
ar
X

iv
:1

90
3.

05
79

1v
1 

 [
cs

.C
R

] 
 1

4 
M

ar
 2

01
9

Authentication by Witness Functions

Jaouhar Fattahi1 and Mohamed Mejri1 and Emil Pricop2

1Department of Computer Science and Software Engineering. Université Laval. Québec. Canada.

{jaouhar.fattahi.1@ulaval.ca | mohamed.mejri@ift.ulaval.ca}
2Automatic Control, Computers and Electronics Department. Petroleum-Gas University of Ploiesti. Romania.

{emil.pricop@upg-ploiesti.ro}

Abstract—Witness functions have recently been introduced in
cryptographic protocols’ literature as a new powerful way to
prove protocol correctness with respect to secrecy. In this paper,
we extend them to the property of authentication. We show how
to use them safely and we run an analysis on a modified version
of the Woo-Lam protocol. We show that it is correct with respect
to authentication.

Index Terms—Analysis, authentication, proof, protocols, wit-
ness functions, Woo-Lam protocol modified version.

NOTICE

c© 2016 IEEE. Personal use of this material is permitted.

Permission from IEEE must be obtained for all other uses, in

any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or

lists, or reuse of any copyrighted component of this work in

other works.

I. INTRODUCTION

Cryptographic protocols are distributed programs used ev-

erywhere. They are designed to provide security assurances in

communications by using cryptographic primitives. Traditional

assurances include secrecy, integrity and authentication, and

more recently, anonymity, atomicity, verifiability, coercion-

resistance, etc. It has been clear for a long time that crypto-

graphic protocols are prone to serious design drifts. Therefore,

several formalisms [1] have been proposed to check protocols

against flaws and vulnerabilities. In this paper, we focus on

authentication. Authentication is the property that should be

satisfied by a protocol to be secure against acceptance of a

fraudulent agent by ensuring that one party is who he claims

to be. A protocol can reach authentication by means of secrecy

when it succeeds to provide evidence to one party that the

second party manages to present a piece of data that could

only have been generated by him (e.g. response to a challenge).

This implies, very often, that some data can be unequivocally

traced back to its origin. In some scenarios, authentication

involves more than two parties where a trusted server could

be used to introduce one party B to another party A and A is

assured that B is trusted by the server in the required protocol

semantics. It is worth mentioning that, of course, protocols can

reach authentication with no need to secrecy, however, these

protocols are not our target in this paper.

II. METHODOLOGY

Our way to prove that a protocol is correct with respect to

authentication consists in reaching two intermediate purposes:

1) we prove that the secret used for authentication is never

disclosed to avoid any bad use of this latter by an

opponent;

2) we make sure that the link between the authenticatee

identity and the secret is never untied. This is to guarantee

that the secret emanates from the right origin.

For that, we use the theory of witness functions [2]–[5].

Witness functions adequately estimate the level of security of

each atomic message. Before this paper, we used to use them

to prove secrecy in a protocol by showing that it is increasing.

That is to say, to show that the level of security of every single

atomic message exchanged in the protocol is always growing

and never goes down between any two consecutive steps of

receiving and sending. Our contribution here is the extension of

witness functions for the authentication property. For that, we

give sufficient conditions for authentication based on the two

mighty bounds of a witness function such, if met, the protocol

is automatically declared correct with respect to authentication.

• in Sections III and IV, we’ll give a brief summary of

the proof of correctness of increasing protocols when

analyzed with safe functions and we give a guideline to

build these functions;

• in Section V, we’ll give a short overview on witness

functions and we bring out their powerful bounds;

• in Section VI, we’ll give sufficient conditions to ensure

protocols’ correctness with respect to authentication based

on witness functions;

• in Section VII, we’ll analyze a modified version of the

Woo-Lam protocol;

• finally, we’ll compare our approach with similar ones and

conclude.

Please notice that all the notations we will use in this paper

are given in the appendix. The reader is kindly requested to

see them before moving forward.

III. ON THE CORRECTNESS OF INCREASING PROTOCOLS

Hereafter, we remind an important result: ”A protocol keeps

its secret inputs when analyzed with a safe function and shown

increasing”.

http://arxiv.org/abs/1903.05791v1


A. Safe functions

Definition 1: (Well-formed Function) Let F be a function

and C be a context of verification. F is C-well-formed iff:

∀M,M1,M2 ⊆ M, ∀α ∈ A(M):

F (α, {α}) = ⊥
F (α,M1 ∪M2) = F (α,M1) ⊓ F (α,M2)
F (α,M) = ⊤, if α /∈ A(M)

A well-formed function F must return the infimum to an

atom α that appears clear in M to say that any participant

knows it from M . It returns to an atom in the union of two

sets, the minimum of the two values calculated in each set

separately. It returns the supremum to any atom α that does

not appear in M to say that nobody could get it from M .

Definition 2: (Full-Invariant-by-Opponent Function) Let

F be a function and C be a context of verification. F is full-

invariant-by-Opponent iff: ∀M ⊆ M,m ∈ M, α ∈ A(m):
M |=C m⇒ (F (α,m) ⊒ F (α,M)) ∨ (pK(I)q ⊒ pαq).

A full-invariant-by-opponent function F is such, when it

affects a security level to an atom α in a set of messages

M , the opponent cannot deduce from this set some message

m in which this level decreases (i.e. F (α,m) 6⊒ F (α,M)),
unless he is expressly entitled to know it (i.e. pK(I)q ⊒ pαq).

