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Abstract—We study the problem of running a set membership
test in private manner. We require that a client wants to have
the option of not revealing the item for which the membership
test is done. Respectively, the server does not wants to reveal
the contents of the whole set. A Bloom filter is applied in
the membership test. We present two protocols based on prior
work as well as a new protocol. Each of these is having a
slightly different privacy and complexity properties. We motivate
the problem in the context of an anti-malware client checking
application fingerprints against a cloud-based malware signature
database.

I. INTRODUCTION

With the widespread deployment of the Internet, increas-

ingly more services are able to be provided to clients. This en-

ables service providers to collect and exploit clients’ personal

information, including their interests, preferences, behaviors,

and lifestyles. Service providers can collect such information

easily because of the clear text nature of queries. Such

collecting activities help providers increase the effectiveness

and accurateness of their online advertising.

On the other hand, the collected information is open to

further exploitation, which may leak clients’ privacy. Senevi-

ratne et al. find that a single snapshot of installed applications

can reveal a lot information about user traits, e.g. religion,

relationship status, spoken languages, countries of interest, and

whether or not the user is a parent of small children [24] .

Membership test (or set inclusion) is a basic operation to

access the remote data sources. It involves two main parties:

a server who holds a database containing a set of records, a

client who sends queries to test if a record is in the database.

For example, the server can be hosted by a security company

who holds a malware database. The client is an end-user who

wants to install an application in her device and wants to

know whether it is a malware. The client can simply send

the name of the application to the server to test if it is in

the database. But this leads to the above problem: the server

can get extra information about the client by inspecting her

installed applications. The problem can be solved by having

the server send the whole database to the client. But this leads

to high bandwidth usage, and is infeasible especially when the

server doesn’t want to reveal its database.

Another application of membership test is credit check.

A seller can check with the financial services corporation

whether a client has had any problems in his payment history

in a such way that the name of the client is not revealed.

Private membership test (PMT) protocols enable clients to

do membership test without revealing their queries and also

prevent them from learning anything else about the server’s

database. Designing an efficient PMT protocol is a natural

question in the field of secure computation.

In this paper we present three solutions for this problem.

All of these protocols transfer minimal amount of data be-

tween parties. All three are also reasonably fast. Each of

them have slightly different privacy properties. This makes

it impossible to say that one of them is better than others in

every respect. They all fit to slightly different situations with

different requirements. One of the protocols is novel and one

is only slightly modified from a protocol published earlier.

The third one has been modified in order to make it more

secure. The three protocols and their comparison are the main

contributions of the paper.

We first introduce the preliminaries needed to understand

this paper in Section II. Then, we formalize the problem in

Section III. Next, we discuss the related work in Section IV.

Then, we introduce three solutions for the PMT problem in

Section V and give a comparison for them in Section VI. In the

comparison we pay attention to the efficiency and study also

the privacy properties in the light of our motivating scenario.

Finally, we conclude the paper.

II. PRELIMINARIES

A. Bloom Filter

Bloom filters are probabilistic data structures that can be

used to test efficiently whether an element is a member of

a set [4]. Specifically, a Bloom filter is an m-bit array B
initialized with 0s, together with l independent hash functions

Hi(·) whose output is uniformly distributed over [0,m − 1].
To add an element x to the filter, one needs to feed it to

all l hash functions to get l array positions (hi = Hi(x) for

all 1 ≤ i ≤ l), and then set all these positions of B to 1

(B[hi] = 1). To check if an element is in the set, l positions

are calculated in the same way. If any of these positions in

B is 0, the element is not in the set. Otherwise, the element

is probably in the set. The false positive rate depends on the

value of m and l:
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FP bf = (1− (1− 1

m
)nl)l ≈ (1− e−

nl
m )l, (1)

where n is the size of the set i.e. the number of records stored

in the Bloom filter. Based on this formula optimal values for

m and l can be found when the size of the set and the wanted

false positive rate are fixed.

B. Goldwasser-Micali Homomorphic Encryption

Goldwasser and Micali [13] proposed the first probabilistic

encryption scheme in 1982, which is as follows:

• Gen is the key generation algorithm which generates

two distinct large prime numbers p and q. Let N = pq
and y be a quadratic non-residue modulo N such that

Jacobi(y,N) = 1. The tuple (N , y) is the public key pk
and the tuple (p, q) is the private key sk.

