
Modelling and Analysis of Network Security
- an Algebraic Approach

Qian Zhang
Institute of Software

Chinese Academy of Sciences, CAS
Beijing China

Email:zhangq@ios.ac.cn

Ying Jiang
Institute of Software

Chinese Academy of Sciences, CAS
Beijing China

Email:jy@ios.ac.cn

Peng Wu
Institute of Software

Chinese Academy of Sciences, CAS
Beijing China

Email:wp@ios.ac.cn

Abstract—Game theory has been applied to investigate
network security. But different security scenarios were often
modeled via different types of games and analyzed in an ad-hoc
manner. In this paper, we propose an algebraic approach for
modeling and analyzing uniformly several types of network
security games. This approach is based on a probabilistic
extension of the value-passing Calculus of Communicating
Systems (CCS), which is a common formal language for
modeling concurrent systems. Our approach gives a uniform
security model for different security scenarios. We present
then a uniform algorithm for computing the Nash equilibria
strategies on this security model. In a nutshell, the algorithm
first generates a network state transition graph for our security
model, then simplifies this transition graph through graph-
theoretic abstraction and bisimulation minimization. Then,
a backward induction method, which is only applicable to
finite tree models, can be used to compute all the Nash
equilibria strategies of the (possibly infinite) security models.
This algorithm is implemented and can be tuned smoothly for
computing its social optimal strategies, and its termination and
correctness are proved. The effectiveness and efficiency of this
approach are demonstrated with two detailed examples from
the field of network security.

Keywords-Network security; Nash equilibria strategies; For-
mal method; Probabilistic value-passing CCS

I. INTRODUCTION

As the Internet has become ubiquitous, the risk posed by
network attacks has greatly increased. Generally, network
security scenarios can be classified into two main categories:
one in which defenders have full understanding of malicious
levels of users via white list or black list, and the other
one in which defenders have no accurate knowledge of the
users’s types. How to devise effective defense mechanisms
against various attacks is a fundamental research area. A
Nash Equilibrium Strategy (NES) [1][2] defines a relative
optimal defense mechanism, where neither attackers nor
defenders are willing to change their current offensive-
defensive behaviors.

In recent two decades, game-theoretic approaches have
been applied to investigate network security [3][4][5]. To
name a few, complete information games [6], in which
each player knows the types, strategies and payoffs of all

the other players, can be applied to modelling the secu-
rity scenarios in which defenders know the users’ types
[7][8][9][10][11]. While the incomplete information games
can be used to model the scenarios in which defenders have
no idea of users’ type [12][13][14][15][16][17]. However,
specific game models are only suitable for analyzing NESs
under specific security scenarios. How to find NESs for
different security scenarios with a uniform framework is far
from having been solved.

CCS is a common formal language for modeling concur-
rent systems. It can describe interactive behaviors vividly
up to its interleaving semantics. Inspired by the generative
model for probabilistic CCS [18], we propose a generative
probabilistic extension for the value-passing CCS (PVCCSG
for short), and then a uniform security model based on
PVCCSG is put forward. We are the first, to our knowledge,
to present a uniform framework for analyzing the NESs for
various network security scenarios.

For a network security scenario with one user (a legitimate
user or an attacker) and one defender as participants, as
the defender does not know the user’s type which means
the user’s maliciousness, we introduce another virtual par-
ticipant “Nature” to perform the Harsanyi transformation
[2], i.e., to convert nondeterministic choices under uncertain
user types to quantitative choices of risk conditions. Our
approach interprets the network security scenario as a state
transition system. The states depend on the behaviors of the
participants. The state transitions depend on the interactions
among the participants. We then present a uniform algorithm
to compute all the NESs for different network security
scenarios automatically. Firstly, we minimize the PVCCSG
based security model up to probabilistic bisimularity, which
is a well-defined technique in process calculi. In this way,
the semantically equivalent states can be unified as single
ones. Then we abstract the minimized model in a graph-
theoretic manner. The abstracted model is then converted
to a finite hierarchical graph by Tarjan’s algorithm [19] to
increase reusability and parallelization. Finally, we compute
the NESs backward inductively in the hierarchical graph. We
take two different security scenarios from [20] and [8] for

ar
X

iv
:1

51
2.

01
63

0v
2

 [
cs

.C
R

]
 1

5
Ju

n
20

16

case studies. The experimental results are rather promising
in terms of the effectiveness and flexibility of our approach.

The major contributions of our work are as follows.
• We propose a uniform framework based on PVCCSG

to characterize the security scenarios modeled via com-
plete or incomplete information games, which general
game-theoretic approaches cannot support yet.

• We minimize the PVCCSG based security model by
probabilistic bisimularity and abstract the minimized
model by graph theoretic methods. It reduces the state
space and makes our model to be scalable.

• We propose a uniform algorithm to compute out the
NESs for various security scenarios automatically. The
efficiency of the algorithm benefits from high reusabil-
ity, parallelization and the minimized model.

• We filter out an invalid NES from the results obtained
by classical game-theoretic approach [8]. It is an incred-
ible threat [6] which is a NES but will never happen in
the real situation if the players are rational.

The rest of the paper is organised as follows. We establish
a generative probabilistic extension of the value-passing
CCS (PVCCSG) and construct a PVCCSG based security
model (Section 2); give the formal definition of NES in this
model and present the algorithm (Section 3); illustrate the
efficiency of our method by two security scenarios (Section
4); finally, discuss the conclusions (Section 5).

II. MODELLING BASED ON PVCCSG

A. PVCCSG

Inspired by the generative model for probabilistic CCS
[18], we propose a generative model for probabilistic value-
passing CCS (PVCCSG).