A function F is s said to be safe if it is well-formed and

full-invariant-by-Opponent.

Definition 3: (F -Increasing Protocol) Let F be a function

and C be a context of verification and p be a protocol.

p is F -increasing iff: ∀R.r ∈ RG(p), σ ∈ Γ, α ∈
A(r+), we have: F (α, r+σ) ⊒ pαq ⊓ F (α,R−σ)

An F -increasing protocol must produce traces with atomic

messages having always a security level, returned by F ,

higher when sending (i.e. in r+σ) than when receiving (i.e.

in R−σ) or than its level set in the context (i.e. pαq), if known.

Theorem 1: (Sececy in Increasing Protocols) Let F be a

safe function and p be an F -increasing protocol.

p keeps its secret inputs.

Theorem 1 states that a protocol keeps its secret inputs when

it is analyzed by a safe function F and is shown increasing.

This result is quite intuitive. In fact, if the opponent succeeds

to obtain a secret α (clear) from the protocol then its security

level given by F is the infimum since F is well-formed. That

cannot be due to the rules of the protocol since this latter is

F -increasing. That could not arise neither when the opponent

uses his capabilities since F is full-invariant-by-opponent. So,

the secret is kept forever. The detailed proof is available in [5].

IV. GUIDELINE FOR BUILDING SAFE FUNCTIONS

In [4] we propose a class of safe selections: SEK
Gen. Any

selection S in SEK
Gen must return to an atom α in a message

m:

1) if α is encrypted by a key k such that k is the outer key

that satisfies the condition pk−1q ⊒ pαq (we refer to it

by the external protective key), a subset among k−1 and

the neighbors of α under the same protection by k;

2) for two messages linked by a function f in Σ other than

an encryption by a protective key (e.g. pair), the union of

two subselections in these two messages.

3) if α does not have a protective key in m, the infimum (all

atoms);

4) if α does not appear in m, the supremum (the empty set);

Among the selections of SEK
Gen, we spotlight three practical

ones:

1) the selection SEK
MAX : it returns to an atom α in a message

m encrypted by the external protective key k, all the

principal identities inside the same protection by k, in

addition to k−1;

2) the selection SEK
EK : it returns to an atom α in a message

m encrypted by the external protective key k, the key

k−1;

3) the selection SEK
N : it returns to an atom α in a message

m encrypted by the key external protective key k, all the

principal identities inside the same protection by k;

Any selection S in SEK
Gen when composed to a adequate

homomorphism ψ returns a safe function F = ψ ◦ S. We

choose the homomorphism that returns for:

1) an agent, its identity;

2) the key k−1, if selected, the set of agent identities that

are authorized to know it.

We denote by FEK
MAX , F

EK
EK and FEK

N respectively the func-

tions resulting from the compositions ψ ◦SEK
MAX , ψ ◦SEK

EK and

ψ ◦ SEK
N . We prove [4] that these functions are safe. In fact,

since the selection for any atom α is performed in an invariant

section protected by the external protective key k, then, to alter

this section (to decrease the security level of α), the opponent

must have priorly obtained the atomic key k−1. At this point

of the proof, his knowledge must satisfy: pK(I)q ⊒ pk−1q.

Since the key k−1 satisfies: pk−1q ⊒ pαq then the knowledge

of the opponent must satisfy pK(I)q ⊒ pαq too seeing that

the comparator ”⊒” is transitive. This is simply the definition

of a full-invariant-by-opponent function. These functions are

well-formed by construction, too.

Example 1:

Context: pαq = {A,B, S}; m = {C.{α.D}kas
}kab

; k−1
ab =

kab, k
−1
as = kas; pkasq = {A,S}, pkabq = {A,B}. We have:

SEK
MAX(α,m) = {C,D, k−1

ab } and FEK
MAX(α,m) = ψ ◦

SEK
MAX(α,m) = {C,D}∪pk−1

ab q = {C,D} ∪ {A,B} =
{A,B,C,D}.



V. WITNESS FUNCTIONS TO ELIMINATE THE EFFECT OF

VARIABLES

The functions F ∈ {FEK
MAX , F

EK
EK , FEK

N } we have defined

so far are not useful in practice since they operate on ground

terms only. However, a static analysis should be run over

messages of the generalized roles resulting from writing the

protocol in a role-based specification [18]. These messages

contain variables that denote a content that an agent ignores

and on which he cannot perform any verification. We give

here a safe way to deal with variables. But now, let us

introduce derivation in Definition 4.

Definition 4: [Derivation]
∂Xα = α
∂XX = ǫ
∂XY = Y,X 6= Y

∂[X]m = ∂{Xm\{X}}m
∂Xf(m) = f(∂Xm), f ∈ Σ
∂S1∪S2

m = ∂S1
∂S2

m

Derivation simply eliminates variables from a message

except a variable under evaluation. The expression ∂m denotes

a message m after removing all variables in. The aim of

derivation is to deprive variables from playing any role when

evaluating an atom in a message. The idea is hence to apply

F on the derivative message instead of the message itself.

Besides, any variable is evaluated as a block with no regard to

its content (i.e quantified). In fact, the reason why we do not

care about the content of a variable is that if a variable, globally

evaluated, is shown increasing that means that it cannot be

discovered by any unauthorized party, and consequently any

content inside cannot be discovered by an unauthorized party,

too. If it is not increasing, then the protocol will not satisfy

our sufficient conditions and hence no decision with respect to

secrecy is made on, thus, with respect to authentication, too.