• Enc is the encryption algorithm. Given a bit x, it outputs

c = yxr2 mod N , where r is a random element of Z∗N .

• Dec is the decryption algorithm. For each c, it outputs

x =

{
0 if c is a quadratic residue modulo N
1 otherwise

.

The Goldwasser-Micali (GM) encryption scheme has the

homomorprhic property. Given two ciphertexts Enc(x1) and

Enc(x2) that are encrypted under the same key, one can

calculate Enc(x1) ·Enc(x2) = (yx1r21) · (yx2r22) = y(x1+x2) ·
(r1r2)

2 = Enc(x1 + x2) mod N .

C. Blind Signatures

Digital signature is a cryptographic scheme that enables a

sender to demonstrate the authenticity of a message, and gives

a recipient reason to believe that the message was created by

the right party and was not altered during transmission .

Chaum introduced the notion of blind signature (BS) in

1983, which is the same as a normal digital signature scheme

but the content of a message is blinded before being signed [6].

It involves two parties: a user Alice who holds a message x,

and a signer Bob who holds a secret signing key sk. At the

end of the protocol, Alice gets the signature without revealing

anything about x and without learning anything about sk.

Bellare et al. proposed a BS scheme based on the RSA

assumption [2]. The scheme is shown in Figure 1. We denote

the ideal functionality of BS as (Sig(sk, x),⊥) ← FBS

(x, sk).

D. Oblivious Pseudorandom Function

Pseudorandom functions (PRF) are efficiently-computable

functions that are computationally indistinguishable from a

random oracle (whose outputs are completely at random) [12].

Unlike pseudorandom generators which require their input

seeds to be chosen at random, PRFs always output random

values no matter how the inputs were chosen. Naor et al. point

out that a PRF can be constructed based on the Decisional

Diffie-Hellman assumption. Let p be the order of group G and

let r̄ be a vector of n values (r1, ..., rn) sampled uniformly at

random in Z
∗
p. For any n-bit x = x1x2...xn, the pseudorandom

Blind Signature

Alice Bob
Input: N , e, x Input: N , d

r
R← Z

∗
N

x′ ← re · x mod N
m̄

−−−−−→
x′′ ← (x′)d mod N

x̄
←−−−−−

Sig(sk, x)
← r−1 · x′′ mod N

Figure 1. A blind signature scheme based on RSA assumption [2].

function fr̄(x) can be constructed as g
∏n

i=1 xiri , where g is a

generator of G [19].

Oblivious PRF (OPRF) are secure two party protocols that

realize the ideal functionality (fk(x),⊥) ← FOPRF (x, k).
Specifically, Alice holds a value x and Bob holds a key k.

They jointly compute a pseudorandom function fk(x) without

revealing their inputs. Freedman et al. construct an OPRF

protocol which realizes Naor’s PRF [9]. The protocol is based

on 1-2 oblivious transfer, which enables a sender to transfer

one of two messages to a receiver without knowing which

message has been transferred, and also without revealing the

other message ((vb,⊥) ← FOT (b, {v0, v1})). Freedman’s

OPRF protocol is shown in Figure 2.

III. PROBLEM STATEMENT

We define the private membership test (PMT) protocol as

the following functionality: The server S holds a set of n
records X = {x1, ..., xn}. A query from a client C is a

searchword x. The protocol outputs 1 to C if xi ∈ X;

otherwise, it outputs 0. The PMT protocol should guarantee

the privacy for both parties: S should not learn anything about

x and C should not learn anything else about X except the

result of the protocol.

In our motivating scenario, S holds a database of malware

or fingerprints of malware and C wants to check whether an

application x she is going to install is in the database. Both of

them want to protect their inputs, but C may reveal x to S to

get more information if she finds x is a malware. It may also

be in the Server’s interest to be able to show that he cannot

learn anything about x unless C explicitly reveals x to him.

For efficiency reasons we want to apply Bloom filters in the

membership test.

