
Open-TEE - An Open Virtual Trusted Execution
Environment

Brian McGillion∗, Tanel Dettenborn†, Thomas Nyman‡
Intel Collaborative Research Institute for Secure Computing (ICRI-SC) at Aalto University, Finland.

N. Asokan§
Aalto University and University of Helsinki, Finland.

∗brian.mcgillion@intel.com, †tanel.dettenborn@intel.com, ‡thomas.nyman@aalto.fi, §asokan@acm.org.

Abstract—Hardware-based Trusted Execution Environments
(TEEs) are widely deployed in mobile devices. Yet their use
has been limited primarily to applications developed by the
device vendors. Recent standardization of TEE interfaces by
GlobalPlatform (GP) promises to partially address this problem
by enabling GP-compliant trusted applications to run on TEEs
from different vendors. Nevertheless ordinary developers wishing
to develop trusted applications face significant challenges. Access
to hardware TEE interfaces are difficult to obtain without support
from vendors. Tools and software needed to develop and debug
trusted applications may be expensive or non-existent.

In this paper, we describe Open-TEE, a virtual, hardware-
independent TEE implemented in software. Open-TEE conforms
to GP specifications. It allows developers to develop and debug
trusted applications with the same tools they use for developing
software in general. Once a trusted application is fully debugged,
it can be compiled for any actual hardware TEE. Through
performance measurements and a user study we demonstrate
that Open-TEE is efficient and easy to use. We have made Open-
TEE freely available as open source1.

This is the author’s version of the article to appear in 14th IEEE International Conference on Trust, Security and Privacy in Computing and Communications,
TrustCom 2015, Helsinki, Finland, August 20-22, 2015.

I. INTRODUCTION

Personal computing devices such as smartphones, tablets
and laptops have become pervasive. They are used to store
sensitive data and access critical services across a wide range
of domains, such as banking, health care and safety, where
privacy and security are paramount. On the other hand, tra-
ditional operating systems and the services that they provide
are becoming so large and complex that the task of securing
them is increasingly harder. Hardware-based trusted execution
environments (TEEs) were developed to address this gap. A
TEE on a device is isolated from its main operating environ-
ment by using hardware security features. It offers a smaller
operating environment that provides just enough functionality
so that sensitive data and operations can be offloaded to it.

Hardware-based TEEs have been widely deployed in mo-
bile devices for over a decade [1]. TI M-Shield [2] and ARM
TrustZone [3], [4] are early examples, followed by newer
architectures like the Intel SEP security co-processor [5] and
Apple’s “Secure Enclave” co-processor [6]. Business require-
ments such as the need to enforce digital rights management
and subsidy locks, as well as regulatory requirements like

1https://open-tee.github.io

cloning- and theft protection have been the driving forces
behind such large scale deployment [1]. Such requirements
continue to appear: e.g., fingerprint scanners with hardware
protection, hardware-backed keystores, and the recent “kill
switch” [7] bill in California mandating that a mobile device
must be capable of being rendered inoperable if it is stolen.

Although the early hardware security modules (HSMs) like
the IBM cryptocards2 were programmable [8], the vast major-
ity of HSMs used with personal computers and servers today
are typically application-specific modules or fixed function co-
processors like the Trusted Platform Modules (TPMs) [9]. In
contrast, TEEs in mobile devices are programmable. However,
despite widespread deployment of hardware-based TEEs in
mobile devices, application developers have lacked the inter-
faces to use TEE functionality to protect their applications
and services. Nor have they been researched extensively in the
academic community. Recent efforts by GlobalPlatform [10]
to specify standard interfaces for TEE functionality in mobile
devices [11] will partially address this problem. However, there
are a number of factors that stand in the way of widespread
use of hardware-based TEEs in application development and
research. Chief among them is the difficulty of developing
applications for TEEs. Software development kits for TEE
application development are often proprietary or expensive.
Debugging low-level TEE applications either requires expen-
sive hardware debugging tools, or leaves the developer with
only primitive debugging techniques like “print tracing” (e.g.,
using printf statements in C to keep track of how values of
variables change during program execution).

In this paper, we argue that a virtual standards-compliant
TEE implemented entirely in software will allow developers
to build TEE applications using tools and development envi-
ronments that they are already familiar with. It will also allow
applications to be tested and refined even when developers do
not have access to devices where hardware TEE functionality
has been made accessible to them. Such a facility will greatly
ease TEE application development and can trigger new ways
of using TEEs. We make the following contributions:

• We design and implement such a virtual TEE called
Open-TEE which conforms to GlobalPlatform Spec-
ifications. We identify requirements that would make
Open-TEE acceptable to developers and make specific

2http://www.ibm.com/security/cryptocards/

ar
X

iv
:1

50
6.

07
36

7v
2 

 [
cs

.C
R

] 
 3

0 
Ju

n 
20

15

https://open-tee.github.io
http://www.ibm.com/security/cryptocards/


Fig. 1: A TEE in a Computing Device

design choices informed by these requirements (Sec-
tion III). Open-TEE is publicly available on GitHub.3

• We show that Open-TEE is efficient, hardware-
independent and allows a developer to carry out much
of the development life cycle of standard-compliant
TEE applications using popular application develop-
ment environments they already use. We demonstrate
that Open-TEE significantly improves the ease-of-
use of TEE application development by conducting a
small-scale, yet rigorous, user study with experienced
professional TEE developers (Section IV).

Given the demonstrable usability benefits, we recommend that
organizations who develop applications for TEEs should con-
sider incorporating Open-TEE into their development process.
We also hope that this paper will enable more researchers to
discover the power of TEEs and use Open-TEE to develop and
experiment with new TEE applications.

Note that Open-TEE is not intended to emulate a particular
hardware TEE. The goal of Open-TEE is that a Trusted Appli-
cation developed successfully with Open-TEE is guaranteed to
compile and run on any target GlobalPlatform-compliant TEE.

II. BACKGROUND

A. Structure of a TEE

A TEE is a secure, integrity-protected processing envi-
ronment, consisting of processing, memory and storage ca-
pabilities. Figure 1 shows how a device can be visualized
as a series of distinct environments with their own set of
features and services. Using the terminology introduced by
GlobalPlatform [12] we describe below the concepts illustrated
in Figure 1:

Rich Execution Environment (REE): The word “rich” here
refers to an operating environment that is feature rich such as
one would expect from a modern platforms such as Android,
iOS, Windows, Linux or OS X.