Syntax: Let A be a set of channel names, and a range
over A, andA be the set of co-names, i.e., A = {a | a ∈ A}.
Let Label = A∪A, Var be a set of value variables, and x
range over Var . Val is a value set, and v range over Val . e
and b denote a value expression and a boolean expression,
respectively. Let Act be a set of actions, and α range over
Act. Act = {a(x) | a ∈ A}∪{a(e) | a ∈ A}∪{τ}, where τ
is the invisible action, a(x) and a(e) denote an input prefix
action and an output prefix action, respectively.

Let PrG be the set of processes in PVCCSG. Each process
expression E is defined inductively as follows:

E ::=Nil | α.E |
∑
i∈I

[pi]Ei | E1|E2 | E\R | E[f] |

if b then E1 else E2 | A(x)
α ::=a(x) | a(e)

Nil is the empty process which does nothing. α.E is a
prefixing process which evolves to E by performing α.∑
i∈I

[pi]Ei is a probabilistic choice process which means Ei

will be chosen with probability pi, where I is an index

set, and for ∀i ∈ I , pi ∈ (0, 1],
∑̇
i∈I
pi = 1.

∑
and

∑̇
are summation notations for processes and real numbers,
respectively. E1|E2 represents the combined behavior of E1

and E2 in parallel. E\R is a process with channel restriction,
whose behavior is like that of E as long as E does not
perform any action with channel a ∈ R ∪ R, R ⊆ A. E[f]
means relabeling the channels of process E as indicated
by f , where f : Label → Label is a relabeling function.
if b then E1 else E2 is a conditional process which enacts
E1 if b is true, else E2. Each process constant A(x) is
defined recursively as A(x)

def
= E, where E contains no

process variables and no free value variables except x.
Semantics: The semantics of PVCCSG are defined in

Table I. E
α[p]→ E′ means that, by performing an action α, E

will evolve to E′ with probability p. Let chan : Act → A,
i.e., chan(a(x)) = chan(a(e)) = a. E{e/x} means substi-
tuting with e for every free occurrences of x in process E.
Let ν(E,R) =

∑̇
{pi | E

α[pi]−→ Ei, chan(α) /∈ R} and ℘ be
the powerset operator. PrG/R denotes the set of equivalence
classes induced by an equivalence relation R over PrG.

Definition II.1. Let µ : (PrG×Act×℘(PrG))→ [0, 1] is a
total function given by: ∀α ∈ Act, ∀E ∈ PrG, ∀C ⊆ PrG,
µ(E,α,C) =

∑̇
{p|E α[p]−→ E′, E′ ∈ C}.

Definition II.2. An equivalence relation R ⊆ PrG×PrG is
a probabilistic bisimulation if (E,E′) ∈ R implies: ∀C ∈
PrG/R, ∀α ∈ Act, µ(E,α,C) = µ(E′, α, C).

E and E′ are probabilistic bisimilar, written as E ∼ E′,
if there exists a probabilistic bisimulation R s.t. ERE′.

B. PVCCSG based Security Model

A network system can be abstracted as four participants:
the Nature, one user, one defender and the network envi-
ronment which is the hardware and software services of
the network under consideration. To construct the PVCCSG
based security model, the following aspects are addressed.
1 Ty: the type set of the user, and t range over Ty .
2 S : the set of network states, and s range over S.
3 Au and Ad: the action sets of the user and the de-

fender, respectively. Let Au = ∪
s∈S,t∈Ty

Au(s, t) and Ad =

∪
s∈S

Ad(s), where Au(s, t) and Ad(s) are the action sets
of the user with type t and the defender at state s,
respectively.

4 ṗ: state transition probability function. Let ṗ : S × Ty ×
Au ×Ad × S → [0, 1].

5 ḟu and ḟd: the immediate payoff functions for the user and
the defender, respectively. Let ḟu : S×Ty×Au×Ad → R,
ḟd : S×Ty×Au×Ad → R, where R is the real number.
The PVCCSG based security model represents the network

as a state transition system. The processes in PVCCSG
represent all possible behaviors of the participants at each

Table I
OPERATIONAL SEMANTICS OF PVCCSG

[In]
a(x).E

a(e)[1]
−→ E{e/x}

[Out]
a(e).E

a(e)[1]
−→ E

[Sum]
Ei
α[q]
−→E

′
i∑

i∈I
[pi]Ei

α[pi·q]−→ E
′
i

[Res] E
α[p]
−→E′

E\R
α[p/r]
−→ E′\R

(chan(α) /∈ R, r = ν(E,R))

[Parl]
E1
α[p]
−→E

′
1

E1|E2
α[p]
−→E′1|E2

[Parr]
E2
α[p]
−→E

′
2

E1|E2
α[p]
−→E1|E

′
2

[Rel] E
α[p]
−→E′

E[f]
f(α)[p]
−→ E′[f]

[Com]
E1
a(e)[p]
−→ E

′
1, E2

a(e)[q]
−→ E

′
2

E1|E2
τ[p·q]
−→ E

′
1|E
′
2

[Con]
E{e/x}

α[p]
−→E′

A(e)
α[p]
−→E′

(A(x)
def
= E)

[ift]
E1
α[p]
−→E

′
1

if b then E1 else E2
α[p]
−→E′1

(b = true) [iff]
E2
α[p]
−→E

′
2

if b then E1 else E2
α[p]
−→E′2

(b = false)

state, and each state is assigned with a process depicting
all possible interactions of the participants. Technically, let
A = {Aces, Defd, Tellu, Telld} and Label = A ∪ A ∪
{Log}∪{Rec}. Val = Au∪Ad∪H∪Ty, where H ⊆ R×R.
Act = Actu∪Actd∪Actn, where Actu, Actd and Actn are
the behavior sets of the user, the defender and the network
environment, respectively.