The following numbers could be used as a typical baseline:

There are 221 records in S’s database. Using formula (1) we

find out that the false positive rate is acceptable (1:1000) when

we use a Bloom filter of length 225 and 10 hash functions are

used to store the records.

Note that in this scenario, it is better to make error on the

safe side, i.e. the problem caused by false positives is less
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Oblivious Pseudorandom Function

Alice Bob
Input: x = x1x2...xn Input: k̄ = {k1, ..., kn}

{a1, ..., an} R← Z
∗
p

For each bit xi run:

(vixi ,⊥)← FOT (xi, {vi0, vi1}), where vi0 = ai and vi1 = ai · ki
⇐============================================⇒

ĝ = g1/
∏n

i=1 ai

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
fk̄(x)=ĝ

∏n
i=1 vixi

Figure 2. An oblivious pseudorandom function protocol [9].

serious than the problem of false negatives. Therefore using

Bloom filters suits this scenario well.

To mitigate the problem of false positive results the follow-

ing modification could be applied: In the case that the client

gets a positive answer to his query, the client has the option of

checking with the server that the result is correct by revealing

his application to the server. This could also be done because

the client wants to get more information about the malware.

IV. RELATED WORK

A similar topic is called private information retrieval (PIR)

which is well-known in cryptography. It assumes that C knows

the index of her desired item in S’s database and it enables

C to retrieve the item without S being able to learn any

information about which particular item was retrieved. The

first PIR scheme was proposed by Chor et al. in 1995 [8].

Their scheme works in the scenario where there are replicated

databases held by independent Ss. Kushilevitz and Ostrovsky

introduced the first singer-server PIR scheme in 1997 [17].

After that, plenty of schemes are proposed in academia [5],

[18], [11], [1].

Assuming that C knows the index of the item she wants to

retrieve is not always realistic. So another topic called private
keyword search (PKS) has been widely studied as well. In

PKS, S holds a database of n pairs {(x1, p1), ..., (xn, pn)},
where xi is a keyword and pi is a payload. A query from C is

a searchword x instead of an index. After the protocol, C gets

the result pi if there is a value i for which xi = x and obtains

a special symbol ⊥ otherwise. PKS can be constructed based

on PIR [7], oblivious polynomial evaluation [9], re-routable

encryption [23] or multiparty computation [21].

Any PKS algorithm can be turned into a PMT algorithm

by setting all payloads to be 1 and returning 0 instead of

⊥. Conversely, a PMT algorithm could be turned into a PKS

algorithm by running it max{|pi|} rounds and revealing one

bit of the payload each time. In general fast PKS algorithms

are slower than fast PMT algorithms and the amount of data

transferred is larger. See for example [21].

Another linked topic is private set intersection and one of

the recent papers on this topic is [25].

Unlike PIR and PKS, people pay less attention to the

problem of PMT. Pinkas et al. propose an OT extension

based private set inclusion protocol, which is used as a

building block for their private set intersection protocol [22].

However, the communication complexity in their protocol is

high (O(n) for each query). Nojima and Kadobayahi propose

a privacy-preserving variant of Bloom filters that also meets

the requirements of PMT. They propose two constructions

based on BS and OPRF respectively [20]. Figure 3 shows the

BS based construction and Figure 4 shows the OPRF based

construction.

V. THE PROTOCOLS

In this section we provide three different solutions for the

problem of PMT.

Protocol 1

Our first solution is novel and it uses Goldwasser-Micali

homomorphic encryption as a building block. It is pictured in

Figure 5.

Encrypting the Bloom filter: S first generates an encrypted
Bloom filter EB as follows:

1) S stores X in B using l hash functions H1, . . . , Hl.

2) S chooses the parameter N = pq for Goldwasser-Micali

and another hash function H: {0, 1}∗ → ZN .

3) For every index i in the Bloom filter, S finds

by trial-and-error method the smallest j such that

Jacobi(H(j||i), N) = 1.

• If H(j||i) ∈ QRN then EB(i) = B(i).
• If H(j||i) ∈ QNRN then EB(i) = 1−B(i).

4) S sends to C hash functions Hi, i = 1, . . . , l, the

encrypted database EB, hash function H , modulus N
and some y ∈ QNRN , such that Jacobi(y,N) = 1.

