design and develop our
model from the basic connection tracking model of Netfilter.
Our proposed connection tracking model requires low memory
space, while it can handle more concurrent connections by
using one node per connection. Our scheme extends the
hashing table vertically and uses one-node bucket length.
Moreover, this model has a low time consumption, which
benefits from the avoidance of hashing computation by
considering the Tree rule first. If packets are not
corresponding to the Tree rule (for both directions), the
firewall will not perform hashing calculation. We also get rid
of the timer objects used for closing connections. Instead, we
use the Label which can tell the firewall which connections
are expired by reading only 16 bytes of time information from
the memory. Moreover, this model does not necessarily create
new nodes to store packets' information because we use static
memory for all nodes created after the firewall is loaded into
the memory and executed. With this scheme, the firewall only
checks whether the relevant node is free or not by using the
marked Label. Our experimentation is conducted on real
network environments, and the results show that our stateful
Tree-rule firewall operates faster than Netfilter/IPTABLES.
Our stateful Tree-rule firewall also requires less memory
owing to the fact that the size of a node has been reduced and
the number of nodes used per connection has been decreased
from two to one. In future, we plan to consider FIN and RST
packets and their effects on the Tree-Rule firewall
implementation. Our stateful Tree-Rule firewall will be
developed and tested for Network Address Translation (NAT),
IPv6 and Virtual Private Network (VPN) in future.

REFERENCES

[1] W. Cheswick, S. Bellovin, A. Rubin, Firewalls and Internet Security:
repelling the wily hacker, Addison-Wesley Professional, 2003.

[2] J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, S. Martinez, J.
Cabot, Management of stateful firewall misconfiguration. Computers &
Security, Elsevier, 39 (2013) 64-85.

[3] S. Paul, R. Jain, M. Samaka, J. Pan, Application delivery in multi-cloud
environments using software defined networking. Computer Networks,
Elsevier, (2014) In Press.

[4] E. Al-Shaer, H. Hamed, Firewall policy advisor for anomaly detection
and rule editing, in: Proceedings of the IEEE/IFIP Integrated
Management, IM, 2003, pp. 17–30.

[5] A. Ashfaq, S. Rizvi, M. Javed, S. Khayam, M. Q. Ali, E. Al-Shaer,
Information theoretic feature space slicing for statistical anomaly
detection, Journal of Network and Computer Applications, Elsevier, 41
(2014) 473–487.

[6] T. Chomsiri, X. He, P. Nanda, Limitation of listed-rule firewall and the
design of tree-rule firewall, in: Proceedings of the 5th International
Conference on Internet and Distributed Computing Systems, China,
2012, pp. 275–287.

[7] X. He, T. Chomsiri, P. Nanda, Z. Tan, Improving cloud network security
using the Tree-Rule firewall, Future Generation Computer Systems,
Elsevier, 30 (2014) 116-126.

[8] J. Johansson, S. Riley, Protect Your Windows Network: From Pe-
rimeter to Data (Microsoft Technology), Addison-Wesley Professional,
2005.

[9] What are the risks associated with relying on IPSec IP Filtering?, 2014,
http://security.stackexchange.com/questions/3909/what-are-the-risks-
associated-with-relying-on-ipsec-ip-filtering.

[10] F. Cuppens, N. Cuppens-Boulahia, J. Garcia-Alfaro, T. Moataz, X.
Rimasson, Handling stateful firewall anomalies, Information Security
and Privacy Research, Springer Berlin Heidelberg, (2012) 174-186

[11] Administration Guide - Check Point, 2007,
http://updates.checkpoint.com/ID/CheckPoint_UTM-
1_AdminGuide.pdf‎.

[12] S. Kumar, R. Gade, Experimental Evaluation of Juniper Network's
Netscreen-5GT Security Device against Layer4 Flood Attacks, Journal
of Information Security, Springer Berlin Heidelberg, 2 (2011) 50.

[13] NetScreen-Security Manager: Configuring Firewall/VPN Devices
Guide, 2007,
http://www.juniper.net/techpubs/software/management/security-
manager/nsm2007_1/nsm2007_1_device_config.pdf.

[14] R. Rosen, Netfilter, Linux Kernel Networking, Apress, (2014) 247-278.

[15] The netfilter.org project, 2014, http://www.netfilter.org/.

[16] P. Ayuso, Netfilter's Connection Tracking System, LOGIN;, The
USENIX magazine, 32 (2006) 34-39.

[17] The netfilter.org project, 2014, http://www.netfilter.org/.

[18] Q. M. AL-Musawi , MITIGATING DoS/DDoS ATTACKS USING
IPTABLES, International Journal Of Engineering & Technology, IJENS
Publishers, 3 (2012) 12.

[19] Q. X. Wu, The Research and Application of Firewall based on Netfilter.
Physics Procedia, Elsevier, 25 (2012) 1231-1235.

[20] Netfilter/IPTABLES FAQ: Problems at runtime, 2014,
http://www.netfilter.org/documentation/FAQ/netfilter-faq-3.html.

[21] A. Anand, B. Patel, An Overview on Intrusion Detection System and
Types of Attacks It Can Detect Considering Different Protocols,
International Journal of Advanced Research in Computer Science and
Software Engineering, IJARCSSE, 8 (2012) 94-98.

[22] Malicious Packets - Packet-Craft.net, 2014, http://www.packet-
craft.net/Malicious/.

[23] A. Srivastava, B. B. Gupta, A. Tyagi, A. Sharma, A. Mishra, A recent
survey on DDoS attacks and defense mechanisms. In Advances in
Parallel Distributed Computing, Springer, (2011) 570-580.

[24] P. Kiddie, Creating a simple ‘hello world’ Netfilter model, 2009,
http://www.paulkiddie.com/2009/10/creating-a-simple-hello-world-
netfilter-model.