Actu ={Aces(u) | u ∈ Au} ∪ {Tellu(x) | x ∈ Var}
Actd ={Defd(v) | v ∈ Ad} ∪ {Telld(x) | x ∈ Var}
Actn ={Aces(x) | x ∈ Var} ∪ {Defd(x) | x ∈ Var}

∪ {Tellu(x) | x ∈ Var} ∪ {Telld(x) | x ∈ Var}
∪ {Log(x, y) | x ∈ Var , y ∈ Var} ∪ {Rec(r) | r ∈ H}

The processes Gi , pUi, pDi and pNi, separately depicting
all possible behaviors of the Nature, the user, the defender
and the network environment at state si , are defined as
follows.

Gi
def
=

∑
t∈Ty

[q]Ni(t), Ni(t)
def
= (pUi(t)|pDi|pNi(t))\R

pUi(t)
def
=

∑
u∈Au(si,t)

Aces(u).Tellu(y).Nil

pDi
def
= Telld(x).

∑
v∈Ad(si)

Defd(v).Nil

pNi(t)
def
= Aces(x).Telld(x).Defd(y).Tellu(y).T ri(x, y, t)

Tri(x, y, t)
def
=

∑
u∈Au(si,t),v∈Ad(si)

if (x = u, y = v) then

Log(u, v).Rec(ru, rd).
∑
j∈I

[pij]Gj else Nil

where R = {Aces,Defd,Tellu ,Telld}, q is the proba-
bility distribution of type t, pij = ṗ(si, t, u, v, sj), ru =
ḟu(si , t, u, v), rd = ḟd(si , t, u, v).
Gi means that at state si , the Nature presumes the type

t with probability q. Ni(t) means the defender will interact
with the user with type t at si . pUi(t) means the type
t user launches an access request u (Aces(u)), and waits
for the responses from the network environment (Tellu(y)).
pDi means the defender captures some potential attacks
happened (Telld(x)), and then sends a defense instruction

v to the network environment (Defd(v)). pNi(t) means the
network environment receives an access request from the
type t user (Aces(x)), and informs the defender of the
request from the user (Telld(x)), after receiving a defense
instruction from the defender (Defd(y)), the network envi-
ronment will reply the user with the defensive information
(Tellu(y)). At last, the network environment generates a
log file to record the interaction (Log(x, y)) and evaluate
the payoffs for the user and the defender caused by this
interaction (Rec(ru, rd)), finally the network system evolves
to another state with probability pij . Based on process
transition rules, we obtain the network state transition graph
caused by offensive-defensive interactions.

C. SecModel

To keep the realistic states, we abstract the state transition
graph via path contraction [19] to a labeled graph named
as SecModel. The vertex set is V = ∪

si∈S
{Gi}, Gi is

the process assigned to state si . The edge set of Gi is

E(Gi), ranged over by eij = (Gi , Gj) if Gi
τ4[q]→ · Log(u,v)→

· Rec(ru,rd)[pij]→ Gj , and u ∈ Au(si , t). The label of edge
eij is L(eij)=(LType(eij) , LTypePr(eij), LAct(eij), LTranP(eij),
LWeiP(eij)). LType(eij) = t is the user’s type, LTypePr(eij) =
q is type’s probability distribution, LAct(eij) = (u, v) is
offensive-defensive action, LTranP(eij) = pij is the transition
probability and LWeiP(eij) = (ru, rd) is the weight pair of
this interaction. Later, superscript u and d distinguish the
value for the user and the defender.

III. ANALYZING NES ON SECMODEL

A. Nash Equilibrium Strategy on SecModel

Definition III.1. A t-execution of Gi in SecModel, denoted
as πti , is a walk (vertices and edges appearing alternately)
starting from Gi and ending with a cycle, on which every
vertex’s out-degree is 1 and each edge e has label LType(e) =
t.

πti [j] denotes the subsequence of πti starting from Gj if
Gj is a vertex on πti .

Definition III.2. The payoffs of the user and the defender
on execution πti , denoted by PFu(πti) and PF d(πti), respec-
tively, are defined as follows:

PFu(πti) = LuWeiP(eij) + β · LTranP(eij) · PFu(πti [j])
PF d(πti) = LdWeiP(eij) + β · LTranP(eij) · PF d(πti [j])

where β ∈ (0, 1) is a discount factor, eij = (Gi , Gj).

Definition III.3. πti is a t-Nash Equilibrium Execution (t-
NEE) of Gi if it satisfies:

PFu(πti) = max
eij∈E(Gi)

{LuWeiP(eij) + β · LTranP(eij) · PFu(πtj)}

PF d(πti) = max
eij∈hti (e)

{LdWeiP(eij) + β · LTranP(eij) · PF d(πtj)}

where e is the first edge of πti , hti(e) = {e′ ∈ E(Gi) |
LuAct(e

′) = LuAct(e), LType(e
′) = LType(e) = t}, πtj is the

t-NEE of Gj. It is defined coinductively [21].

Definition III.4. Strategy is a spanning subgraph of Sec-
Model satisfying:
• for any e, e′ ∈ E(Gi), Gi ∈ V , LType(e) 6= LType(e

′);
•

⋃
e∈E(Gi)

LType(e) = Ty .

Definition III.5. Nash Equilibrium Strategy (NES) is a
strategy in which ∀Gi, ∀t ∈ Ty , any t-execution of Gi is
its t-NEE.