This way of treating variables allows us to give any content of

a variable (dynamically known) the same value of the variable

itself (statically calculable). The way we evaluate an atom from

within a derivative message is described by Definition 5.

Definition 5:

Let m ∈ MG
p , X ∈ Xm and mσ be a valid trace.

For all α ∈ A(mσ), σ ∈ Γ, we denote by:

F (α, ∂[α]mσ) =







F (α, ∂m) if α ∈ A(∂m),
F (X, ∂[X]m) if α /∈ A(∂m)

and α = Xσ.

Since the expression F (α, ∂[α]mσ) does not depend on

substitution (i.e the run σ), we denote it simply by F ′(α,m).
Although the derivative function F ′ allows us to neutralize

variables, which is as such an important intermediate result,

using it as is to analyze protocols is not safe because it is

not even a function in the protocol. In fact, when we want

to evaluate the security level of α in the trace {α.A.B}kcd

for example, we must return to the generalized roles to see

from which message (with variables) this trace is generated

and we may realize that more than one message are able to

generate it. For instance, the messages m1 = {α.A.X}kcd
and

m2 = {α.Y.B}kcd
are both candidates to generate the trace

{α.A.B}kcd
(i.e. possible sources of it). If we refer to the first

source (i.e. to m1), the security level of α returned by F ′ (with

F = FEK
MAX ) is:

F ′(α, {α.A.X}kcd
) = F (α, {α.A}kcd

) = {A,C,D}

Whereas, if we refer to the second source (i.e. to m2), its

security level is:

F ′(α, {α.Y.B}kcd
) = F (α, {α.B}kcd

) = {B,C,D}

Therefore, we cannot rely on F ′ to analyze a protocol. To

overcome this insufficiency, we define the witness functions.

A witness function looks for all the sources of a ground

term mσ in the finite set MG
p , applies F ′ to all of them,

and returns the minimum. This minimum must satisfy both

existence and uniqueness in the security lattice. Since a secret

is always evaluated under the protection of a protective key,

the research of the sources of a closed message in MG
p is then

restricted to encryption patterns. We denote by M̃G
p the set

of all encryption patterns generated by the protocol (renamed).

Definition 6: [witness function] Let m ∈ MG
p , X ∈ Xm

and mσ be a valid trace. Let p be a protocol and F be a

safe function. We define a witness function Wp,F for all α ∈
A(mσ), σ ∈ Γ, as follows:

Wp,F (α,mσ) = ⊓
{(m′,σ′)∈M̃G

p⊗Γ|m′σ′=mσ}
F ′(α,m′σ′)

Using a witness function as is to analyze a protocol is a

very tedious process since we cannot enumerate all the valid

traces mσ and their sources statically. For that we bind it into

two bounds that do not depend on substitution (i.e on σ). The

upper bound of a witness function returns a minimum set of

confirmed principal identities for any α in m whereas the

lower bound returns the set of all principal identities from all

the possible sources of m (that are unifiable with it) including

the odd ones. The lower bound hunts so any odd principal

identity and interprets it as an attack. The proof is simple

since we have always {(m′, σ′) ∈ M̃G
p ⊗ Γ|m′σ′ = mσ} ⊆

{(m′, σ′) ∈ M̃G
p ⊗ Γ|m′σ′ = mσ′} in the security lattice

whatever σ. This is expressed by Proposition 1.

Proposition 1: [binding a witness function] Let m ∈ MG
p .

Let Wp,F be a witness function. For all σ ∈ Γ we have:

F ′(α,m) ⊒ Wp,F (α,mσ) ⊒ ⊓
{(m′,σ′)∈M̃G

p⊗Γ|m′σ′=mσ′}
F ′(α,m′σ′)

VI. SUFFICIENT CONDITIONS FOR AUTHENTICATION

(CONTRIBUTION)

The Lemma 1 declares a decision criterion for secrecy

based on the bounds of a witness function. The upper bound

returns the set of original and trusted identities only from

the received message. The lower bound returns the set of

all the identities including those that could be inserted by a



masquerader by substituting a regular message when sent.

The criterion makes sure that no odd identity could be

inserted in the evaluation neighborhood of a given atom in

the sent message. The proof of Lemma 1 results directly from

Proposition 1 and Theorem 1.

Lemma 1: [Decision for Secrecy] Let p be a protocol. Let

Wp,F be a witness function. p is correct with respect to secrecy

if: ∀R.r ∈ RG(p), ∀α ∈ A(r+) we have:

⊓
{(m′,σ′)∈M̃G

p⊗Γ|m′σ′=r+σ′}
F ′(α,m′σ′) ⊒ pαq ⊓ F ′(α,R−)

Theorem 2 forwards two conditions such, if met, a protocol

is automatically declared correct for authentication. The first

one ensures that the protocol does not disclose its secret

inputs. An immediate outcome of this first result is that the

message the verifier last receives for authentication is in a

safe state and had not been subverted by a masquerader.

The second one makes sure that the binding between the

challenge and the identity of the identifier is not broken.

Therefore, we call once again the upper bound of the

witness function to confirm the originality of the claimer

identity by evaluating the challenge in the message that

should authenticate the claimer to the verifier. The second

clause of the second condition is trivial and introduced just

to make sure that the challenge is not received in a public state.

