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Abstract—Synchronization of concurrent data structures is
difficult to get right. Fine-grained synchronization locks small
data chunks, but requires too high an overhead per chunk;
traditional coarse-grained synchronization locks big data chunks,
and thereby makes them unavailable to other threads. Neither
synchronization method scales well. Recently, hardware trans-
actional memory was introduced, which allows threads to use
transactions instead of locks. So far, applying hardware transac-
tional memory has shown mixed results. We believe this is because
transactions are different from locks, and using them efficiently
requires reasoning about those differences. In this paper we
present 5 guidelines for applying hardware transactional memory
efficiently, and apply the guidelines to BT-trees, a concurrent
ordered map. Evaluating BT-trees on standard benchmarks shows
that they are up to 2 times faster than traditional maps using
hardware transactional memory, and up to 3 times faster than
state of the art concurrent ordered maps.

I. INTRODUCTION

Writing efficient parallel code is difficult. It is even more
difficult if the code modifies shared data unpredictably. Con-
sider for instance the map data structures, which store re-
lationships between keys and values, which can be queried,
added, or removed. Ordered maps store totally ordered keys,
and extend normal (unordered) maps with the ability to iterate
over keys according to their order. Concurrent maps, which
can be modified in parallel, use synchronization to keep their
contents consistent. State of the art concurrent ordered maps
are almost 10 times slower than concurrent unordered maps,
because the ordering on the key-value pairs makes it difficult
to synchronize efficiently [?]. Traditional concurrent ordered
maps attempt to synchronize efficiently with customized syn-
chronization. Focusing on synchronization first, rather than the
design of the ordered maps, means that the ordered maps are
more complex and less efficient. Recent hardware support for
transactional memory promises to enable efficient and simple
synchronization, but applying it efficiently still has a number
of pitfalls.

In this paper we present 5 guidelines for applying hard-
ware transactional memory efficiently. The guidelines inform
the design decisions of the underlying problem, rather than
requiring intrusive custom tailored synchronization. We use
the guidelines in the design of a new concurrent ordered
map, BT-trees. We evaluate BT-trees with up to 8 threads
on a set of standard benchmarks, and find that they are
up to 3 times as fast and almost twice as space efficient
as state of the art concurrent ordered maps. BT-trees use a
simple synchronization mechanism, but are still faster than the
state of the art, because they are designed with main focus

on providing efficient ordered maps, rather than specialized
synchronization. To validate the guidelines, we also apply
hardware transactional memory to off the shelf sequential
ordered and unordered maps, with traditional designs. These
traditional maps have significantly worse parallel performance,
typically well below that of state of the art concurrent ordered
maps. Experiments show that traditional maps are dramatically
affected by synchronization contention; when scaling from
1 to 8 threads traditional maps using hardware transactional
memory often execute 3 times as many instructions and cause
far more L1 cache misses.

Our main contributions are a list of 5 guidelines to apply
hardware transactional memory efficiently, the application of
these guidelines to the design and implementation of BT-trees,
a concurrent ordered map data structure, and the evaluation of
BT-trees, showing the validity of our guidelines.

The rest of this paper is structured as follows: In Section 2
we give a more thorough introduction to transactional memory.
Section 3 reviews the guidelines to avoiding the limitations
of hardware transactional memory, and Section 4 presents
the design of BT-trees based on these guidelines. Section 5
evaluates BT-trees and ordered maps which do not follow our
guidelines. Section 6 discusses related work and Section 7
concludes the paper.

II. TRANSACTIONAL MEMORY

Transactional memory enables executing a section of code
in transactions, which can fail or succeed. Successful trans-
actions appear as if they executed atomically, with no inter-
ference from concurrently running threads. Failed transactions
have no visible effects to other threads. Transactions can be
used to implement the critical section of code by trying to
execute it with a transaction until the transaction succeeds.

Transactional memory was introduced in 1993 [1] and is
traditionally implemented in software [2]. Software transac-
tional memory has application-specific overhead that can vary
widely [3]. Recently, Intel, IBM, and Sun, have implemented
hardware support for transactional memory (HTM) [4]–[6].
HTM implementations have a lower overhead than software
transactional memory at the price of more limited transactions.
Hardware transactions may abort for many other reasons than
conflicts, for example, interrupts, system calls, page faults,
large transactions, debugger breakpoints, cache evictions, TLB
misses, or problematic instructions, such as division. The page
fault and system call limitations mean that transactions may
fail when executing a line of code the first time, or when



allocating memory. Retrying transactions that fail because of
system calls or page faults will also fail, because the previous
transaction rolled back its changes.