Trusted Execution Environment (TEE): The TEE is a com-
bination of features, both software and hardware, that isolate
the execution of tasks from the REE. These environments have
a limited set of features and services as they are intended to

3http://open-tee.github.io/

only address the security critical subset of an application’s
functionality such as offloading some cryptographic operations
or key management.

Trusted Application (TA): An application encapsulating the
security-critical functionality to be run within the TEE. This
may be a service style application that provides a general
feature, such as a generic cryptographic keystore, or it could
be designed to offload a very specific part of an application
that is running in the REE, such as a portion of the client state
machine in a security protocol like TLS.

Client Application (CA): CAs are ordinary applications (e.g.,
browser or e-mail client) running in the REE. CAs are respon-
sible for providing the majority of an application’s functional-
ity but can invoke TAs to offload sensitive operations.

As an example, consider a common use case for TEEs:
the offloading of Digital Rights Management (DRM) protected
content. The CA would be responsible for the majority of
the tasks associated with viewing the content i.e. opening the
media file, providing a region in the display into which it
can be rendered (the window) and providing a mechanism to
start, stop, rewind the media. A TA would be used to decrypt
the protected media stream and make the decrypted content
available directly to the graphics hardware that is responsible
for rendering and displaying the stream.

B. TEE architectural options

A TEE can be realized in different ways, but the overall
concept stays the same. Figure 2 shows a number of ways in
which these TEEs can be realized:

Co-Processor: A separate core, generally with its own periph-
erals, is used to offload the security critical tasks from the main
operating environment. The benefits of such a configuration are
that the operation can generally be completely isolated and it
can run simultaneously with the main core. The drawback is
that there is an overhead associated with transferring the data
to and from the core. Also, the co-processor is generally less
powerful than the main core. The co-processor design can be
further separated into two alternatives:

External Security co-processor: is a discrete hardware module
outside the physical chip (commonly referred to as “System on
Chip” or SoC) containing the main core, and is thus completely
isolated from it, not sharing any resources with it.

Embedded Security co-processor: is embedded into the main
SoC and thus has the capability to share some of the resources
of the main system. It is still isolated from the main processor.

Processor Secure Environment: Many popular mobile TEE
architectures follow a configuration where a single core sup-
ports multiple virtual cores that are mutually exclusive of one
another i.e. when one is running the other is suspended. Gen-
erally there is some form of trigger to allow the core to switch
from one state to the other. This configuration is sometimes
referred to as the “processor secure environment” [13].

ARM TrustZone is an example of this configuration. In Trust-
Zone, the processor core can be in one of two “worlds”: a
“secure world” (for the TEE) and a “normal world” (for the
REE). A special instruction called Secure Monitor Call (SMC)
can be executed to trigger the processor running in normal

http://open-tee.github.io/


Fig. 2: Three potential architectural options for realizing a TEE architecture (adapted from [12])

world to enter “monitor mode” that marshals the transition to
secure world [3]. The advantage of this configuration is that
there is no need to offload the data to and from the secure
world. However, there is a cost associated with having to store
and restore the device state on entry and exit from a given
mode. On single core devices there is also an added security
benefit from having only one world running at a given time
in that it ensures that the normal world OS cannot interfere
with the secure world directly or indirectly (e.g., software side-
channel attacks). However, this also has the disadvantage that
when one world is active the other world must be completely
halted, thus complicating interrupt handling.

Intel Software Guard Extensions (SGX) [14], [15] is another
example of such a variant, the core does not perform a full
transition to and from a secure world. Instead parts of a
standard application, both code and data, are protected by
mechanisms in the core. Parts of the application, called an
Enclave, are encrypted by a key that is only accessible to the
CPU. When an “enter enclave (EENTER)” [16] instruction is
received the code and data are decrypted and operated upon
in the core. They never leave the CPU package unencrypted,
thus protecting them against external access. The benefits are
that there is no need to transfer data back and forth between
cores or to setup complicated transitions to and from a secure
world, and there is no additional need for a separate operating
environment as is required in other styles of TEE configuration.

Virtualization based on hardware features such as AMD-V
and Intel VT-(x,d), have existed for many years and are used
extensively to provide separation of resources between differ-

ent operating environments especially in high density server
configurations. They rely on processor support to allow virtu-
alization of instructions and access to resources e.g. through
the use of an IOMMU4, access to and from peripheral devices
can be restricted. Though in and of themselves they are not
designed solely to provide a TEE, there is recent research [17],
[18] to see how these can be used as an alternative to dedicated
hardware based TEEs. When deployed as TEE environments
they generally rely on a Virtual Machine Manager (VMM) to
provide the marshaling of access to the resources. This poses
a security concern as the VMM is considered to be part of
the Trusted Computing Base (TCB) of such a system, thus
increasing the attack surface.

C. Standardizing TEE Functionality

The landscape for TEEs has been very diverse, with a
variety of different architectural options from multiple man-
ufacturers. Even platforms using the same type of TEE are
often not inter-operable. For example, an application written
for one TrustZone-based platform will generally not run on
a different TrustZone-based platform. They may be using a
different TEE OSs or different REE OS drivers. On the other
hand, developers and others who are higher up in the software
ecosystem are less concerned with intricacies of low-level
software or hardware but more concerned with their ability
to use the capabilities of TEEs easily and across different
platforms. This calls for standardization.

4Input/Output Memory Management Unit



Fig. 3: The main APIs specified by GlobalPlatform [12]

One initiative in TEE standardization has been undertaken
by GlobalPlatform (GP) [10], which “is a cross industry,
non-profit association which identifies, develops and publishes
specifications that promote the secure and inter-operable de-
ployment and management of multiple applications on secure
chip technology” [19]. GP offers specifications in three areas:
smartcards, back-end support systems and devices. In this
paper, we are concerned with specifications from the device
working group related to the APIs for TEEs.

Figure 3 shows the primary interfaces standardized by GP.
The TEE Core API provides an extensive set of features such as
a crypto API and secure storage that can be used to implement
a TA, for example a DRM decoder. The TEE Client API is
a very generic and thin layer consisting of a small number
of functions and definitions that allow the transfer of data
back and forth from the REE to a TA. A CA, for example
a DRM player, will implement all complex but non-critical
functionality by itself, but use the Client API to invoke the
corresponding TA, such as the DRM decoder. Between the
TEE Client API running on the REE and TEE Core API
running on the TEE we have an effective Remote Procedure
Call (RPC) mechanism where a process running in the REE
can invoke tasks in the TEE.