Theorem 2: [Decision for Authentication] Let p be a proto-

col. Let Wp,F be a witness function. p is correct with respect

to authentication if:

1) Lemma 1 is satisfied;

2) Let α be the challenge in a message m received by a

verifier B to authenticate an agent A. We have:

A ∈ F ′(α,m) ∧ F ′(α,m) ⊐ ⊥

It is worth mentioning that:

• the conditions set by Theorem 2 can be verified statically

as they use the two bounds of a witness function only

and both of them are statically determinable;

• their verification is linear under the assumption of perfect

encryption since the most costly operation is unification

in the lower bound of a witness function which is linear

under that assumption. However, under nonempty equa-

tional theories, it will vary from one to another. In a future

work, we will give new results related to this question.

VII. ANALYSIS OF A MODIFIED VERSION OF THE

WOO-LAM PROTOCOL WITH A WITNESS FUNCTION FOR

AUTHENTICATION (CONTRIBUTION)

The original version of the Woo-Lam protocol has been

proven incorrect by several means [6]–[8]. Hereafter, we

analyze an modified version of this protocol with a witness

function and we prove that it is correct with respect to

authentication. This version is denoted by p in Table I.

TABLE I
THE WOO-LAM PROTOCOL (MODIFIED VERSION)

p := 〈1, A → B : A〉.
〈2, B → A : Nb〉.
〈3, A → B : {B.kab}kas

〉.
〈4, B → S : {A.Nb.{B.kab}kas

}kbs
〉.

〈5, S → B : {Nb.{A.kab}kbs
}kbs

〉

The role-based specification of p is RG(p) =
{A1

G, A2
G, B1

G, B2
G, B3

G, S1
G}, where the generalized

roles A1
G, A2

G of A are as follows:

A1
G = 〈i.1, A → I(B) : A〉

A2
G = 〈i.1, A → I(B) : A〉.

〈i.2, I(B) → A : X〉.
〈i.3, A → I(B) : {B.kiab}kas

〉

The generalized roles B1
G, B2

G, B3
G of B are as follows:

B1
G = 〈i.1, I(A) → B : A〉.

〈i.2, B → I(A) : N i
b〉

B2
G = 〈i.1, I(A) → B : A〉.

〈i.2, B → I(A) : N i
b〉.

〈i.3, I(A) → B : Y 〉.
〈i.4, B → I(S) : {A.N i

b.Y }kbs
〉

B3
G = 〈i.1, I(A) → B : A〉.

〈i.2, B → I(A) : N i
b〉.

〈i.3, I(A) → B : Y 〉.
〈i.4, B → I(S) : {A.N i

b.Y }kbs
〉.

〈i.5, I(S) → B : {N i
b.{A.Z}kbs

}kbs
〉

The generalized role S1
G of S is as follows:

S1
G = 〈i.4, I(B) → S : {A.U.{B.V }kas

}kbs
〉.

〈i.5, S → I(B) : {U.{A.V }kbs
}kbs

〉

Let us have a context of verification such that:

pkasq = {A,S}; pkbsq = {B,S}; pkiabq = {A,B, S};

pN i
bq = ⊥; ∀A ∈ I, pAq = ⊥.

Let F = FEK
MAX ; Wp,F = Wp,FEK

MAX
;

We denote by Υp,F (α,m) the lower bound

⊓
{(m′,σ′)∈M̃G

p⊗Γ|m′σ′=mσ′}
F ′(α,m′σ′) of the witness function

Wp,F (α,m).

The set of messages generated by p is

MG
p = {A1, X1, {B1.K

i
A2B1

}KA2S1
, A3, N

i
B2
, Y1,

{A4.N
i
B3
.Y2}KB3S2

, {N i
B4
.{A5.Z1}KB4S3

}KB4S3
,

{A6.U1.{B5.V1}KA6S4
}KB5S4

, {U2.{A7.V2}KB6S5
}KB6S5

}

The variables are denoted by X1, Y2, Z1, U1, U2, V1 and V2;



After eliminating duplicates in MG
p and the messages that

are not encryption patterns, we have:

M̃G
p = {{B1.K

i
A2B1

}KA2S1
, {A4.N

i
B3
.Y2}KB3S2

,
{N i

B4
.{A5.Z1}KB4S3

}KB4S3
, {A6.U1.{B5.V1}KA6S4

}KB5S4
,

{U2.{A7.V2}KB6S5
}KB6S5

}

A. Analysis of the Generalized Roles of A

According to the generalized role of A, an agent A may take

part in some session Si in which he receives an unkown mes-

sage X and sends the message {B.kiab}kas
. This is described

by the following rule:

Si :
X

{B.kiab}kas

-Analysis of the messages exchanged in Si:

1- For kiab:

a- Receiving step: R−
Si = X (when receiving, we use the

upper bound)

F ′(kiab, R
−
Si) = F (kiab, ∂[k

i
ab]X) = F (kiab, ǫ) = ⊤ (1)

b- Sending step: r+
Si = {B.kiab}kas

(when sending , we use

the lower bound)

∀kiab.{(m
′, σ′) ∈ M̃G

p ⊗ Γ|m′σ′ = r+
Siσ

′}

= ∀kiab.{(m
′σ′) ∈ M̃G

p ⊗ Γ|m′σ′ = {B.kiab}kas
σ′}

= {({B1.K
i
A2B1

}KA2S1
, σ′

1)} such that:

σ′
1 = {B1 7−→ B,Ki

A2B1
7−→ kiab,KA2S1

7−→ kas}

Υp,F (k
i
ab, {B.k

i
ab}kas

)

= {Definition of the lower bound of the witness function}

F ′(kiab, {B1.K
i
A2B1

}KA2S1
σ′
1)

= {Setting the static neighborhood}

F ′(kiab, {B.k
i
ab}kas

σ′
1)

= {Definition 5}

F (kiab, ∂[k
i
ab]{B.k

i
ab}kas

)

= {Derivation in Definition 4}

F (kiab, {B.k
i
ab}kas

)

= {Since F = FEK
MAX}

{B,A, S}

Then, we have:

Υp,F (k
i
ab, {B.k

i
ab}kas

) = {B,A, S} (2)

2- Conformity with Lemma 1:

From (1) and (2) and since pkiabq = {B,A, S} in the

context, we have:

Υp,F (k
i
ab, {B.k

i
ab}kas

) ⊒ pkiabq ⊓ F
′(kiab, X) (3)

Then, the generalized role of A respects Lemma 1. (I)

B. Analysis of the generalized roles of B

According to the generalized role of B, an agentB may take

part in two subsequent sessions: Si and Sj such that j > i.
In the first session Si, the agent B receives the identity A
and sends the nonce N i

b . In the second one Sj , he receives an

unknown message Y and he sends the message {A.N i
b .Y }kbs

.

This is described by the following rules:

Si :
A

N i
b

Sj :
Y

{A.N i
b.Y }kbs

B.1- Analysis of the messages exchanged in Si:

1- For N i
b :

Since N i
b is set public in the context (i.e. pN i

bq = ⊥), then,

we have directly:

Υp,F (N
i
b, N

i
b) ⊒ pN i

bq ⊓ F
′(N i

b , A) (4)

B.2- Analysis of the messages exchanged in Sj :

1- For N i
b :

Since N i
b is set public in the context (i.e. pN i

bq = ⊥), then,

we have directly:

Υp,F (N
i
b, {A.N

i
b.Y }kbs

) ⊒ pN i
bq ⊓ F

′(N i
b , Y ) (5)

2- ∀Y :

Since when receiving, we have:

F ′(Y, Y ) = F (Y, ∂[Y ]Y ) = F (Y, Y ) = ⊥

Then, we have directly:

Υp,F (Y, {A.N
i
b .Y }kbs

) ⊒ pY q ⊓ F ′(Y, Y ) (6)

3- Conformity with Lemma 1:

From (4), (5) and (6), we have: the generalized role of

B respects Lemma 1. (II)



C. Analysis of the generalized roles of S

According to the generalized role of S, an agent S may

take part in some session Si in which he receives the message

{A.U.{B.V }kas
}kbs

and sends the message {U.{A.V }kbs
}kbs

.

This is described by the following rule:

Si :
{A.U.{B.V }kas

}kbs

{U.{A.V }kbs
}kbs

1- ∀U :

a- Receiving step: R−
Si = {A.U.{B.V }kas

}kbs
(when re-

ceiving, we use the upper bound)

F ′(U, {A.U.{B.V }kas
}kbs

) = F (U, ∂[U ]{A.U.{B.V }kas
}kbs

)
= F (U, {A.U.{B}kas

}kbs
)

= {A,B, S}
(7)

b- Sending step: r+
Si = {U.{A.V }kbs

}kbs
(when sending ,

we use the lower bound)

∀U.{(m′, σ′) ∈ M̃G
p ⊗ Γ|m′σ′ = r+

Siσ
′}

= ∀U.{(m′, σ′) ∈ M̃G
p ⊗ Γ|m′σ′ = {U.{A.V }kbs

}kbs
σ′}

= {({{U2.{A7.V2}KB6S5
}KB6S5

, σ′
1)} such that:

σ′
1 = {U2 7−→ U,A7 7−→ A, V2 7−→ V,KB6S5

7−→ kbs}

Υp,F (U, {U.{A.V }kbs
}kbs

)

= {Definition of the lower bound of the witness function}

F ′(U, {U2.{A7.V2}KB6S5
}KB6S5

σ′
1)

= {Setting the static neighborhood}

F ′(U, {U2.{A.V }kbs
}kbs

σ′
1)

= {Definition 5}

F (U2, ∂[U2]{U2.{A.V }kbs
}kbs

)

= {Derivation in Definition 4}

F (U2, {U2.{A}kbs
}kbs

)

= {Since F = FEK
MAX}

{A,B, S}

Then, we have:

Υp,F (U, {U.{A.V }kbs
}kbs

) = {A,B, S} (8)

2- ∀V :

a- Receiving step: R−
Si = {A.U.{B.V }kas

}kbs
(when

receiving, we use the upper bound)

F ′(V, {A.U.{B.V }kas
}kbs

) =F (V, ∂[V ]{A.U.{B.V }kas
}kbs

)
= F (V, {A.{B.V }kas

}kbs
)

= F (V, ∂[V ]{A.U.{B.V }kas
}kbs

)
= F (V, {A.{B.V }kas

}kbs
)

=























{A,B, S} if kas is the external protective key of V in

the received message {A.{B.V }kas
}kbs

{A,B, S} if kbs is the external protective key of V in

the received message {A.{B.V }kas
}kbs

= {A,B, S}
Then, we have:

F ′(V, {A.U.{B.V }kas
}kbs

) = {A,B, S} (9)

b- Sending step: r+
Si = {U.{A.V }kbs

}kbs
(when sending ,

we use the lower bound)

∀V.{(m′, σ′) ∈ M̃G
p ⊗ Γ|m′σ′ = r+

Siσ
′}

= ∀V.{(m′, σ′) ∈ M̃G
p ⊗ Γ|m′σ′ = {U.{A.V }kbs

}kbs
σ′}

= {({{U2.{A7.V2}KB6S5
}KB6S5

, σ′
1),

({N i
B4
.{A5.Z1}KB4S3

}KB4S3
, σ′

2)} such that:

{

σ′
1 = {U2 7−→ U,A7 7−→ A, V2 7−→ V,KB6S5

7−→ kbs}
σ′
2 = {U 7−→ N i

B4
, A5 7−→ A,Z1 7−→ V,KB4S3

7−→ kbs}

Υp,F (V, {U.{A.V }kbs
}kbs

)

= {Definition of the lower bound of the witness function}

F ′(V, {U2.{A7.V2}KB6S5
}KB6S5

σ′
1)

⊓

F ′(V, {N i
B4
.{A5.Z1}KB4S3

}KB4S3
σ′
2)

= {Setting the static neighborhood}

F ′(V, {U.{A.V2}kbs
}kbs

σ′
1) ⊓ F

′(V, {N i
b.{A.V2}kbs

}kbs
σ′
2)

= {Definition 5}

F (V2, ∂[V2]{U.{A.V2}kbs
}kbs

)⊓F (V2, ∂[V2]{N
i
b.{A.V2}kbs

}kbs
)

= {Derivation in Definition 4}

F (V2, {{A.V2}kbs
}kbs

) ⊓ F (V2, {N
i
b.{A.V2}kbs

}kbs
)

= {Since F = FEK
MAX}

{A,B, S}

Then, we have:



Υp,F (V, {U.{A.V }kbs
}kbs

) = {A,B, S} (10)

3- Conformity with Lemma 1:

From (7) and (8), we have:

Υp,F (U, {U.{A.V }kbs
}kbs

) ⊒ pUq⊓F ′(U, {A.U.{B.V }kas
}kbs

)
(11)

From (9) and (10), we have:

Υp,F (V, {U.{A.V }kbs
}kbs

) ⊒ pV q⊓F ′(V, {A.U.{B.V }kas
}kbs

(12)

From (11) and (12), we have: the generalized role of S
respects Lemma 1. (III)

From (I) and (II) and (III), we conclude that: p respects

Lemma 1. (IV)

Now that the first condition of Theorem 2 is satisfied

(i.e. the protocol is proven increasing, so correct for secrecy),

let us examine the second one. Indeed, the message received by

the authenticator B to authenticatee A is {N i
b.{A.Z}kbs

}kbs
.

The challenge to be verified by B is the nonce N i
b . We have:

F ′(N i
b, {N

i
b.{A.Z}kbs

}kbs
= F (N i

b , ∂[N
i
b]{N

i
b.{A.Z}kbs

}kbs

= F (N i
b , {N

i
b.{A}kbs

}kbs
)

= {A,B, S}

Then, we can easily see that:

A ∈ F ′(N i
b, {N

i
b.{A.Z}kbs

}kbs
)

∧

F ′(N i
b , {N

i
b.{A.Z}kbs

}kbs
) ⊐ ⊥ (V)

From (IV) and (V) and Theorem 2, we can declare now, and

only now, that: The modified version of the Woo-Lam protocol

is correct with respect to authentication.

VIII. COMPARISON WITH SIMILAR WORKS

In the witness functions logic, to prove authentication,

a protocol must be verified for secrecy first. For that, the

upper bound of a witness function bases its calculation on

safe identities collected from a piece of message that is fully

invariant by opponent in order to deprives this latter from

using his capabilities to forge these identities. Besides, in every

single sending step of the protocol, the lower bound makes

sure that the protocol does not endow the opponent of new

rules that could mislead a regular agent by using suspicious

messages that ’’look like” a regular one but, in fact, have

been gathered from previous sessions. To do so, this bound

considers all encryption patterns that might be sources of a

final trace and verifies whether or not a suspicious identity

could be inseminated in some variable when the protocol

is running. If this is the case, the analysis is immediately

aborted and no result for the protocol correctness is given

with respect to secrecy. This way we treat secrecy leads to an

interesting observation: ”If a protocol is correct for secrecy,

then any atomic messages arrives to its destination in a safe

state”. That means that its evaluation environment, based on a

protective key and all the identities beyond, does not contain

any suspicious identity. All of them are reliable. It turns out

that the authenticator has just to make sure that the identity of

the authenticatee is present, witnessing finally the origin of the

authenticating message. This is made available by the upper

bound that is called, once again, to provide this authentication

service, too. In literature, we can point out an interesting work

which is similar in some aspects to ours. It is the work of

Houmani published in [9]–[12]. In this work, she defined

two functions to estimate the level of security of atoms in

messages called respectively DEK and DEKAN. The DEK

function is based on the direct key only whereas DEKAN is

based on the direct key and neighbors. The DEK function is

very limited in practice. However, the main drawback of the

DEKAN function is that it is not variable free. For instance,

DEKAN(α, {α.A.X}kbs
) = {A, ,B, S} ⊓ pXq, where X is

a variable having an unknown level of security pXq in the

context. The fact that a function has outputs with variables sets

up a real barrier when comparing two security levels, especially

when we have more than one variable in the same message.