Using HTM directly is impractical because of its limita-
tions, but it is easy to use HTM for lock-elision [4]. Lock-
elision is an optimization on normal locks that initially tries
to execute the corresponding critical section in a transaction:

1) Try to execute the operation in a transaction that fails
if the lock is held;

2) Retry the transaction if it conflicts or fails; and
3) Use the lock if the transaction fails again.

This particular form of lock-elision is called SLR lock-
elision [7].

III. DESIGNING FOR HTM

In this section we provide general guidelines for how to
design parallel data structures and algorithms such that they
benefit from lock-elision. We focus on guidelines for using
lock-elision, because using HTM directly is problematic. The
main goal of these guidelines is to illuminate the benefits and
pitfalls of HTM, to support reasoning about them up front.

HTM transactions can fail for 3 reasons:

1) Limitations in the hardware support,
2) Conflicts in the transactions read set, ie another thread

wrote to the transactions read set, or
3) Conflicts in the transactions write set, ie another

thread read or wrote to the transactions write set.

The main hardware limitations are that transactions fail on
false sharing, too large transactions, system calls or page faults.
These limitations can largely be avoided by (1) optimizing
spatial locality, ie packing data tightly, and (2) avoiding
system calls and page faults in the critical section. With
traditional synchronization it is also a good idea to avoid
system calls, page faults, and optimize spatial locality, but
failure to do so is less dramatic: with HTM failure system calls,
page faults, and poor spatial locality cause transactions to fail,
while with traditional synchronization it just causes cache line
evictions and slightly longer critical sections. Even if there
without hardware limitations on HTM, page faults, system
calls, and large transactions would still reduce transaction’s
probability of succeeding, because they increase the size of
the transactions the read and write sets.

To avoid conflicts in the read set you should, (3) use
data structures and access memory such that the memory
which is most frequently written is least frequently read.
Guideline (3) is similar to saying avoid true sharing, which
is also a good idea with traditional synchronization, as it will

minimize the amount of synchronization. To avoid conflicts
in the write set you should, (4) minimize the time from the
first visible write to the transaction’s commit: Try to write as
late as possible in the transaction, and prefer copy-on-write to
long in-place writes. Guideline (4) is specific to transactional
memory which use eager conflict resolution, ie detect conflicts
in transactions before they commit. With eager conflict reso-
lution, a transaction can fail from a conflicting write after the
write has executed. Delaying the write will reduce the time
that the transaction is exposed to such conflicts. Current HTM
implementations from Intel and IBM presumably use eager
conflict resolution because it can built on top of existing cache
coherency protocols [8], [9].

The guidelines can also be used to estimate if using HTM
will be beneficial: If you can follow the guidelines, ie have
a very short duration from the first write to commit, avoid
writing to frequently read data, and avoid limitations in HTM,
then you are likely to benefit, because most transaction should
succeed. If most of the transactions succeed, then the size of
the critical section is no longer important. As a consequence
you should (5) worry less about the size of critical sections:
lock-elision on a single coarse-grained lock can scale well if
most transactions succeed. Coarse grained locking simplifies
writing parallel code to the point where it is hardly any more
difficult than writing sequential code.

Using several locks per data set, or another kind of fine-
grained synchronization, would not be efficient use of HTM:
Starting a transaction with HTM on Intel Haswell processors
is 3 times more expensive than acquiring a lock, and coarse-
grained synchronization with HTM already permits paral-
lelism within critical sections. Fine-grained synchronization
will rarely benefit from HTM, and it multiplies the overhead
of starting transactions; it also causes new problems, for in-
stance, concurrent operations must not deallocate the memory
they share. Typical solutions to this problem imply a hefty
performance and space penalty, and may limit which memory
locations can be accessed in parallel algorithms. If fine-grained
synchronization is necessary, one should use regular locks or
atomic operations, not HTM.