B. Algorithm

The algorithm we proposed to compute NES on Sec-
Model, denoted as FindNES(), works as follows:
1 minimize the network state transition graph by probabilis-

tic bisimulation (function Minimization());
2 abstract the minimized graph via path contraction to

SecModel (function Abstraction());
3 compute the defender’s expected payoff up to his belief

on the user’s type (function BayExp());
4 stratify the model via Tarjan’s strongly connected com-

ponent algorithm [19] and compute the NESs backward
inductively (function AlgNES()).
Assume the maximum out-degree of each vertex is M ,

n and m denote the size of vertex set and edge set of
SecModel, respectively, the complexity of FindNES() is
O(n×M2 + n+m).
Minimization(): the input is the network state tran-

sition graph and the output is the minimized graph. It is a
recursive function and works as follows:
1 for any Gi , Gj , if ∀t ∈ Ty , e = (Gi , G

′
i), LType(e) = t,

∃e′ ∈ E(Gj), e′ = (Gj , G
′
j), L(e) = L(e′) componen-

twise, label (Gi , Gj) with Bisim. Minimization(G′i ,
G′j);

2 else we label (Gi , Gj) with NonBisim, return false;
3 if (G′i , G′j) has label Bisim, return true .
Abstraction(): its input is the minimized graph and

the output is SecModel. It works as follows:

1 pick any two paths of some Gi , Gj ∈ V , respectively;
2 if they are vertex independent which means they have no

common internal vertex, contract each path as a single
edge between the endpoints. Keep the values transferred
by this multi-transition as the edge label;

3 else then these paths are kept intact.
BayExp(): the input is E(Gi) of any Gi , and the output

is E(Gi) with modified LdWeiP(e). For any e ∈ E(Gi),
if LAct(e) = (u, v), Ltype(e) = t, LTypePr(e) = q, we
use Bayesian rule to update LdWeiP(e) =

∑
t∈Ty

δ(t | u) ·

fd(si, t, u, v), where δ(t | u) = p(u|t)·q∑
t′∈Ty

p(u|t′)·p(t′) where

p(t′) = LTypePr(e
′) if LType(e

′) = t′. p(u | t) is the
probability that action u is observed given the user’s type t.
AlgNES(): the input is the minimized SecModel modified

by BayExp(), and the output are the NESs of SecModel. It
works as follows:
1 stratify the minimized SecModel to an acyclic graph by

viewing each SCC as a cluster vertex. Leave denotes the
one with zero out-degree. NonLeave denotes others.

2 find the NESs for all Leaves in parallel. The key point of
finding NES for each Leave is, ∀t ∈ Ty, to find a t-cycle in
this Leave which is a t-NEE of every vertex on it. t-cycle
is a cycle whose edge e has label LType(e) = t.

3 compute NES for any NonLeave backward inductively. It
follows the method of finite dynamic games for NES [6].
The core of AlgNES() is how to find NES for SCC. Let

D denote each SCC, and Gi ∈ V(D) if Gi belongs to D.
It is a value iteration process. The value function, named as
LocNs(), is to select some edge e of Gi, for all Gi ∈ V(D),
satisfying Nash Equilibrium condition. The iterated function,
named as RefN(), is to update the weight pair for each edge
of Gi. We use L0(e) records the weight pair updated by
BayExp() and Ln(e) is the updated weight pair of e on the
nth iteration. A variable vector Ppn(Gi) = [Pptn(Gi)]t∈Ty

saves the weight pair of e, if e is the result of LocNs() on
the nth iteration, that is Pptn(Gi) = Ln(e) with LType(e) =
t. The value iteration process will terminate if the weight
pair value of each edge is unchanged.

In LocNs(), given a type t, edge e ∈ E(Gi) satisfies
Nash Equilibrium condition on the nth iteration (n ≥ 0) if
e = arg max

e′∈hti (e)
Ldn(e

′) and e = arg max
e′∈E(Gi)

Lun(e
′).

In RefN(), on the nth iteration (n ≥ 1), the weight pair
of each edge e ∈ E(Gi) with type t is updated by: Ln(e) =
L0(e) + β · LTranP(e) · Pptn-1(Gj), where e = (Gi , Gj).

1) Termination and Correctness: We need to prove the
termination of AlgNES(). Inspired by a technique in dy-
namic programming [22][9], on the kth iteration, the value
function can be formalized as a mapping σ : V → R ×R,
σk(Gi) = Ppk(Gi); the iteration function defines a set of
vertex {Gi(σk−1) | Gi(σk−1) denotes Gi with eij whose
weight pair is Lk (eij) = L0(eij)+β ·LTranP(eij) ·σk−1(Gj)}.
Then we have σk+1(Gi) = Pp1(Gi(σk)). We define a

shorthand notation (Tσ)(Gi) = Pp1(Gi(σ)), that is Tσk =
σk+1. We need to prove T is a contraction.

Lemma III.1. For any Gi ∈ V , we have

| σk(Gi)
u − Tσk(Gi)

u | ≤ max
e∈E(Gi)

| Luk (e)− Luk+1 (e) |

| σk(Gi)
d − Tσk(Gi)

d | ≤ max
e∈E(Gi)

| Ldk (e)− Ldk+1 (e) |

Proof: We prove it by contradiction. Assuming without
loss of generality, for any e, e′ ∈ E(Gi) with LType(e) =
LType(e