These standardization efforts in GlobalPlatform could re-
solve the issue of inter-operable TEEs. However, they do not
remove the obstacle in gaining access to the requisite hardware
nor does simplify the task of developing and testing TAs.

III. OPEN-TEE

In order to pave the way for the widespread use of TEE
functionality by developers and researchers we propose an
architecture and a software development kit (SDK) that imple-
ments this as a framework atop a set of tools that are familiar to
the developer, thus removing the need for specialized hardware
and the overheads that it incurs.

A. Motivation

To explain our motivations, we now revisit the difficulties
in developing TEE applications that we alluded to in Section I:

a) Enable developer access to TEE functionality: For
a variety of reasons, access to TEEs is generally restricted to
developers working for chip manufacturers and to the original
equipment manufacturers (OEMs) that make devices based on
these chips. Usually, the technology is proprietary and easily
deployable SDKs are not available. Furthermore, TEEs may
not have a security architecture within them to safely allow
complete outsider developers access to TEEs. However, there
have been attempts to address this problem [20].

b) Provide a fast and efficient prototyping environment:
The most common methods of debugging TAs are to either
use expensive JTAG5debugging or resort to primitive “print
tracing” by inserting diagnostic output in the source code.
The former generally allows for detailed instruction level
debugging. However, the costs associated with these debuggers
can be prohibitively expensive, and the setup complex. Print
tracing as a debugging technique is cumbersome and clutters
up the source code even to locate the source of a problem.
Another concern encountered by TEE developers is that if a
TA running on actual device hardware crashes, a hard reset
of the device maybe required to recover, thereby significantly
increasing the time and effort of debugging.

c) Promote research into TEE Services: Ways to isolate
TEEs from REEs are reasonably well understood as we saw
in Section II. What is less well understood are the types
of services that could benefit from using TEEs. As the app
store model has proven, given an opportunity, the developer
community at large is capable of pushing the boundaries and
exploring new and novel ways to use technology. Making it
possible for researchers to easily develop TAs could trigger
the development of novel and innovative applications.

d) Promote community involvement: The pre-requisite
for involving the developer community and researchers at
large is to allow them access to a freely and easily available
development environment, SDK and a platform with which
to experiment. The financial and technical aspects of making
hardware TEEs available for development on a large scale mo-
tivates the need for a software framework for TA development
which is not bound to any particular hardware or vendor.

B. Requirements

Motivated by the above discussion, our aim is to develop
an SDK and framework that allows for the development and
testing of standard-compliant TEE applications. The frame-
work should allow development of GP-compliant CA and
TA functionality without having to rely on any particular
hardware support. We intend this to be a fast prototyping
and development environment that also provides a platform
from which to conduct further research into TEE functionality.
Our fundamental design principle is that it should require as
little configuration and maintenance as possible, allowing the
developer to focus on the task at hand.

We identify the following criteria by which we can mea-
sure our TEE framework’s usefulness and hence its potential
success in addressing the issues that motivated it:

Compliance: Our framework should comply with GP’s main
interfaces, the Client and Core APIs.

5Joint Test Action Group standard addresses debugging of integrated circuits



Hardware-independence: As a software based solution our
framework should not be dependent on a particular TEE
hardware environment. It should also not be dependent on any
particular hardware for the development system itself.

Reasonable Performance: To be readily deployed, our frame-
work must not suffer from code bloat that adds to the on-disk
footprint nor to the memory consumption required to run it.
In addition the start-up and restart times of the environment,
especially that of the CAs and TAs should not be excessive.

Ease-of-use: The solution should be easily deployed and
configured. It should use tools that are widely available making
it more attractive (e.g., there should be no need for extra
package/tool configuration on the development system).

We now describe our design and implementation of such
a software framework which we call Open-TEE.

C. Architecture

We begin with an overview of the structure of the Open-
TEE environment. Figure 4 identifies the main components
and their relationships. The color code used in Figure 4 is the
same as that used for Figure 3 to make the correspondence be-
tween the Open-TEE implementation architecture and the GP
conceptual architecture is clear. We describe each component
in detail below.

Fig. 4: Open-TEE architecture

a) Base: Open-TEE is designed to function as a dae-
mon process in user space. It starts executing Base, a process
that encapsulates the TEE functionality as a whole. Base is
responsible for loading the configuration and preparing the
common parts of the system. Once initialized the Base will
fork to create two independent but related processes. One

process becomes Manager and the other, Launcher which
serves as a prototype for TAs.

b) Manager: Manager can be visualized as Open-TEE’s
“operating system.” Its main responsibilities are: managing
connections between applications, monitoring TA state, pro-
viding secure storage for a TA and controlling shared memory
regions for the connected applications. Centralizing this func-
tionality into a control process can also be seen as a wrapper
abstracting the running environment (e.g. GNU/Linux) and
reconciling it with the requirements imposed by the GP TEE
standards. GP requirements and the host environment’s func-
tionality are not always aligned. For example, GP requirements
stipulate that if a TA/CA process crashes unexpectedly, all
shared resources of the connected processes must be released.
In a typical running environment, this requires additional steps
beyond just terminating the process. For example all shared
memory must be unregistered – this needs to be a distinct
action from normal process termination.

c) Launcher: The sole purpose of Launcher is to create
new TA processes efficiently. When it is first created, Launcher
will load a shared library implementing the TEE Core API
and will wait for further commands from Manager. Manager
will signal Launcher when there is a need to launch a new
TA (for example, when there is a request from a CA). Upon
receiving the signal, Launcher will clone itself. The clone will
then load the shared library corresponding to the requested TA.
The design of Launcher follows the “zygote” design pattern
(such as that used in Android [21]) of pre-loading common
components. This is intended to improve the perceived per-
formance of starting a new TA in Open-TEE because shared
libraries and configurations common to all TAs are pre-loaded
into Launcher, the time required to start and configure the
new process is minimal. A newly created TA process is then
re-parented onto Manager so that it is possible for it to control
the TA (so that, for example, it can enforce the type of GP
requirements discussed in the paragraph above).

d) Trusted Application Processes: The architecture of
the TA processes is inspired by the multi-process architecture
utilized in the Chromium Project [22]. Each process has
been divided into two threads6. The first handles Inter-Process
Communication (IPC) and the second is the working thread,
referred to respectively as the IO and TA Logic threads.
This architectural model enables the process to be interrupted
without halting it, as occurs when changing status flags and
adding new tasks to the task queue. Additional benefits of this
model are that it allows greater separation and abstraction of
the TA functionality from the Open-TEE framework.

e) GP TEE APIs: The TEE Client API and TEE Core
API are implemented as shared libraries in order to reduce
code and memory consumption.

f) IPC: Open-TEE implements a communication pro-
tocol on top of Unix domain sockets and inter-process signals
as the means to both control the system and transfer the
messages between the CA and TA.