IV. BT-TREES

In this section we present the design of BT-trees, a
design which is largely driven by the guidelines in Sec-
tion III. BT-trees are ordered maps supporting the opera-
tions SEARCH, INSERT, and REMOVE, for querying, updating,
or removing key-value associations. BT-trees are search trees,
where the root node represents the entire range of keys, and
each of its children represents a smaller subset of the keys. The
children are ordered from lowest (child 0) to highest, such that
the lowest child can hold the lowest keys, and the highest node
can hold the highest keys. While this design decision is not

TABLE I. GUIDELINES FOR USING HTM EFFICIENTLY

Guideline Motivation
(1) Optimize spatial locality and avoid false sharing Reduces the size of the read and write sets
(2) Avoid system calls and page faults Hardware transactions fail on page faults and system calls
(3) Minimize true sharing Avoids conflicts in the read set
(4) Reduce time from first visible write to commit Increases success rate under current HTM
(5) Use coarse grained synchronization If HTM works well, the critical sections size is not important



class E<K, V> {K key; V value; }; // Key-value pairs

class alignas(64) L<K, V> { // Leaf nodes
E<K, V> e[L_C]; // Unordered key-value pairs

};

class alignas(64) I<K> { // Internal nodes
I* child[I_C]; // Pointers to children
int size; // Number of children
K key[I_C - 1]; // Internal node keys

};

class BT { // BT trees
int height; // The tree’s height
I* root; // Pointer to the tree’s root
Lock lock; // The tree’s lock

};

Listing 1. Type definitions for BT-trees.

related to the guidelines from the previous section, the rest of
the design decisions are.

BT-trees have two features to improve spatial locality
(recall Guideline 1): (1) BT-trees’ nodes are aligned to cache
line boundaries, making cache line references more local, and
eliminating false sharing, and (2) BT-trees are multiway search
trees: each internal node is aligned to cache line boundaries
and can have multiple children and keys, such that we read
keys adjacent to each other, and take full advantage of the
cache lines being read.

BT-trees are external trees: BT-trees store all the key-value
pairs they represent in their leaf nodes. Finding the leaf node
which may hold a key mostly involves reading from internal
nodes, as well as occasional writes when balancing the tree.
Because all associations of a BT-tree are in its leaf nodes, the
BT-tree operations all follow 3 steps:

1) Find the leaf node l for the given key.
2) Inspect l’s keys.
3) Balance l or operate on l based on its keys.

As a result, the INSERT and REMOVE operations always write
to leaf nodes, typically without writing to any internal nodes,
reducing true sharing (Guideline 3). BT-tree operations only
write to internal nodes when balancing the trees, making it
important to reduce the frequency of balancing.

BT-trees’ operations rarely balance the tree, because of
their balancing scheme: unbalanced nodes are balanced while
searching through the tree.

• Full nodes are split into two nodes, and nodes with 2
elements are merged with their siblings;

• If balancing would merge the two only children of the
root, we instead replace the root reducing the trees
height; and

• If balancing would split the root, we introduce a new
root node increasing the trees height.

From an algorithmic point of view, this scheme ensures that
all leaf nodes have the same depth, and that all non-root
nodes have at least 2 elements, giving a worst case height of
log2(n/2)+1 = log2n. Given that the nodes have capacity C,
the expected height is log 2+C

2

n
2 +1. The scheme also provides

a control knob for the frequency of balancing: increasing

REMOVE(T, k)

1 // Step 1: Find the leaf node l
2 repeat
3 PREALLOC6NODES()
4 LOCK()
5 l = FIND-LEAF(T.root , T.height , k)
6 until l 6= RESTART
7 // Step 2: Inspect l’s keys (l.key [1 . .LC ])
8 u = 0 // Used key-value pairs
9 m = 0 // Matching key-value pair index

10 for i = 1 to LC

11 if l.element [i ].key 6= EMPTY
12 u = u+ 1
13 if l.element [i ].key == k
14 m = i
15 // Step 3: Balance l or remove k from l
16 if m = = 0
17 return NO_MATCH
18 if T.root == l or u > 2
19 v = l.element [m].value
20 l.element [m].key = EMPTY
21 UNLOCK()
22 return v
23 BALANCE(l)
24 UNLOCK()
25 return REMOVE(T, k)

FIND-LEAF(x, h, k)

1 if h == 0
2 return x // x is the leaf
3 if ¬IS-BALANCED(x)
4 BALANCE(x)
5 UNLOCK()
6 return RESTART
7 for i = 1 to x.size
8 if x.key [i ] ≥ k
9 return FIND-LEAF(x.child [i ], h− 1, k)

10 return FIND-LEAF(x.child [x .size], h− 1, k)
Listing 2. BT-tree remove operation pseudo code.