5) S is prepared to prove, if needed, to a trusted third party

T T P (or to C) that N is chosen as in Goldwasser-Micali

and that y ∈ QNRN .

Querying the Bloom filter: For every hash function Hi,

i = 1, . . . , l.

1) C computes Hi(x) and finds by trial-and-error method

the smallest j such that Jacobi(H(j||Hi(x)), N) = 1.

517517



Private Membership Test based on Blind Signature

Server Client
Input: X , (sk, vk) Input: x

Store X in B using hash functions:

Hi(x) = H(x, Sig(sk, x), i)
vk, B, {Hi(·)}

−−−−−−−−−−−−−−−−−−−−→
(Sig(sk, x),⊥)← FBS (x, sk)
⇐===================⇒

Verify [B(H1(x)) = 1] ∧ · · · ∧ [B(Hl(x)] = 1]
If satisfied output 1, otherwise output 0

Figure 3. A private membership protocol based on blind signature [20].

Private Membership Test based on Oblivious Pseudorandom Function

Server Client
Input: X Input: x

Generate k for OPRF

Define hash functions as:

fk(·) = (H1(·), ..., Hl(·))
Store X in B using {Hi(·)}

((H1(x), ..., Hl(x)),⊥)← FOPRF (x, k)
⇐========================⇒

B
−−−−−−−−−−−−−−−−−−−−−−−−−→

Verify [B(H1(x)) = 1] ∧ · · · ∧ [B(Hl(x)] = 1]
If satisfied output 1, otherwise output 0

Figure 4. A private membership protocol based on oblivious pseudorandom function [20].

2) C multiplies H(j||Hi(x)) by a random square (mod N ).

He also multiplies it by y with probability 1
2 .

3) C sends the result z to S.

4) S tells if this number is in QRN or in QNRN . The

number z is a quadratic residue iff Jacobi(z, p) =
Jacobi(z, q) = 1.

5) Now C is able to do the following reasoning:

• If z is in QRN and C did not multiply by y in step 2,

he knows that B(Hi(x)) = EB(Hi(x)).
• If z is in QNRN and C did not multiply by y he

knows that B(Hi(x)) = 1− EB(Hi(x)).
• If z is in QRN and C did multiply by y he knows

that the B(Hi(x)) = 1− EB(Hi(x)).
• If z is in QNRN and C did multiply by y he knows

that the B(Hi(x)) = EB(Hi(x)).

If for every hash function Hi, C got B(Hi(x)) = 1 then x
is in the Bloom filter.

The size of the encrypted Bloom filter is equal to the size

of the Bloom filter. This amount of data is transferred to C. If

the size of the Bloom filter is 225 the amount of data needed

to transfer is 4 MB. The content of EB is encrypted so there

is no need to further encrypt it. It can be stored in a public

database as long as the integrity of data is taken care of.

Note that because the probability that Jacobi(r,N) = 1 is
1
2 for random value r, encrypting the Bloom filter requires

in average two evaluations of Jacobi symbols for each in-

dex. Evaluating one Jacobi symbol has the time complexity

O(log(N)2).

S can prove to a T T P that N is a product of exactly

two primes using the algorithm of Gennaro et al. [10]. S
can prove that y is a QNRN using a zero-knowledge proof

[14]. This way S can prove that he did not cheat choosing the

parameters in the algorithm. The same database is typically

used by several clients so it may be enough that S proves that

parameters are correct only to one T T P .

For every x, C has to evaluate in average 2l Jacobi symbols

and multiply modulo N 2.5l times.

C sends to S one element of ZN for each hash function Hi,

l in total. S responds with l bits.

S needs to evaluate 2l Jacobi symbols for each query of x.

C learns the value of l positions in the filter, not only

whether they are all ones. This is not what we originally

wanted, but there are also other ways to find out individual bits

in the Bloom filter: Lets assume that C knows l−1 positions in

the Bloom filter with value 1 and he can choose any l positions

in the filter such that he can find out using some protocol if

518518



Private Membership Test based on Goldwasser-Micali Encryption

Server Client
Input: X Input: x

Generate parameters

Store X in B
Calculate EB using G-M

EB, {Hi(·)}, H(·), N , y
−−−−−−−−−−−−−−−−−−−−−−−−−→

Blind decryption of EB(Hi(x))), i = 1, . . . , l
⇐========================⇒

Verify [B(H1(x)) = 1] ∧ · · · ∧ [B(Hl(x)] = 1]
If satisfied output 1, otherwise output 0

Figure 5. Protocol 1.

the value in all these positions is 1. In this situation he can

always learn one more bit in the Bloom filter with each query.