D. Implementation and Tooling

a) Utilizing existing functionality: To meet the
hardware-independence requirement, we do not emulate spe-

6The architecture of Manager follows the same division



cific TEE hardware with software based emulators, such as
QEMU [23]. Instead we rely on existing technologies and
the services offered by the mainstream OS of Open-TEE’s
running environment rather than developing a new TEE OS
to deploy the GP APIs in. In addition we reuse software from
existing open source projects, such as the OpenSSL crypto
library and the GNU tool suite, thereby reducing the amount
of time required to develop and test the Open-TEE framework.

This also contributes towards meeting the ease of use
requirement in that developers can easily set up Open-TEE and
start developing TAs using a set of familiar tools, editors, IDEs,
compilers and debuggers. For example, a developer utilizing
Open-TEE can connect to a TA process with a cheap reliable
software debugger such as GDB [24] for detailed debugging
tasks like stepping through the code, inspecting variables and
registers etc.

b) Development process: The intended user base for
Open-TEE consists of seasoned developers. To ensure viabil-
ity in such a demanding user base, we adopted a rigorous
development process for Open-TEE so that the end result will
be perceived as robust and usable. Open-TEE is developed
as an open source project and as such there are a number
of powerful tools that are freely available for this type of
project. As previously mentioned GitHub is used for hosting
the code. GerritHub7 is used for performing peer-review of all
code before it is submitted to the code base. In addition to the
manual review process we leverage the power of Coverity8 to
perform in depth static analysis scans. This enforces secure
coding practices and helps to find potential functional bugs
that may have been missed during the manual code review. In
addition, we have deployed a continuous integration (CI) server
running Jenkins9, which we have connected to GerritHub. Its
main task is to perform a number of “smoke tests”10 on the
new patches. These tests ensure that the patches conform to the
coding guidelines, build successfully and that the basic system
is usable after the patches are applied.

c) Open-TEE in Use: Being designed as an open source
framework upon which to build and test features that will
utilize a TEE, Open-TEE has been implemented to be as incon-
spicuous as possible. The complexity of the system is hidden
from the users of Open-TEE. They are presented with an SDK
that exposes the Client and Core APIs without being required
to have a deep understanding of how the overall framework
works, thereby allowing them to focus on the development of
their own TAs. However, Open-TEE is already being extended
by the community. The ongoing implementation of the GP
Trusted UI specification is an example.

IV. EVALUATION

We now return to the requirements from Section III and
evaluate how well Open-TEE meets those requirements.

7http://gerrithub.io/
8https://scan.coverity.com/projects/3441
9http://jenkins-ci.org/
10A suite of tests intended to ensure that the basic functionality of a system

are intact.

A. Compliance

Every effort has been made to comply with the GP
standard. Whenever this has not been feasible, due to time
constraints or in the interest of providing a platform upon
which to build, the deviation has been documented and a
debug message is logged to inform the user of the non-
compliance. The Client API is fully implemented. The Core
API implementation has 100% function coverage, however,
the cryptographic algorithm coverage is currently 80% due to
the use of existing libraries that do not support the remaining
algorithms. A compliance test suite is commercially available
from GP. There is no information about how well existing
TEE hardware conform to the GP specifications. Based on our
experience in implementing version 1.0.26 of the GP Core
API, we provided detailed feedback, including on errors and
ambiguities in the specification, to GlobalPlatform in response
to their solicitation of public comments. Several items in our
feedback have been addressed in the released version 1.1.

B. Hardware-independence

By following the GP standard and not emulating any
specific TEE hardware, Open-TEE is independent of TEE
hardware. TAs developed with Open-TEE can be compiled to
any target TEE hardware architecture. We have verified [25]
that a non-trivial a TA developed using Open-TEE (284 LoC,
19 Internal Core API invocations (9 unique functions), 6
invokable TA commands) has been succesfully compiled and
run on a hardware TEE based on ARM TrustZone running the
Trustonic <t-base environment [26].

Open-TEE can provide coverage reports to help highlight
hot-spots in the code, generate call graphs etc. The GP Internal
Core API includes memory management primitives and allows
configuration parameters (such as gpd.ta.dataSize and
gpd.ta.stackSize) to indicate how much heap and stack
memory is available to a TA. A developer can use these
parameters to configure Open-TEE to reflect the memory
restrictions of a target hardware TEE environment. However, as
the actual TEE is potentially running a different environment
than that offered by Open-TEE – possibly utilizing hardware
based cryptographic accelerators, potentially having a different
CPU, with different clock speed and throughput characteristics
– it will result in different timing characteristics. In this sense,
as with all virtual environments, Open-TEE can not fully
replace the actual hardware environment for the final stages
of the development cycle. Instead developers using Open-TEE
can gain confidence that the hardware-independent parts of
their trusted applications have been optimally implemented by
making judicious use of coverage reports and other generic
analysis techniques. Any hardware-specific optimization, such
as performance tuning, naturally needs to be done on the target
hardware environment.

Open-TEE has been deployed and used on various devel-
opment environments ranging from servers to desktops and
laptops. We have tested Open-TEE on both ARM and x86
architectures. Open-TEE requires Linux but has been run
successfully on virtual machines hosted on other OSs.