C reduces the frequency of node balancing, reducing the
frequency of write to internal nodes, and ultimately reducing
the risk of true sharing and the number of writes.

BT-trees replace the parent of unbalanced nodes when
balancing them, rather than replacing the unbalanced nodes
inside of their parent node. Replacing the parent node means
that balancing has to copy the old parent node, which is more
expensive, but it reduces the number of writes to internal
nodes. Perhaps more importantly, it ensures that the write to
the internal node is the last thing in the transaction, minimizing
the time from the first visible write, to the transactions commit,
as per Guideline 4.

BT-trees further reduce the number of writes and the time
from the first write to the transactions commit, by representing
leaf nodes as unordered arrays of key-value pairs. REMOVE
and INSERT operations only have to write to one memory
location in the leaf nodes. By comparison, if the leaf nodes
stored keys and values separately, the operations would have
to write twice, and if the leaf nodes stored key-value pairs in
an ordered fashion, then the operations would have to write



several times to preserve the ordering.

Memory allocation typically involves both page faults and
system calls. BT-trees operations avoid performing system
calls and page faults in the critical section (Guideline 2),
by preallocating 6 nodes before entering a critical section.
Preallocating 6 nodes ensures that no additional memory
allocation is needed in the critical section. The allocated nodes
are stored on a stack created from the allocated memory,
thereby touching the page of the allocated nodes, causing the
page fault before the transaction starts.

Listing 1 illustrates how BT-trees, key-value pairs, and
nodes are represented in pseudocode resembling C++. The
classes I and L represent internal and leaf nodes respectively,
while E represents key-value pairs. Internal nodes have other
internal nodes or leaves as children. Leaf and internal nodes
are aligned to cache line boundaries by using the C++11
alignas keyword, and allocating with new. Each leaf node
can store up to LC key-value pairs, and internal nodes have
up to IC children, where LC , IC ≥ 6. The lower bound node
capacities of 6 ensure that we can split a full node into two
nodes with at least 3 children or key-value pairs.

We normally use BT-trees with up to 32 children for each
internal node, and 32 key-value pairs for each leaf node.
When using 64 bit pointers and 32 bit keys and values, this
corresponds to 384 bytes for internal nodes and 256 bytes for
leaf nodes, or exactly 6 and 4 cache lines respectively.

Listing 2 summarizes how the REMOVE operation works.
The REMOVE operation first traverses the tree from its root
to the leaf node which may hold k, while balancing any
unbalanced node on the path (Step 1). Upon arriving at a
leaf node, the REMOVE operation balances the leaf if it is
unbalanced. Otherwise, the operation iterates over the keys
in the leaf node, looking for a match (Step 2). If it finds
a match, it returns the keys value and removes from the
tree. Otherwise there was no match, and REMOVE returns
NO_MATCH (Step 3). INSERT and SEARCH work similarly to
REMOVE, but for brevity’s sake we defer their description to
a technical report [10]. Listing 2 is a summary, and it glosses
over some technical details, such as tracking the parent of the
visited node, and how to balance. The techical covers these
details and some implementation optimizations which improve
performance significantly.

V. EVALUATION

A. Experiment setup

We evaluate BT-trees, Chromatic trees, and Java
ConcurrentSkipListMap on the machine described

TABLE II. EXPERIMENTAL MACHINE

Processor Intel Xeon E3-1276 v3@3.6GHz
Processor specs 4 cores, 8 threads
Processor specs(2) 32KB L1D cache, 8 MB L3 cache
C++ Compiler GCC 4.9.1
Java Compiler/Runtime Oracle Server JRE 1.8.0_20
Operating system Ubuntu Server 14.04.1 LTS
Kernel 3.17.0-031700-generic
libc eglibc 2.19

in Table II. Chromatic trees are a state of the art lock-
free ordered map, implemented as a relaxed red-black
tree, which we acquired from Brown’s homepage [11].
Java ConcurrentSkipListMap is a well established
lock-based ordered map, implemented as a skip list. We
also evaluate GCC’s STL implementation of map and
unordered_map (v4.9.1) where we synchronize using
SLR lock-elision. The C++ map implementations all use the
memory allocator provided with Intel TBB v4.3_20141023.

We use the experiment from Brown et al. [12], and port the
experiment to C++ to evaluate the C++ maps. The experiment
has been reproduced in several recent papers [13], [14]. The
Java were tested with the test infrastructure hosted on Brown’s
website.