As a result, very few protocols have been shown correct with

respect to secrecy and, as far as we know, no further researches

have been published with respect to authentication, very likely

because of variables in output. With witness functions, we do

not have this problem owing to derivation used in the witness

functions’ bounds that eliminate variables in output. Hence,

the comparison between security levels is made possible and

easier. Several tools have been proposed in the state-of-the-art

of cryptographic protocols to verify authentication in security

protocols. Among them, we can cite an interesting one: the

AVISPA tool [13]. This tool consists of an aggregation of

three model checkers and a tree automata verifier. These four

components are:

• the Constraint-Logic-based Attack Searcher: applies con-

straint solving to run both protocol falsification and

verification for bounded sessions;

• the On-the-fly Model-Checker: it carries out a protocol

verification by exploring the transition system. It consid-

ers both typed and untyped protocol models;

• the SAT-based Model-Checker: it uses typed protocols

and carries out bounded session verification by calling

a SAT solvers to reduce problem input;

• the TA4SP: is a tree automata that carries out unbounded

protocol verification by estimating the opponent

knowledge using rewriting techniques.

The AVISPA tool was successful in finding new attacks, for

instance, on the ISO-PK3 protocol and the IKEv2 protocol with

digital signatures (a man-in-the-middle attack). However, the

main drawback of model checkers remains the state explosion

problem that we do not face using our approach. Another

interesting tool is the ProVerif one [14], [15]. This latter uses

an abstract representation of a protocol by Horn clauses and



supports several cryptographic primitives described by rewrite

rules or equations. The main limitation of this kind of verifiers

is the halting problem where a program could never end.

That is why binding sessions becomes usually a must. In our

approach, we are not concerned about this problem since our

approach is fully static.

IX. CONCLUSION AND FUTURE WORK

In this paper, we strongly believe that we are giving

a new analytic direction for protocols’ verification against

authentication flaws by using our recent finding: the witness

functions. In a future work, we will experiment our approach

on more protocols in order to know how wide is the range of

protocols that could be analyzed with it and how reasonable

is the rate of false negatives. A special attention will be paid

to protocols that do not run in isolation in order to prevent

multi-protocol attacks [16], [17]. Finally, anonymity is one of

our immediate targets. In fact, this property seems to be the

opposite of authentication in the sense that the link between

the sender identity and the secret must be shown broken during

the communication to make sure that an opponent cannot

reconstruct it. This is a major concern in e-voting protocols, for

example. In theory, witness functions should be useful to prove

this property by setting sufficient conditions for anonymity.

REFERENCES

[1] V. Cortier and S. Kremer, “Formal models and techniques for analyzing
security protocols: A tutorial,” Foundations and Trends in Programming

Languages, vol. 1, no. 3, pp. 151–267, 2014.

[2] J. Fattahi, Analyse des Protocoles Cryptographiques par les Fonctions

Témoins. PhD thesis, Université Laval. Québec. Canada, February 2016.

[3] J. Fattahi, M. Mejri, and E. Pricop, “The theory of witness functions,”
in Recent Advances in Systems Safety and Security (E. Pricop and
G. Stamatescu, eds.), ch. 1, pp. 1–20, Switzerland: Springer International
Publishing (in press), June 2016.

[4] J. Fattahi, M. Mejri, and H. Houmani, “Secrecy by witness functions,”
in the 5th Proceedings of the Formal Methods for Security FMS’2014

Workshop co-located with the PetriNets-2014 Conference, Tunis, Tunisia

(V. Cortier and R. Robbana, eds.), pp. 34–52, CEUR, June 2014.

[5] J. Fattahi, M. Mejri, and H. Houmani, “Relaxed Conditions for Secrecy
in a Role-Based Specification,” International Journal of Information

Security, vol. 1, pp. 33–36, July 2014.

[6] M. Mejri, “Chaotic protocols,” in Computational Science and Its Ap-

plications - ICCSA 2004, International Conference, Assisi, Italy, May

14-17, 2004, Proceedings, Part I, pp. 938–948, 2004.

[7] S. A. Shaikh and V. J. Bush, “Analysing the woo-lam protocol using csp
and rank functions,” in WOSIS, pp. 3–12, 2005.

[8] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuel-
lar, P. Hankes Drielsma, P.-C. Heám, J. Mantovani, S. Mödersheim,
D. von Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò,
and L. Vigneron, “The AVISPA Tool for the Automated Validation of
Internet Security Protocols and Applications,” in Proceedings of the

17th International Conference on Computer Aided Verification (CAV’05)
(K. Etessami and S. K. Rajamani, eds.), vol. 3576 of LNCS, Springer,
2005. Available at http://www.avispa-project.org/publications.html.

[9] H. Houmani and M. Mejri, “Practical and universal interpretation func-
tions for secrecy,” in SECRYPT, pp. 157–164, 2007.

[10] H. Houmani and M. Mejri, “Ensuring the correctness of cryptographic
protocols with respect to secrecy,” in SECRYPT, pp. 184–189, 2008.

[11] H. Houmani and M. Mejri, “Formal analysis of set and nsl protocols
using the interpretation functions-based method,” Journal Comp. Netw.
and Communic., vol. 2012, 2012.