TABLE I: Binary sizes (bytes)

Text Data BSS overall
libInternalApi.so 117448 2248 160 119856
libtee.so 18617 880 152 19649
Total Framework 224948 7760 1664 234372

TABLE II: Memory usage (KB)

RSS Shared Private PSS

no
TA Manager 1024 764 260 305

Launcher 1624 1232 392 558

on
e

TA

Manager 1112 832 280 316
Launcher 1648 1548 100 397
Test TA112 1072 932 140 308

tw
o

TA
s

Manager 1116 832 284 319
Launcher 1648 1548 100 337
Test TA1 1072 944 128 245
Test TA213 1236 1068 168 299

C. Footprints and Performance

To evaluate our performance we deployed Open-TEE on a
desktop machine (Intel i7-2600 CPU with 8GB RAM) running
64-bit Ubuntu 14.04. All performance tests were run 40 times
while the machine was under normal load e.g. having editors
and browsers open.

1) Disk and Memory consumption: Open-TEE is written
in ANSI C with a total of 12423 lines11 spread over 78 source
and header files. Table I shows the total size of the framework
and highlights two libraries from the framework that are of
most interest to developers, being libInternalApi.so
against which the TAs are linked and libtee.so against
which CAs are linked. As is standard on operating systems
that support shared libraries the “Text” section, containing the
programs code, can be shared among the different processes
that link against it. The “Data” and “BSS” respectively refer
to the initialized and uninitialized data parts of the library that
can be shared in a Copy-On-Write (COW) basis. As the table
highlights the vast majority of the libraries’ size can be shared,
thus reducing the required footprint.

Table II shows the memory consumption of the running
process under three different scenarios. The first shows the
memory consumption of Manager and Launcher immediately
after they have been launched, i.e. before any TAs have
been launched. The next section shows how the memory
consumption increases when one TA is launched while the
last sections shows the situation when two TAs are running
simultaneously.

RSS (Resident Set Size) shows how much memory has
been allocated for a process, this includes all memory that
a process shares with other processes. As such it is very naive
measurement of a processes memory impact.

Shared is the memory that a process shares with other
processes, i.e. through the use of shared libraries.

Private is the memory that is private to a process and will be
returned to the system when the process terminates, however,

11gathered using sloccount: http://www.dwheeler.com/sloccount/
12ta_conn_test_app ~100 lines of C
13example_digest_ta ~140 lines of C

TABLE III: Average build and execute times of a TA, including
standard deviations

Time
Build 147 ms ± 10.95
Execute 430.5 µs ± 32.6

Copy-On-Write semantics after a process fork may complicate
this calculation. The Private pages may actually be shared until
one or the other of the processes tries to write to the page, at
which time it will be given its own copy of the Private page.

PSS (Proportional Set Size) is a realistic indicator of the
actual memory footprint of a process. It is calculated as the
sum of the Private memory used by a process and the average
Shared memory use per process. E.g., if a process has 100KB
of Private memory and 1000KB of memory shared with 10
processes, its impact on system memory is 200KB14. Taking
the example of Launcher between runs 2 and 3 we see that
while the RSS, Shared and Private memory usage stay constant
the PSS decreases as more pages are shared with the new TA.

Overall, we can conclude that (a) the memory footprint of
Open-TEE is low and (b) the extensive use of shared libraries
implies that the marginal memory cost of launching a new TA
is small, as shown by the PSS figures.

2) Build and Run performance: One of the driving re-
quirements of Open-TEE is the need to have short build and
deploy cycles to help reduce the overall development effort.
Table III highlights that Open-TEE does not pose a significant
overhead to the developer, taking an average of just 147 ms to
perform an incremental build of a TA. The time required for
an incremental build was comparable to that of a clean build,
falling within the standard deviation of the former, this can be
attributed to the source code being confined to a single C file.
Comparative results are not available for deployed hardware-
based development environments. However, considering that a
full reset of the target device and the subsequent boot of its OS
may be required before the CA can be launched, Open-TEE’s
performance is likely to be perceived as being superior.

D. Ease of use

Determining whether Open-TEE eases the burden of TA
development is particularly challenging because, until now, TA
development has been limited to a very small set of developers.
Fortunately, we were able to recruit several experienced TA
developers from multiple organizations to participate in a user
study. Our user study was conducted as follows.

Participants: Fourteen people participated in the study. All
had prior software experience (between 3 and 33 years,
M = 13, SD = 8.2). Eleven had prior experience devel-
oping/debugging TAs (between 1

2 and 15 years, M = 5.1,
SD = 4.2).

Materials: The Standard System Usability Scale (SUS) [27],
[28] questionnaire was used to elicit the participants’ estimates
of the ease of use in developing TAs. We used a pre-study
and a post-study questionnaire. In addition to demographic
information, the pre-study questionnaire included free-form

14100KB + (1000KB / 10) = 200KB



Fig. 5: Pre- and post-study SUS score (for participants with
prior TA development experience)

TABLE IV: Complexity metrics for TA used in user study

Total Physical Source Lines of Code 284
Total Number of Invokable TA Commands 6

Total Number of Internal Core API Calls 16
Number of Distinct Internal Core API Calls 9

questions about the current software development environment
(if any) they use for TA development. It also contained a SUS
questionnaire which the participants were asked to complete
with their current TA development environment in mind. This
was completed only by those participants who had prior TA
development experience. The material for the user study15task
was a sample CA/TA pair, provided as part of the Open-TEE
source tree. A software flaw had been introduced to the TA,
which, when executed, would result in a segmentation fault
and subsequent premature termination of the TA. The CA was
free of error and was only used to interact with the TA running
in Open-TEE. Code complexity metrics for the TA used in the
user study are shown in Table IV.

The post-study questionnaire consisted of a SUS form
which the participants were asked to complete with Open-
TEE in mind. The questionnaire also had open ended questions
about specific difficulties they face in TA development.

Procedure: The user study was conducted in three steps. In
the first step, participants were first asked to complete the pre-
study questionnaire. After this they were pointed to a web page
containing brief instructions on how to install and use Open-
TEE. In the second step, once the participants completed the
tutorial they were told about the flawed TA. They were tasked
to identify the reason for the TA malfunction using Open-TEE
and correct the flaw in the TA. Finally, in the third step, after
the participants had completed the debugging exercise, they
were asked to complete the post-study questionnaire.