′), if LuWeiP (e) > LdWeiP (e
′), then LdWeiP (e) <

LdWeiP (e
′). This assumption follows the reality: if the user is

an attacker, then the more the damages he causes, the more
time the defender spends to normalizing the network; if the
user is a regular user, the more requests he sends, the more
effort the defender takes to balance the load. Let σk(Gi) =
(Luk (e1), L

d
k (e1)) and Tσk(Gi) = (Luk+1 (e2), L

d
k+1 (e2)),

where e1, e2 ∈ E(Gi). Let Luk (e1) = a, Luk (e2) = b,
Luk+1 (e1) = a′ and Luk+1 (e2) = b′, where a, a′, b, b′ are
positive number. We prove the first inequality. Similar to the
second one.
case 1: LuAct(e1) = LuAct(e2)
According to the Nash Equilibrium condition, we have
a < b and b′ < a′. If the first inequality in the lemma
does not hold, then we have | a − b′ |>| a − a′ | and
| a−b′ |>| b−b′ |, then we get (b′−a′)(b′+a′) > 2a(b′−a′)
and (a−b)(a+b) > 2b′(a−b) which deduce a−b > a′−b′,
contradiction.
case 2: LuAct(e1) 6= LuAct(e2). Let’s define two conditions:
Cond 1: Ppn(Gi) = Ln(e2); Cond 2: Ppn+1(Gi) =
Ln+1 (e1)
case 2.1: both Cond 1 and Cond 2
Then a > b and b′ > a′. If | a − b′ |>| a − a′ | and
| a− b′ |>| b− b′ |, then b− a > b′ − a′, contradiction.
case 2.2: not Cond 2 but Cond 1
Then ∃e′ with LuAct(e

′) = LuAct(e1). Let Luk (e
′) = c,

Luk+1 (e
′) = c′, then c > a > b, a′ > c′, b′ > c′. If

| a − b′ |>| a − a′ | and | a − b′ |>| b − b′ |, then
(b′−a′)(b′+a′) > 2a(b′−a′), a+ b > 2b′. If b′ > a′ > c′,
contradiction; If c′ < b′ < a′, then 2b′ < b′ + a′ < 2a,
2c > a + b > 2b′ > 2c′, so b′ < a and c > c′. If
| a − b′ |>| c − c′ |, then a − c > b′ − c′; If b′ = a′,
contradiction.
case 2.3: not Cond 1 but Cond 2
Proof is similar to case 2.2.
case 2.4: neither Cond 1 nor Cond 2
Then ∃e′, e′′, LuAct(e′) = LuAct(e1), L

u
Act(e

′′) = LuAct(e2).
Let Luk (e

′) = c, Luk+1 (e
′) = c′, Luk (e

′′) = d, Luk+1 (e
′′) =

d′, then d < a < c, d < b, a′ > c′, c′ < b′ < d′.
If | a − b′ |>| a − a′ |, | a − b′ |>| b − b′ |, then
(b′− a′)(b′+ a′) > 2a(b′− a′), (a− b)(a+ b) > 2b′(a− b).
If a > b and a′ > b′, then c′ < c and a > b′. If
| a − b′ |>| c − c′ |, then a − c > b′ − c′, contradiction;
If a < b and a′ > b′ or a > b and a′ < b′, contradiction; If

a < b, a′ < b′, then d′ > d, a < b′. If | a− b′ |>| d− d′ |,
then b′ − d′ > a− d, contradiction.

Lemma III.2. T is a contraction, i.e. T has a fixed point.

Proof: For any real vector −→x ∈ RJ , J is an index set,
let || −→x ||∞= maxj |xj |. According to Lemma III.1, then

|| Tσuk+1 − Tσuk ||∞ = max
Gi∈V

| Tσk+1(Gi)
u − Tσk(Gi)u |

≤ max
Gj∈V

β· | σk+1(Gj)
u − σk(Gj)

u |

= β· || σuk+1 − σuk ||∞

similar proof for || Tσdk+1−Tσdk ||∞≤ β· || σdk+1−σdk ||∞.
As β ∈ (0, 1) and regardless of the initial value function σ0,
sequence σk converges to a unique limit σ∗ with Tσ∗ = σ∗.

Theorem III.1. FindNES() finds all NESs of SecModel.

Proof: We prove: 1. FindNES() is terminated. It is triv-
ial by Lemma III.2; 2. FindNES() finds all NESs. We prove
it backward inductively. If vertex D is a Leave, for ∀Gi ∈
V(D), ∀t ∈ Ty , assuming πti whose first edge is e (written
as πti (e)) is the execution obtained by FindNES(). If πti (e)
is not NEE of Gi, then there is πti (e

′) with PF d(πti (e
′)) >

PF d(πti (e)), LuAct(e
′) = LuAct(e) or PFu(πti (e

′)) >
PFu(πti (e)), e

′ = arg max
e′′∈E(Gi)

PF d(πti (e
′′)), contradiction.

If D is a NonLeave , according to the definition of NES,
trivial.

IV. APPLICATIONS

The efficiency of our approach is illustrated by two
detailed examples. All our experiments were carried out on
2.53 GHz i5 core computer with 4G RAM.

A. Defense for DDoS Attacks

This example is referred from the literature [20] and
it is usually modeled via incomplete information games.
It shows how to protect a network system from being
attacked by DDoS [1]. In this case, the user can be a
legitimate user who sends packages with normal service
request or a zombie user who sends packages with fake
IPs. The defender cannot distinct the rogue flow from the
legitimate flow, so the defender’s challenge is to determine
the optimal firewall settings to block rogue traffics while
allowing legitimate ones. The legitimate user will try to
make the most of the bandwidth to speed up his request
to the server, while the malicious user will attempt to find
the most effective sending rate and botnet size to exhaust the
bandwidth without being detected. It’s necessary to model
for all the possible interactions under different settings and
find the most effective one.