[12] H. Houmani, M. Mejri, and H. Fujita, “Secrecy of cryptographic pro-
tocols under equational theory,” Knowl.-Based Syst., vol. 22, no. 3,
pp. 160–173, 2009.

[13] L. Viganò, “Automated security protocol analysis with the {AVISPA}
tool,” Electronic Notes in Theoretical Computer Science, vol. 155, pp. 61
– 86, 2006. Proceedings of the 21st Annual Conference on Mathemat-
ical Foundations of Programming Semantics (MFPS XXI)Mathematical
Foundations of Programming Semantics {XXI}.

[14] V. Cheval and B. Blanchet, “Proving more observational equivalences
with ProVerif,” in 2nd Conference on Principles of Security and Trust

(POST 2013) (D. Basin and J. Mitchell, eds.), vol. 7796 of Lecture Notes

in Computer Science, (Rome, Italy), pp. 226–246, Springer, Mar. 2013.
[15] B. Blanchet, “Using Horn clauses for analyzing security protocols,”

in Formal Models and Techniques for Analyzing Security Protocols

(V. Cortier and S. Kremer, eds.), vol. 5 of Cryptology and Information

Security Series, pp. 86–111, IOS Press, Mar. 2011.
[16] M. Arapinis, V. Cheval, and S. Delaune, “Composing security protocols:

From confidentiality to privacy,” in Principles of Security and Trust -

4th International Conference, POST 2015, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015, Proceedings, pp. 324–343, 2015.

[17] C. Cremers and S. Mauw, Operational Semantics and Verification of

Security Protocols, ch. Multi-protocol Attacks, pp. 107–122. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012.

[18] M. Debbabi, Y. Legaré, and M. Mejri, “An environment for the specifi-
cation and analysis of cryptoprotocols,” in ACSAC, pp. 321–332, 1998.

[19] D. Dolev and A. C.-C. Yao, “On the security of public key protocols,”
IEEE Transactions on Information Theory, vol. 29, no. 2, pp. 198–207,
1983.

APPENDIX: NOTATIONS

+ We denote by C = 〈M, ξ, |=,K,L⊒, p.q〉 the context of verification
containing the parameters that affect the analysis of a protocol:

• M: is a set of messages built from the algebraic signature 〈N ,Σ〉
where N is a set of atomic names (nonces, keys, principals,
etc.) and Σ is a set of functions (enc:: encryption, dec:: de-
cryption, pair:: concatenation (denoted by ”.” ), etc.). i.e. M =
T〈N ,Σ〉(X ). We use Γ to denote the set of all substitution from
X → M. We denote by A all atomic messages (atoms) in M,
by A(m) the set of atomic messages in m and by I the set of
principals including the opponent I . We denote by k−1 the reverse
form of a key k and we assume that (k−1)−1 = k.

• ξ: is the theory that describes the algebraic properties of the
functions in Σ by equations (e.g. dec(enc(x, y), y−1) = x).

• |=: is the inference system of the opponent under the theory. Let
M be a set of messages and m a message. M |= m means that the
opponent can infer m from M using his capabilities. We extend
this notation to traces as follows: ρ |= m means that the opponent
can infer m from the trace ρ.

• K : is a function from I to M, that assigns to any principal a set
of atomic messages describing his initial knowledge. We denote
by KC(I) the initial knowledge of the opponent, or simply K(I)
where the context of verification is obvious.

• L⊒ : is the security lattice (L,⊒,⊔,⊓,⊥,⊤) used to assign
security values to messages. A concrete example of a lattice is
(2I ,⊆,∩,∪, I,∅) that will be used in this paper.

• p.q : is a partial function that assigns a value of security (type)
to a message in M. Let M be a set of messages and m a single
message. We write pMq ⊒ pmq when ∃m′ ∈ M.pm′q ⊒ pmq

+ Let p be a protocol, we denote by RG(p) the set of the generalized roles
extracted from p. A generalized role is an abstraction of the protocol
where the emphasis is put on a specific principal and all the unknown
messages are replaced by variables. More details about the role-based
specification could be found in [18]. We denote by MG

p the set of

messages generated by RG(p), by Mp the set of closed messages
(ground terms) generated by substitution in terms in MG

p . We denote

by R− (respectively R+) the set of received messages (respectively
sent messages) by a principal in the role R. Conventionally, we use
uppercases for sets or sequences and lowercases for single elements.
For example M denotes a set of messages, m a message, R a role
composed of sequence of steps, r a step and R.r the role ending by
the step r. A valid trace is a ground term obtained by substitution in
the generalized roles. We assume that the opponent has the full-control
of the net and is able to defeat any operation f in Σ except encryption
if he does not have the decryption key, as described in the Dolev-Yao
model [19].

http://www.avispa-project.org/publications.html

	I Introduction
	II Methodology
	III On the correctness of increasing protocols
	III-A Safe functions

	IV Guideline for Building Safe Functions
	V Witness functions to eliminate the effect of variables
	VI Sufficient conditions for authentication (Contribution)
	VII Analysis of a modified version of the Woo-Lam Protocol with a witness function for authentication (Contribution)
	VII-A Analysis of the Generalized Roles of A
	VII-B Analysis of the generalized roles of B
	VII-C Analysis of the generalized roles of S

	VIII Comparison with similar works
	IX Conclusion and future work
	References