The protocol has the following properties:

Theorem 1: The Client learns at most l bits of information

about the bits in the Bloom filter.

Proof: If we assume that using the Goldwasser-Micali

encryption and the hash function H is secure in this setting

then C only gets to know the answers of S on step 4. Each

of the l answers gives C at most one bit of information about

the Bloom filter.

Theorem 2: The Server does not learn what positions the

Client queries or what is the result.

Proof: Because C multiplies H(j||Hi(x)) by a random

square on step 2, S does not recognize these values any more.

Any quadratic residue can be turned into any quadratic residue

by multiplying it by an appropriate square. Similarly, any

quadratic non-residue with Jacobi value 1 can be turned into

any quadratic non-residue with Jacobi value 1 by multiplying

it by an appropriate square. If all squares are equally probable

the result gives no information about what was the original

quadratic residue (or quadratic non-residue with Jacobi value

1).

Because C multiplies H(j||Hi(x)) by a non-residue y with

probability 1
2 on step 2, S does not know if H(j||Hi(x)) was

a quadratic residue or not.

S can change the encryption of the database at any time by

choosing a different H or N . This way nobody has time to

learn all the values of the Bloom filter before all values are

changed to new ones.

Protocol 2

This protocol is adapted from the paper by Nojima et al.

[20] and is pictured in Figure 3. We use blind RSA signature as

the blind signature scheme. We have separated the two parts,

generating the Bloom filter and querying it.

Generating the Bloom filter for signed records:
1) The Server S chooses keys e, d,N for RSA signature

scheme. He also chooses l hash functions Hi for the

Bloom filter and one hash function H to use with RSA

signatures.

2) Let Sig(x) be the signature for x, Sig(x) = H(x)d

(mod N). S builds a Bloom filter B such that B(h) = 1
iff h = Hi(x||Sig(x)) for some hash function Hi and

for some record x.

3) S delivers to C the Bloom filter B, hash functions

Hi, i = 1, . . . , l and H , and his public RSA key (e,N).

Querying the Bloom filter: The Client C wants to know if

x is stored in the Bloom filter of S.

1) C picks a random r ∈ ZN and calculates y = reH(x)
(mod N). He sends y to S.

2) S signs y and returns the signature z = yd (mod N) to

C.

3) C calculates the signature of x, Sig(x) = z/r
(mod N).

4) If for every hash function Hi: B(Hi(x||Sig(x))) = 1
then C knows that x can probably be found in the

database of records.

In order to generate the Bloom filter S needs to produce

one RSA signature for every record in the database.

For every query both S and C need to do l exponentiations

modulo N .

Because of the usage of blind signatures, S does not learn

even the hash value of the Client’s x.

C learns which l bits in the Bloom filter were relevant to

x and their values. However, if he does not know Sig(x′) he

does not know which entries to check if he wants to know if

some x′ is in the database or not.

C learns how many bits in the Bloom filter are ones because

the filter is not encrypted. This number could be turned into

a good estimate of the size of the database.

Protocol 3

The last protocol is more general and is based on OPRFs.

This is also partly based on another protocol by Nojima et

al. [20]. We have added the feature that the Bloom filter

is encrypted using function K to hide the total number of

519519



Our version of Private Membership Test based on Oblivious Pseudorandom Functions

Server Client
Input: X Input: x

Generate k for OPRF

Define hash functions as:

fk(·) = (H1(·), ..., Hl(·))
Store X in B using {Hi(·)}

Calculate EB using Kk

EB
−−−−−−−−−−−−−−−−−−−−−−−−−→

Fk(x)
⇐========================⇒ Get the right positions in EB

Kk(Hi(x)), i = 1, . . . , l
⇐========================⇒ Decrypt entries in EB

Verify [B(H1(x)) = 1] ∧ · · · ∧ [B(Hl(x)] = 1]
If satisfied output 1, otherwise output 0

Figure 6. Protocol 3.

ones in the Bloom filter. This results in additional steps for

generating the Bloom filter and decrypting the Bloom filter

entries. Nojima et al. did not try to hide the number of ones

in the Bloom filter. The protocol is pictured in Figure 6.