In the experiment up to 8 threads operate in parallel on
one map for 5 seconds, after pre-filling the map with n
key-value pairs. After the 5 seconds, we record how many
operations the threads completed. The C++ implementations
also record several performance metrics, such as cache misses.
The operation’s keys are 32 bit integers, uniformly sampled
from 1 to k, where k is either 100, 10,000, or 1,000,000.
We evaluate 3 workloads with different proportions of insert,
remove, and search operations:

1) Update, with 50% insertion, 50% removal (n = k/2);
2) Mixed, with 70% searches, 20% insertion, and 10%

removal (n = 2k/3); and
3) Constant, with 100% searches (n = k)

Each experiment is run in separate processes, which repeat
the trial 50 times. We pre-fill the map with n key-value pairs,
because it is the expected number of elements in a map after
infinitely many operations.

To minimize any overhead in Java implementations we
use an up to date Java Server runtime, which compiles early,
and allow the Java virtual machine to consume up to 3 GB
memory. By comparison, all of the C++ implementations
consumed less than 80 MB memory. It might seem strange
to compare the performance of data structures implemented
in Java with other data structures implemented in C++, but it
is in fact quite commonplace [12]–[14]. As of August 2014
Intel only supports HTM “for software development”, since
“software using the Intel TSX (Transactional Synchronization
Extensions) instructions may result in unpredictable system
behaviour” [15]. The news site techreport.com reports that
Intel intends to reintroduce support for hardware transactional
memory in future processors [16]. We expect that resolving
the bug present in Haswell processors will not affect the
performance of the HTM.

B. Results

Figure 1 shows the throughput of maps as a function
of the number of threads under 9 different workloads and
key ranges. The plots are labeled with their workloads and
key ranges (k). Figure 2 shows the number of L1 cache
misses per operation, peak memory consumption, and energy
consumption per operation, respectively, as measured by PAPI,
version 5.40, getrusage, and Intel RAPL. We were only
able to measure this data for the C++ map implementations
because the measurement interfaces have APIs in C.
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Fig. 1. Mean map throughput as a function of threads for 3 workloads and 3 key ranges.

BT-trees have the highest peak throughput out of the
ordered maps in all workloads. BT-trees advantage is par-
ticularly high on large workloads (k = 1, 000, 000). The
traditional concurrent maps are competetive with BT-trees on
small workloads (k = 100), and even have higher throughput
at 8 threads in the "Mixed; k = 100" and "Update; k = 100"
workloads.

BT-trees do not scale well to more than 3 threads in
the Update and Mixed workloads for the smallest key range
k = 100 because the data structure is highly contended, as
can be seen in Figure 2. The number of instructions per BT-
tree operation increases when scaling beyond 3 threads. The
increase is caused by two factors (1) the map operations are
retried transactionally, and (2) acquiring the underlying lock
executes more instructions when the locks are contended. By
comparison, STL maps and unordered maps using lock-elision
are contended on all of the Update and Mixed workloads. For
instance the number of instructions executed per STL map

operation triples when using 8 threads in the Mixed workload
with k = 1, 000, 000 and the results are worse for the Update
workloads and lower values of k.

The lock-elision based maps scale poorly when contended
because of the lemming effect [5]: When operations fail to
execute transactionally, they fall back to using the underlying
lock. Using the underlying lock increases the risk that the
following transactions fail. Once most operations use the lock,
their combined throughput performance will decrease below
that of single-threaded execution.

When k > 100 BT-trees achieve a 2.9-3.4 speedup with
4 threads, and a 4.3-5.6 times speedup with 8 threads. Using
more threads does not significantly increase the number of
executed instruction or L1 cache misses per BT-tree operation,
indicating (1) transactions are rarely retried, and (2) there
is little cache contention, hence BT-trees are not contended.
We believe the sublinear scaling is caused by sharing the
compute resources inherent to multicore (turboboost) and SMT



Mixed; k = 100 Mixed; k = 10000 Mixed; k = 1000000

0

500

1000

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Threads

In
st

ru
ct

io
n

s 
re

ti
re

d
 p

e
r 

m
a

p
 o

p
e

ra
ti

o
n

Mixed; k = 100 Mixed; k = 10000 Mixed; k = 1000000

0

10

20

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Threads

L1
D

 c
a

ch
e

 m
is

se
s

p
e

r 
m

a
p

 o
p

e
ra

ti
o

n

Mixed; k = 100 Mixed; k = 10000 Mixed; k = 1000000

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Threads

P
ro

ce
ss

o
r 

p
o

w
e

r
co

n
su

m
p

ti
o

n
 [

W
]

BT−trees   
STL   
unordered_map   

STL   
map   

Fig. 2. Instructions retired, L1 cache misses, and processor power consumption as a functions of the number of threads for the Mixed workload on 3 key
ranges.