There is one state s1 in this example, so the defender will
update continuously the judgement for the user’s type under
the interactions repeatedly happened. The type set Ty={

Zombie, Regular}. The Nature presumes these types with
the same probability. Au={(ru , mu) | ru ∈ R+, mu ∈ N}.
For the Zombie user, ru and mu denote the zombie flow rate
and the botnet size, while for the Regular user, ru and mu

denote the request flow rate and the number of the request
sent at a time. Ad={Mp | Mp ∈ R+}, Mp denotes the
parameter for the firewall’s dropping rate. We assume there
are already n legitimate flow with flow rate rl to be sent
and the payoff of the defender is equivalent in the absolute
value to the user’s payoff.

For the Zombie user, his immediate payoff is measured
by the bandwidth occupied by the zombie flow (fz), lost
bandwidth for the regular flow (fl), and the cost to control
the botnet (fc). So we have ḟu(s1,Zombie,mu, ru,Mp) =
fz + fl − fc . Let ωc be a given coefficient, fc = mu × ωc .

fz =
B ×mu × r

′
u

mu × r′u + n× r′l
, fl = (1−

B

mu × r′u + n× r′l
)× n× r′l

r′u and r′l mean the flow rate considering the firewall’s
dropping rate modeled by a function F (x) [20]. Let ρ
is an empirically given scaling factor, B is the network
bandwidth.

F (x) =
1

1 + e−ρ×
x−Mp
B

, r
′
l = rl × (1− F (rl)), r

′
u = ru × (1− F (ru))

For the Regular user, his payoff is measured by the
number of his request flow arriving at the server.

ḟu(s1,Regular ,mu , ru ,Mp) = mu × r′u + n× r′l
In this example, the SecModel is a directed graph with

parameter labels, so we use MATLAB to accomplish our
algorithm and find NES. We set B = 2000Mbps, n = 20,
rl = 60, ρ = −20, ωc = 10 and assume mu × ru = 800 for
the Regular user and mu×ru = 5000 for the Zombie user.
The results obtained see Figure 1 and Figure 2, respectively.

Figure 1 shows the Regular user will send 8 more flows at
a time with flow rate 100 to access the server. The defender
will set the midpoint of firewall to be 228.8. In this setting,
the legitimate user will make the most of the bandwidth
(almost 1639.84Mbps) and the drop rate of the firewall is
0.2162 which will allow most of the flow to pass.

Figure 2 shows the Zombie user will set botnet size as 20
and the sending rate as 250. The defender will set the firewall
midpoint as 322. In this setting, the zombie flows will ex-
haust the bandwidth (fz =1500.83Mbps, fl =619.35Mbps)
and the drop rate is 0.3274 which could drop more flows to
prevent the attack to some extent.

B. Campus Network Defense

This example is referred from the literature [8] and is
usually modeled via complete information games. It shows
a campus network connected to the Internet (see Figure
3), and the user is an attacker who tries to steal or dam-
age some private information data. It is necessary to find

Midpoint of Firewall

400

Nash Equilibrium point on Regular Type

200
00Flow number

50

-8000

-2000

-4000

-6000

100

P
a
yo

ff
 o

f
th

e
 D

e
fe

n
d
e
r

X: 228.8
Y: 8.475
Z: -93.99

Figure 1. NES on Regular type

400

Midpoint of Firewall

Nash Equilibrium point on Zombie Type

200
00Botnet size

50

-1

-2

-3

-4
100

×105

P
a
yo

ff
 o

f
th

e
 D

e
fe

n
d
e
r X: 322

Y: 20.34
Z: -1.383e+04

Figure 2. NES on Zombie type

some effective defense deployment in advance by analyzing
all possible offensive-defensive interactions. The type set
Ty = {Malicious}. There are 18 states in this example
given in Table II. Au and Ad are shown in Table III
and IV, respectively. We use symbolic number to represent
corresponding actions, · means any action. The transition
probability ṗ is given in Table V. The immediate payoff
pair (ḟu, ḟd) is shown in Table VI, where ḟu(si) and ḟd(si)
are matrixes with Au(si) as columns and Ad(si) as rows.

The model can be minimized as s13 ∼ s15, s14 ∼ s16 and
s17 ∼ s18. Its SecModel sees Figure 4. Two NESs obtained
see Figure 5 and Figure 6, respectively.

Public
Web Server

Private
File Server

Private
Work Station

User

Router

FirewallInternet

Figure 3. Campus Network

The results are largely similar except for a slight dif-
ference at s5. The first NES tells that for the attacker,
even though installing a sniffer may allow him to crack
a root password and eventually capture the data he wants,
there is also the possibility that the defender will detect his
presence and take preventive measures. He is thus able to do
more damages if he simply defaces the web site and leaves.

G1

G6

G2 G3G5

G4

G8

G7 G9

(1,*,0.3,(10,-10))

(1,*,0.18,(0,0))

(1,*,0.18,(0,0))

(1,1,1,(0.-10))

(1,1,1,(20.-20))
(1,1,1,(99.-99)) (3,1,1,(0,-10))

G1 G10 G12

G13

(3,1,1,(10,-10))
(2,3,1,(0,0))

(*,2/3,0.9,(0,0))

G14 G17

(2,*,0.3,(50,-50))

(*,1,1,(30,-30))

(*,1,1,(20,-20))

G11

(*,1,1,(30,-60))

(*,1,1, (0,-90))

(*,2/3, 0.9, (0,0))

(*,1, 1, (999,-999))

(1,2/3,1,(60.-60)
(1,1,0.5,(30,-10))

(1,2,0.1,(10,-10))

(3,*,0.3,(0,0))

(2/3,*,1,(0,0))

(1,2,0.5,(0,-10))
(1,3,0.5,(0,-20))

(1,2,0.5,(0,-10))
(1,3,0.5,(0,-20))

(2/3,1,(0,-10))

(1,2/3,1,(10,-10))

(1,3,0.8,(99,-99))

(1,2,0.8,(50,-99))