Results: The mean, standard deviation and median of the SUS
scores for all participants, including those without prior TA
development experience are shown in Table V. With both sets
of participants, the post-study questionnaire yields a mean
score above 68, which is considered the threshold value for

15 The material can be found at http://open-tee.github.io/userstudy/

Fig. 6: General software and TA development experience
by participant (for participants with prior TA development
experience)

TABLE V: Mean, standard deviation and median for the pre-
and post-study SUS scores

Mean Std.dev. Median
Pre-study SUS 51.82 24.70 62.50
Post-study SUS 74.09 15.01 77.50
Post-study SUS (all participants) 69.92 18.09 68.75

an above average SUS score, indicating an acceptable level of
usability in Open-TEE.

Figure 5 shows the scores reported both before and after the
use of Open-TEE by participants with prior TA development
experience. Nine out of the eleven participants (82%) rated
Open-TEE higher than the development environment they are
using currently. This suggests that the perceived usability of
Open-TEE is higher than that of the current tools used by the
experienced TA developers. In five cases (46 %), the difference
in SUS scores was 35 or more. In the remaining six cases,
the difference in SUS scores was 10 or less. A Wilcoxon
signed-rank test showed that the difference in SUS scores is
statistically significant (z = −2.50, p < .05, r = −0.53).

The difference in SUS scores divides the participants
into two distinct groups. The five participants for whom the
difference was 35 or more had SUS scores below 60 in
their pre-study questionnaire. The remaining six for whom the
difference was 10 or less had pre-study SUS scores over 60. A
natural question is whether we can discern any other difference
between the two groups that might explain the difference in
SUS scores. One possible explanation was that experienced
software developers were comfortable with their current tools
and hence did not perceive Open-TEE as being easier to use.
If this explanation is correct then one can hypothesize that
developers with many years of general software or TA devel-
opment experience will rate their current development tools
higher than their counterparts with fewer years of experience
would. However, a Spearman’s rho correlation test indicated no
significant correlation between the years of general software
development experience and the SUS score in the pre-study
questionnaire (rs = −.042, p > .05), nor between the years
of TA development experience, and the SUS score in the pre-
study questionnaire (rs = −.204, p > .05). Figure 6 shows

http://open-tee.github.io/userstudy/


the software development experience (both general and TA)
reported by each participant whose SUS scores are shown in
Figure 5.

A majority of the experienced TA developers (7 out of
11, 64 %), reported using hardware tools for debugging TAs
under development. Four (36 %) used Lauterbach16 hardware
assisted debug tools. Three (27 %) used other development
boards such as Arndale17, Fido18 or DS-519 or actual mobile
devices. Participant responses highlighted different types of
difficulties in debugging TAs using only hardware:

• workflow slowdown due to the need to (cross) com-
pile, load and execute TAs on separate hardware
(“slow execution (flash, download, reboot, run)”, “de-
bugging TA is slow, you need to cross compile and
push binary into target hardware”),

• problems due to the hardware itself being under devel-
opment and hence exhibiting flaws, (“TEE itself might
not work without problems, because some change have
been made”), and

• inconvenience caused by the restricted access to pro-
totype hardware “Main difficulty is that you need
development hardware, which is problematic when
working outside the office.”).

Six participants (55 %) reported that their current development
environment does not support interactive debugging. But even
the rest, who used tools like Lauterbach tracing, reported that
they found it easier to resort to print tracing, whenever they
needed to examine values of TA variables.

After having used Open-TEE, several participants com-
mented “debugging is easy” or “debugging is fast” in the
post-study questionnaire. One participant characterized how
Open-TEE could be integrated into his existing workflow
before cross compiling to target hardware: “[Open-TEE ]
complements nicely my previous SDE - first preliminary testing
with Open-TEE & gdb & OT_LOG(..), and only after
that ARM cross compiler & FVP emulation”. The dominant
suggestion for improvement was a desire to see more extensive
documentation for Open-TEE.

Given the sample size, the results should be taken as
indicative rather than definitive. However, it is reasonable to
conclude that Open-TEE has the potential to improve the ease
of use of developing TEE applications.

V. RELATED WORK

Ekberg et al. [1] list several reasons for the underutilization
of TEEs in devices: e.g., lack of standard APIs and easily
available SDKs and lack of trust between the different stake-
holders, with OEMs being unwilling to open up their security
environments to third parties. In this section we will review
a number of initiatives that have been undertaken to address
some of these issues and compare these efforts to Open-TEE.

ObC [20] was one of the first attempts to address the
problem of opening the TEE to third party developers by chal-
lenging the prevailing opinion that a credential system must

16http://www.lauterbach.com/
17www.arndaleboard.org/
18http://www.liewenthal.ee/projects/fido/
19http://ds.arm.com/

be centralized and closed. ObC predates many standardization
efforts and as such defines a proprietary mechanism by which
to enable the CA/TA communication and synchronization
while leveraging the TrustZone architecture to enforce the
security. On the other hand our work aims to promote standards
adoption in order to proliferate TEE research and deployment.

Muthu [29] analyzes extending QEMU to support Trust-
Zone, the feasibility of such a solution, and tries to determine
if it would be beneficial to the developer community. Winter
et al. [30] go one step further and implement a TrustZone
emulator as an open source project. However, we were not
able to find the source code. Open-TEE addresses the issue
of virtualizing the TEE, however, in contrast we are not tied
to the emulation of a specific TEE implementation. One issue
with developing an emulator for the TEE is that it still lacks
an operating system to run. In section II-C we highlight the
lack of a standardized OS even among the different TrustZone
implementations.

To this end there have been a number of efforts to create an
OS that is suitable to be deployed in TrustZone [31] [32] [33].
All of these are open source solutions which are released
under various licenses (Table VI). In addition to providing an
operating system for the TEE both OP-TEE [32] and T6 [33]
choose to rely on GP as their RPC mechanism between the
REE and TEE. TLK [31] on the other hand chooses to provide
a proprietary communication mechanism.

Sierraware’s Open Virtualization [34] provides a dual-
licensed OS implementation20 that also supports the GP
standards. The commercial products (sierraVisor, SierraTEE)
provide extended functionality and not being GPL there is no
requirement for any changes to be made publicly available
by the license holders as is required with their open source
offering. Open-TEE is licensed under Apache-V2 giving users
the flexibility of an open source license without the strict
copyleft requirements.

Trustonic’s <t-dev developers program [26] was created
to support Trustonic partners who have deployed the <t-base
TEE implementation. This program provides an SDK, tools
and consulting with the aim of easing the development and
testing of TEE applications in deployed hardware solutions.