Generating the Bloom filter:
1) S picks a hash function H , his secret key k and hash

functions Hi, i = 1, . . . , l for the Bloom filter.

2) S picks an OPRF K that can be evaluated using mul-

tiparty computation to generate one bit of output to be

used as one-time pad key.

3) S picks another OPRF F that can be evaluated using

multiparty computation such that

Fk(H(x)) = (H1(x), H2(x), . . . , Hl(x)).

4) S builds a Bloom filter B such that B(h) = 1 iff h =
Hi(x) for some hash function Hi and record x.

5) S builds an encrypted Bloom filter EB such that

EB(i) = B(i)⊕Kk(i) for every i.
6) S delivers the encrypted Bloom filter EB and the hash

function H to C.

Finding the right Bloom filter entries:
1) S and C together evaluate Fk(H(x)) such that only C

learns the result (h1, h2, . . . , hl), C does not learn k and

S does not learn H(x).

Decrypting the Bloom filter entries:
1) For every hi, i = 1, . . . , l, S and C together calculate

Kk(hi) such that only C learns the result bi ∈ Z2, C
does not learn k and S does not learn hi.

2) If EB(hi)⊕ bi = 1 for every i then C learns that x can

probably be found in the database of records.

The size of the encrypted Bloom filter is again the size of

the original Bloom filter.

For one query to the Bloom filter C and S must together

evaluate F once and K l times.

VI. COMPARISON

Protocol 3 is the most general of these protocols. If S
chooses the function F such that C can calculate it without

his help, the resulting protocol resembles a lot of Protocol 1.

Now the l hash functions Hi are public so S is only needed to

decrypt the bits in the encrypted Bloom filter, just like in the

Protocol 1. However, Protocol 1 is faster and may have fewer

interactions than modified Protocol 3, depending on how the

multiparty encryption function K is chosen.

On the other hand, if S chooses the value of function K to

be 0 for all inputs (instead of using an OPRF), S is only needed

for deciding which position of the Bloom filter to check. Now

this resulting protocol resembles Protocol 2. Evaluating an

OPRF typically requires several modular multiplications and

this will make modified Protocol 3 slower than Protocol 2.

Protocol 1 reveals the hash functions of the Bloom filter

and could eventually reveal the whole Bloom filter in bit-by-

bit fashion. In Protocol 2 the Bloom filter is not encrypted and

anybody can count the ones in the filter and convert the result

into an estimation on how many different records it recognizes.

In Protocol 3 the hash functions and the number of ones in

the Bloom filter remain secret. Even after repeated use nobody

can decide if some x can be found in the database without the

help of S.

In Protocol 1, if C knows beforehand that B(h) = 0 and

for some x and some i the value of Hi(x) = h, then he

knows without contacting S that x is not in the database.

The probability of this happening in practice is very small.

If C knows 5 000 entries in the Bloom filter that are zeros,

probability that at least one of Hi(x) is among them is

1−
(
1− 5000

225

)10

≈ 5000 · 10
225

≈ 0.15%

when l = 10 and x is not in the database.
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Instead of using an OPRF, it is possible to use garbled

circuits. Using JustGarble [15] algorithm the running time of

evaluation of one block of AES128 is 264 μs on an x86-

64 Intel Core i7-970 processor clocked at 3.201 GHz with a

12MB L3 cache [3]. Garbling, or encrypting the function (in

this case the AES128 function) and the argument (in this case

the plaintext), takes 637 μs using the same machine. We could

use this AES128 with a fixed key as a replacement of OPRF.

Now Server’s input to the computation is the fixed key which

is held secret. The Client’s input to the computation is the

plaintext that will be encrypted. Comparing to using OPRF

we have now the disadvantage that it may be required that

S proves to a T T P that he has garbled a correct function.