(2,3,0.8,(10,-10))

(1,3,0.8,(10,-10))
(1,2,0.8,(0,0))

(2/3,3,1,(0,0))
(*,1,1,(0,-99))

(1,*,0.3,(30,-30))
(*,2/3,0.8,(0,0))

(*,2/3,0.8(0,0))

(2/3,1,1,(0,-20)) (1,1,0.5,(30,-10))

(*,*, 1, (0,0))

Figure 4. SecModel of Campus Network

G1

G6

G2 G3G5

G4

G8

G7 G9

(1,*,0.3,(10,-10))

(1,*,0.18,(0,0))

(1,*,0.18,(0,0))

(1,1,1,(0.-10))

(1,1,1,(20.-20))
(1,1,1,(99.-99))

G1 G10 G12

G13

(3,1,1,(10,-10))

(*,2/3,0.9,(0,0))

G14 G17

(2,*,0.3,(50,-50))

(*,1,1,(30,-30))

(*,1,1,(20,-20))

G11

(*,1,1,(30,-60))

(*,1,1, (0,-90))

(*,2/3, 0.9, (0,0))

(*,1, 1, (999,-999))

(1,2,1,60.-60) (*,*, 1, (0,0))

Figure 5. The 1st NES

G1

G6

G2 G3G5

G4

G8

G7 G9

(1,*,0.3,(10,-10))

(1,*,0.18,(0,0))

(1,*,0.18,(0,0))

(1,1,1,(0.-10))

(1,1,1,(20.-20))
(1,2,0.8,(50.-99))

G1 G10 G12

G13

(3,1,1,(10,-10))

(*,2/3,0.9,(0,0))

G14 G17

(2,*,0.3,(50,-50))

(*,1,1,(30,-30))

(*,1,1,(20,-20))

G11

(*,1,1,(30,-60))

(*,1,1, (0,-90))

(*,2/3, 0.9, (0,0))

(*,1, 1, (999,-999))

(1,2,1,60.-60) (*,*, 1, (0,0))

Figure 6. The 2nd NES

While for the defender, he should immediately remove the
compromised account and restart httpd rather than continue
to compete with the attacker. The second NES shows that
the defender should install a sniffer detector. This action
can help the defender to further observe the attacker’s final
object before eventually removing the sniffer program and
the compromised account.

Compared with the results obtained by game-theoretic
approach[8], we filter the invalid NES. The invalid NES
shows at s6 the attacker will install a sniffer and the
defender will remove the compromised account and restart
ftpd. However, there is no state transition based on this
interaction, so it will never happen in the real if the players

are rational.

V. CONCLUSION

We proposed an algebraic model based on a probabilistic
extension of the value-passing CCS, to model and analyze
network security scenarios usually modeled via complete
or incomplete information games. Using the algorithm pro-
posed, we computed multiple Nash Equilibria Strategies
automatically. The efficiency and effectiveness of our ap-
proach have been illustrated by two detailed applications. We
claimed and proved that our approach can be regarded as a
uniform framework for modeling and analyzing the different
network scenarios.

In the future, we wish to develop a security model
based on CCS for Trees [23] to analyze effective defense
mechanisms under security scenarios with multiple users and
defenders.

ACKNOWLEDGMENT

This work has been partly funded by the French-Chinese
project Locali (NSFC 61161130530 and ANR-11-IS02-
0002) and by the Chinese National Basic Research Program
(973) Grant No. 2014CB34030.

REFERENCES

[1] D. Easley and J. Kleinberg, Networks, Crowds, and Mar-
kets:Reasoning about a Highly Connected World. Cambridge
University Press, 2010.

[2] M. J. Osborne, An Introduction to Game Theory. Oxford
University Press., 2000.

[3] X. Liang and Y. Xiao, “Game theory for network security,”
in IEEE Communications Surveys and amp Tutorials, 2013.

[4] S. Roy and C. Ellis, “A survey of game theory as applied to
network security,” in 43rd Hawaii International Conference
on System Sciences, 2010.

[5] P. Syverson, “A different look at secure distributed compu-
tation,” in Proc. 10th IEEE Computer Security Foundations
Workshop, 1997.

[6] M. J. Osborne and A. Rubinstein, A course in Game Theory.
MIT Press, 1994.

[7] a. T. B. K. C. Nguyen, T. Alpcan, “Stochastic games for
security in networks with interdependent nodes,” in Proc. of
Intl. Conf. on Game Theory for Networks (GameNets), 2009.

[8] K. Lye and J. Wing, “Game strategies in network security,” in
Proceedings of the Foundations of Computer Security, 2005.

[9] L. Shapley, Stochastic Games. Princeton University press,
1953.

[10] E. M. Jean Tirole, “Markov perfect equilibrium,” Journal of
Economic Theory, 2001.

[11] C. Xiaolin, T. Xiaobin, Z. Yong, and X. Hongsheng, “A
markov game theory-based risk assessment model for net-
work information systems,” in International conference on
computer science and software engineering, 2008.

[12] J. C. HARSANYI, “Games with incomplete information
played by bayesian players, i-iii.” Management Science,
vol. 14, no. 3, 1967.

[13] A. Patcha and J. Park, “A game theoretic apporach to
modeling intrusion detection in mobile ad hoc networks,”
in Proceedings of the 2004 IEEE workshop on Information
Assurance and Security, 2004.

[14] M. M. Moghaddam, M. H. Manshaei, and Q. Zhu, “To trust
or not: A security signaling game between service provider
and client,” in Conference on Decision and Game Theory for
Security, ser. LNCS, vol. 9406, 2015, pp. 322–333.