All of the OS based solutions have to be ported to sup-
port the various HW environments, increasing the effort of
maintaining the OS and reducing the users available options.
Many of them also require that the HW be configured in a
developer mode, without this setting it is generally not possible
to deploy custom SW to the TEE, for obvious reasons, further
restricting the developers options. Open-TEE in contrast does
not have this HW dependency, thus enabling the users to start
developing with the framework once they have cloned the
repositories. Based on the references listed above, we conclude
that no other project fills the niche of a fast prototyping SDK
framework that we have described in this paper.

VI. DISCUSSION AND CONCLUSION

We have demonstrated that Open-TEE meets our objective
of an easy-to-use, hardware-independent software framework
that allows developers to write and debug GP-compliant TEE

20proprietary, GPL

http://www.lauterbach.com/
www.arndaleboard.org/
http://www.liewenthal.ee/projects/fido/
http://ds.arm.com/


TABLE VI: Comparison of available alternatives to Open-TEE

Compliance HW-independence License
Open-TEE yes yes Apache-V2
Open Virtualization [34] yes no proprietary, GPL
OP-TEE [32] yes no BSD-2,BSD-3
T6 [33] ? no ?
TLK [31] no no MIT,FreeBSD
TrustZone Emulator [30] ? no ?

applications. We made a deliberate decision to open source
Open-TEE under Apache-V2 license [35]. The Apache license
was selected because it is a recognized open source license and
it provides additional flexibility for those wishing to use the
framework. All third party components have been carefully
selected – we have used only components that have been
properly licensed and do not set any restrictions for future
use. This has made it possible for people from outside the
research group to contribute to Open-TEE. Currently a number
of extensions are being worked on including support for other
GP APIs and supporting Client API bindings in Java (for
Android applications).

Although the sample in our user study is small, participants
were drawn from several different organizations with track
records of TA development. This makes us confident that our
user study results are valid. It is very difficult at this time to
conduct larger-scale user studies of TA development because
the community of TA developers is tiny. Recall that expanding
the size of the TA developer base is the very motivation for
Open-TEE in the first place.

We initially intended Open-TEE as a developer tool. How-
ever, an alternative use has become evident in our discussions
with service providers. Although use of TEEs can improve the
security and usability of their service, not all their clients may
have TEE-equipped devices. Yet the service provider would
like to present a consistent user experience for their entire
client base. A possible approach for them is to ship their
application (CA and TA) with Open-TEE and arrange for the
CA to use Open-TEE if it cannot detect a real hardware TEE
on the device. This would allow the service provider to have a
common provisioning mechanism and offer a consistent user
experience for all their clients. However, once we cast Open-
TEE as a potential fall-back TEE in this manner, we need to
address the question of how best to isolate it from the REE
in the absence of any hardware support. This is part of our
current work.

We re-iterate that Open-TEE is not intended to emu-
late any specific TEE hardware. Open-TEE meets its goal
of guaranteeing that trusted applications developed using it
will compile and run on any GP-compliant TEE hardware.
Hardware-specific aspects, such as performance tuning are
outside the scope of Open-TEE.

Our hope in writing this paper is to make the research
community aware of Open-TEE and encourage researchers
to use it and contribute to its development. We also believe
that organizations and developers who already develop TA
applications will benefit from incorporating Open-TEE into
their development process.

Acknowledgments: We thank the participants of the user study
for their time and their useful feedback. Thanks to Kumaripaba

Athukorala for advice on conducting the user study. This work
was supported by the Intel Collaborative Institute for Secure
Computing at Aalto University (http://www.icri-sc.org/), which
is jointly funded by Intel Corporation and Aalto University.

REFERENCES

[1] J. Ekberg, K. Kostiainen, and N. Asokan, “The untapped potential
of trusted execution environments on mobile devices,” IEEE Security
& Privacy, vol. 12, no. 4, pp. 29–37, 2014. [Online]. Available:
http://dx.doi.org/10.1109/MSP.2014.38

[2] J. Azema and G. Fayad, “M-Shield mobile security technology,” 2008,
TI White paper. http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.
pdf.

[3] ARM, “ARM security technology — Building a secure system using
TrustZone technology,” http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.prd29-genc-009492c/index.html, April 2009.

[4] ——, “Technical reference manual: ARM 1176jzf-s (trustzone-enabled
processor),” http://www.arm.com/pdfs/DDI0301D_arm1176jzfs_r0p2_
trm.pdf.

[5] Intel, “SEP driver,” https://git.kernel.org/cgit/linux/kernel/git/stable/
linux-stable.git/tree/drivers/staging/sep?id=refs/tags/v3.14.32.

[6] Apple, “iOS security,” https://www.apple.com/ca/iphone/business/docs/
iOS_Security_Feb14.pdf.

[7] M. Leno, “Senate bill 962, leno. smartphones.” http://leginfo.legislature.
ca.gov/faces/billNavClient.xhtml?bill_id=201320140SB962.

[8] J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W.
Smith, and S. Weingart, “Building the IBM 4758 secure coprocessor,”
IEEE Computer, vol. 34, no. 10, pp. 57–66, 2001. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/2.955100

[9] “Trusted Platform Module (TPM) Specifications,” https://www.
trustedcomputinggroup.org/specs/TPM/.

[10] GlobalPlatform, “Home page.” http://www.globalplatform.org.
[11] ——, “Device specifications for trusted execution environment.” http:

//www.globalplatform.org/specificationsdevice.asp.
[12] ——, “TEE System Architecture,” http://www.globalplatform.org/

specificationsdevice.asp.
[13] J.-E. Ekberg, “Securing software architectures for trusted processor

environments,” Doctoral dissertation, Aalto University, May 2013, http:
//urn.fi/URN:ISBN:978-952-60-3632-8.

[14] F. McKeen et al., “Innovative instructions and software model for
isolated execution,” in Proceedings of the 2Nd International Workshop
on Hardware and Architectural Support for Security and Privacy,
ser. HASP ’13. New York, NY, USA: ACM, 2013, pp. 10:1–10:1.
[Online]. Available: http://doi.acm.org/10.1145/2487726.2488368

[15] Intel, “Intel software guard extensions (intel sgx),” https://software.intel.
com/en-us/intel-isa-extensions#pid-19539-1495.