Furthermore, the Client and the Server need to use an OT

protocol to transfer the garbling key for x. This will take much

more time than the actual garbling and evaluation.

We assume that, as before, there are 221 records in S’s

database and a Bloom filter of length 225 and 10 hash functions

are used to store the records.

Depending on l, we would need to evaluate AES128 dif-

ferent number of times. It is possible to interpret the output

of 128 bits as five hash functions, each having an output of

25 bits. If l ≤ 5 then one evaluation is enough and if l ≤ 10
then two evaluations are enough to calculate the value of F
on step 3. One AES128 is always enough to calculate the one

bit of K on step 2.

Preprocessing the Bloom filter by S requires 2 · 225 Jacobi

symbol evaluations in Protocol 1, one signature for each of

the 221 records in Protocol 2, and only evaluating the hash

functions in Protocol 3.

The complexity of each query can be calculated as follows:

• In Protocol 1, each query requires 2l (in our scenario 20)

Jacobi symbol evaluations by C and 2l Jacobi symbol

evaluations for arguments of half of that size by S.

• In Protocol 2, each query requires one modular exponen-

tiation from both C and S.

• In Protocol 3, each query requires one evaluation of F
and l (in our scenario 10) evaluations of K from both C
and S in cooperation.

These numbers are collected to Table I.

We have implemented protocols 1 and 2 using an x86-64

Intel Core i5-2450 processor clocked at 2.50 GHz with a 3MB

L3 cache. The modulus in RSA and in Goldwasser-Micali was

2048 bits long.

Preprocessing i.e. generating the encrypted Bloom filter

took about 6.9 hours in Protocol 1 and 27 hours in Protocol 2.

One query took time 0.05 seconds in Protocol 1 and 0.12

seconds in Protocol 2.

If we have K = 0 for all inputs we can use the results

by Kreuter et al. [16] to approximate the speed of a query in

Protocol 3. It took them 5.4 seconds to generate and evaluate

an AES128 circuit twice using a 2.53 GHz Intel Core i5

processor and 4GB 1067 MHz DDR3 memory.

VII. CONCLUSION

We have presented three different solutions to the private

membership test when using Bloom filters. The choice of a

protocol depends on the privacy and efficiency requirements

in the particular setting.
If it is not acceptable that somebody could save some

queries by collecting entries in the Bloom filter in the case

that the hash functions are known, then Protocol 1 should not

be used. If anybody can evaluate the hash functions and lots

of bits in the Bloom filter are known, it may happen that the

Server is not needed to check what the relevant entries are in

the Bloom filter.
If it is not acceptable that the number of ones in the Bloom

filter is revealed then Protocol 2 should not be used. This may

be the case because the number of ones in the Bloom filter

can be turned into a good estimate of the number of records

in the database.
The speed of JustGarble is based on particular hardware

crypto accelerator features on certain processors and using it

here also requires a fast oblivious transfer algorithm. If we

do not have such hardware or any fast implementation of an

OPRF then Protocol 3 should not be used.
Also the time complexities of the protocols vary. Depending

on how fast evaluating a Jacobi symbol is compared to

modular exponentiation and evaluating an OPRF, one of the

protocol can be much faster than the others.
Our implementation shows that Protocol 1 is the fastest one

and Protocol 3 is the slowest. However, Protocol 3 requires

no preprocessing in addition to building the Bloom filter.
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APPENDIX A: NOTATION TABLE

A table of notations is shown in Table II.

Notation Description
Entities

C Client
S Server

T T P Trusted Third Party
X Server’s database
x Client’s searchword

Cryptographic Notations
PMT Private membership test
H Hash function
h Hash value
B Bloom filter
EB Encrypted Bloom filter
QRN The set of quadratic residues modulo N
QNRN The set of quadratic non-residues modulo N
Sig Signature
BS Blind signature
FBS Ideal functionality of blind signature

OPRF Oblivious Pseudorandom Function
F An OPRF to replace hash functions
K An OPRF to calculate keys for EB
k Key

Parameters
l Number of hash functions of the Bloom filter
m Length of the Bloom filter
n Number of records stored in the Bloom filter

Number of records in the database

Table II
SUMMARY OF NOTATIONS
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