[15] K. Nguyen, T. Alpcan, and T. Basar, “Stochastic games with
incomplete information,” in Proc. of IEEE Intl. Conf. on
Communications (ICC), 2009.

[16] K. Durkota, V. Lisý, B. Bos̆anský, and C. Kiekintveld, “Ap-
proximate solutions for attack graph games with imperfect
information,” in Conference on Decision and Game Theory
for Security, ser. LNCS, vol. 9406, 2015, pp. 228–249.

[17] C. Zhang, A. X. Jiang, M. Short, J. Brantingham, and
M. Tambe, “Defending against opportunistic criminals: New
game-theoretic frameworks and algorithms,” in Conference
on Decision and Game Theory for Security, ser. LNCS, vol.
8840, 2014, pp. 3–22.

[18] R. van Glabbeek, S. A. Smolka, B. Steffen, and C. M.
Tofts, “Reactive,generative,and stratified models of proba-
bilistic processes,” in Information and Computation, 1995.

[19] R. Diestel, Graph Theory, 3rd ed. Springer-Verlag, 2005.

[20] Q. Wu, S. Shiva, S. Roy, C. Ellis, and V. Datla, “On modeling
and simulation of game theory-based defense mechanisms
against dos and ddos attacks,” in 43rd Annual Simulation
Symposium (ANSS10), part of the 2010 Spring Simulation
MultiConference, 2010.

[21] D. Sangiorgi, An introduction to Bisimulation and Coinduc-
tion. Springer, 2007.

[22] J. V. D. Wal, “Stochastic dynamic programming,” in Mathe-
matical Centre Tracts 139. Morgan Kaufmann, 1981.

[23] T. Ehrhard and Y. Jiang, “CCS for Trees,” in
http://arxiv.org/abs/1306.1714, 2013.

APPENDIX

As the limited space, we show partial experimental data
of the second case study.

Table II
PART OF STATE SET

State number State name
1 Normal operation
2 Httpd attacked
3 Ftp attacked
4 Ftpd attackedd etector
5 Httpd hacked
6 Ftpd hacked

Table III
PART OF ATTACKER’S ACTION SET

State no.\ 1 2 3
Action no.

1 Attack httpd Attack ftpd φ
2 Continue attacking φ φ
3 Continue attacking φ φ
4 Continue attacking φ φ
5 Deface website Install sniffer φ
6 Install sniffer φ φ

Table IV
PART OF DEFENDER’S ACTION SET

State no.\ 1 2 3
Action no.

1 φ φ φ
2 φ φ φ
3 InstallSnifferDetctor φ φ
4 RemoveSnifferDetctor φ φ
5 RemoveComAccount InstallSnifferDetector φ
6 RemoveComAccount InstallSnifferDetector φ

Table V
PART OF TRANSITION PROBABILITIES

State 1 State 2 State 3
ṗ(s1, 1, ·, s2) = 1/3 ṗ(s2, 1, ·, s2) = 0.5/3 ṗ(s3, 1, 2, s3) = 0.5
ṗ(s1, 1, 2, s3) = 1/3 ṗ(s2, 1, ·, s5) = 0.5/3 ṗ(s3, 1, 3, s3) = 0.5
ṗ(s1, 3, ·, s1) = 1/3 ṗ(s2, 2, ·, s1) = 1 ṗ(s3, 1, 2, s6) = 0.5

ṗ(s2, 3, ·, s1) = 1 ṗ(s3, 1, 3, s6) = 0.5
ṗ(s3, 1, 1, s4) = 1

State 4 State 5 State 6
ṗ(s4, 2, 1, s1) = 1 ṗ(s5, 1, 3, s7) = 0.8 ṗ(s6, 1, 3, s8) = 0.8
ṗ(s4, 3, 1, s1) = 1 ṗ(s5, 2, 3, s8) = 0.8 ṗ(s6, 1, 2, s9) = 0.8
ṗ(s4, 1, 1, s3) = 1 ṗ(s5, 1, 2, s9) = 0.8 ṗ(s6, 2, 3, s1) = 1
ṗ(s4, 1, 2, s4) = 1 ṗ(s5, 3, 1, s1) = 1 ṗ(s6, 3, 1, s1) = 1
ṗ(s4, 1, 3, s4) = 1 ṗ(s5, 1, 1, s1) = 1 ṗ(s6, 2, 3, s6) = 1

ṗ(s6, 3, 3, s6) = 1

Table VI
PART OF WEIGHT PAIR OF EACH TRANSITION

ḟu(s1) =

10 10 10
10 10 10
0 0 0

 ḟd(s1) = −ḟu(s1)

ḟu(s2) =

0 0 0
0 0 0
0 0 0

 ḟd(s2) = ḟu(s2)

ḟu(s3) =

0 0 0
0 0 0
0 0 0

 ḟd(s3) =

−10 −10 −20
−10 −10 0
−10 −10 0


ḟu(s4) =

20 10 10
0 0 0
0 0 0

 ḟd(s4) =

−20 −10 −10
−10 0 0
−10 0 0


ḟu(s5) =

99 50 99
10 0 10
0 10 0

 ḟd(s5) =

−99 −99 −99
10 10 −10
−10 −10 0


ḟu(s6) =

 0 0 10
10 0 0
10 0 0

 ḟd(s6) = −ḟu(s6)

	I Introduction
	II Modelling based on PVCCSG
	II-A PVCCSG
	II-B PVCCSG based Security Model
	II-C SecModel

	III Analyzing NES on SecModel
	III-A Nash Equilibrium Strategy on SecModel
	III-B Algorithm
	III-B1 Termination and Correctness

	IV Applications
	IV-A Defense for DDoS Attacks
	IV-B Campus Network Defense

	V Conclusion
	References
	Appendix