[16] ——, “Software guard extensions programming reference,” https://
software.intel.com/sites/default/files/329298-001.pdf.

[17] Y. Cheng, X. Ding, and R. Deng, “Appshield: Protecting applications
against untrusted operating system,” Singaport Management University
Technical Report, SMU-SIS-13, vol. 101, 2013.

[18] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: an execution infrastructure for TCB minimization,” in
Proceedings of the 2008 EuroSys Conference, Glasgow, Scotland,
UK, April 1-4, 2008, 2008, pp. 315–328. [Online]. Available:
http://doi.acm.org/10.1145/1352592.1352625

[19] GlobalPlatform, “About.” http://www.globalplatform.org/aboutus.
[20] K. Kostiainen, J. Ekberg, N. Asokan, and A. Rantala, “On-board

credentials with open provisioning,” in Proceedings of the 2009 ACM
Symposium on Information, Computer and Communications Security,
ASIACCS 2009, Sydney, Australia, March 10-12, 2009, 2009, pp. 104–
115. [Online]. Available: http://doi.acm.org/10.1145/1533057.1533074

[21] Android Open Source Project, “Managing your app’s memory,” https:
//developer.android.com/training/articles/memory.html.

[22] The Chromium Projects, “Multi-process architecture,”
http://www.chromium.org/developers/design-documents/
multi-process-architecture.

http://www.icri-sc.org/
http://dx.doi.org/10.1109/MSP.2014.38
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://www.arm.com/pdfs/DDI0301D_arm1176jzfs_r0p2_trm.pdf
http://www.arm.com/pdfs/DDI0301D_arm1176jzfs_r0p2_trm.pdf
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/drivers/staging/sep?id=refs/tags/v3.14.32
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/drivers/staging/sep?id=refs/tags/v3.14.32
https://www.apple.com/ca/iphone/business/docs/iOS_Security_Feb14.pdf
https://www.apple.com/ca/iphone/business/docs/iOS_Security_Feb14.pdf
http://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201320140SB962
http://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201320140SB962
http://doi.ieeecomputersociety.org/10.1109/2.955100
https://www.trustedcomputinggroup.org/specs/TPM/
https://www.trustedcomputinggroup.org/specs/TPM/
http://www.globalplatform.org
http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp
http://urn.fi/URN:ISBN:978-952-60-3632-8
http://urn.fi/URN:ISBN:978-952-60-3632-8
http://doi.acm.org/10.1145/2487726.2488368
https://software.intel.com/en-us/intel-isa-extensions#pid-19539-1495
https://software.intel.com/en-us/intel-isa-extensions#pid-19539-1495
https://software.intel.com/sites/default/files/329298-001.pdf
https://software.intel.com/sites/default/files/329298-001.pdf
http://doi.acm.org/10.1145/1352592.1352625
http://www.globalplatform.org/aboutus.
http://doi.acm.org/10.1145/1533057.1533074
https://developer.android.com/training/articles/memory.html
https://developer.android.com/training/articles/memory.html
http://www.chromium.org/developers/design-documents/multi-process-architecture
http://www.chromium.org/developers/design-documents/multi-process-architecture


[23] QEMU, “Open source processor emulator,” http://wiki.qemu.org/Main_
Page.

[24] GNU, “GDB: The GNU project debugger,” http://www.gnu.org/
software/gdb/.

[25] J.-E. Ekberg, “Personal communication,” 2015, Trustonic.
[26] Trustonic, “‹t-dev developer program,” https://www.trustonic.com/

products-services/developer-program/.
[27] J. Brooke, Usability evaluation in industry. Taylor & Francis, London,

1996, ch. SUS: A “quick and dirty" usability scale, pp. 189–194.
[28] A. Bangor, P. T. Kortum, and J. T. Miller, “An empirical eval-

uation of the system usability,” International Journal of Human-
Computer Interaction, pp. 574–594, 2008, http://dx.doi.org/10.1080%
2F10447310802205776.

[29] A. Muthu, “Emulating trust zone feature in android emulator by
extending qemu,” Master’s thesis, KTH Royal Institute of Technology,
2013.

[30] J. Winter, P. Wiegele, M. Pirker, and R. Tögl, “A flexible software
development and emulation framework for ARM TrustZone,” in Trusted
Systems - Third International Conference, INTRUST 2011, Beijing,
China, November 27-29, 2011, Revised Selected Papers, 2011, pp. 1–15.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-32298-3_1

[31] NVIDIA, “Trusted little kernel (tlk),” http://nv-tegra.nvidia.com/gitweb/
?p=3rdparty/ote_partner/tlk.git;a=summary.

[32] Linaro, “OP-TEE,” https://wiki.linaro.org/WorkingGroups/Security/
OP-TEE.

[33] TrustKernel, “T6,” http://trustkernel.org/.
[34] Sierraware, “Open virtualization’s sierravisor and SierraTEE,” http://

www.openvirtualization.org/.
[35] The Apache Software Foundation, “Apache license, version 2.0,” http:

//www.apache.org/licenses/LICENSE-2.0.

http://wiki.qemu.org/Main_Page
http://wiki.qemu.org/Main_Page
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
https://www.trustonic.com/products-services/developer-program/
https://www.trustonic.com/products-services/developer-program/
http://dx.doi.org/10.1080%2F10447310802205776
http://dx.doi.org/10.1080%2F10447310802205776
http://dx.doi.org/10.1007/978-3-642-32298-3_1
http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/ote_partner/tlk.git;a=summary
http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/ote_partner/tlk.git;a=summary
https://wiki.linaro.org/WorkingGroups/Security/OP-TEE
https://wiki.linaro.org/WorkingGroups/Security/OP-TEE
http://trustkernel.org/
http://www.openvirtualization.org/
http://www.openvirtualization.org/
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

	I Introduction
	II Background
	II-A Structure of a TEE
	II-B TEE architectural options
	II-C Standardizing TEE Functionality

	III Open-TEE
	III-A Motivation
	III-B Requirements
	III-C Architecture
	III-D Implementation and Tooling

	IV Evaluation
	IV-A Compliance
	IV-B Hardware-independence
	IV-C Footprints and Performance
	IV-C1 Disk and Memory consumption
	IV-C2 Build and Run performance

	IV-D Ease of use

	V Related Work
	VI Discussion and Conclusion
	References