(hyperthreading). Sharing compute resources is less attractive
for BT-trees than the other maps, because BT-tree operations
are compute bound and not memory bound: Compared to
STL map operations, BT-tree operations execute 2-3 times
as many instructions, but cause 1/4 as many cache misses,
in the sequential case. BT-tree operations spend most of the
time computing results, rather than waiting for cache misses,
so their operations do not benefit as much from SMT, and
they are more affected by lowering the processor’s operating
frequency. In summary, BT-trees are not significantly affected
by contention when k >= 10, 000, but they do not scale
linearly because of hardware constraints.

Both BT-trees perform well when k = 1, 000, 000 com-
pared to Chromatic trees and STL maps, because it benefits
from being an external multiway trees, which helps its cache
performance. Cache performance is more important for larger
maps, which cause more cache misses per instruction. Figure 2
illustrates the cache performance for the Mixed workloads,
where STL maps cause 3 times as many L1 cache misses
as BT-trees, when k > 100. STL maps also cause 6 times
as many L3 cache misses when k = 1, 000, 000, while the
number of L3 cache misses are insignificant for lower k.

STL maps, and binary trees in general, cause more cache
misses than multiway trees, because they are higher, and do
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not fit as well into the cache. Sedgewick [17] observed that
the average successful search in left-leaning red-black trees,
such as STL maps, traverses log2(n) nodes, corresponding to
20 nodes in the Constant workload when k = 1, 000, 000.
Our results show such operations cause approximately 21 L1
cache misses, which is higher than the expected number of
nodes traversed, indicating that traversing red-black tree nodes
references more than 1 cache line. By comparison the expected
height of BT-trees is h = log17.5(

n
2 ) + 1, corresponding to

5.7 nodes in the Constant workload when k = 1, 000, 000,
because the expected non-root node has b = 3+32

2 = 17.5
elements. Assuming that traversing BT-tree internal and leaf
nodes both cause 2.5 cache line references ( 1+2

2 + 1 = 2.5,
1+2+3+4

4 = 2.5), a successful search operation will reference
4.7 · 2.5 + 2 = 13.75 cache lines. Our results show that a
successful search operation on such a BT-tree causes 8 cache
line misses. BT-trees have a lower cache line miss to cache
line reference ratio than red-black trees because they benefit
from hardware prefetching and have better temporal locality.
Internal BT-tree nodes change rarely, so they are less likely to
be evicted, and more likely to stay cached by the cores.

We expect that Chromatic trees cause approximately as
many cache misses as STL maps, but we do not have the
infrastructure for fine grained measurement of Java code cache
performance. STL maps and Chromatic trees have very similar
structures, and as such they have similar sequential throughput,
but chromatic trees have far better scalability. They mainly
differ in how they are balanced: Chromatic trees are less
balanced, and are more expensive to balance, but require less
synchronization. Chromatic trees have a constant running time
balancing, and the red-black tree property is violated for at
most 6 nodes on any path. As a consequence, the sequential
performance of the data structures mostly differs for small data
sets.

Figure 2 shows the processor’s power consumption.
in the Mixed workload. Uncontended maps tend to be
more energy efficient when using more threads. In the
sequential case, BT-trees are more energy efficient than
STL maps when k >= 10, 000, and almost as energy
efficient as STL unordered_maps and Intel TBB
concurrent_hash_maps when k = 1, 000, 000. Generally
BT-trees are slightly more attractive in the Update workload,
and slightly less attractive in the Constant workload. When
using 8 threads and k > 100, BT-trees generally consume 25%
more power than STL maps, while still being far more energy
efficient. BT-trees’ higher power consumption comes from
the cores, while the memory controller power consumption

is lower. This is as expected, because operations on BT-trees
execute many instructions, but incur few L3 cache misses.

Figure 3 shows the peak memory consumption we
measured in the benchmarks. BT-trees’ peak memory
consumption is approximately 40MB lower than that of
STL maps, which is approximately 25% lower than that of
STL unordered_maps. When k < 1, 000, 000 all of the
C++ maps have similar peak memory consumption, varying
from 6MB to 15MB. We believe the maps have similar
peak memory consumptions because most of the memory is
consumed by factors other than the maps. Theoretically we
would expect the binary trees use at least 32,000,000 bytes
to represent 1,000,000 key-value pairs, as representing each
key-value pair takes up to 32 bytes: 8 bytes for key-value
pair, 16 bytes for child pointers, and 8 bytes for memory
allocator data structures and 16 byte alignment. The estimate
closely resembles 37 MB, the lowest memory consumption
we observed for STL map in the Constant workload with
k = 1, 000, 000. We would expect BT-trees to use 17,000,000
bytes to represent 1,000,000 key-value pairs: Every leaf
node represents 3+32

2 = 17.5 key-value pairs, and there are
approximately 17.5 times as many leaf nodes as internal
nodes, giving the estimate n

384+16
17.5 +(256+16)

17.5 ≈ 16, 800, 000.
The estimate closely resembles 18MB, the lowest memory
consumption we observed in the Constant workload with
k = 1, 000, 000.

In general, BT-trees have excellent space, time and energy
performance compared to state of the art concurrent ordered
maps, despite using much simpler coarse-grained synchroniza-
tion.

VI. RELATED WORK

Transactional memory has been quite a hot topic in com-
puter science since its introduction in 1993 [1]. Most of the
research surrounding it has focused on how to expose transac-
tional memory to programmers, and its hardware and software
implementations [2]–[5], [18]. There has also been a several
studies on the impact on software which applies transactional
memory. Recently, emperical studies have confirmed that ap-
plying transactional memory is a simpler than traditional fine-
grained synchronization methods [19], [20], but not neccesarily
simpler than applying coarse grained synchronization.

Our work differs from prior work on transactional memory,
by focusing on how to design software, in order to apply HTM
efficiently. Our general approach, is to apply simple coarse
grained synchronization based on SLR lock-elision [8] and
redesign data layout to avoid limitations in HTM. On a related
note, Bobba et al investigated performance pathologies for dif-
ferent simulated hardware implementations of HTM [21]. They
found that different implementations of HTM will pathologi-
cally degrade performance under different workloads. In par-
ticular, transactional memory implementations which resolve
conflicts with requester-wins policies, similar to the Intel and
IBM implementations, are have particularly pathological case
called Friendly Fire: transactions which conflict with other
transactions are likely to fail themselves. We use HTM in the
form of lock-elision, which suffers from the Lemming Effect,
giving pathological performance in the same situation [5].



BT-trees, which we designed to avoid the limitations of
HTM, can be seen as a simplification and further relaxation
of PO-B+trees [22]. PO-B+trees are slightly relaxed B+trees
which are balanced while traversing, which in turn allows
them only holding two lock while searching. BT-trees mainly
differs from PO-B+trees by using coarse grained lock-elision,
as opposed to fine-grained locks, representing leaf nodes as
unordered arrays to avoid transactional conflicts, and allow in-
ternal nodes to have fewer children to further reduce balancing.
The attempt to reduce balancing is seen in other concurrent
data structures such as chromatic trees, skip lists, Ctries [12],
[23], [24], and in paticular for SF-trees [25].

SF-trees are concurrent ordered red-black trees, which
also optimize for transactions and reduce balancing, but with
different means for avoiding conflicts [25]: BT-trees reduce
the frequency of balancing, whereas SF-trees defer balancing
to another thread; SF-trees defer removing nodes from the tree
to avoid conflicts near the root, while BT-trees are multiway
external search trees, making writes near the root infrequent.
The main similarity of BT-trees and SF-trees is that they both
use individual transactions for balancing, rather than allowing
an operation and balancing in the same transaction.

VII. CONCLUSION

Modern multi core processors offer increasing parallel
power, but writing efficient parallel code is still difficult. In this
paper we illustrated a simple way of writing efficient parallel
code applying hardware transactional memory. The main idea
is to reason about how the code affects the synchronization,
rather than custom tailoring new synchronization schemes. We
presented 5 guidelines that can help detect scalability pitfalls,
and applied the guidelines to the design and implementation of
BT-trees, a new ordered map. BT-trees are 3 times faster and
twice as space efficient as state of the art concurrent ordered
maps. Unlike other state of the art ordered maps, BT-trees use
very simple synchronization. Using the same synchronization
on traditional maps, which were not designed according to our
guidelines, results in massive synchronization contention, and
limited scalability.
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